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Glossary

Dynamic simulation model: A model where time is explicitly included in the model formula-
tion. The model predicts system state over time, and is driven by a time series of input data,
usually weather. Compare static model.

Empirical model: A model that relates predictions to data based on previous experience, with
no attempt to model the physical causes. Compare mechanistic model.

Expert model: A model that attempts to formalise the knowledge of a domain expert, either a
land user or, more typically, a specialist in a particular land use.

Mechanistic model: A model that attempts to represent the physical causes of responses to
conditions. Compare empirical model.

Model: A simplified representation of a system, usually in mathematical or computable form.
Model calibration: Adjustment of model parameters so that model predictions are close to
observed values. Requires a calibration data set. Improves the postdicitive power of the model.
Model data: Input variables to the model that cause state changes in the model. They drive
the behaviour of the model in a particular execution. Examples are daily precipitation (a time
series) and soil moisture retention by layer (a static datum).

Model parameters: Numbers used in the model that are constants during a single execution,
but which may be variable between executions. They describe the static context in which the
model is being run. They parameterize the equations of the model, i.e., supply specific values
that control their numerical behavior. The form (equations or algorithm) of the model does
not change.

Model validation: Degree of statistical agreement between predictions of the calibrated model
and observed values. Requires a validation data set. Often measured by comparison of
observed vs. predicted to a 1:1 line with zero intercept. Quantifies the predictive power of the
model.

Postdiction: An outcome of modelling a scenario that has already occurred and for which the
outcome is known. Compare prediction.

Prediction: An outcome of modelling a scenario that has not yet occurred. May be tested in
the modelled system by reproducing the input conditions; this is not possible if a specific time
series of weather is one of the inputs. Compare postdiction.

Simulation: The art of building mathematical or computer models of a system and using
these models to study the properties of the system in response to different scenarios.

State variables: Variables whose values represent the state of a system at any time during the
simulation. Examples are soil water content by layer and plant biomass.

Static model: A model that does not depend on a time series of input data. Compare dynamic
model.

System: A limited part of reality, with the connections between its elements and its limits
with the outside world (non-system) well-specified.



Summary

Biophysical models are simplified representation of land use systems that allow prediction of
the success of such systems prior to their actual implementation. They are classified according
to their degree of computation (qualitative to quantitative), descriptive complexity, (empirical
to mechanistic) and level in the organizational hierarchy (scale). The simplest models are holis-
tic local knowledge, which is difficult to formalise and can not be extrapolated. Expert models
are formalisations of expert judgement about individual Land Qualities, following the FAO
Framework for Land Evaluation. Empirical-statistical models are quantitative predictions of
crop yield from a set of static Land Characteristics. Dynamic simulation models attempt to
model biophysical mechanisms, based on the laws of nature, to follow a system over time
based on a time series of input data. Widely applied models in these various categories are
discussed here, including ALES, MicroLEIS, WOFOST, PS123, DSSAT, APSIM, EPIC,
GAPS, and LEACHM. A stepwise approach is recommended, with simpler models being ap-
plied to limit the areas in which the more complicated models must be calibrated.

1 Introduction

A model 1s a simplified representation of reality with which we can compute outcomes with-
out having to perform actual experiments. In land evaluation, models are computer programs
that predict the performance of a land use on a land area, when given information on that
area’s land characteristics. Biophysical models predict the behaviour of the land use system in
physical terms such as crop yields, environmental effects, and effect on management. They
thus provide a quantified procedure to match land with various actual and proposed land uses,
as proposed by the FAO Framework for Land Evaluation. Models can be used to predict crop
yields under different management strategies, as well as individual land qualities that are im-
portant components of yield, such as moisture supply, nutrient supply, and radiation balance.
They can also be used to evaluate individual land qualities important for the land use but not
directly affecting yield, such as erosion hazard, trafficability, and workability.

2 Classification of biophysical models

In 1992, Hoosbeek and Bryant proposed a classification of models of pedogenesis (soil forma-
tion), which was adapted by Bouma for land evaluation models (Figure 1). In this scheme,
models are classified in three dimensions.

The first two dimensions are shown in Figure 1 on a horizontal plane: (1) the degree of com-
putation, ranging from qualitative to quantitative; and (2) the descriptive complexity, ranging
from empirical to mechanistic. The degree of computation refers to the precision of the
model’s prediction. For example, the simplest qualitative model (at the left of the plane) could
predict land suitability as “suitable” or “not suitable”, in other words, the use will succeed (to
some degree) or fail; this could be adequate for some decisions. The most quantitative model
(at the right of the plane) would give precise numerical predictions of crop yields and envi-
ronmental effects. The descriptive complexity refers to the detail with which processes are
made explicit in the model. An empirical model (at the back edge of the plane) is a model
where processes are not known, but where relations are established based on experience. By



contrast, a mechanistic model (at the front edge of the plane) is a model where processes, not
just relations, are modelled.

The third dimension is shown on Figure 1 as the vertical axis passing through the plane formed
by the first two dimensions: (3) the level in the organizational hierarchy (scale of processes
being modelled), which for land evaluation range from region through field and “point” to soil
horizons and finally molecular interactions. At any scale level, the first two dimensions are
possible; in practice the more quantitative and functional models are generally found at smaller
scales.

Along the plane formed by dimensions (1) and (2), Hoosbeek and Bryant distinguished several
levels of knowledge, which they termed K1 (user expertise), K2 (expert knowledge), K3 (gen-
eralized holistic models), K4 (complex holistic models), and K5 (complex models of system
components), which of course grade into each other in any actual model.

K1 models are empirical, qualitative expressions of the land user’s experience. These have low
descriptive complexity and require no computation. They are applied intuitively within the
geographical and phenomenological area of the user’s experience. KI models are difficult to
formalise, since they draw on the user’s holistic experience, rather than a reductionist problem
analysis.

K2 models are also qualitative, but consider mechanisms. In particular, the FAO approach
with its analysis of land suitability as a set of Land Qualities has the reductionist structure
required for these models, which are built by specialists who are trained to search for causes.

K3 models are empirical but quantitative. These are statistical relations between output (e.g.
yield) and input (e.g. precipitation, heat units, soil fertility), usually established by regression
analysis on large datasets. Predictive variables are selected based on a reductionist concept of
causative factors. They can not be applied outside their area of calibration. All variables are
static, and there is no attempt to simulate system behaviour over time. They can only be ap-
plied to LUTs that are widely practised, so are not useful for new crops, new technologies, or
new management strategies.

K4, and K5 models attempt to be mechanistic rather than empirical. This means that they are
based more on scientific principles (laws such as conservation of mass and energy, diffusion,
convection and dispersion, chemical kinetics and equilibrium) and less on site-specific empiri-
cal relations. It is thus expected that they will be “universally’ applicable. However, the line
between empirical and mechanistic models is not clear, since all ‘mechanistic’ models have
empirical components. These models, when applied to land evaluation, are usually driven by
daily weather data. This allows the analysis of dynamic and transient phenomena that may
affect land performance, so that these are commonly referred to as dynamic simulation models.
Such models can be used to model individual land qualities such as moisture sufficiency (K5)
as well as crop yield (K3). This is appropriate if the timing of the quality is important. Water
stress is a good example: the yearly moisture deficit often isn’t as important as the deficit in
specific parts of the crop growth cycle.



We now consider these modelling approaches, from least to most sophisticated.
3 Models of expert knowledge

At the time that the FAO Framework was developed (mid 1970’s), K2 expert knowledge was
captured as a set of matching tables, one for each Land Quality, using the maximum limitation
method, requiring a set of diagnostic Land Characteristics as input for each table. This was
put in computable form and at the same time made more flexible by the ALES (‘Automated
Land Evaluation System’) computer program, which was released in 1986 and improved until
1997. 1t is freely distributed by Cornell University, but requires a code from a commercial
database vendor for legal operation.

ALES provides a framework with which land evaluators can build their own expert systems to
evaluate land according to FAO Framework. Models are built to satisfy local needs, so that
ALES does not provide a fixed list of LUT, LUR, or LC. Rather, these lists are defined by the
expert to suit local conditions and objectives. ALES does not include any knowledge about
land and land use; these come from the expert. A good example of an ALES model is the LEV-
CET model for central Ethiopia developed by Yizengaw and Verheye.

A key innovation in ALES is the use of decision trees instead of maximum limitation tables to
infer Land Qualities from a set of diagnostic Land Characteristics. These are hierarchical multi-
way keys in which the leaves are results (severity levels of the LQ), and the interior nodes
(branch points) of the tree are decision criteria (LC values). They are constructed by the model
builder, and traversed during the computation of an evaluation result, using actual land data for
each land evaluation unit.

Figure 2 shows a simple decision tree adapted from the Fertility Capability Classification of
Sanchez and Buol (and now incorporated into the FAO’s Topsoil Classification). The objec-
tive in this case is to predict the soil-related LQ “risk of P fixation by iron”; this LQ limits
agricultural systems on some highly-weathered soils where the agronomist attempts to com-
pensate for low soil P by moderate fertilization. Some soils fix (‘eat’) added P in an unavail-
able form, so that moderate doses are effectively wasted inputs. In the displayed tree, the di-
agnostic LC at the highest level is “ratio of free FepO3 to clay in the topsoil”; if this is below

an expert-defined threshold (< 0.15), there is no risk and the decision is taken. If the ratio is
higher, the second-level diagnostic LC “percentage of clay in the topsoil” must be considered; if
this is below another expert-defined threshold (here, 35%), again there is no risk; above this
threshold there is risk and in either case the decision is taken. A third possibility is that one of
the two diagnostic tests was not done, perhaps because of expense or unavailability of a labo-
ratory. In both cases, the expert allows the use of alternative LCs: “hue (basic colour) of the
topsoil matrix”, followed in some cases by the “topsoil structure”, both indicative of the form
of iron-dominated clays. Since these two LCs can always be assessed in the field, a decision
can always be taken. Note that the choice of LCs, the thresholds, and the decisions, represents
expert judgement, in this case of an expert on fertilization of these soils.



4 Empirical-statistical models

An attractive option in the case of well-established LUTs is to model their output as a static
function of a set of Land Characteristics that are expected to influence the output (K3 mod-
els). For the output ‘crop yield’, these characteristics are typically climate (precipitation and
temperature, either average, in the growing season, or in specific periods) and soil (nutrient
status, reaction, organic matter content, particle-size distribution). The functions are usually
developed by multiple regression techniques. Validated relations can be used as an objective
basis for land valuation and taxation, since they deal with widely-grown crops. This approach
goes back to the 1930’s, when soil surveyors were asked to predict crop yields on the basis of
soil properties.

A typical example of this approach is the work of Olson and colleagues in New York State,
and later in Illinois (USA). He begins with a conceptual model of maize yield as a function of
rainfall, temperature, management, site, topography, soil chemical and physical characteristics,
mineralogy, and organisms. The management level (in this case, the level of fertilization, lim-
ing, pesticide use and tillage) is fixed, while the other factors are quantified by measured values
of land characteristics. For example: the ‘rainfall’ conceptual factor was approximated by the
measured variable ‘total yearly rainfall’, ‘temperature’ by ‘growing degree days, and ‘topog-
raphy’ by ‘drainage class (depth to redoximorphic mottles)’. Multiple stepwise linear regres-
sion was used to develop increasingly-complicated equations, the best of which (including
rainfall, soil depth, soil available water capacity, temperature, sum of basic cations, and or-
ganic C content) explained two-thirds of the observed variance (calibration 7* = 0.66); this is a
good result for such models. Note that this is not the predictive success (validation) of this
model, which is expected to be lower; see subsection ‘calibration vs. validation’ for a discus-
sion of this distinction.

This approach has been computerized, for example as the ‘Albero’ component of the
MicroLEIS system, which predicts yields of maize, cotton and wheat from a set of soil char-
acteristics within a fairly homogeneous climate zone (Sevilla province, Spain) using equations
developed by multiple regression.

As with any empirical model, these can only be applied in their original zone of calibration;
extrapolation to new conditions is not justified. The usual cautions about developing multiple
regressions apply: correlated predictors, unknown true functional form, and parsimony.

5 Dynamic simulation models of crop yield

Over the past 25 years, many individual modellers and collaborative groups have attempted to
develop models that simulate the growth of crops, along with associated phenomena that in-
fluence crop growth such as water and solute movement in soils. In this section we describe
WOFOST and its derivative PS123, DSSAT (incorporating CERES and the GRO models),
APSIM, EPIC, and GAPS. These are examples of K4 models; however it bears repeating that
these supposedly ‘mechanistic’ models have a large empirical component in their descriptions
of sub-systems (lower levels in the scale hierarchy).



5.1 The WOFOST approach

In the early 1980’s, the Center for World Food Studies (CABO) in Wageningen (NL) devel-
oped a flexible model based on basic plant physiology and soil processes to predict yields
under several production levels. The original model is known as WOFOST (‘WOrld FOod
STudies’); it is in version 7.1.2 (April 2003). In the early 1990’s, this was adapted for didactic
purposes as the PS123 (“Production Situations 1, 2, and 3’) model. It was also incorporated
into models of farming systems. A major advantage of this approach is that we can begin with
simple models of controlled production situations, where we can have high confidence in the
model results, and then increase the complexity for less controlled situations, with corre-
spondingly less confidence in the outcome.

WOFOST has been incorporated into a large number of system models as reviewed by van
Ittersum et al. Since 1990 all the so-called ‘Wageningen’ models have been programmed in the
FORTRAN Simulation Environment (FSE), and so share many components. WOFOST is
sold by Alterra at a low price; other models in this family are also sold by Alterra. PS123 is
free.

The WOFOST approach, as explained by van Keulen and Wolf, considers three levels of in-
creasingly more realistic limitations, and correspondingly detailed models:

5.1.1 Production level 1: Radiation and temperature limited

Growth occurs in conditions with ample plant nutrients, water, and oxygen (if necessary) all
the time. The growth rate of vegetation is determined by weather conditions and the response
of the plant to these. This can be approached in practice with very intensively managed irri-
gated crops. The model is one of photosynthesis, partition of carbohydrate, and physiological
growth stages (e.g., flowering, senescence). The only inputs to the model are temperature and
radiation (perhaps inferred from cloudiness). There is no need to simulate soil processes at
this level; only above-ground physiology is considered.

5.1.2 Production level 2: Water limited

Growth is limited by water shortage at least part of the time, but when sufficient water is
available, the growth rate increases up to the maximum rate set by the weather. This can be
approached in practice by intensively managed rainfed crops. The model must determine
water stress (so, needs to model soil water, the plant root system, and plant transpiration) and
its effect on the photosynthetic and growth processes. Another input to the model is pre-
cipitation, and the soil profile must be modeled at least for the water balance.

5.1.3 Production level 3: Nitrogen limited

Growth is limited, at least part of the time, by shortage of nitrogen (N) and water or weather
at other times. This is usually more limiting than other nutrients because N transformations in
the soil are much more rapid than for other nutrients. This is common in rainfed crops even if
fertilized according to recommendations and is especially relevant in systems that use animal



or green manures. The model must determine soil N dynamics, plant uptake, N use in the
plant, and effects of N stress on photosynthesis, partition and growth. Soil temperature can
have a large effect on microbial populations, so this must be modeled. Soil organic matter
cycling must be modeled.

This approach has been extended to other levels, e.g. nutrient limited (other than N), and pest
and disease limited.

5.2 DSSAT

Probably the most widely known and used dynamic simulation models applied to agricultural
production are included in what is now termed DSSAT (‘Decision Support System for Agro-
technology Transfer’), in version 3.5 (stable) and 4 (developmental) as of April 2003. These
include the CERES and *GRO models, and indeed DSSAT grew out of previous single-crop
models developed in the early 1980’s. It has recently been re-structured in version 4 as a set of
modules: soil, crop template, weather, and competition. The generic crop model can be
parameterized to simulate various crops. The older versions of DSSAT have been used in
hundreds of studies of farming systems, and there is widespread experience with its calibration
and data requirements.

Since the late 1990°s, DSSAT has been distributed by the International Consortium for Agri-
cultural Systems Applications (ICASA) at low cost. Registered users are provided with the
program source code on request.

5.3 APSIM

The APSIM (‘Agricultural Production Systems Simulator’) modelling approach was devel-
oped by the Agricultural Production Systems Research Unit (a joint effort between the
Queensland State Government and CSIRO) in Australia. It was designed from the start as a set
of modules, which may be built by different researchers. It may be applied to both bio-
physical and economic aspects of the production system. It is especially intended for farm-
level decision-making in the face of uncertain weather. APSIM is not sold, rather licensed on a
case-by-case basis.

5.4 Others

Several other models can be applied to land evaluation. The EPIC (‘Environmental Policy In-
tegrated Climate’) model was developed by the USDA to quantify the costs of soil erosion
and benefits of soil control in the USA. It includes a simple (and therefore fairly easily param-
eterized) crop model. Its predictions include grain yield, residues, and soil loss. As a product
of the US Government, it is in the public domain, and thus freely available. GAPS (‘General-
purpose Atmosphere-Plant-Soil Simulator’) is a research model developed by Cornell Univer-
sity. It is freely available, with source code and extensive documentation of model procedures.
This makes it attractive for learning the principles of dynamic simulation modelling.



6 Dynamic simulation models of individual land qualities

If we only need to model single Land Qualities, specialised models are available that take a
more detailed mechanistic approach (K5) than is possible in a holistic model.

A typical application is solute transport in soils, including pesticides and pollutants such as
nitrates. The LEACHM model is a good example. It uses basic physio-chemical conceptual
models, such as the convection-dispersion equation for chemicals and Richard’s equation for
soil water redistribution.

Another important Land Quality that is addressed by many models is erosion hazard. Most
prominent among these are EUROSEM, RUSLE, EPIC, AGNPS, WEPP (water) and WERS
(wind). Some of these, e.g. EPIC, include a simple crop model, mainly to provide estimates of
vegetative cover during the growing season and crop residues after.

7  Critical issues in using dynamic simulation models for land evaluation

7.1 Context

Modelling is widely recognized as an art, requiring a mastery of the model structure, of the
data requirements, and good judgement to make choices that can greatly affect model results.
No model is automatically applicable to all situations, so the analyst must check that the
model’s context matches that of the target area. This is because all models are simplifications
of reality, and simplifications that do not affect results in some geographic or state spaces may
be crucial in other spaces. For example, many models incorporating a soil water balance do not
account for snowfall or freezing temperatures; these models can not be applied to winter
weather in cold climates. As another example, a model incorporating CO, exchange through
leaves may not take into account the decreasing vapour pressure with increasing altitude, and
so can not be applied without modification in highlands. Addiscott expresses this point from
the perspective of an experienced modeller: “Because of the element of simplification, no
model should be used to make predictions outside the context in which it was developed or
beyond the range of the parameter values from which it has been validated.”

7.2 Calibration vs. validation

The process of fitting a model, either a regression equation or a dynamic simulation, to ob-
served data is calibration, that is, the model parameters are adjusted to best fit the available
experiments. In the case of regression, this is part of developing the equation, given a func-
tional form. This yields a goodness-of-fit measure such as 7, which expresses how well we
were able to match the model to the data.

Another name for calibration is postdiction (as opposed to prediction, see below), from the
Latin ‘post’ (after) and ‘dicere’ (to say). This allows the modeller to use the past (already ob-
served in experiments or datasets) to make probabilistic statements about the how well the
observations are explained by the calibrated model. If the observations were representative of
the desired sample space, we would expect to obtain the same parameters, within experimental
and observational error, in similar repeated studies. However, there is no way to be sure that



the calibration sample is indeed representative of the scenario we want to predict.

The correct measure of the predictive success of a model is a validation experiment. This uses
the calibrated model to predict results for a second set of observations, and then compares the
observed vs. predicted results. A plot of the validation vs. predictions should lie along a 1:1
line passing through the origin, within error limits; that is, their correlation should be +1 and a
fitted regression should have a zero intercept. If these conditions are not met, the original
model is not valid. If so, an estimate of the predictive power of the model may be obtained
from the 7 of the validation regression (not that of the calibration regression).

Another name for validation is prediction (as opposed to post diction, see above), from the
Latin ‘prae’ (before) and ‘dicere’ (to say). It allows the modeller to make a statement about
how well the model is expected to predict the future scenarios.

Clearly, when reporting the success of models, it is validation, not calibration, which is
wanted.

7.3 Calibration

Dynamic simulation models have a large number of parameters that must be adjusted to the
target area, by calibration. This poses difficulties because there is no objective way to deter-
mine which parameters to adjust, nor even which model output or which points in time to use
for calibration. A common approach is to perform a sensitivity analysis of model outputs vs.
model parameters, and adjust the most sensitive parameters. Since these models have so many
parameters, it is possible to fit them quite closely to all but the largest data sets. This is simi-
lar to adding higher-order terms to regression models: as explained by Gaugh at a certain point
we are fitting noise, not processes. With regression there are statistical methods such as
Akaie’s information criterion to determine if a model may be over-fitted, but there is no such
measure for dynamic models.

7.4 Data

A major impediment to applying dynamic simulation models in routine land evaluation is the
requirement for high-quality, high-frequency data. A typical example is the minimum data set
for the CERES and GRO series of models incorporated into DSSAT (see below). These in-
clude:

* Soil properties as a function of depth: horizon thickness, upper and lower limits of volu-
metric water, volumetric water at saturation, bulk density, pH, organic carbon, total nitro-
gen;

* Daily weather data: radiation, precipitation, maximum and minimum temperatures;

* Crop parameters: maturity type, photoperiod response, yield components;

* Initial conditions: water content by depth, nitrates and ammonium by depth;

* Management choices: sowing date, plant population, irrigation amounts and dates, fertilizer
amounts and dates, residue management, plowing depth.

mn



As can be readily appreciated, these are expensive to obtain, and out of reach, except in re-
search settings, for many land evaluation applications. Especially troublesome are the many
parameters that are needed for each crop variety. Daily weather can be approximated from
decadal or even monthly data with weather generator programs, one of which is included in
DSSAT. Missing solar radiation data can be approximated by locally-calibrated transfer func-
tions from cloudiness and latitude. Missing soil properties can be estimated with pedotransfer
functions from routine soil survey data. These approximations will typically lead to less suc-
cessful calibrations.

7.5 Mismatched conceptual levels

Application of models with K5 descriptions of sub-systems often results in a mis-match be-
tween land data, provided at the site or point level, and the parameter requirements of the
model, provided at the structural aggregate or molecular level. Attempts to bridge this gap
usually are by means of empirical statistical models from available land data to model parame-
ters; these have been called ‘pedotransfer functions’. These introduce an additional source of
uncertainty into the predictions.

8 Selecting a modelling approach

The biophysical reality that the land evaluator seeks to model is complex, so it is not surpris-
ing that modelling is difficult. The FAO Framework provides a clue to selecting appropriate
models in a stepwise approach. First, areas of non-suitability can be determined by K2 expert-
knowledge models, considering important Land Use Requirements, with severity levels of the
corresponding Land Qualities being evaluated by decision trees. This is especially relevant for
limitations that can not be removed with the chosen technology. For example, citrus can not be
grown out of doors where there is hard frost. Second, K3 models can be used for well-es-
tablished, widely-implemented LUTs where there is sufficient data to develop sound statisti-
cal relations with climate and soil characteristics. Third, dynamic simulation models can be
used for Land Qualities that depend on dynamics, e.g. moisture sufficiency (K5), and for
overall suitability based on crop yield (K4).

Dynamic simulation models have a major advantage compared to static empirical-statistical
models if we are trying to understand the processes that contribute to an outcome (e.g. a crop
yield), and especially the probable effect of management decisions such as earlier planting of
variable levels of fertilisation. However, their complexity, high data requirements, and difficult
calibration often make them less reliable in situations where a large number of input and out-
put data are available to statistically fit an empirical model.

No matter which modelling approach is selected, the land evaluator must use judgement and

common sense, as well as feedback from clients at every stage in the process, from evaluation
objectives, through model selection, to presentation of results.
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Figures

Figure 1: Conceptual framework to classify models, after Bouma (1999) Land evaluation
for landscape units. In: Sumner M. E. (Ed.), Handbook of soil science (pp.
E393-E412). Boca Raton, FL: CRC Press.
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Figure 2: A decision tree for the Land Quality ‘Risk of P-fixation’, after Sanchez P. A.,
Couto W., & Buol S. W. (1982). The fertility capability soil classification
system: interpretation, applicability and modification. Geoderma, 27(4), 283-
309.
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