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What do we mean by “statistics”?

Statistical - Descriptive statistics #8441t numerical

modelling

summaries of datasets #iE£
- Minimum, maximum, range, median, quantiles,
histograms, scatterplots ...
- “20% of the samples t£ 4 had heavy metal values
greater than the legal limit for polluted soils”
- Inferential statistics % i#£WT: quantitative
Abuses statements about some population 4
- with uncertainty ~ff§E
- ‘20% (+5% one standard error #5#i27) of the study
area has soils with heavy metal values greater than
the legal limit for polluted soils”

Conclusions




Components of an empirical-statistical model

“Empirical-statistical” &£35% 1: parameterized equation:
dependent ~ independent variables

Statistical

modelling © Predictand, “dependent” variable K7t &
- known at calibration #;#t observations (locations,
times ...)

® Predictors #3728 &, “independent” variables B 725 %
- for model building & #1##, also known at
calibration observations
- for prediction Fijill, also known at prediction
locations, times ...

© Model form %255 relating predictors and

Abuses

predictand
O Model parameters #H L 2$ from calibration &I
Hig

© Model evaluation & 11{f} : fitness for use

Conclusions




Example dataset - Meuse River (NL) heavy

metals faf =% B 2270 5 & 8 2R

predictand log(Zn) £¢%t#{ concentration in topsoil

predictors: (1) distance to river; (2) elevation




Possible research questions

© What proportion of the study area has heavy metal
concentrations over regulatory thresholds? 4 ¥ R i
— limits land use

® Where are the polluted areas? — map = predict at
unsampled locations
© What are the sources R jF of the metal?

- Atmospheric deposition (e.g., from smelters ¥547)?
- River floods #tk?
- Pre-industrial, from parent rock £})5i upstream
- Post-industrial, from industry upstream
- (Soils are from river alluvium 1=, none from
bedrock %:'%)



Relation of predictand to predictors

elevation (m.a.s.l.)

log(zinc)

linear?

distance to river (m)

as square root?



Example empirical-statistical model

Multiple linear regression % & %% [n] ), coefficients
determined by (“fit by”) Ordinary Least Squares (OLS) ¥ ;i§
B/ 3R

Im(formula = Tog(zinc) ~ elev + sqrt(dist), data = meuse)

Residuals:
Min 1Q Median 3Q Max
-0.99144 -0.22853 0.00209 0.22244 0.98324

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 8.64157 0.25206 34.284 < 2e-16 ==
elev -0.23217 0.03426 -6.777 2.54e-10 ===
sqrt(dist) -1.97766 0.16025 -12.341 < 2e-16 #xx*

Multiple R-squared: 0.7226, Adjusted R-squared: 0.7189



Statistical
modelling

Abuses
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Interpretation

@ An additive linear model

- log(Zn) changes linearly with elevation and linearly
as the square root with distance to river

- supports the theory that the heavy metal orginates in
flood water (higher, further from river — less
pollution)

- no interaction fg & jfi17 between predictors
® Residuals 7 7= are lack of fit; almost =1 log(Zn)

© Coefficients %% show the effect of each predictor;
each has a standard error (uncertainty)

O Model explains 71.9% of the total varibility &2 & in
the sample set



Is this a correct model?

@ Are the relations between predictors and predictand
Statistical Iinear?

modelling

® Are the relations independent of each other, or are
there interactions H & Jii 37 between predictors?
© Are the assumptions of linear modelling satisfied?

- Residuals must be independent and
identically-distributed residuals; as a group
normally-distributed

Abuses - Homoscedasctic [6]77# (same variance across range
of predictand)

- No relation between fitted values i #{# at observed
points and residuals

- No spatial or temporal correlation 5% among
residuals

O How sucessful is the model for prediction?

Conclusions




Residuals

Compare on a 1:1 (Actual:Fitted) line.
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Fitted by linear model, log(Zn, ppm)
log(Zn) ~ sqrt(distance_to_river) + elevation_m.a.s.|

No relation between fitted values and residuals - good!




Spatial correlation of linear model residuals

Variogram of residuals from additive linear model
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Model: log(Zn) ~ elevation + sqrt(distance)

Residuals are not independent! Closer separation in
geographic space — closer separation in feature space
This modelling assumption is not satisfied!



Example: Moisture content of surface soils vs.
drought indexfrom remote sensing

moisture = PDI"361:0%8

Soil moisture content, g/kg

R? = 0.585 R? = 0.445

Linear model is incorrect! although it explains more of the variation. The
relation is obviously not linear.

Q: Is the power curve &% shown in the right figure a correct model? (Does
it correctly represent the process i f£?)




Why do we build statistical models?

e © To (partially) understand FEf# (gain insight into Xl

modelling T f#) a geographical process #iEE ) # #£
- The form of the model suggests the form of the
process

- The parameters of the model suggest the influence
of predictors

- The evaluation of the model suggest how well the
model fits the process

R ® To predict unobserved locations (mapping 1 [& %)
or times (forecasting) or cases (future observations)
- Apply the model to cases or locations or times, if we
know the values of the predictor variables
- Predict with uncertainty derived from the model
evaluation

Conclusions
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Empirical-statistical vs. data mining models

Empirical-statistical 238 MR 1Tl give an explicit
model FHFf KT which can be examined for
insight into processes and for prediction

- Examples: multiple (linear) regression,
principal components (PCA), discriminant
analysis, logistic regression ...

Data mining ##E#£4H purely data driven, useful for
prediction but give little insight into process;
“black” (or maybe “grey”) box models
- Examples: Random forests (RF) FE#1 7% #K,
artificial neural networks (ANN), support
vector machines (SVM) ...



Example data mining model - Regression tree
[ 3 #rf

Meuse River soil heavy metals dataset

<145

elev >=8.15
<8.15

distm >=75
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modelling

Abuses
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Interpretation

@ 155 observations, mean concentration 5k &
log(Zn) = 2.56 mg kg'!
® Split dataset into two parts, based on distance to
river = 145 m; each group with its own mean value
< 145: 54 observations, mean 2.87 mg kg-!
- >=145: 101 observations, mean 2.39 mg kg-!
- This is the maximum reduction in within-group
variance 4H N7, maximum increase in
between-group variance fH4H 577

© Continue to split until improvement in variance is
“small”

O This is purely empirical, putting observations into
“boxes”, no statistical model is used



Example data mining model - Random forest

BEALAR PR

Use a set of many trees with resampling = 7 Hy k£;
predict based on all of these and average them

10g10(Zn), Meuse topsoils, Random Forest 10g10(Zn), Meuse topsoils, Random Forest

20 22 24 26 28 30 32
L L L L L L L
20 22 24 26 28 30 32

fitted Out-of-bag cross-validation estimates

Calibration fit Cross-validation fit

Variable importance 2t & & ZZ % (increase in mean
squared error under randomization): flood frequency 9%;
distance to river 68%; elevation 54%
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Selecting a model form

- Should match what is hypothesized or known about

the process based on prior knowledge

- Simpler (“parsimonious” %% H) is better, don’t

complicate a model unless there is a substantial
improvement
- Easier to interpret
- More likely to give higher prediction precision il
iRl

- Compare models based on evalution statistics, but

don’t change models just on this basis

- Test model form robustness & {# 4 by comparing

coefficients based on fitting the model with different
random sub-samples

- Mapping models: compare spatial distribution Z=|g]

445 of predictions with landscape features #5745 {iF



Example of competing 4 model forms

Problem: predict topsoil soil organic matter (SOM)
concentration from environmental variables

| Anhui province
I Heilongjiang province

0 2000
———— K ilometers

Source: Zeng, Can-Ying et al. (2016). Mapping soil organic matter

concentration at different scales using a mixed geographically weighted

regression method. Geoderma:281, 69-82.


https://doi.org/10.1016/j.geoderma.2016.06.033

Predictor variables

Variables Module
Terrain Elevation Elevation
Slope Slope in ArcInfo
Planc Plan curvature (Shary et al., 2002)
Profic Profile curvature (Shary et al., 2002)
TWI Topographic wetness index (Qin et al., 2009a,b)
Hand Height above the nearest drainage (Gharari et al., 2011)
Dand Distance to the nearest drainage (Gharari et al,, 2011)
TCI Terrain characterization index (Park and Van De Giesen, 2004)
TPI Topographic position index (Jenness, 2005)
Flowlen Flow length based on MFD (Qin et al., 2007)
Valleyl Valley index
RPI Relative position index (Skidmore, 1990)
Five binary variables based on fuzzy slope position (Qin et al., 2007) including ridge, shoulder slope (shoulder), back slope (back),
foot slope (foot), channel
Climate Precipitation Annual average precipitation
Temperature Annual average temperature
Vegetation EVIs Summer average EVI
EVla Annual average EVI
Parent materials Eight binary variables: shale, sandstone, pyroclastic rocks (pyroclastic), granite and iorite, li

quaternary clay-silt-gravel (clay-silt-gravel), quaternary vermicule boulder and grave clay (grave clay)

These are all known to affect SOM concentration, via
various processes — model reflects reality

Example: higher elevation — cooler temperatures, more
rainfall, less evapotranspiration — slower decomposition
of SOM




Candidate model forms

| @ Multiple linear regression (MLR); select the “best” set
Statistica .
ntwotde\lmg Of pFEdlctorS

@® Principal components regression (PCR); predictor set
is reduced by Principal Compents Analysis (PCA)

© Ordinary Kriging (OK): predict only from known
points, ignore predictor variables

O Kriging with an External Drift (KED): MLR with OK of

e the residuals from MLR

© Geographically-weighted regression (GWR): like MLR,
but coefficients can vary across the area

® GWR-K: GWR with OK of the residuals

@ many more! %

Conclusions




Processes implied by these models

© MLR: covariates linearly affect predictand

SrrTe - variation: transform predictors or predictands, e.g.,

modelling log-linear relation

® PCR: same, but removes colinearity among predictors
— identifies latent factors

© OK: predictors are not useful, SOM does not depend
on the covariates, only local spatial correlation ZEg]
SREES

O KED: some variation is explained globally as in MLR
but residual variation has local spatial dependence

Abuses

© GWR: covariates linearly affect predictand, but the
strength of the relation changes over the area

® GWR-K: some variation is explained as in GWR-K but
residual variation has local spatial dependence

Conclusions




Question: which model best corresponds to
the physical process?

- Soil geographers have a well-developed theory:

Statistical
modelling

so =f(s,c,o,r,p,a,n)

So: soil property to be predicted

right-hand side: other soil observations climate,

organisms, relief, parent material, age,

neighbourhood

Abuses - But the functional form of this equation is not
determined by theory

- Many studies of each factor separately (e.g.,
chronosequence, toposequence ...), a few of
interactions, none of the complete equation

- We would like our model to correspond to the

physical processes by which these factors produce
Conclusions SOiI.




Comparing mapping results - side-by-side

SOM (g/kg) c SOM (g/kg)
predicted by GWR | predicted by MLR
- <20 .

. 20-30
. 3040
130250
Sis0-70
B 70-90
= 50120
-3

Fig. 7. The distribution of A-horizon soil organic matter maps based on the different model of group 2 for Heshan farm.

Look for details of soil-landscape relation.
E.g., small valleys — high moisture — higher SOM.

“Correct” (or at least plausible) spatial pattern —
confidence that the model is correct



Comparing mapping results - difference maps

Choice of model form has a large influence on the map!




Evidence that a model form is suitable

@ internal &, N: from the model itself:
how well the model fits the data (success of

Statistical calibration);
- how well the fitted model meets the model

modelling
assumptions
® external %4} to the model:

- what is known or suspected about the process in the
real world that gave rise to the data (what we
measure and observe)

- e.g., atmospheric pressure decreases (linearly ?) with
e altitude; fewer molecules hold less heat
- SO, we observe cooler temperatures as we move up a

mountain
how well the model fits observations from the target

population
success of evaluation (“validation” i 52) with:
- an independent dataset
- a simulated independent set by resampling
(“cross-validation” 2z B iF52, “bootstrapping”,
“jackknifing”)

Conclusions
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Common abuses and misunderstandings of
statistics

© Not clearly specifying the population
@® Making inferences from unrepresentative samples

- Confusing populations with samples
- Confusing descriptive and inferential statistics from
a set of observations

© Internal vs. external model evaluation
- 1:1 predicted vs. actual, different from linear
regression for model evaluation

@ Correlation vs. causation; lurking variables



Abuse: Not clearly specifying the population

- We make inferences #7745 £ about a population
Statistical 4#% from a sample K taken from it

modelling

- e.g., map the soil properties in an area, from
observations within it

- The sample must cover “all” the variation in the
target population - the one we want to make
statements about.

- Dangerous to extrapolate #}#£ beyond the limits of

Abuses the population of which the sample is representative

BRAIE
- geographic area; but can argue that the geographic
context in the extrapolation area matches the
calibration area (same climate, same geology ...)

- range of measured attributes; no way to know if the
relation holds beyond this range

Conclusions




Statistical
odelling

Abuses

Conclusions

Interpolation A #f vs. Extrapolation 7} #&
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Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regres-
sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and
women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projedions inter-
sect just before the 2156 Olympics, when the winning women’s 100-metre sprint time of 8.079 s will be faster than the men’s at 8098 s.



Example study area - what is the population?
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Purpose:

(1) map polluted soils in
flood plain of Meuse (Maas)
River, NL fij 2%

(2) infer source of pollution
(upstream industry? aeolian?
parent rock?)

Belgium [t fl| B} on the left
bank of river; also flooded.

Is this in the target popula-
tion? Does the sample allow

us to say anything about it?




Abuse: Making inferences #EWT )45 5 from
non-probability A~ #f3 samples

Population a set of elements (individuals) about which
we want to make a statement

Sample a subset of elements taken from a
population

What is the relation of the sample to the population?




Relation of the sample to the population

Opportunistic sample &84 See it, grab it; no system;
Statistical easy access; e.g., sample soils in roadcuts

modelling

Purposive sample #ZEtE A& Select elements based on
expert knowledge; e.g.,“typical” (“modal”)
landscape position to sample soils

“Representative” sample #HEIFEA the “expert’s”
assessment of the purposive sample, no way
to check

Probability sample #Z £ & Enumerate all elements that
could be sampled (“sampling frame”) and use
a random selection
- completely random, stratified 43 =
random, cluster ¥ #EH] sampling,
two-stage ...

Abuses

Conclusions




Abuse: Confusing the sample and population

Statistical Sample “20% of the samples had heavy metal values

modelling

greater than the legal limit for polluted soils”

Population “20% (+5% one standard error f5 i i%3%) of
the soils in the study area have heavy metal
values greater than the legal limit for
polluted soils”

Abuses The first (sample) is always valid: descriptive statistics.

The second (population) is only valid for a probability
sample. It also allows the computation of confidence
limits & {Z[X[r] or credible intervals ©]{Z[X 7] for the
population.

Conclusions
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Population vs. sample statistics

- Sample: what was observed - descriptive statistics

always valid:
> summary(meuse$zinc)
Min. 1st Qu. Median Mean 3rd Qu. Max.
113 198 326 470 674 1840

Population: what are the true values of the
population? Must infer.

- Was the sample a probability sample? Use a

t-distribution of the mean

> t.test(meuse$zinc)

95 percent confidence interval: 411.47 527.96
sample estimates: mean of x: 469.72

Not a probability sample — use a geostatistical
model (other assumptions!)



Abuse: Confusing internal and external model
evaluations

Steiisiel Internal py#1 Only using the same calibration data

modelling

that was used to build the model
- Often too optimistic; try to minimize by
using measures that account for
External #}#1 Using independent evaluation
(“validation”) data
A - Must be a probability sample from the
target population
- Can be “pseudo-independent”: a
simulated independent set by
resampling (cross-validation,
bootstrapping) if the original sample was
a probability sample

Conclusions




Model calibration vs. evaluation

Calibration % #E finding “best” values of model
parameters
Evaluation L 1E( assessing the usefulness of the
model for its purpose; fitness for use
- “Validation” jF 52 statistics (RMSE etc.)
must be placed in context



Example of internal model fit

Actual vs. modelled straw yields

154 1 98
! 1mmz.. .
31 2y 3000
1. L

Actual

a4

Modelled

Distance to 1:1 line is the residual from the fit; i.e.,
unexplained by model.




Example external evaluation: leave-one-out
cross-validation
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Each observation is predicted by a model built from the
other observations.




Abuse: 1:1 vs. linear regression for model
evaluation

Compare a model predictions with observations:
© Compare 1:1 —H—A9%4k Actual:Predicted B 3ZH: i
M #- this tells how good the model is
- If cross-validation or independent evaluation sample,
a good measure of predictive precision
@® Linear regression of Actual on Predicted - this tells
how much gain #4325 and bias {F#% is in the model.




Rwanda SOC lab. duplicate analyses
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A ag

1:1 RMSE: 5.02 %
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SOC % (Wakely—Black)
15
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W-B =-6.22 + 1.09 LOI
Regression RMSE: 1.53 %
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SOC % (loss on ignition)




Abuse: Correlation/regression fH 75 3¢ & /[B] 4
vs. causation J5 [X]; lurking variables &40 &

Statistical
modelling

- We may have a good statistical relation between one
or more predictors X and a predictand (target) y.
- But this does not mean that, in the real world, X
causes or influences y.
- That is a meta-statistical argument, from physical
principles and experiment.
Abuses - Example: good correlation between two lab. tests of
the same property - does one “cause” the other?
- No! The “lurking variable” &2t & here is the
physical nature of the property itself
- The statistical relation can be used to translate from
one test to the other, with no concept of causation

Conclusions




Example: Correlation vs. causation

Statistical
modelling

Plant growth modelled as a function of temperature,
rainfall and soil nutrient levels - do these cause or at
least influence the plant growth?

- Yes, we know this from lab. experiments.

- Growing season length modelled as a function of
crop yield - is there a causative relation?

Abuses - No, the cause is the other direction. But this model

could be useful for interpolating growing season in

areas with no direct temperature measurements, but

where crop yield is measured.

Conclusions




Conclusions

Conclusions

- Statistical models allow us to make inferences about

populations, from samples taken from the
population

- These inferences include (1) insight into the

processes in nature; (2) predictions

- Models must have an appropriate form, be properly

calibrated, and evaluated for their fitness for use



End

Statistical
modelling

iz amiE

i T B

Wil do ‘our best

CRIR: i =<5 F)
REALMELLRBI A Z B, BAMERA? ZE5 T,

“Although it is still difficult to achieve complete accuracy,
we will still give full effort.”

Conclusions
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