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@ Concepts of space and time
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Topic: Concepts of space and time

@ space
Q time

© space and time
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Space

Refers to processes that occur in space (1D, 2D, 3D)
Often there is spatial dependency
> “nearby” locations have more similar attributes than “far away”

2D or 3D dependency may be isotropic (same in all directions) or
anisotropic (stronger in one direction)

Anisotropic dependency is symmetric: the same “forward” or
“backward” in each 1D
> e.g., main axis of long-range 2D dependence 30° (NNE) is the same as
30° + 180° = 210" (SSW)
This is captured in the definition of spatial autocorrelation
» differences are squared; there is no “head” or “tail” of a point pair
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Time

@ Refers to processes that occur in time

@ Usually there is temporal dependency
» attribute values do not change (completely) randomly over time
> they evolve, and closely-spaced events have similar values
@ Time is 1D and asymmetric because time only flows in one
direction
> It is a deep philosophical question as to why, but it is a consistent

observation
» So, “forward” and “backward” cross-dependencies may be different
» However, “forward” and “backward” auto-dependencies are identical
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Space-time

@ Refers to processes which occur in both space and time
@ There may be either or both spatial and temporal dependence

@ These may be independent or not
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Concepts of time

time stamp a moment in time, to some resolution
snapshot the state of nature at one moment in time
interval time between two snapshots
linear a series of moments
cyclical time considered as a repeating cycle
discrete separate moments in time

continuous moments in time follow each other continuously
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Time-related variables

instantaneous measured directly at one point in time
@ e.g., air T, ground-water depth
@ e.g., location of an observation
interval directly measured over some known interval

@ e.g. stream flow; mean air T using an integrating
recorder

cumulative measured at one time from an accumulation over time

@ e.g., daily rainfall from an accumulating rain gauge
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Temporal aggregation

@ Upscaling by a representative time

> e.g., minimum daily T from a single measurement at 0500
@ Upscaling by aggregation

» e.g., monthly GDD from daily GDD
@ How to aggregate?

» sum (cumulative)

» mean, median ... (central tendency)
> min, max ... (extremes or quantiles)
'S
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© Space-time processes
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Topic: space-time processes

All processes occur over some time period (long or short); many processes
take place in geographic space.
Space-time processes may be viewed as:

© spatial only: time is not important

» consider at one “instant” (conceptually O-dimensional time)

» reduce to one temporal point by a summary statistic (average,
maximum ... )

© temporal only: space is not important

© spatio-temporal: space and time must both be considered
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Space-time processes and their related variables

processes dynamic, cause effects at locations in space
@ e.g., atmospheric processes cause weather
variables what is observed at defined codrdinates in space and/or time

@ e.g., measured temperature, barometric pressure,
precipitation . ..

@ measurements referred to a specific time may be
“instantaneous”, time-averaged, or cumulative
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A taxonomy of space-time processes (1)

@ Purely spatial
» observations all refer to one time or time period
* represented by a single time stamp, which can represent any length of
time
» this can be an aggregate time, e.g., average or cumulative over some
time period
» any difference in time of observation is considered unimportant
(“nothing” has changed in the intervening time)

* or, temporal differences are negligibly small compared to spatial
differences
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A taxonomy of space-time processes (2)

@ Purely temporal
» observations all refer to “one” location
* represented as a point or “homogeneous” area
» this can be an aggregate location, e.g., average of a set of weather

stations
» spatial differences (e.g., small offsets) are negligible

* or, spatial differences are negligibly small compared to temporal
differences

» or we only care about the spatial area as a unit
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A taxonomy of space-time processes (3)

o Spatio-temporal
» observations have both a location and a time stamp
» observations at different locations may have been made at different
times
> or there may be the same time-series of observations at each location
» space and/or time may be aggregates
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Example of space-time processes: Soil organic carbon
(SOC) 1 — purely spatial

@ soil samples in an agricultural field, all collected at the “same” time

» time differences in sampling are insignificant compared to process time
(e.g., SOC decomposition)

» aim is to map SOC distribution in the field and relate to other soil or
land properties
@ soil samples in a forest, collected over a number of years
> aim is to assess SOC stocks in the area
» must assume no drivers of SOC change in this time, no seasonal effects
— or at least these are negligibly small compared to spatial variation
» must justify this assumption from literature or small time-series studies
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Example: SOC 2 — purely temporal

@ Repeat soil samples at one location before and after manure and
fertilizer applications, crop growth, crop harvest, residue
incorporation, winter weather . ..

» Aim is to reveal SOC dynamics as influenced by weather and
management
» Since soil sampling is inherently destructive it is impossible to sample
repeatedly at the same exact location
* |If using close-by locations micro-scale spatial variation and small
support will cause problems.
* Solution: use composite sampling from the one location (i.e., support
of several tens of m2)
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Example: SOC 3 — Spatio-temporal

o Repeat samples at multiple sites in an agricultural field
» Aim is to discover if there are different temporal dynamics at different
locations
» Can also map more efficiently (more information), and produce maps
for different times
» May relate to spatio-temporal covariables (e.g., weather)
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USA unemployment rate — spatial

Unemployment rates by county,
August 2011 - July 2012 averages

(U.S. rate = 8.4 percent)
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USA unemployment rate — temporal

Unemployment Rates
Seasonally Adjusted
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source:
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USA unemployment rate — spatio-temporal

source: https://www.huffingtonpost.com/2014/08/31/
america-unemployment-map_n_5744656.html
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What could be analyzed?

@ Time-series of unemployment; could examine each county's time
series separately

@ Spatial dependence at each time slice

© Spatio-temporal interaction: The spatial pattern is not the same at
each time slice
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A taxonomy of spatio-temporal analysis

Following the taxonomy of processes, how do we analyze them?
@ spatial at each time slice, independently
> point geostatistics, point-pattern analysis, spatial autoregressive models

@ temporal at each location, independently
> time-series analysis [9]; see next slide

© spatial at each time slice, but using a temporally-pooled estimate of
spatial dependence

» spatial statistics as (1) but each time of observation is considered a
replication of the spatial dependence

@ spatio-temporal as a combined model
» both spatial and temporal statistics
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Outline

© Time-series analysis

@ Single time-series
Time-series modelling: AR models
Time-series modelling: spectral analysis
Time-series modelling: PCA

o
o
o
@ Multiple time-series
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Topic: Time-series analysis

Only considering time:
@ a series of observations over time at one location
> single time series
* one variable measured at different times
» multiple (also called “multivariate”) time series
* several variables, measured together at the same observation times
@ same, at multiple locations

» single or multiple time series at each location
» but with no explicit spatial dimension

* no codrdinates, no distance
* so it is not geostatistical

> a type of multiple time series: attribute is the same but at different
(non-georeferenced) locations
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Single time-series

A series of readings of the same variable at the same location, at
different times

e Often at regular intervals (15-min, hourly, daily, ...)

@ But can be at irregular times, although analysis becomes much harder
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Components of a single time-series

Up to six components may be present:
trend the variable changes systematically with time
@ e.g., increasing daily mean T
periodic the variable fluctuates around a central value, with a fixed
period
@ e.g., hourly T over a day; daily T over a year
cyclic but non-periodic the fluctuates around a central value, with a
variable period
@ e.g., predator-prey abundances
anomalies unusual values of the variable that do not fit a pattern
(“spikes")
@ e.g., daily T during an unusual weather event
correlated noise “small” variations after accounting for the above, with
temporal dependence

white noise uncorrelated “small” variations
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Main analysis problem

How to identify, separate and quantify these?

© decomposition
@ autocorrelation analysis

© modelling
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Example: Groundwater level: time series

Anatolia Well 1
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Monthly 1975-2005; irrigation well in Anatolia (Turkey)
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Time series as bar graph
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Monthly 1975-2005; irrigation well in Anatolia (Turkey)
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Time-series analysis — (1) decomposition

o Decomposition: identify the components of the series
@ identify and remove periodic component
* single amplitude or moving amplitude, user-specified “span”
@ fit a trend to the non-periodic component by local polynomial
regression (“Locally-weighted scatterplot smoother” = “lowess”)

* user-specified “span” (smoothing window) to degree of smoothing
© the residual “noise” = anomalies from trend and cycles
@ These components should correspond to processes that produced the
time series
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Groundwater level: decomposition (1)
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Trend modelled with a moving window

Yearly cycle assumed the same — does this seem correct?
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Groundwater level: decomposition (2)
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Magnitude of yearly cycle increases with time — reduces remainder
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Groundwater level: decomposition (3)

Anatolia well 1, decomposition
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Trend and remainder after subtracting trend (note absolute values)
Note large anomaly in 1988
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Interpretation of time-series decomposition

@ Aim: understand the underlying process that produced the time-series

» Example: daily T cycle driven by insolation (clue: the cycle is 24
hours!)

@ Aim: determine the magnitude of changes (trend) or persistence of
phenomena (anomalies)

» and from that, infer causes
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Interpretation: groundwater example (1)

Groundwater was closer to the surface from 1975-1980 and then
began a steady trend to become deeper

> Increased groundwater extraction for irrigation? Decreased winter
rainfall for recharge?
@ There is a yearly cycle

» explained by extraction for irrigation (summer) and recharge from
rainfall and irrigation excess (winter)

This cycle seems to be getting stronger
» suggesting increasing irrigation demand

A strong anomaly of draw-down and then recharge was observed for
1988 — why?

@ Residual noise may have temporal autocorrelation — see next slides
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Time-series analysis — (2) auto-correlation analysis

@ Auto-correlation analysis: time dependence of observations

» of the original series
> after de-trending and/or removing any cycles (i.e., after decomposition)

@ Question: how strongly are observations linked in time?

@ Question: how long does this autocorrelation last (“range”)?
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Serial autocorrelation

If the random process that generated the time series is 2nd order
stationary (mean and variance are constant over time), at lag k the
autocorrelation is:

I CEPCIEN) n

Pk can be estimated as r:

ry = Ck/CO (2)
1 N—k
Ck = N (Zt_z)(zt-‘rk_z)ak:07172---K7 (3)
t=1
1 q
var[rg] =~ N <1+2Zr3> Jk>gq (4)
v=1
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Use of autocorrelation graphs

@ Original series: assume first- and second-order stationarity
e Remainder series (after subtracting a trend): only assume constant
variance and co-variance for all lags

@ Use the approximate formula for variance (previous slide) to establish
confidence limits: is the observed correlation at a given lag
significantly non-zero?
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Groundwater level: autocorrelation — original series

Autocorrelation, groundwater levels, Anatolia well 1
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Lag 1 is one year
Autocorrelation increases exactly on the year, but less each year
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Groundwater level: autocorrelation — remainders

Autocorrelation of remainders, Anatolia well 1
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No autocorrelation at one year; negative at two years!

Artefact of moving average?
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Interpretation: groundwater example (2)

@ Original time series shows strong positive autocorrelation

> decreases over a year, but then increases a bit on the yearly cycle
» steadily decreases over the years, but still p &~ 0.5 after five years

@ Residual noise is positively autocorrelated for one year
> this reflects continuity month-to-month
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Partial autocorrelation

@ Autocorrelation after accounting for previous lags; symbol ¢ ;:
coefficient j of an autoregressive process of order k

@ Example: if all autocorrelation can be explained at lag 1, then there is
no partial autocorrelation at lags 2, 3, ..., so that the apparent
autocorrelation at these lags can be explained by repeated lag-1
correlations

Pcdk = px (5)
1 p1 P2 T Pk—1
1 - _
P = | n P (6)
Pk-1 Pk—2 pPk-3 - 1
pi = Fkapi1t ot Gkkpiko J =12,k (7)
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Groundwater level: partial autocorrelation

Partial autocorrelation, Anatolia well 1

0.8 1.0
1

0.6

Partial ACF

0.0

-0.2

Lag 1 month strongly positive
Lag 2 slightly negative after accounting for lag 1
Lag 4-8 (half-season), 12 (?7), 13 (full season) significant
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Time-series modelling: AR, MA, ARMA, ARIMA

@ Aim: a mathematical description of the series
» Generally used for forecasting

* assuming that the statistical characteristics of the time-dependent
process are the same in the future as in the past

» Also can be used to understand the process from the form of the
best-fitted model

» Also can be used for gap filling of incomplete series

@ Model types: AR (auto-regressive), MA (moving average), ARMA,
ARIMA

» | = "“integrated”, for the degree of differencing applied to the series
before ARMA)

@ See Shumway and Stoffer [9], Wilks [11, Ch. 9], Box [1]
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Autoregressive models (AR)

@ Current value of a process is expressed as a finite and linear sum of
previous values of the process

@ this is the temporally autocorrelated noise
Zt = 0121+ P2Zr o+ + PpZr_p + ar (8)

@ ¢; are the autocorrelation parameters (strength of dependence at
each lag)

@ a; is the white noise, sometimes called “shock” at time t
@ simplest is AR(1): Z; = ¢1Z;—1 + a:: dependence only on previous
value
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Time-series modelling: spectral analysis

e Fourier (1807): any second-order stationary time-series can be
decomposed into sums of sines and cosines with increasing
frequencies, each of varying amplitude or “power”

» trend removed and auto-covariance not dependent on position in the
series

o Frequency w: the number of divisions of one cycle per unit time

> e.g., a one-year cycle (as in the groundwater levels), w =12 is a
monthly frequency

» By the Nyquist-Shannon sampling theorem, a function is completely
determined by sampling at a rate of 1/2w

> a time-series with n samples per cycle — can estimate spectral
densities for n/2 frequencies.

@ Period T: inverse of frequency: number of divisions required for one
full cycle; T = (1/w)
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Why spectral analysis?

@ Reveals the relative strength of the frequencies of periodic time series
» Examples: sunspot intensity; El Nifio/La Nifia cycles vs. annual cycles

@ Usually applied after de-trending — that is a separate feature of the
time-series.
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Spectral decomposition

Covariance sequence ~; decomposed into spectral densities f:

1 +1/2

Ve e2”iwftf(27rw,c)dwf

T 2n —-1/2
where wr is the frequency (cycles per unit of time).

Recall: e* = cosx + isinx
This can be inverted to give the density at each frequency:

1+2 i ptcos(wt)]

1

f(w) =1

where ~q is the overall covariance.

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 50 / 131



Spectral analysis as a linear regression problem

Time series of length n, gives (n — 1) predictors ag . . . apj2,b1... byjo_y of
the response variable:

n/2—1

xe=ao+ Y [axcos(2mkt/n) + bysin(2mkt/n)] + a,/p cos(rt)
k=1

Note how at each value of k in the sum the frequency is increased.
ap is the intercept, it centres the series around its mean X.

The highest frequency is w = 0.5 cycles per sampling interval, the lowest is
w = 27, i.e., one cycle.

(Note: the computation is usually with the Fast Fourier Transform).
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The periodogram

This is used to estimate the spectral density (R spectrum function)

The periodogram at a given frequency w: the squared correlation between
the time series X and the sine/cosine waves at that frequency:

2
I(w) = % Zt: e WX, =a} + b}
@ The spectrum is scaled by 1/w, i.e. the inverse of the frequency.
@ So the spectral density is computed over —w/2... +w/2
@ Since the function is symmetric, it is displayed for 0... + w/2.
@ Groundwater example: w = 12; the decomposition is from
0...w/2 =6 periods per cycle.
@ One period per cycle is annual, 2 per cycle is semi-annual, 6 periods is

bi-monthly, etc.
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Accounting for noise

@ The time-series is usually noisy; we want to reveal the various
periodicities w/o the noise
@ So, smooth the series with Daniell windows, trial-and-error spans m

» each spectral density estimate is computed as the mean of the m/2
preceding and following periodogram values
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Example periodogram — log scale

Series: x
Smoothed Periodogram
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Phase

@ The series can also be expressed as a sum of cosines, each term with
a phase: i.e., a lag from ¢y € [-7/2...37/2]

The phase angle ¢, = tan~1(bx/ax)

Then £(¢) = 30 + Sy /7 + b cos (22 — )

The phase angle gives the offset from the centre of the period

Reference: Jakubauskas, M. E., Legates, D. R., & Kastens, J. H.
(2001). Harmonic analysis of time-series AVHRR NDVI data.

photogrammetric Engineering and Remote Sensing, 67(4),
461-470.
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Time-series modelling: PCA

Principal Components Analysis (PCA): convert a number of inputs
into the same number of outputs

» Often applied to time-series of images

» orthogonal — i.e., uncorrelated
» in descending order of variance explained — importance of each
component

» contribution of each original image to each synthetic image

@ Reveals correlation among dates, separates overall value (first
component) from contrasts between dates

If there are periods this should come out in one or more components

Can also find anomalies — not explained by any overall value or
periods
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What does PCA do?

@ The vector space made up of the original variables is projected onto
another space;

@ The new space has the same dimensionality as the original!, i.e.,
there are as many variables in the new space as in the old;

© |In this space the new synthetic variables, also called principal
components are orthogonal to each other, i.e. completely
uncorrelated;

@ The synthetic variables are arranged in decreasing order of variance
explained; and the total variance is unchanged;

© The contribution of each original variable to each synthetic variables
is given;

@ Each observation can be re-projected into the new (PC) space.

unless the original was rank-deficient
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Mathematics: Eigen decomposition

The key insight is that the Eigen decomposition? of the covariance or
correlation matrix C orders the synthetic variables into descending
amounts of variance, and ensures they are orthogonal (Hotelling 1933).

@ Decompose a square, symmetric positive-definite matrix, e.g., the
correlation matrix C formed from a data matrix such that AC = A\C

e Eigenvalues: a diagonal matrix A; off-diagonals 0, i.e., no
covariances, so orthogonal

e Eigenvectors: the transformation matrix A, a codrdinate
transformation such that the matrix multiplied by the diagonal
eigenvalues matrix is the same as multiplication by a matrix made up
of the eigenvectors

@ Eigenvectors span an orthogonal vector space onto which we can
project the original data.

?(German eigen = English “own, belonging to oneself")
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Computation

@ |C — Al| = 0: a determinant to find the eigenvalues of the
correlation matrix
> these are sometimes called the characteristic values
> their relative magnitude is the proportion of the original covariance
explained
@ Then the axes of the new space, the eigenvectors 7; (one per
dimension) are the solutions to (C — \;/)vy; =0

@ Obtain synthetic variables by projection: Y = PC where P is the
row-wise matrix of eigenvectors (rotations).

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 59 / 131



Example: Time series of diurnal temperature differences

HE T 73l E Pei county in JiangSu province, PRC
e MODIS3 daily land-surface temperature product*

@ Images are diurnal temperature differences (day — night) between
two MODIS products, units are A°C

@ 30 Oct — 03 Nov 2000 (Julian days 304 ff.); Soil is drying after a
heavy rain

@ Objective: try to relate DTD to soil texture and organic matter

@ Reference: Zhao, M.-S., Rossiter, D. G., Li, D.-C., Zhao, Y.-G., Liu,
F., & Zhang, G.-L. (2014). Mapping soil organic matter in low-relief
areas based on land surface diurnal temperature difference and a
vegetation index. Ecological Indicators, 39, 120-133.°

*http://modis.gsfc.nasa.gov
*available at http://ladsweb.nascom.nasa.gov/data/search.html
®http://doi.org/10.1016/j.ecolind.2013.12.015
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Original images
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3840000 -
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3830000
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CK_DTD_304

CK_DTD_307

CK_DTD_308
—

="

T T T
480000485000490000495000500000

A°C
(day - night)

Low DTD on first day
after rain; increases
overall then decreases
(closer day/night air T?)

But: similar overall
pattern of high vs. low
DTD (redundancy)
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PCA results — Importance of components

> summary (pca)
Importance of components:

PC1 PC2 PC3 pPC4
Standard deviation 1.8232 0.40406 0.3230 0.20810
Proportion of Variance 0.9145 0.04492 0.0287 0.01191
Cumulative Proportion 0.9145 0.95938 0.9881 1.00000

The four DTD images are highly-correlated, 92% of the information is in
common, i.e., over the four days the same areas tend to have narrow and
wide DTD ranges

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 62 / 131



PCA results — loadings

Contributions of each original image to each synthetic image

> pc$rotation

PC1 PC2 PC3 PC4
DTD304 -0.4447 0.5893 0.5870 0.3322
DTD306 -0.6084 0.3379 -0.5200 -0.4952
DTD307 -0.4717 -0.3857 -0.3677 0.7025
DTD308 -0.4578 -0.6243 0.4998 -0.3884

PC1 “intensity” of the phenomenon over all days

PC2 contrast between first two and second two days after
accounting for the mutual correlation of PC1

PC3 contrast between middle two and end two days after . ..
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Biplots

These show positions of the observations as synthetic variables (bottom,
left axes) and the correlations/variances of the original standardized
images (top, right axes):

pcz

First PC is overall intensity across all 4 dates; other PCs show contrasts
between dates
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PCs (synthetic bands) — same stretch

PC1 PC2

3845000

3840000 —{
3835000 —

3830000

o
3825000 -

Note decreasing informa-
tion content with PC

3820000 —

PC3 PC4
- -2

But there still seems to be
some pattern in PC2, 3, 4

t-a

T T T
480000485000490000495000500000
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PCs (synthetic bands) — individual stretch

3840000
3840000

3830000

3830000

3820000
3820000

. x This allows to visualize
Pes pe contrasts within a PC
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3840000
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3830000

3820000
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PCA of long time series of imagery

Groundbreaking paper, 200+ citations:

Eastman, J., & Fulk, M. (1993). Long Sequence Time-Series
Evaluation Using Standardized Principal Components (reprinted
from Photogrammetric Engineering and Remote-Sensing , Vol
59, Pg 991-996, 1993). Photogrammetric Engineering and
Remote Sensing, 59(8), 1307-1312.

@ Sensor was AVHRR
@ Images were monthly maximum NDVI, 1986-1988 (three full years)
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Synthetic images

Standardized Principal Components of Monthly NDVI Images, Jan. 1986 - Dec. 1988

Green = “+" score,
Red — “_”

Sign is arbitrary,
here chosen to show
high NDVI in green.

[T

High Negative
Correlation

No Correlation I

High Positive
Correlation
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Loadings

D G Rossiter (CU)

PC1 All bands contribute ~
equally:(overall intensity)

PC2 shows annual movement
of Intertropical Convergence
Zone

PC3/4 show deviations from
PC2 seasonality
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Interpretation

Synthetic bands images summarizing all original images, according to the
PCs

Loadings relation between original images (dates, x-axis) and
contribution to the PC (y-axis).

@ Note decreased absolute loadings at higher PCs, this is
because they represent less of the total variability of the
36 images

e PCl1: = equal contribution of all dates (overall vegetation vigour
averaged over the 3 years)

@ PC2: + correlation in N. hemisphere summer, - in winter
(seasonality) — Intertropical Convergence Zone

e PC3/4: deviations from PC2 seasonality — note time lag of
greening/senescence

@ PCbh: detecting sensor drift
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Multiple time-series

@ Time-series of several variables measured at the same times
» e.g., T, relative humidity, precipitation ... at a single weather station

@ These may be cross-correlated at various lags

@ In spectral analysis, this is reflected as their coherency (correlation at
a given period) and phase difference (coherent but offset)
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Groundwater level: two wells

Anatolia, two wells

50
|

gw
|

20 30

gw.2
15
|

10
|

T T T T T T T
1975 1980 1985 1990 1995 2000 2005

Time

Clearly they are related — but at what lags? and how closely?
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Groundwater level: cross-correlation

Cross~-correlation, Anatolia well 1 vs. well 2

ACF
0.4 0.6 0.8
1 1 1

0.2

0.0

May be asymmetric — one station may be “ahead of” the other
Here highest cross-correlation is at +4 months, well 1 leads well 2
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Groundwater level: cross-spectral analysis

Series: x

Smoothed Periodogram Series: x —— Squared Coherency Series: x —— Phase spectrum
°
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frequency frequency frequency

bandwidth = 0.0726
Well 1 “leads” well 2 at some periods
Clear phase differences and loss of coherence.
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Time-series analysis: computing

@ CRAN Task View
cran.r-project.org/web/views/TimeSeries.html

base R has many functions, class ts for time-series objects

» decomposition stl

> autocorrelation acf, pacf

» modelling ar, arima

» spectral decomposition (Fourier analysis) spectrum

specialized packages for advanced analysis

@ R tutorial “Time series analysis in R" http://www.css.cornell.
edu/faculty/dgr2/pubs/list.html#pubs_m_R
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Outline

@ Spatial analysis
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Topic: Spatial analysis

This has been covered in other lectures; included here just to emphasize
that at one time slice there is usually some spatial structure.

@ trend surfaces
@ relation to other spatially-distributed attributes

© local spatial dependence, also after accounting for (1) and (2)
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Similarities between time series analysis and geostatistics

@ TSA uses the correlation function, geostats the the variogram to
examine auto-dependence

» for second-order stationary series there is a direct conversion

@ TSA uses autoregressive moving-average (ARMA) models to describe
the time-evolution of a process
> however there are also 2D spatial ARMA processes using the von
Neumann neighbourhood (a diamond-shaped neighbourhood that
defines a set of grid cells)

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 78 / 131



Example of spatial structure

PM10 on 2009-03-21

T 2660
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L
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%20 204,

Eox
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36.60 28.382°

50
L
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2890 277999
1,2, o

3337

49

3040

Longitude

Particulate matter (PM10, ug m-3) at stations in Germany, one date;
shows regional trend and residual local spatial dependence
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PM10 air quality standards

From the EU®:

@ 50 pug m-3 over any single 24-hour period; can be exceeded 35 times
per year

@ 40 pg m-3 averaged over a year

Previous slide shows all (rural) stations below the one-day threshold on
2009-03-31.

®http://ec.europa.eu/environment/air/quality/standards.htm
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Spatial variograms

PM10 on 2009-03-21
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PM10, 200 random days lumped
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Ordinary Kriging predictions

PM10 on 2009-03-21 PM10 on 2009-03-21
35 35
30 30
25 25
20 - 20
15 15
single day variogram model lumped variogram model
one date variogram model lumped, 200 days variogram model

Ordinary Kriging onto the centres of 0.25°x 0.25°grid cells.
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Outline

© Spatio-temporal kriging
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Topic: Spatio-temporal kriging

Both space and time drive the observed process

These may be independent or interacting

Observations have both a location and time stamp
> various ways to organize, see next slide
> special data structures are required

@ We can compute spatio-temporal empirical variograms;

» These can be modelled with authorized variogram models

» The fitted models can be used to interpolate in space and time by
kriging

Examples using R package gstat, many other applicable packages

» CRAN Task View
https://cran.r-project.org/web/views/SpatioTemporal .html
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Explanation

© grid: all combinations have been observed
© sparse grid: regular lattice but some missing

© irregular: each observation has its own time stamp and location
@ trajectory: individual can move in both space and time
> e.g., animals with tracking collars
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Space-time dependence

The value in space and time of some target variable Z can be expressed as:
Z(s,t) = Z*(s, t) + &'(s, t) + &(s, t) (9)

s: spatial vector (commonly 2D); t: time

@ Z* is the deterministic, also called “structural” or “trend”
component in both space and time

» This can be modelled physically (e.g., process model) or empirically
(e.g., regression on codrdinates or covariates)

e ¢’ is a spatio-temporally correlated space-time process of the
residuals

@ ¢ is pure noise; it assumed to be purely random ( “white noise”)
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Local space-time dependence

Ignoring any trend in space and time, Z* becomes a constant mean in
both space and time:

Z(s,t) = pu+e(s,t) +e(s, t) (10)

There is no way to objectively decide if there is a structural component, or
if present, how to model it.

In practice local approaches can be used even if there is a structure; we
lose information but the predictions may be satisfactory.
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Location of PM10 monitoring stations in NRW (D)

50°N 52°N 54°N

48°N

T T T T T T T T
4°E 6°E 8°E 10°E  12°E  14°E 16°E 18°E
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Direct & cross-correlations, PM10, NRW
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Explanation

© Each station has temporal dependence: one day's PM10 is “similar
to" the next, to some lag — a somewhat persistent atmospheric
phenomenon

@ Stations can be cross-correlated to others at time lag 0 (i.e., spatial
correlation) — we can see if this depends on distance or a trend

© Stations can also be cross-correlated at different time lags, and this
may be asymmetric

> e.g., station A may lag behind station B, for example process could be
wind blowing PM10 from B to A
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Spatio-temporal variograms

@ Compute semi-variance at combined lags

» h spatial lag, usually 2D, can include a direction (anisotropy)
» u temporal lag, 1D

At all combinations of space and time:

1
v(h, u) = 2 Z(Zs,t ~ Zsiheta)’ (11)

Summarized in lags (bins) to have enough point-pairs

Isotropic in 2D space — 2D variogram (isotropic spatial + temporal
separations)

Anisotropic in 2D space — 3D variogram! (anisotropic spatial +
temporal separation)
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Spatio-temporal variograms — view 1

120 + I

100 +

gamma

40 + r lag12
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PM10 concentrations, one spatial variogram per temporal lag
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Spatio-temporal variograms — view 2

Semivariance, PM10

separation (+days)

50 100 150 200

separation (km)

PM10 concentrations, distance/time lag matrix
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Spatio-temporal variograms — view 3

time lag (days, distance (km)

PM10 concentrations, distance/time lag matrix, wireframe
The two marginal (space and time) variograms have different sills
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Explanation

Zonal anisotropy: different sills in the two dimensions

Variograms are erratic because of few stations

@ Time and space lag 0 marginal variograms show typical empirical
variogram (exponential model)?

Marginal total sill for space is about half that for time
> i.e., more time than space variability in PM10 over Germany
@ As temporal lags increase:

» spatial dependence becomes less (shorter range; higher nugget/sill
ratio)
» total variability (total sill) increases

Interesting anomaly at longer time lags, 25 km separation — wind?

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 96 / 131



Spatio-temporal combined model — viewpoints

@ time as an extra dimension equivalent to space
> this is called the “metric” model
> time asymmetry can not be modelled

> time must be re-scaled with the space-time anisotropy ratio to
match space

» spatial and temporal dependence structure must be the same
> rarely realistic
@ separate covariance structures for space and time
> this is called the “separable covariance” model
> no interaction between space and time
© interacting covariance structures for space and time
> this is called the “sum-metric” model

» a metric model plus a purely spatial and also a purely temporal
component added to it
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Modelling space-time variograms

Models forms, with their assumptions:
metric time is equivalent to an additional “spatial” dimension,
re-scaled to match the spatial units
@ single model form, nugget and partial sill
@ unrealistic if sills in space vs. time not the same
separable time and space are modelled separately, each in their own
units; the variogram is a proportional product

@ structure of temporal variation must be the same at all
locations

@ structure of spatial variation must not vary over time
@ not realistic in most contexts

sum-metric also has a space-time term, allowing for interaction
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Metric covariance structure

C(h,u)=C < h2 + (au)2> (12)

One covariance structure C
h is the distance lag, generally 2D

u is the time lag, here another “dimension”

« is a scaling factor (“metric”) to match spatial and temporal units:
the space-time anisotropy ratio

This represents geometric anisotropy, i.e., same structure, nugget and
partial sill but the range varies in different dimensions (here, the time vs.
space dimensions)

e.g., o =20 km d~! means that a lag of 20 km in space is equivalent to a
lag of 1 day in time.
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Separable covariance structure

C(h, u) = C(h) - Co(u) (13)

@ Two covariance structures, one each for space and time

@ No interaction; the covariance at a given spatial and temporal lag is
just the product of the two marginal covariances

@ There is only one joint sill; the two sills of the two components are
given as proportions of this.
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Sum-metric covariance structure

C(h,u) = Cs(h) + Ci(u) + Cs < h? + (au)2> (14)

@ Three covariance structures
@ Space, time, and joint each have their own sill, range, and nugget

o C is the metric structure of the residuals, after accounting for space
and time separately

@ The last term has geometric anisotropy
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Sum-metric parameters

spatial marginal variogram 3: partial sill, nugget, range
temporal marginal variogram 3: partial sill, nugget, range
space-time variogram 4: partial sill, nugget, range, anisotropy

@ The space and time sills have to match, but only for the
residuals after accounting for the marginal variograms
(space and time)

To estimate the three different nuggets it is required to have repeated
measurements at the same locations, as well as repeated measurements
at the same times.

Parameters are fit with fit.StVariogram, which uses the generic optim
optimization function.
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Fitted sum-metric variogram — view 1
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Fitted sum-metric variogram — view 2
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Results of space-time kriging

PM10, Germany

2005-06-21

2005-06-22

2005-06-23

2005-06-24

2005-06-25

2005-06-26

Sum-metric space-time model
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Outline

@ Empirical Orthogonal Functions
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Topic: Modelling spatio-temporal structure with EOF

o EOF: Empirical Orthogonal Functions

@ mathematically the same as PCA (Principal Component Analysis)

@ finds the spatial or temporal patterns of variability of one variable
> i.e., spatial patterns over time, or temporal patterns over space

@ measures the importance of each contribution

o clusters variables (either time instances or spatial locations) in PC
space

D G Rossiter (CU) Time-series analyisSpace-time geostatistics April 23, 2018 107 / 131



Example: Republic

Source: Pebesma [8]
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Ireland: time-series at different stations
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does not show spatial distances
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Ireland: another space-time plot
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Explanation

@ Obvious correlation between stations at each time period
> Low-speed days, e.g., 17-April
» High-speed days, e.g., 20-April
@ But sometimes the correlation is lagged: the highest speed at a
station comes a day or two after that at another
> e.g., 21, 20, 19 April
» Is this from a synoptic event, e.g., Atlantic storm?

© Some temporal dependence, although erratic
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EOF: scree plots

EOF, space EOF, time
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These show the relative importance of each PC
The variance is higher in the spatial EOF because many more time
replications (two years) vs. space replications (12)
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EOF: biplots

EOF, space
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These show the loadings of each variable on the first two PCs (red) and
the position of each observation in PC space (black).
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Outline

0 Spatio-temporal point patterns
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Spatio-temporal point patterns

@ Aim: analyze point-patterns which may change over time
» e.g., locations of live trees in a forest plot (some die, some new ones

grow)
> e.g., locations of crime or disease incidences, each with a time stamp

@ Q1: Does the structure of the point-pattern change over time?
> intensity, kernel density, G, F, K, L functions ...
@ Q2: Does the point-pattern at one time affect the pattern at a later
time?
» crossed K function
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Example: time of occurrence

560000
1
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X

Foot-and-mouth disease, northern Cumbia (England), 2001; from R
package stpp, dataset fmd
more recent — larger symbol; total 648 cases (points)
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Analysis

@ Divide into time slices, each with enough cases

> here, 50-day slices (156, 404, 40, 48 cases)
» could also divide by “epidemic stage” from expert opinion

@ Display point-pattern in the slice, compute intensity

© Compute point-pattern functions G (closest neighbour), F (empty
space), look at pattern over time

@ Compute crossed K-function for adjacent time slices, to see if they
are independent, attracting, or repulsing

© From all of this, try to infer mechanisms
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G function at each time

Days 0-50

slice

Days 51-100

Days 101-150

Days 151-200

Strong clustering at each time slice, but amount changes with time
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F function at each time slice

Days 0-50

Days 51-100

Days 101-150

Days 151-200

Much more empty space than expected, amount changes with time
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Crossed K function between time slices

0-50 vs. 51-100 51-100 vs. 101-150

101-150 vs. 151-200
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0-50 to 51-100: clustered
51-100 to 101-150 = independent
101-150 to 151-200 clustered
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Interpretation

@ Point-pattern moves over time
@ Intensity changes over time
@ Nearest-neighbour G function changes over time
@ empty-space function F changes over time
> i.e., distance from an arbitrary position to an occurrence of
foot-and-mouth disease
@ patterns are not independent between the 0-50 and 51-100, and the

101-150 and 151-200 slices

> in both cases strongly dispersed
» no interaction between the 51-100 and 101-150 slices
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Further analysis of spatio-temporal point patterns

“ Log-Gaussian Cox Processes”
e window W C R?, time slice T C Rxo

o Cases occur at spatio-temporal positions (x,t) € W x T according to
an inhomogeneous spatio-temporal Cox process, i.e., a Poisson
process with intensity R(x, t)

> i.e., number of cases Xs |, 1, is Poisson-distributed conditional on R.
° R(s,t) = A(s)u(t) exp{)(s, t)}

> i.e., fixed spatial, fixed temporal, and interaction term

@ see Taylor et al. [10] (1gcp R package)
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Outline

© Conclusion
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Concluding remarks

@ All processes occur in both space and time.

@ Unless we restrict to one moment in time or one location in space, or
if the variability in one of them is negligible compared to the other,
both space and time need to be considered:

» when modelling the process, and then ...
> ...interpreting the model to look for causes

@ Space and time may be separable elements of the analysis, but very
commonly the variations in space and time are not independent.
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Further reading

Time series: Shumway and Stoffer [9], Wilks [11, Ch. 9], Box [1]

» these also as e-books via CU library
Description of R package spacetime: Pebesma [§]
Spatio-temporal point patterns: Diggle [2], Taylor et al. [10]
Theory: Kyriakidis and Journel [7], Gneiting et al. [3]
Applications: Heuvelink and Griffith [5]; Jost et al. [6]; Hengl et al. [4]
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Web pages

@ CRAN Task View: Handling and Analyzing Spatio-Temporal Data:
http://cran.r-project.org/web/views/SpatioTemporal .html

@ Benedikt Graler (was in Miinster, now at Ruhr University Bochum):
http://ben.graeler.org
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