
Empirical interpolation: thin plate splines

D G Rossiter

Cornell University

November 20, 2016



Outline

1 Spatial prediction

2 1D Splines
1D natural splines
1D smoothing splines

3 2D: Thin-plate splines

4 Comparing kriging and spline interpolation

5 References

D G Rossiter (CU) Empirical interpolation: thin plate splines November 20, 2016 2 / 45



Spatial prediction

Aim: Prediction of (unknown) values at unsampled points. . .
. . . based on (known) values at sampled points

interpolation: inside the convex hull of observations

extrapolation: outside
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Geostatistical vs. empirical prediction

geostatistical predict based on a geostatistical model with fitted
parameters

e.g., parameters of a variogram
e.g., trend surface (polynomial of coördinates)

empirical predict by an empirical adjustment to known points

e.g., Thiessen polygons (a.k.a. Voronoi tessellation,
nearest neighbour)
e.g., Triangulated irregular network (TIN)
here: Thin-plate splines

Similar to feature-space model-based statistical vs. empirical
prediction

I e.g., linear regression model vs. random forest
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Assumptions of geostatistical methods

Ordinary Kriging (OK) the observations are the result of a locally
spatially-correlated second-order stationary random
process

variogram model

Trend surface (TS) the observations are the result of a regional
process

polynomial regression on the coördinates

Universal Kriging (UK) some of the variation from regional
processes, some residual local variation explained by a
locally spatially-correlated second-order stationary
random process

residual (from trend surface) variogram model
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Empirical methods of spatial prediction

No model, just adjustment to observations

Different methods have different adjustments
I Theissen polygons: predict with value of nearest observation
I TIN: compute position on triangular facet, predict from three

corner observations on the (sloping) triangular facet
I Splines: fit a “smooth” surface to observations, predict on

surface
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Empirical: Thiessen polygons

Thiessen polygons (Voronoi mosaic)

Jura soil samples (blue points)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

● ●

●

●●●

●
●

●
●

●

●

●
●

● ●●

●●

●●●

●

●●●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●●
●

●

●
●

●
●

●

●

●

●
●●

●●●

●

●

●

●

Predict at all locations
within in each polygon
with value of centroid
point

Sharp boundaries be-
tween nearest-neighbour
polygons

D G Rossiter (CU) Empirical interpolation: thin plate splines November 20, 2016 7 / 45



Empirical: TIN

Control points Interpolate on each triangular facet

Source: https://docs.qgis.org/2.2/en/docs/gentle_gis_introduction/

spatial_analysis_interpolation.htm
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Splines

Splines: piecewise “smooth” functions to approximate a set of
control points

1D fit a “smooth” curve to a set of points along a transect

2D fit a “smooth” surface to a set of points in 2D space

In both cases:

points have known coördinate (1D) or coördinates (2D)

points have known attribute value which is to be interpolated

We begin with 1D splines to illustrate the smoothing procedure
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1D Splines

A type of basis expansion:

a piecewise polynomial function
I each piece is defined only over some range

pieces are joined at knots

they have a defined degree of continuity between the pieces

most common: 4th order: continuous 1st and 2nd derivatives
I values, slopes and curvatures match at the knots

These look smooth to the human eye and also correspond to an
intuitive concept of smoothness.
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Piecewise cubic polynomial

One for each piece of the range, joined at knots.
Example: with one knot at c :

yi =

{
β01 + β11xi + β21x

2
i + β31x

3
i + β4h(x , ξ) + εi : ifxi < c ;

β02 + β12xi + β22x
2
i + β32x

3
i + β4h(x , ξ) + εi : ifxi ≥ c .

(1)

The β must be chosen so that the values, 1st, and 2nd derivatives are
equal at the knot. This is ensured with the β4h(x , ξ) term, as is
explained below.
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Spline basis representation

A cubic spline with K knots; this can be fit with least squares.
For each known observation (xi , yi):

yi = β0 + β1b1(xi) + β2b2(xi) + · · · βK+3bK+3(xi) + εi (2)

The basis uses one truncated power basis per knot; this is the h
function of Equation (1):

h(x , ξ) = (x − ξ)3+ =

{
(x − ξ)3 ifx > ξ

0 otherwise
(3)
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Smoothing vs. non-smoothing splines

A non-smoothing spline goes through each knot, i.e., the
values at each knot are considered exact

I Knots can be at observation points or set by the analyst
I It is usual to set up knots at equal intervals over the range of

the predictor
I The resulting curve is still smooth but the knots are respected

A smoothing spline can deviate from the knots to make a
smoother curve, based on a roughness penalty
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1D natural splines

Fit by solution of a linear equation expressing the constraints

Includes constraint that function is linear outside the range of
observations

Spline basis: n × k weights matrix (k knots at each of n
observation)

Basis values are the coefficients of a cubic polynomial

Basis values 6= 0 only for piecewise functions which affect that
station

y vector is values of dependent variable at the knots

X design matrix are the values of the basis function evaluated
for the independent variable at the knots

Solution by ordinary least squares (orthogonal projection):

y = XB + ε −→ B̂ = (XTX )−1XTy (4)
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Computing a 1D natural spline

To compute a spline, the analyst must specify:

1 the order of the spline; most commonly cubic splines (4th order);

2 the number of knots;

3 the placement of knots in the range of the variable.

The knots can be at the known data points

More common: equally-spaced knots through the range of the
sequence, make a linear interpolation from adjacent known points,
and fit the spline through the knots.

Degree of smoothness determined by the number of knots
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Example: particle-size classes along a transect
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source: Webster, R.., & Cuanalo, H.E. de la C. 1975. Soil transect correlograms

of North Oxfordshire and their interpolation. Journal of Soil Science 26,

176–194.
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Natural spline fit to clay concentration – 1
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Knots every 10 stations (320 stations total, so 32 knots)
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Natural spline fit to clay concentration – 2
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Different numbers of knots: every 5, 10, 20 stations

More knots → closer to data values, less smoothing, closer to
extremes

D G Rossiter (CU) Empirical interpolation: thin plate splines November 20, 2016 18 / 45



1D smoothing splines

Optimal solution to this minimization problem:

min
f

{
N∑
i=1

{yi − f (xi)}2 + λJ[f ]

}
(5)

f is the smoothing spline function (e.g., cubic piecewise
polynomial); so

∑N
i=1{yi − f (xi)}2 is the loss function; we

want to minimize this.

J is the penalty term; λ is a tuning parameter which controls
how important it is:

I λ = 0 : no roughness penalty, data will be fit exactly
I λ→ ω: the solution is an OLS linear fit to the data

So smoothness is determined by the penalty, not by number of
knots; all data values are used
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1D penalty function

J[f ] =

∫
R
{f ′′(t)}2 dt (6)

This is the integral of the squared second derivative over the interval

So, so the more curvature, the higher the penalty.

(In practice the integral is discretized)
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Determining the roughness penalty

can specify directly, but more common to . . .

. . . determine by generalized cross-validation
I Wahba, G. 1990. Spline models for observational data. Society

for Industrial and Applied Mathematics, Philadelphia.
I Remove one or more points, re-fit without them, compute

prediction error, summarize (see next slide)

i.e., try different penalties and pick the one which minimizes
the cross-validation error

I penalty too small: will more closely fit remaining data but will
likely be far from the removed cross-validation point

I penalty too large: will be far from all points
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Cross-validation

A general term for:
1 removing one or more observations;
2 fitting a function or applying a model with the remaining

observations;
3 predicting with this function or model using the values of the

predictor variables at the removed observations;
4 computing the prediction error (z − ẑ) at the removed points
5 summarizing these errors for all splits of the observation set.

a reasonable estimate of the expected error if model is applied to
another dataset

K -fold cross-validation: split the dataset into K parts

Leave-one-out cross-validation (LOOCV): K = n

Generalized cross-validation: a quick method for linear fits with
squared-error loss as the optimum (as here)
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Smoothing vs. natural splines

The function that minimizes Equation (5) is a natural cubic
spline with knots at all the data points

However, it is a “shrunken” version of the natural cubic spline
computed directly

The tuning parameter λ controls the amount of shrinkage
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Computing a smoothing spline

> # smooth.spline is in default ’stats’ package

> (spl.fit <- smooth.spline(ds$clay2))

Smoothing Parameter spar= 0.2544574

lambda= 1.204002e-07 (12 iterations)

Equivalent Degrees of Freedom (Df): 73.46845

Penalized Criterion: 18226.75

GCV: 95.48895

Df equivalent to a non-smooth fit with 320/73.5 = 4.35 stations
between knots (c.f. natural spline with knots every 5 stations)
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Smoothing spline for clay concentration
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Smoothing spline for clay concentration: detail
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2D: Thin-plate splines (TPS)

We now consider splines in 2D (i.e., over a surface).

The analogy is with a thin (so, flexible) plate that is warped to
(more or less) fit the observations.

This can range from very “rigid” . . .
I i.e., a single surface: the least-squares plane of a first-order

trend surface

. . . to very “flexible”
I i.e., perfectly fitting every observation.

We want something in between: local noise should be somehow
locally removed while local structure should be preserved.

Also called “minimum curvature” method
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Example thin-plate spline fit

Source: Fig. 2.5 in James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013).

An introduction to statistical learning: with applications in R. New York:

Springer.
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Fitting a TPS

Fit is based on the k data points with known coördinates and
attribute values.

These can be described by 2(k + 3) parameters
I six overall affine transformation parameters to centre the

function in 2D
I 2 · k links to the control points.

Aim: minimize the residual sum of squares (RSS) of the
fitted function, subject to a constraint that the function be
“smooth”

Constraint is expressed by a roughness penalty which balances
the fit to the observations with smoothness.
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MInimization problem

2D equivalent of 1D Equation (5):

min
f

N∑
i=1

{yi − f (xi)}2 + λJ[f ] (7)

where J is the penalty function and λ controls how important it is.

λ = 0: no roughness penalty, data will be fit exactly

λ→ ω the solution approximates the least-squares plane, i.e.,
the trend surface averaged over all the points.
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2D roughness penalty

2D equivalent of 1D Equation (6):

J[f ] =

∫
R

∫
R

[(
∂2f (x)

∂x21

)2

+ 2

(
∂2f (x)

∂x1∂x2

)2

+

(
∂2f (x)

∂x22

)2
]
dx1dx2

(8)
where (x1, x2) are the two coördinates of the vector x.

Double integral is total curvature

In practice, this is discretized

Penalty determined by cross-validation
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2D TPS solution

f (x) = β0 + βTx +
N∑
j=1

αjhj(x) (9)

x is the 2D position vector

the β account for the overall trend

the α are the coefficients of the warping, one for of the N
control points

The value f (x) at each prediction point x is a result of the overall
affine transformation and the sum of N basis functions evaluated at
the point.
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Radial basis functions

The set of functions hj(x) is the basis kernel, also called a radial
basis function (RBF), for thin-plate splines:

hj(x) = ‖x− xj‖2 log ‖x− xj‖ (10)

The norm distance r = ‖x− xj‖ is also called the radius of the
basis function.

The norm is usually the Euclidean (straight-line) distance.

Note that the value decreases as the square of the distance from
a control point.

The proper radius is evaluated by cross-validation, based on the
roughness penalty.
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Computing a TPS

> # example dataset

> library(gstat)

> data(jura)

> class(jura.pred) # a dataframe, coordinates are fields

> # from the National Center for Atmospheric Research

> library(fields)

> # Tps expects coordinates as a matrix

> jura.pred$coords <- matrix(c(jura.pred$Xloc,

jura.pred$Yloc),

byrow=F, ncol=2)

> # Tps is a special case of the fields ’Krig’ function

> surf.1 <-Tps(jura.pred$coords, jura.pred$Co)
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Computed TPS – 1/3

Number of unique points: 259

Number of parameters in the null space 3

Parameters for fixed spatial drift 3

Effective degrees of freedom: 156.1

Residual degrees of freedom: 102.9

MLE sigma 0.9095

GCV sigma 1.095

Smoothing parameter lambda 1.21e-05

Smoothing parameter λ

fit has reduced the degrees of freedom

MLE is the standard error of the internal goodness-of-fit

GCV is the standard error of the cross-validation
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Computed TPS – 2/3

Residual Summary:

min 1st Q median 3rd Q max

-3.151000 -0.266200 -0.006246 0.201500 2.901000

Residuals from TPS fit
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Computed TPS – 3/3

Covariance Model: Rad.cov

DETAILS ON SMOOTHING PARAMETER:

Method used: GCV Cost: 1

lambda trA GCV GCV.one GCV.model shat

1.210e-05 1.561e+02 3.016e+00 3.016e+00 NA 1.095e+00

Covariance model is the spatial structure

Here we chose the radial basis function

The Generalized Cross Validation (GCV) at this λ is the
external lack of fit (i.e., estimated prediction error).
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Kriging vs. splines, Jura cobalt

Co concentration, mg kg−1
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Thin-plate splines OK
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Difference TPS – OK, Jura cobalt

Difference, TPS−OK

Co, mg kg−1

−3

−2

−1

0

1

2

3

4

5

6

OK adjusted more locally (smaller
“hot spots”)

TPS predicted more extreme high
and low

This depends on the fitted vari-
ogram model, especially the range
of spatial dependence

Also depends on the roughness
penalty of TPS determined by
cross-validation

D G Rossiter (CU) Empirical interpolation: thin plate splines November 20, 2016 39 / 45



Relation between spline and kriging interpolation

“... kriging is performed in two steps,

(1) a structural analysis, which fits a covariance and a degree of
trend to the variable under study, then
(2) the interpolation itself, which uses the results of the structural
analysis.

With spline interpolation, no preliminary structural analysis is
performed . . . this should result in a loss of accuracy of splines
compared to kriging.”

– O. Dubrule. Comparing splines and kriging. Computers &
Geosciences, 10(2-3):328–338, 1984
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Advantages of TPS

1 No need to select a variogram model
I but can select a different form of the radial basis function

2 No need to parameterize the variogram model

3 Automatic selection of optimum smoothness for minimum
curvature

4 No need to decide on order of trend surface
I But there is still an implicit assumption of 2nd order

stationarity, because a single smoothness parameter over the
whole map

5 Can be used with small datasets where it is impossible to reliably
fit a variogram model
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Disadvantages of TPS

1 No model of spatial structure (whether a trend surface or local
autocorrelation) to interpret in terms of processes

2 No internal model of prediction error (e.g., kriging prediction
variance)
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Choosing between approaches

“Kriging, by minimizing the estimation variance, is designed to
provide estimates which are as close as possible to the actual
values. . .
. . . Spline interpolation, by minimizing the total curvature, is
designed to provide maps which have nice cosmetic properties.”

– O. Dubrule. Reply: comparing splines and kriging. Computers &
Geosciences, 12(5):729–730, 1986. doi: 10.1016/0098-3004(86)
90051-8

“If the map is going to be used for future calculations, one needs
accuracy; kriging is good in this situation.

If one wants to quickly obtain a clear map showing the main
features of the variable, splines are a good tool.”
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