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Topic: Areal data

Data are presented as attributes of fixed polygonal areas
I generally irregularly-shaped, and/or not all same shape
I examples: census blocks, voting districts, forest parcels . . .
I but methods can apply to regular grids

Attributes can be analyzed in feature space (distribution, correlation,
regression . . . ) but:

Q: Is the data-generating process:
I non-spatial (all in feature space),
I spatial (all in geographic space), or
I mixed?

Q: If mixed, how does the spatial structure affect the feature-space
structure?

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 4 / 106



Typical applications

spatial econometrics [2]

epidemiology [6, §11] [8]

sociology / demographics [10]

political science [18]

natural resources, if data are presented as areal aggregates
I forest management blocks, farms, . . .
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Example: Syracuse (NY) census and health
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Syracuse city, % over 65

source: Bivand et al. [6, §9]
Q: Is leukemia incidence in a census tract correlated with mean age in the tract?
Or are there local “hot spots” that might have a point-source cause?
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Syracuse (NY) census and health - another view
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This by rank, not relative incidence
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Real world

Google Earth view of census tract boundaries (KML file); can zoom and
pan
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Characteristics of Syracuse leukemia data

Typical of most areal data:

Aggregated by reporting unit
I here, US census tracts; within City boundary

Units were not designed for our purpose
I here, study of the causes of leukemia
I size, geographic and feature-space characteristics

Uneven size and shape of units

Different numbers of neighbours, lengths of common borders

Units on edges have unobserved neighbours

Uneven feature-space “size”
I e.g., population, proportion residential vs. commercial

“Points” (e.g., industry) assigned to the whole polygon
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Example: Favourite NFL team by county (2012)

source: https://www.facebook.com/notes/facebook-data-science/

nfl-fans-on-facebook/10151298370823859, 11-Feb-2013

Question: What factor(s) determine this in feature & geographic spaces?
See next slide.
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What factors control which team is the favourite?

Team’s success (over what period?)

Team’s games shown on local TV?

Team featured often on national TV?

Team plays in county’s state?

If no team in state, team plays in neighbouring state?

Team plays in migrants’ home state?

Proximity of county to team’s stadium?

Demographic factors (occupation, ethnicity)?

Popular players on team from locality/local college?

Is there residual spatial correlation after accounting for these
factors? “Spillover effect”.
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Characteristics of areal data – attributes

The attributes relate to the whole area of the polygon, and can not
be further localized

I Various methods of dis-aggregation using covariates with finer spatial
resolution

I e.g., satellite imagery to separate industrial and residential areas within
one polygon

Often the attributes are aggregate measures
I e.g., population count, proportions

The attributes may already be normalized to the area of the polygon
I e.g., population density

Metadata is vital for proper processing and interpretation
I especially aggregation method
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Characteristics of areal data – choice of tessellation

tessellation = division of the study area

Can not be dis-aggregated by analyst

The tessellation may have been done for a purpose not directly
relevant to the analysis

I E.g., crop yield statistics may be aggregated by political division, but
the crop yield may be better modelled by agro-ecological zone

changes to boundaries → / longitudinal analyses
I e.g., British county / authority boundaries; area code zones

Metadata is vital for proper processing and interpretation
I especially tessellation decisions, consistency
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Characteristics of areal data – choice of scale

The scale of the tessellation affects the analysis
I a variation of the bandwidth problem for spatial fields
I e.g., voting patterns by state vs. congressional district vs. county vs.

ward; relation between e.g., family income and political preference
I e.g., crop statistics by county may show strong spatial autocorrelation,

which becomes much weaker at district or state level, although the
underlying process is the same.

Technical term: modifiable areal unit problem [12]
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Example: Mexican electoral regions

Source: [18, Fig. 1]
Two levels of aggregation: state, region
Question: what socio-economic factors determine voting patterns?
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Example: New Jersey housing

Source: [8, Fig. 1]
Percentage of homes built before 1950 (risk factor for Pb poisoning)
Aggregation level: USA census block group, ZIP code, county.
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Detail

ZIP code County

“hot spots” of 50–75% older houses all 25–50% older houses
no hot spots
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The “ecological fallacy” – non-spatial (1)

“Ecological” = context of observations: “In an ecological correlation
the statistical object is a group of persons”

Fallacy: inferences about a fine-scale grouping can be deduced from
inferences for a coarse-scale grouping

I E.g.: regression/correlation of voting preferences based on
socio-economic factors at state/province level vs. same relations at
county level.

I The aggregate relation (at states level) can not be obtained by
aggregating fine-scale regressions (50 per-state relations)

References: [16, 17];
Ecological Fallacy In: Encyclopedia of Survey Research Methods

https://dx.doi.org/10.4135/9781412963947.n151
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The “ecological fallacy” – non-spatial (2)

Fallacy: inferences about individuals (“individual-level
correlations/regressions”) can be deduced from inference for their
group

I E.g., Strong empirical-statistical relation between age of schoolchildren
and height does not imply that a randomly-selected 5th grader is taller
than a randomly-selected 4th grader.
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The “ecological fallacy” – spatial

Fallacy: inferences about aggregate data at small area can be
deduced from inferences about aggregate data for an enclosing
larger area or from inferences from all individual observations

I E.g.: strong empirical-statistical relation between crime and size of
police force (both normalized for population) at state level; does not
imply that there is a strong relation at city level within a single state or
overall.

Message: analyze at the level that you want to understand / make
policy.
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The “ecological fallacy” and the MAUP

Correlations at more general levels are generally stronger (higher |r |)
than at finer levels.

Regressions at more general levels are generally stronger (higher R2)
than at finer levels.

This is because much noise has been averaged out.

Factor for correlations: 1−σXAσYA√
1−σ2

XA

√
1−σ2

YA

σXA, σYA: variation of the two variables X and Y between strata;

minimum possible value = 1 when there is no variation between strata
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Topic: Neighbours

Q: how do we quantify “nearby”?

A1: distance between centroids of polygons
I as with spatial fields; represents polygons as points
I can use inverse distance, ID2 . . .

A2: common borders: neighbours (1st order)
I “rook” (common line) vs. “queen” (common point) neighbours
I terminology from legal chess moves

A3: number of steps to reach a common border
I 1st, 2nd, 3rd. . . order neighbours

Distance or steps? depends on purpose of analysis
I what is supposed to drive the spatial process?
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R packages for areal data

sp “Classes and Methods for Spatial Data” (Edzer Pebesma1, Roger
Bivand2)

spdep “Spatial Dependence: Weighting Schemes, Statistics and
Models” (Roger Bivand)

splm “Econometric Models for Spatial Panel Data” (Giovanni Millo3)

1University of Münster (D)
2NHH: Norwegian school of economics
3Generali insurance
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Neighbours example
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Finding neighbours

spdep functions:

knearneigh find k nearest neighbours for each polygon (class knn)

knn2nb convert these to weights (class nb “neighbour list”)

dnearneigh identify neighbours within a given distance band (class
nb)

nbdists Distances along each link of a neighbour list.
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Nearest neighbours within a distance
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Syracuse city census tracts, 1.2 km centroid neighbours
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k nearest neighbours
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Syracuse city census tracts, nearest neighbour
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Syracuse city census tracts, 4 nearest neighbours
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Weighting neighbours

In models of spatial processes (see below) neighbours are presumed
to have influence on a target polygon.

I See examples in spatial autocorrelation and spatial modelling (below).

A neighbour can be more or less influential to a target polygon,
depending on the spatial process.

So, assign a weight to each link in the graph → (a)symmetric
weights matrix.

Weights style depends on presumed process (see next) – there is no
“correct” weighting.
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Weighting styles

Style B (binary): weights of adjacent polygons affecting a target
polygon are either 0 (not a neighbour of the target) or 1 (is a
neighbour)

I Implies process depends on the number of neighbours
I Can also use with weighting based on distances between centroids:

multiply 1’s by some distance measure

Style W: weights of adjacent polygons affecting a target polygon must
sum to 1 (row-standardized)

I All n neighbours equally influential → all weights 1/n.
I i.e., total influence to a target area is constant, influence from

neighbours divided among them
I Links originating at areas with few neighbours → larger weights (edge

effect).
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Assigning weights

spdep functions:

nb2listw spatial weights for neighbours lists (class listw, nb); styles
W, B, C, U, S

W row-standardized
B binary
C globally-standardized: sum over all links to n
U C divided by number of neighbours
S variance-stabilizing

glist argument to nb2listw: pass a list of vectors of weights
corresponding to the neighbour relationships

I example: pre-computed inverse-distance, ID2W with nbdists; use style
B, will modify “binary” weights

listw2mat show weights matrix
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Example weights matrix – style ‘B’

109 110 111 112 113 114 115 116 117

109 0 1 0 0 1 0 0 0 0

110 1 0 1 1 1 1 0 0 0

111 0 1 0 1 0 0 0 0 0

112 0 1 1 0 0 1 1 1 1

113 1 1 0 0 0 1 0 0 0

114 0 1 0 1 1 0 1 0 0

115 0 0 0 1 0 1 0 1 0

116 0 0 0 1 0 0 1 0 1

117 0 0 0 1 0 0 0 1 0

1 = is a neighbour; 0 = not; by definition symmetric
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Example weights matrix – ‘B’ with Inverse-distance
weighting

109 110 111 112 113 114 115 116 117

109 0.0000 0.6035 0.0000 0.0000 0.6602 0.0000 0.0000 0.0000 0.0000

110 0.6035 0.0000 0.9265 0.5963 1.0111 1.4139 0.0000 0.0000 0.0000

111 0.0000 0.9265 0.0000 0.9858 0.0000 0.0000 0.0000 0.0000 0.0000

112 0.0000 0.5963 0.9858 0.0000 0.0000 0.7191 1.0020 1.1118 0.7829

113 0.6602 1.0111 0.0000 0.0000 0.0000 1.3676 0.0000 0.0000 0.0000

114 0.0000 1.4139 0.0000 0.7191 1.3676 0.0000 1.7476 0.0000 0.0000

115 0.0000 0.0000 0.0000 1.0020 0.0000 1.7476 0.0000 1.7162 0.0000

116 0.0000 0.0000 0.0000 1.1118 0.0000 0.0000 1.7162 0.0000 1.0592

117 0.0000 0.0000 0.0000 0.7829 0.0000 0.0000 0.0000 1.0592 0.0000

Neighbours weighted by inverse distance to centroids; e.g., (110, 111)
closer pair then (110,109), so 109 will have less influence on 110 than will
111.
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Example weights matrix – style ‘W’

109 110 111 112 113 114 115 116 117

109 0.0000 0.2000 0.0000 0.0000 0.2 0.0000 0.0000 0.0000 0.0000

110 0.2000 0.0000 0.2000 0.2000 0.2 0.2000 0.0000 0.0000 0.0000

111 0.0000 0.5000 0.0000 0.5000 0.0 0.0000 0.0000 0.0000 0.0000

112 0.0000 0.1429 0.1429 0.0000 0.0 0.1429 0.1429 0.1429 0.1429

113 0.1429 0.1429 0.0000 0.0000 0.0 0.1429 0.0000 0.0000 0.0000

114 0.0000 0.2000 0.0000 0.2000 0.2 0.0000 0.2000 0.0000 0.0000

115 0.0000 0.0000 0.0000 0.2500 0.0 0.2500 0.0000 0.2500 0.0000

116 0.0000 0.0000 0.0000 0.2000 0.0 0.0000 0.2000 0.0000 0.2000

117 0.0000 0.0000 0.0000 0.1429 0.0 0.0000 0.0000 0.1429 0.0000

0.2 = 1/5 equal weight to the 5 neighbours of target polygon 109;
0.14286 = 1/7 equal weight to the 7 neighbours of target polygon 112 . . .

Rows sum to unity; W is not necessarily symmetric.
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Topic: spatial autocorrelation

Tobler’s first law of geography (1970): “Everything is related to
everything else, but near things are more related than distant things”

I not always true!! It depends on the process that generated the spatial
distribution of “everything”

“Auto” = the same feature-space attribute

Question 1: finding if this is true for a given attribute; quantifying the
range and degree of autocorrelation.

Question 2: finding out why – really “auto” or due to some other
spatially-distributed attribute?
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Moran’s I – motivation

Q: are attribute values in neighbouring polygons (suitably weighted)
more similar than is expected by chance?

I A: using centroids and inverse distance as weights: variograms or
correlograms

I A: considering (weighted) neighbours: Moran’s I

Assumption: no spatial patterning due to some underlying spatial
factor

I i.e., apparent spatial correlation in this variable is not due to actual
spatial correlation of another variable

I This can be tested in simultaneous autoregressive model (SAR), see
below.

Assumption: the assigned neighbour weights are appropriate to the
process
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Moran’s I – formula

I =
n∑

i

∑
j wij

∑
i

∑
j wij(yi − ȳ)(yj − ȳ)∑

i (yi − ȳ)2
(1)

Variables:
I yi is the value of the variable in the ith of n polygons
I ȳ is the global mean of the variable
I wij is the spatial weight of the link between polygons i and j

The second term numerator is the weighted covariance; the
denominator normalizes by the variance

The first term normalizes by the sum of all weights → the test is
comparable among datasets with different numbers of polygons and
using different weightings.
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Global Moran’s I test

Compute for all pairs of polygons (i , j)
I Test is about correlation across the whole map – is there any

patterning anywhere?

Assign weights according to hypothesis
I 1st order: only immediate neighbours (rook? queen?) have non-zero

weights
I 2nd, 3rd. . . order: zero weights for immediate, 2nd. . . neighbours, then

non-zero weights for the next “ring” (boundary crossing)

Expected value if random placement of response variable −1/(n − 1);
complicated formula for variance

Transform observed I to a normal Z score, compute probability it is
by chance that different from the value expected if random allocation
of the attribute value to polygons

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 38 / 106



Example: Syracuse leukemia
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Equally-weighted first (rook) neighbours:

Moran’s I Expectation Variance

0.2075836 -0.0161290 0.0050781

Moran’s I test under randomisation

alternative hypothesis: greater

Moran I standard deviate = 3.1394

p-value = 0.000846

Conclusion: reject null hypothesis, there
is positive spatial autocorrelation of
leukemia incidence across the map. Note
we have made no attempt (yet) to explain
why.
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Effect of weights

These represent different hypotheses about the relative importance of
neighbours in the spatial process.

W inversely proportional to the number of neighbours;

more weight to areas with few neighbours

B binary: 1 for a neighbour, 0 otherwise;

C globally standardized: inversely proportional to the total
number of links;

IDW inverse-distance to centroids

Syracuse leukemia Moran’s I with different weights:

Style Moran’s I p-value

W 0.207 0.0008
B 0.224 0.0002
IDW 0.195 0.0018
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Autocorrelation of categorical variables

“BB join count”

Analogous to Moran’s I for continuous attributes

“BB” = “black/black” vs. “BW” = “black/white” etc., but can have
more “colours” (categories)

Similar to a contingency table for non-spatial attributes

Tests whether same “colour” joins (mergers) occur more frequently
than would be expected by chance (i.e., if the colours were randomly
assigned to areas)

Sensitive to the definition of neighbours and weights

Sensitive to MAUP and aggregation method
I mode (most common), nearest (centre)

R package spdep, function joincount.test etc.
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Example “BW” patterns

global Moran’s I with binary (0/1) weighting:
Separated Even Random
I = +1 I = −1 I = −1/(36− 1) = −0.028

Source: http:

//www.statsref.com/HTML/index.html?two_dimensional_spatial_autoco.html
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Local Moran’s I

Compute Moran’s I for each polygon separately:

Ii =
(yi − ȳ) ·

∑
j(yj − ȳ)

1/n ·
∑

i (yi − ȳ)2
(2)

The denominator ensures that
∑

i Ii = I

Show these on a scatterplot as Moran’s I (x-axis) vs. the average
Moran’s I of all neighbours of the polygon

The slope of the regression between these is global Moran’s I!

Identifies “hot” and “cold” spots of spatial correlation that contribute
most to the global Moran’s I
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Example: Syracuse leukemia (1)
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Moran scatterplot, Syracuse leukemia incidence

weights style ‘W'

Slope of regression is
global Moran’s I

Point numbers are polygon
IDs.

x-axis: Leukemia in a district
y-axis: Leukemia weighted-averaged in neighbour districts
Marked points have high leverage (influence on global Moran’s I)
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Example: Syracuse leukemia (2)
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HH: the tract has high incidence, so do its neighbours; etc.
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Topic: Hot-spot analysis

Question: are there portions of the study
area with consistently higher (“hot”) or
lower (“cold”) attribute values than aver-
age?

Point data: interpolate from point
values over a ‘fine” grid

I kriging is a smoothing interpolator
and will by construction show
clusters

Area data: compare areas to average
I local Moran’s I
I Getis-Ord local G x

y
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Getis-Ord local G statistics

Symbolized as Gi i and Gi i
∗; the subscript i emphasizes that they are

computed separately for each area.

No attempt to characterize overall spatial dependency.

They identify local areas where there may be dependency.

“These statistics are especially useful in cases where global
statistics may fail to alert the researcher to significant
pockets of clustering.” – Ord and Getis [15]

Two variants: Gi and G ∗
i , where the ‘starred’ variant includes the

self-weights wii of each target polygon
I Gi shows whether an area is within a surrounding hot spot
I G∗i shows whether the area itself is part of such a hot spot.
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Getis-Ord local G – original formulation

A simple concept [9]:

Gi (d) =

∑
j wij(d) · xj∑

j xj
(3)

x the values of the target attribute

i index of the local area

j index running over all local areas,not including area i

d buffer distance, selected by analyst

w symmetric 0/1 matrix: 1 → area j is within distance d of
area i ; but wii

.
= 0

Gi (d) is the proportion of the total of an attribute within distance d of
target area i .
G ∗
i (d) includes the target area in the index j .
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Getis-Ord local G – revised formulation

Generalize [15] to any weighting, not just 0/1 and not just based on
distances

So it can use the same weighting styles as for Moran’s I

Define as a standard (normal) variate
I original Gi less its expectation Wi =

∑
j 6=i wij/(n − 1) . . .

I . . . divided by the square root of the variance:

Var(Gi ) =
Wi (n − 1−Wi )

(n − 1)2(n − 2)
·
[

s(i)

x̄(i)

]2
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Getis-Ord local G – revised formula

G ∗
i =

∑n
j=1 wi ,jxj − x̄

∑n
j=1 wi ,j

Var(G ∗
i )1/2

(4)

x̄ , s are sample mean and standard deviation of the target variable; n
areas

the wi ,j are the neighbour weights

the numerator shows the difference between area j ’s weighted average
of the target and the overall weighted average

the denominator standardizes the index

interpret as Z-score: + → clustering of high values, – → clustering of
low values
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Example: Syracuse leukemia
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LISA

Anselin, L. 1995. Local indicators of spatial association – LISA.
Geographical analysis 27, 93–115.

Expanded and implemented in the GeoDa computer program4

“Exploratory Spatial Data Analysis & spatial regression”

Attractive interface to these techniques

The GeoDa program, documentation and sample data are freely
available for download from the Geodata Center’s GitHub5.

4http://spatial.uchicago.edu/geoda
5http://geodacenter.github.io
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Univariate exploratory graphics quantile plot

≈ equal numbers of observations in each quantile
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Univariate exploratory graphics: natural breaks plot

Algorithm to minimize the within-class/between-class variance – equivalent to univariate

k-means
D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 55 / 106



Univariate exploratory graphics: Box plot

2ndand 3rdquartiles (half the observations); hinges = 1.5 x Interquartile range; outside

this are “boxplot outliers”
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Box plot map with two hinge limits

Hinge = 3.0 only shows the most extreme.

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 57 / 106



Bivariate exploratory graphics: cartogram

Shows one variable by size, the other by colour, space by the centroids
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Clustering

Objective: group spatial units (e.g., census tracts) into
“homogeneous” groups, according to their feature-space attributes

I can also include coördinates of centroids as attributes to force
geographic compactness

Method: k-means
I one-step: minimize within-class variance, maximize between-class

variance; analyst fixes number of classes (k)

Method: hierarchical clustering
I bottom-up grouping to form increasingly-larger groups
I each grouping has a “distance” between its members
I can “cut” the dendrogram (graph) at any level to form any number of

groups.
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Clustering: univariate k-means (1)

Algorithm to minimize the within-class/between-class variance
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Clustering: univariate k-means (2)

Algorithm to minimize the within-class/between-class variance
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Clustering: multivariate geographic k-means (1)

Algorithm to minimize the within-class/between-class variance, while forcing clusters to

be spatially-continguous
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Clustering: multivariate geographic k-means (2)

Algorithm to minimize the within-class/between-class variance, while forcing clusters to

be spatially-continguous
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Clustering: multivariate hierarchical: specification and
dendrogram

Group at any level of detail; see “distance” between groups in multivariate attribute

space
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Clustering: cluster statistics
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Clustering: multivariate hierarchical: maps
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Weights and neighbours

Must operationalize the concept of “neighbour” and give each one a
weight for tests of spatial correlation, and to use in spatial regression
models.
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Moran’s I

Click on point in local Moran graph, highlights the polygon on the map; slope of line is

global Moran’s I
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Influential and clustered polygons for Moran’s I
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Spatial regression model

Note “diagnostics for spatial dependence”, this is the next topic here
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Topic: spatial modelling

Our aim is to understand some spatial process – what explains the
spatial distribution of a target variable?

We feel we’ve understood it if we can build a successful model

A model can be used for prediction or policy decisions

Special problems in spatial models:
I How much of the process is local (endogenous to an area)
I How much of the process controlled by other spatially-distributed

attributes (exogenous)?
I Is there a spillover effect by which exogenous factors in neighbouring

areas affect the outcome?
I What is the proper representation of space? (distance, neighbours,

weighting . . . )
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Finding a correct model

How do we know a model is correct, even if it fits well?

Problem is model mis-specification

Typical case: apparent spatial autocorrelation, caused by an
underlying factor that is itself spatially-correlated

I e.g., spatially-correlated productivity of forest blocks; related to
spatially-correlated soil conditions.

I Should analyze according to a hypothesis and assumptions based on
theory.

Method: compare models by their likelihood (see below)

Reference: Bivand et al. [6, §9]
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Spatial dependence vs. information (1)

A non-spatial analysis (in feature space) assumes independence of
model residuals.

“Nearby” (in geographic space) areas may be similar because of some
spatially-correlated underlying factor in geographic or feature space.

I e.g., house prices in adjacent city wards all affected by similar proximity
to city centre (geographic space)

I e.g., crop yields in adjacent reporting districts all affected by the same
climate and similar soils (feature space).

Feature-space attributes of “nearby” areas may affect the target
attribute (“spillover effect”)

I e.g., attractiveness of a ward for housing may depend not only on its
own proportion of green space, but on the proportion in “nearby”
neighbours
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Spatial dependence vs. information (2)

Question: does the non-spatial (feature-space) model remove all
the apparent spatial correlation?

If the residuals are spatially-correlated, the actual amount of
information (roughly, “degrees of freedom”) is reduced.

I Spatial autocorrelation usually reduces the amount of information
supplied by each observations

I This is because once we know surrounding areas we know something
about a target area

The feature-space model may have incorrect coefficients
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Zero-mean models

Definition: model where the expected deviance in each polygon from
the global mean of a variable is zero

There may be spatial correlation but it is an attribute of the spatial
process of the target variable only

I Example: diffusion of a pollutant from point sources through a
homogeneous soil

Equivalent to first-order stationarity in random field theory
(geostatistics)

This is not valid if there is another spatially-distributed variable
that, in feature space, (partially) determines the value of the target
variable
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Combining feature and geographic space

1 Build a feature-space model (e.g., linear model)
2 Check residuals for spatial autocorrelation

I for areal data, use global Moran’s I; for point data can also use
variograms

3 If no autocorrelation, we are done, feature space explains everything
4 If present, build a model accounting for spatial autocorrelation.

Various forms (see below):
I Simultaneous Autoregressive Models (SAR)

F spatial error SAR
F spatial lag SAR
F spatial Durbin SAR
F spatial Durbin error SAR

I Conditional Autoregressive Models (CAR)

5 Verify that the spatial model is more correct than the non-spatial
model (e.g., Likelihood Ratio test)

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 77 / 106



Linear model with independent residuals

This is the non-spatial formulation; response is explained by predictors in
attribute space only:

Y = Xβ + ε (5)

X : design matrix of predictor values

ε : independent and identically-distributed N ∼ (0, 1) errors

To estimate: β, the linear regression coefficients

Solve by minimization of ε2 = (Y − Xβ)2

BLUE is Ordinary Least Squares (OLS):

β =
(

XTX
)−1

XTY (6)
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Example: Central NY leukemia

Leukemia incidence based on likely feature-space predictors:

PEXPOSURE exposure to TCE (tricholoroethylene)6 sources

toxic chemical linked to cancer

PCTAGE65 % of residents > 65 years old

cancer incidence may increase with age

PCTOWNHOME % of homes owned

wealthier =? better health care? less likely to have
worked in a chemical plant?

281 census tracts in 8 Central NY counties: Cayuga, Onondaga (includes
Syracuse city), Madison, Chenango, Broome, Tioga, Tompkins, Cortland

6https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=30
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Linear model results

Build an additive linear model using these predictors.

lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8@data)

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5173 0.1586 -3.26 0.0012 **

PEXPOSURE 0.0488 0.0351 1.39 0.1648

PCTAGE65P 3.9509 0.6055 6.53 3.2e-10 ***

PCTOWNHOME -0.5600 0.1703 -3.29 0.0011 **

Adjusted R-squared: 0.184

%> 65 years (+), % homeowners (-) significant, TCE (+) not
But does the model satisfy linear modelling assumptions?
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Spatial correlation of linear model residuals

Global Moran I for regression residuals

model: lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8@data)

weights: NY8listwB

Moran I statistic standard deviate = 2.64, p-value = 0.0042

alternative hypothesis: greater

sample estimates:

Observed Moran I Expectation Variance

0.0830903 -0.0098913 0.0012423

The residuals are (positively) spatially-correlated among neighbours, i.e.,
similar residuals are clustered; so the OLS solution to the linear model is
not correct.
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Simultaneous autoregressive models (SAR)

The solution is to use models that simultaneously solve for:

1 the regression coefficients, i.e., the effects of the predictors on the
response;

2 the autoregressive error structure, i.e., the strength and nature of
the spatial autocorrelation

Several forms of this, depending the cause of spatial autocorrelation:

as a result of accounting for the predictors; a spatially-correlated
residual effect: ‘induced spatial dependence’ (“spatial error
model”)

as a result of a process within the target variable itself: ‘inherent
spatial autocorrelation’ (“spatial lag model”)

both (“mixed model”)
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SAR model selection I

What process do we think is producing the spatial correlation?

Spatially-correlated residual effect due to a spatially-correlated
feature-space cause not included in the model: SAR error model

I maybe we don’t suspect that it is a cause
I maybe it has not been measured
I leukemia example: occupation
I ecology example: soil type (if not known or in model)
I crime example: gun laws, sentencing guidelines

A diffusion effect: SAR lag model
I leukemia example: infection (e.g., feline leukemia, not known to occur

in human leukemia)
I ecology example: spread of an invasive species
I social example: spread of a rumour by word-of-mouth

A spillover effect: SAR Durbin model
I this must also account for possible diffusion effects
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SAR model selection II

I leukemia example: exposure to TCE in neighbouring areas, because
residents in one area tend to shop or visit in neighbouring areas (??)
and so the neighbours add to exposure

I ecology example: habitat quality in neighbouring forest patches affects
bird population in a patch

I social example: amenities in neighbouring wards affecting desirability of
living in a ward

Compare models with the Likelihood Ratio or Lagrange Multiplier
[4] tests

I Likelihood Ratio: both models are fit with maximum likelihood, so the
two likelihoods are known

I “likelihood” = probability of the observed data being produced by the
model with the given parameters
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SAR models – spatial error model

“spatial error”: the autoregressive process is found only in the error
term, i.e., not accounted for by the linear model

formula: Y = Xβ + λWu + ε

W is a matrix representing the spatial structure (e.g., neighbour
weights)

u = (Y − Xβ) are the spatially-correlated residuals

λ is the strength of autoregression of the errors

ε is the independent error (not autoregressive)

The concept here is that there is some spatially-structured error, which
cause we can not identify, but which we must account for to have a
correct model.
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SAR models – spatial lag model

“spatial lag”: the autoregressive process occurs only in the response
variable

formula: Y = ρWY + Xβ + ε

also can write (I − ρW )Y = Xβ + ε

ρ is the strength of autoregression of the response

Notice how the autocorrelation is applied to the response variable, not
to the residuals, as in the SAR error model

The concept here is that the target variable in neighbouring areas affects
the target in a given area.
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SAR models – Durbin model

“Durbin” or “mixed”: spatial autocorrelation affects both response
(‘inherent spatial autocorrelation’) and explanatory (‘induced spatial
dependence’) variables

formula: Y = ρWY + Xβ + WXγ + ε

ρ is the strength of autoregression of the response

γ is the strength of autoregression of the errors
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SAR models in R

package spdep

SAR error model: functions errorsarlm
I also spautlom; this can also compute Conditional Autoregressive

(CAR) models

SAR lag model: function lagsarlm with argument type="lag"

SAR Durbin model: function lagsarlm with argument
type="mixed"
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Derivation of the SAR spatial error model

Accounts for spatial autocorrelation of the residuals by a regression
on the residuals from adjacent areas

Residuals are partially the function of some (unobserved) ‘hot’ (or
‘cold’) spot of a spatially-distributed covariable

Each area’s residual is modelled as a linear function of all the others
(depending on neighbours and weights)

ei =
m∑
j=1

bijej + εi (7)

bij values: spatial dependence of ei (residual in one area) on ej
(residual in neighbour area); set bii

.
= 0 (don’t self-regress)
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SAR error model formulation

Y = Xβ + B(Y − Xβ) + ε (8)

(I − B)(Y − Xβ) = ε (9)

To estimate: B (spatial dependence), β (regression)
This residual error ε is to be minimized; from the variance:

Var[Y ] = σ2(I − B)−1(I − BT )−1 (10)

Reparameterize with explicit spatial autocorrelation parameter λ and
spatial dependence matrix W (list of weights):

Var[Y ] = σ2(I − λW )−1(I − λW T )−1 (11)

and solve for λ by maximum likelihood.

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 90 / 106



SAR error model example

spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8, listw = NY8listwB)

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.618193 0.176784 -3.4969 0.0004707

PEXPOSURE 0.071014 0.042051 1.6888 0.0912635

PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09

PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930

Lambda: 0.040487 LR test value: 5.2438 p-value: 0.022026

Asymptotic standard error: 0.016214

LR test value compares the models with and without spatial
autocorrelation.

p-value: probability that rejecting the null hypothesis (the two
models are equally likely) would be a Type I error.

If p-value is low → residuals of non-spatial model are autocorrelated.
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SAR error model interpretation

These coefficients give the influence of feature-space predictors,
after accounting for spatial correlation of residuals

I i.e., any spatial process is removed (not modelled)
I computing Moran’s I on the SAR residuals should confirm this

λ gives the relative strength of the spatial process vs. the
feature-space process

I can visualize this with trend vs. stochastic residuals fits, see next page

the form of the spatial correlation is modelled by the form of
weights

I depends on neighbour list and weighting style
I weighting style is set by modeller based on hypotheses of how the

spatially-correlated error occurs; can compare several for robustness
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Comparing regression coefficients: OLS vs. SAR/e

# OLS

Estimate Pr(>|t|)

(Intercept) -0.5173 0.0012

PEXPOSURE 0.0488 0.1648

PCTAGE65P 3.9509 0.0000

PCTOWNHOME -0.5600 0.0011

# SAR error model

(Intercept) -0.6182 0.0005

PEXPOSURE 0.0710 0.0913

PCTAGE65P 3.7542 0.0000

PCTOWNHOME -0.4199 0.0282

Substantial change in coefficients; home ownership less important;
exposure to TCE more important and now significant at α < 0.1.
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Contributions to model fit

Trend
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SAR error model residuals
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SAR model has not removed spatial correlation of residuals, just changed it
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SAR error vs. SAR lag

The above analysis is with the SAR error model:

‘induced spatial dependence’

process is exogenous to the response variable: local hotspots of some
unmeasured factor

leukemia example: could be local hotspots of carcinogens not
included in the PEXPOSURE (exposure to TCE) term; could be local
hotspots of an unknown or unaccounted for risk factor

An alternate formulation is the SAR lag model:

‘inherent spatial autocorrelation’

process is endogenous to the response variable: diffusion or repulsion
effects

leukemia example: could be contagious (this is the case for feline
leukemia – seems unlikely for humans)

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 96 / 106



Spatial lag model

lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8, listw = NY8listwB, type = "lag")

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.514495 0.156154 -3.2948 0.000985

PEXPOSURE 0.047627 0.034509 1.3801 0.167542

PCTAGE65P 3.648198 0.599046 6.0900 1.129e-09

PCTOWNHOME -0.414601 0.169554 -2.4453 0.014475

Rho: 0.038893, LR test value: 6.9683, p-value: 0.0082967

Asymptotic standard error: 0.015053

This is more “likely” an explanation than the spatial error model: compare
LR test values 6.97 (lag) vs. 5.24 (error).
Also, standard error 0.015 (SAR lag) is lower than 0.016 (SAR error)
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Comparing regression coefficients: SAR error vs. SAR lag

# SAR_error

(Intercept) -0.6182 0.0005

PEXPOSURE 0.0710 0.0913

PCTAGE65P 3.7542 0.0000

PCTOWNHOME -0.4199 0.0282

# SAR_lag

Estimate Pr(>|z|)

(Intercept) -0.5145 0.0010

PEXPOSURE 0.0476 0.1675

PCTAGE65P 3.6482 0.0000

PCTOWNHOME -0.4146 0.0145

Less effect of all predictors after accounting for endogenous spatial
autocorrelation in the leukemia incidence.
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SAR models: Relation to Generalized Least Squares (GLS)

Both incorporate spatial correlation structure of the model residuals
in a mixed model

I GLS can include many other kinds of correlation structures

Spatial correlation in GLS depends on an authorized covariance
function of separation between point-pairs

I If polygons are reduced to their centroids, GLS can be used on area
data

SAR uses weighted adjacency matrices to model the linear
dependence of residuals on each other

I so can work with polygons of any shape and size
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To remember:

1 areal data: aggregated over (usually irregular) polygons
2 apparent spatial autocorrelation may depend on:

I a spatial process of that variable;
I spatially-structured covariable(s);
I both.

3 Moran’s I measures strength of spatial autocorrelation

4 spatial structure depends on assumed process → weights matrix;
based on distance, common boundary count or length . . .

5 paradigm: (1) formulate hypotheses; (2) build model to match
hypotheses; (2) test model to see if there is evidence for/against
hypotheses
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1 Areal data
Definition and examples
Characteristics
The ”ecological fallacy”
Neighbours

2 Spatial autocorrelation
Global Moran’s I
Autocorrelation of categorical variables
Local Moran’s I
Hot-spot analysis

3 GeoDa and LISA
Exploratory graphics
Clustering
Weights and neighbours
Spatial correlation
Spatial regression

4 Spatially-explicit linear models

5 References

D G Rossiter (CU) Areal Data Spatial Analysis March 11, 2020 101 / 106



Further reading

Theory: Anselin [3, 4], Openshaw [14]

Use in ecology, difference between SAR model types: Kissling and Carl [13]

Applications: see slide 5

In R: Bivand et al. [7, §9–10]

8-county leukemia study: Ahrens et al. [1]; original data Iwano [11]
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Web pages

Roger Bivand (Bergen): http://www.bias-project.org.uk/ASDARcourse/

Unit 6 “Worked example: Spatial Weights, Autocorrelation”

Lance Waller (Emory):
analysis of public health from Waller and Gotway [19]:
http://web1.sph.emory.edu/users/lwaller/ch7index.htm

GeoDa Center for Spatial Data Science (Univ. Chicago, Luc Anselin); GeoDa
computer program for exploratory ADSA
http://spatial.uchicago.edu/geoda/

Text: Anselin and Rey [5]

Workshop: Applied Spatial Statistics in R. by Yuri M. Zhukov, Department of
Government, Harvard University;
http://www.people.fas.harvard.edu/~zhukov/spatial.html
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