Areal Data Spatial Analysis

D G Rossiter

Cornell University

March 11, 2020

Outline

🕽 Areal data

- Definition and examples
- Characteristics
- The "ecological fallacy"
- Neighbours

Spatial autocorrelation

- Global Moran's I
- Autocorrelation of categorical variables
- Local Moran's I
- Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression
- 4
- Spatially-explicit linear models
- References

Outline

🕨 Areal data

- Definition and examples
- Characteristics
- The "ecological fallacy"
- Neighbours

Spatial autocorrelation

- Global Moran's I
- Autocorrelation of categorical variables
- Local Moran's I
- Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression
 - Spatially-explicit linear models
 - References

Topic: Areal data

• Data are presented as attributes of fixed polygonal areas

- generally irregularly-shaped, and/or not all same shape
- examples: census blocks, voting districts, forest parcels
- but methods can apply to regular grids
- Attributes can be analyzed in feature space (distribution, correlation, regression ...) but:
- Q: Is the data-generating process:
 - non-spatial (all in feature space),
 - spatial (all in geographic space), or
 - mixed?
- Q: If mixed, how does the **spatial structure** affect the **feature-space structure**?

- spatial econometrics [2]
- epidemiology [6, $\S11$] [8]
- sociology / demographics [10]
- political science [18]
- natural resources, if data are presented as areal aggregates
 - forest management blocks, farms, . . .

Example: Syracuse (NY) census and health

Syracuse city, relative Leukemia incidence

Syracuse city, % over 65

source: Bivand et al. [6, §9]

Q: Is leukemia incidence in a census tract correlated with mean age in the tract? Or are there local "hot spots" that might have a point-source cause?

Syracuse (NY) census and health - another view

Syracuse city, rank of Leukemia incidence

This by rank, not relative incidence

D G Rossiter (CU)

Areal Data Spatial Analysis

March 11, 2020 7 / 106

Real world

Google Earth view of census tract boundaries (KML file); can zoom and pan

D G Rossiter (CU)

Areal Data Spatial Analysis

Characteristics of Syracuse leukemia data

Typical of most areal data:

- Aggregated by reporting unit
 - here, US census tracts; within City boundary
- Units were not designed for our purpose
 - here, study of the causes of leukemia
 - size, geographic and feature-space characteristics
- Uneven size and shape of units
- Different numbers of neighbours, lengths of common borders
- Units on edges have unobserved neighbours
- Uneven feature-space "size"
 - e.g., population, proportion residential vs. commercial
- "Points" (e.g., industry) assigned to the whole polygon

Example: Favourite NFL team by county (2012)

source: https://www.facebook.com/notes/facebook-data-science/ nfl-fans-on-facebook/10151298370823859, 11-Feb-2013

Question: What factor(s) determine this in feature & geographic spaces? See next slide.

What factors control which team is the favourite?

- Team's success (over what period?)
- Team's games shown on local TV?
- Team featured often on national TV?
- Team plays in county's state?
- If no team in state, team plays in neighbouring state?
- Team plays in migrants' home state?
- Proximity of county to team's stadium?
- Demographic factors (occupation, ethnicity)?
- Popular players on team from locality/local college?
- Is there residual spatial correlation after accounting for these factors? "Spillover effect".

Characteristics of areal data - attributes

- The attributes relate to the whole area of the polygon, and can not be further localized
 - Various methods of dis-aggregation using covariates with finer spatial resolution
 - e.g., satellite imagery to separate industrial and residential areas within one polygon
- Often the attributes are aggregate measures
 - e.g., population *count*, proportions
- The attributes may already be **normalized** to the area of the polygon
 - e.g., population *density*
- Metadata is vital for proper processing and interpretation
 - especially aggregation method

Characteristics of areal data - choice of tessellation

- tessellation = division of the study area
- Can not be dis-aggregated by analyst
- The tessellation may have been done for a purpose not directly relevant to the analysis
 - E.g., crop yield statistics may be aggregated by political division, but the crop yield may be better modelled by agro-ecological zone
- $\bullet\,$ changes to boundaries \rightarrow $\odot\,$ longitudinal analyses
 - e.g., British county / authority boundaries; area code zones
- Metadata is vital for proper processing and interpretation
 - especially tessellation decisions, consistency

Characteristics of areal data - choice of scale

• The scale of the tessellation affects the analysis

- a variation of the bandwidth problem for spatial fields
- e.g., voting patterns by state vs. congressional district vs. county vs. ward; relation between e.g., family income and political preference
- e.g., crop statistics by county may show strong spatial autocorrelation, which becomes much weaker at district or state level, although the underlying process is the same.

• Technical term: modifiable areal unit problem [12]

Example: Mexican electoral regions

Source: [18, Fig. 1] Two levels of aggregation: state, region Question: what socio-economic factors determine voting patterns?

Example: New Jersey housing

Source: [8, Fig. 1]

Percentage of homes built before 1950 (risk factor for Pb poisoning) Aggregation level: USA census block group, ZIP code, county.

Areal Data Spatial Analysis

ZIP code

"hot spots" of 50-75% older houses

all 25–50% older houses no hot spots

County

The "ecological fallacy" – non-spatial (1)

- "Ecological" = context of observations: "In an *ecological correlation* the statistical object is a *group* of persons"
- Fallacy: inferences about a **fine-scale** grouping can be deduced from inferences for a **coarse-scale** grouping
 - E.g.: regression/correlation of voting preferences based on socio-economic factors at state/province level vs. same relations at county level.
 - ► The *aggregate* relation (at states level) can *not* be obtained by aggregating fine-scale regressions (50 per-state relations)
- References: [16, 17];

Ecological Fallacy In: Encyclopedia of Survey Research Methods https://dx.doi.org/10.4135/9781412963947.n151

- Fallacy: inferences about **individuals** ("individual-level correlations/regressions") can be deduced from inference for their **group**
 - E.g., Strong empirical-statistical relation between age of schoolchildren and height does *not* imply that a randomly-selected 5th grader is taller than a randomly-selected 4th grader.

- Fallacy: inferences about aggregate data at **small area** can be deduced from inferences about aggregate data for an **enclosing larger area** *or* from inferences from all individual observations
 - ► E.g.: strong empirical-statistical relation between crime and size of police force (both normalized for population) at **state** level; does *not* imply that there is a strong relation at **city** level within a single state *or* overall.
- Message: analyze at the level that you want to understand / make policy.

The "ecological fallacy" and the MAUP

- Correlations at more general levels are generally **stronger** (higher |r|) than at finer levels.
- Regressions at more general levels are generally **stronger** (higher R^2) than at finer levels.
- This is because much noise has been averaged out.
- Factor for correlations: $\frac{1 \sigma_{XA} \sigma_{YA}}{\sqrt{1 \sigma_{XA}^2} \sqrt{1 \sigma_{YA}^2}}$
- σ_{XA} , σ_{YA} : variation of the two variables X and Y between strata;
- minimum possible value = 1 when there is no variation between strata

Topic: Neighbours

- Q: how do we quantify "nearby"?
- A1: distance between centroids of polygons
 - as with spatial fields; represents polygons as points
 - can use inverse distance, ID² ...
- A2: common borders: **neighbours** (1st order)
 - "rook" (common line) vs. "queen" (common point) neighbours
 - terminology from legal chess moves
- A3: number of steps to reach a common border
 - ▶ 1st, 2nd, 3rd... order neighbours
- Distance or steps? depends on purpose of analysis
 - what is supposed to drive the spatial process?

- sp "Classes and Methods for Spatial Data" (Edzer Pebesma¹, Roger Bivand²)
- spdep "Spatial Dependence: Weighting Schemes, Statistics and Models" (Roger Bivand)
- splm "Econometric Models for Spatial Panel Data" (Giovanni Millo³)

¹University of Münster (D) ²NHH: Norwegian school of economics ³Generali insurance

D G Rossiter (CU)

Neighbours example

Syracuse city census tracts, queen and rook neighbours

spdep functions:

- knearneigh find k nearest neighbours for each polygon (class knn)
- knn2nb convert these to weights (class nb "neighbour list")
- dnearneigh identify neighbours within a given distance band (class nb)
- nbdists Distances along each link of a neighbour list.

Nearest neighbours within a distance

Syracuse city census tracts, 1.2 km centroid neighbours

k nearest neighbours

Syracuse city census tracts, nearest neighbour

Syracuse city census tracts, 3 nearest neighbours

Syracuse city census tracts, 2 nearest neighbours

Syracuse city census tracts, 4 nearest neighbours

- In models of spatial processes (see below) neighbours are presumed to have influence on a target polygon.
 - See examples in spatial autocorrelation and spatial modelling (below).
- A neighbour can be more or less influential to a target polygon, depending on the **spatial process**.
- So, assign a weight to each link in the graph \rightarrow (a)symmetric weights matrix.
- Weights **style** depends on presumed process (see next) there is no "correct" weighting.

Weighting styles

- Style B (**binary**): weights of adjacent polygons affecting a target polygon are either 0 (*not* a neighbour of the target) or 1 (*is* a neighbour)
 - Implies process depends on the number of neighbours
 - Can also use with weighting based on distances between centroids: multiply 1's by some distance measure
- Style W: weights of adjacent polygons affecting a target polygon must sum to 1 (row-standardized)
 - All *n* neighbours equally influential \rightarrow all weights 1/n.
 - i.e., total influence to a target area is constant, influence from neighbours divided among them
 - Links originating at areas with few neighbours \rightarrow larger weights (edge effect).

Assigning weights

spdep functions:

- nb2listw spatial weights for neighbours lists (class listw, nb); styles W, B, C, U, S
 - W row-standardized
 - B binary
 - C globally-standardized: sum over all links to n
 - U C divided by number of neighbours
 - S variance-stabilizing
- glist argument to nb2listw: pass a list of vectors of weights corresponding to the neighbour relationships
 - example: pre-computed inverse-distance, ID²W with nbdists; use style B, will modify "binary" weights
- listw2mat show weights matrix

Example weights matrix - style 'B'

	109	110	111	112	113	114	115	116	117	
109	0	1	0	0	1	0	0	0	0	
110	1	0	1	1	1	1	0	0	0	
111	0	1	0	1	0	0	0	0	0	
112	0	1	1	0	0	1	1	1	1	
113	1	1	0	0	0	1	0	0	0	
114	0	1	0	1	1	0	1	0	0	
115	0	0	0	1	0	1	0	1	0	
116	0	0	0	1	0	0	1	0	1	
117	0	0	0	1	0	0	0	1	0	

1 = is a neighbour; 0 = not; by definition symmetric

Example weights matrix - 'B' with Inverse-distance weighting

Neighbours weighted by inverse distance to centroids; e.g., (110, 111) closer pair then (110,109), so 109 will have less influence on 110 than will 111.

Example weights matrix - style 'W'

0.2 = 1/5 equal weight to the 5 neighbours of target polygon 109; 0.14286 = 1/7 equal weight to the 7 neighbours of target polygon 112 ...

Rows sum to unity; W is not necessarily symmetric.

Outline

Areal data

- Definition and examples
- Characteristics
- The "ecological fallacy"
- Neighbours

Spatial autocorrelation

- Global Moran's I
- Autocorrelation of categorical variables
- Local Moran's I
- Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression
 - Spatially-explicit linear models
 - References

- Tobler's first law of geography (1970): "Everything is related to everything else, but near things are more related than distant things"
 - not always true!! It depends on the process that generated the spatial distribution of "everything"
- "Auto" = the same feature-space attribute
- Question 1: finding if this is true for a given attribute; quantifying the range and degree of autocorrelation.
- Question 2: finding out why really "auto" or due to some other spatially-distributed attribute?

Moran's *I* – motivation

- Q: are attribute values in neighbouring polygons (suitably weighted) more similar than is expected by chance?
 - A: using centroids and inverse distance as weights: variograms or correlograms
 - A: considering (weighted) neighbours: Moran's I
- Assumption: no spatial patterning due to some underlying spatial factor
 - i.e., apparent spatial correlation in this variable is *not* due to actual spatial correlation of another variable
 - This can be tested in simultaneous autoregressive model (SAR), see below.
- Assumption: the assigned neighbour weights are appropriate to the process
Moran's I – formula

$$I = \frac{n}{\sum_{i} \sum_{j} w_{ij}} \frac{\sum_{i} \sum_{j} w_{ij} (y_{i} - \bar{y})(y_{j} - \bar{y})}{\sum_{i} (y_{i} - \bar{y})^{2}}$$
(1)

- Variables:
 - y_i is the value of the variable in the *i*th of *n* polygons
 - \bar{y} is the global mean of the variable
 - *w_{ij}* is the spatial **weight** of the link between polygons *i* and *j*
- The second term numerator is the weighted covariance; the denominator normalizes by the variance
- The first term normalizes by the sum of all weights → the test is comparable among datasets with different numbers of polygons and using different weightings.

Global Moran's I test

- Compute for **all pairs** of polygons (*i*, *j*)
 - Test is about correlation across the whole map is there any patterning anywhere?
- Assign weights according to hypothesis
 - 1st order: only immediate neighbours (rook? queen?) have non-zero weights
 - 2nd, 3rd...order: zero weights for immediate, 2nd...neighbours, then non-zero weights for the next "ring" (boundary crossing)
- Expected value if random placement of response variable -1/(n-1); complicated formula for variance
- Transform observed *I* to a normal *Z* score, compute probability it is by chance that different from the value expected if random allocation of the attribute value to polygons

Example: Syracuse leukemia

Syracuse city, relative Leukemia incidence

Equally-weighted first (rook) neighbours:

```
Moran's I Expectation Variance 0.2075836 -0.0161290 0.0050781
```

```
Moran's I test under randomisation
alternative hypothesis: greater
Moran I standard deviate = 3.1394
p-value = 0.000846
```

Conclusion: reject null hypothesis, there is **positive** spatial autocorrelation of leukemia incidence *across the map*. **Note** we have made no attempt (yet) to explain *why*.

Effect of weights

These represent different **hypotheses** about the relative importance of neighbours in the spatial process.

W inversely proportional to the number of neighbours;

- more weight to areas with few neighbours
- B binary: 1 for a neighbour, 0 otherwise;
- C globally standardized: inversely proportional to the total number of links;

IDW inverse-distance to centroids

Syracuse leukemia Moran's I with different weights:

Style	Moran's I	p-value
W	0.207	0.0008
В	0.224	0.0002
IDW	0.195	0.0018

Autocorrelation of categorical variables

- "BB join count"
- Analogous to Moran's I for continuous attributes
- "BB" = "black/black" vs. "BW" = "black/white" etc., but can have more "colours" (categories)
- Similar to a contingency table for non-spatial attributes
- Tests whether same "colour" joins (mergers) occur more frequently than would be expected by chance (i.e., if the colours were randomly assigned to areas)
- Sensitive to the definition of neighbours and weights
- Sensitive to MAUP and aggregation method
 - mode (most common), nearest (centre)
- R package spdep, function joincount.test etc.

Example "BW" patterns

1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0
1	1	1	0	0	0

1	0	1	0	1	0
0	1	0	1	0	1
1	0	1	0	1	0
0	1	0	1	0	
1	0	1	0	1	0
0	1	0	1	0	1

0	0	1	1	0	1
0	1	1	0	1	0
1	0	1	1	0	0
0	0	0	0	0	1
1	1	1	1	0	0
1	0	1	1	0	1

global Moran's I with binary (0/1) weighting: Separated Even I = -1/(36 - 1) = -0.028I = +1l = -1

Source: http:

//www.statsref.com/HTML/index.html?two_dimensional_spatial_autoco.html

Random

• Compute Moran's / for each polygon separately:

$$I_{i} = \frac{(y_{i} - \bar{y}) \cdot \sum_{j} (y_{j} - \bar{y})}{1/n \cdot \sum_{i} (y_{i} - \bar{y})^{2}}$$
(2)

- The denominator ensures that $\sum_{i} I_i = I$
- Show these on a **scatterplot** as Moran's *I* (x-axis) vs. the **average** Moran's *I* of all **neighbours** of the polygon
- The slope of the regression between these is global Moran's *I*!
- Identifies "hot" and "cold" spots of spatial correlation that contribute most to the global Moran's *I*

Example: Syracuse leukemia (1)

Moran scatterplot, Syracuse leukemia incidence

Slope of regression is global Moran's *I*

Point numbers are polygon IDs.

x-axis: Leukemia in a district
 y-axis: Leukemia weighted-averaged in neighbour districts
 Marked points have high leverage (influence on global Moran's I)

Example: Syracuse leukemia (2)

Tracts with influence

HH: the tract has high incidence, so do its neighbours; etc.

D G Rossiter (CU)

Areal Data Spatial Analysis

Topic: Hot-spot analysis

Question: are there portions of the study area with consistently higher ("hot") or lower ("cold") attribute values than average?

- **Point** data: interpolate from point values over a 'fine'' grid
 - kriging is a smoothing interpolator and will by construction show clusters
- Area data: compare areas to average
 - Iocal Moran's I
 - Getis-Ord local G

Getis-Ord local G statistics

- Symbolized as *G_ii* and *G_ii*^{*}; the subscript *i* emphasizes that they are computed separately for each area.
- No attempt to characterize *overall* spatial dependency.
- They identify *local* areas where there may be dependency.

"These statistics are especially useful in cases where global statistics may fail to alert the researcher to significant pockets of clustering." – Ord and Getis [15]

- Two variants: G_i and G^{*}_i, where the 'starred' variant includes the self-weights w_{ii} of each target polygon
 - ► G_i shows whether an area is within a surrounding hot spot
 - G_i^* shows whether the area itself is part of such a hot spot.

Getis-Ord local G – original formulation

A simple concept [9]:

$$G_i(d) = \frac{\sum_j w_{ij}(d) \cdot x_j}{\sum_j x_j}$$
(3)

- \times the values of the target attribute
- i index of the local area
- j index running over all local areas, not including area i
- d buffer distance, selected by analyst
- w symmetric 0/1 matrix: $1 \rightarrow \text{area } j$ is within distance d of area i; but $w_{ii} \doteq 0$

 $G_i(d)$ is the proportion of the total of an attribute within distance d of target area *i*.

 $G_i^*(d)$ includes the target area in the index j.

- Generalize [15] to any weighting, not just 0/1 and not just based on distances
- So it can use the same weighting styles as for Moran's I
- Define as a standard (normal) variate
 - original G_i less its expectation $W_i = \sum_{j \neq i} w_{ij}/(n-1) \dots$
 - ... divided by the square root of the variance:

$$\operatorname{Var}(G_i) = \frac{W_i(n-1-W_i)}{(n-1)^2(n-2)} \cdot \left[\frac{s(i)}{\bar{x}(i)}\right]^2$$

Getis-Ord local G – revised formula

$$G_i^* = \frac{\sum_{j=1}^n w_{i,j} x_j - \bar{x} \sum_{j=1}^n w_{i,j}}{\operatorname{Var}(G_i^*)^{1/2}}$$
(4)

- \bar{x}, s are sample mean and standard deviation of the target variable; *n* areas
- the *w*_{*i*,*j*} are the neighbour weights
- the numerator shows the difference between area j's weighted average of the target and the overall weighted average
- the denominator standardizes the index
- interpret as Z-score: + \rightarrow clustering of high values, \rightarrow clustering of low values

Example: Syracuse leukemia

Getis-Ord Gi, Syracuse leukemia incidence

Getis-Ord Gi*, Syracuse leukemia incidence

Outline

Areal data

- Definition and examples
- Characteristics
- The "ecological fallacy"
- Neighbours

Spatial autocorrelation

- Global Moran's I
- Autocorrelation of categorical variables
- Local Moran's I
- Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression
 - Spatially-explicit linear models
 - References

- Anselin, L. 1995. Local indicators of spatial association LISA. *Geographical analysis* 27, 93–115.
- Expanded and implemented in the GeoDa computer program⁴ "Exploratory Spatial Data Analysis & spatial regression"
- Attractive interface to these techniques
- The GeoDa program, documentation and sample data are freely available for download from the Geodata Center's GitHub⁵.

⁵http://geodacenter.github.io

D G Rossiter (CU)

⁴http://spatial.uchicago.edu/geoda

Univariate exploratory graphics quantile plot

pprox equal numbers of observations in each quantile

D G Rossiter (CU)

Areal Data Spatial Analysis

March 11, 2020 54 / 106

Univariate exploratory graphics: natural breaks plot

Algorithm to minimize the within-class/between-class variance – equivalent to univariate k-means

D G Rossiter (CU)

Areal Data Spatial Analysis

March 11, 2020 55 / 106

Univariate exploratory graphics: Box plot

 $2^{nd}\text{and}\ 3^{rd}\text{quartiles}$ (half the observations); hinges = 1.5 x Interquartile range; outside this are "boxplot outliers"

D G Rossiter (CU)

Areal Data Spatial Analysis

Box plot map with two hinge limits

Hinge = 3.0 only shows the most extreme.

Bivariate exploratory graphics: cartogram

Shows one variable by size, the other by colour, space by the centroids

D G Rossiter (CU)

Areal Data Spatial Analysis

March 11, 2020 58 / 106

Clustering

- Objective: group spatial units (e.g., census tracts) into "homogeneous" groups, according to their **feature-space** attributes
 - can also include coördinates of centroids as attributes to force geographic compactness
- Method: k-means
 - one-step: minimize within-class variance, maximize between-class variance; analyst fixes number of classes (k)
- Method: hierarchical clustering
 - bottom-up grouping to form increasingly-larger groups
 - each grouping has a "distance" between its members
 - can "cut" the dendrogram (graph) at any level to form any number of groups.

Clustering: univariate k-means (1)

Algorithm to minimize the within-class/between-class variance

D G Rossiter (CU)

Areal Data Spatial Analysis

Clustering: univariate k-means (2)

		KMeans Dialog
Please note: Only suppo	rted for smaller datasets.)	Summary
Input:		commonly .
s	elect Variables	Method: KMeans
X Y POP8 TRACTCAS PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases View		Total of Classes I Total Classes Table I and the resent 130 Total Classes
	X 01	Within-cluster mul of spaces Muthin cluster f.d. C1 0.10907 C2 0.19714 C3 0.19714 C4 0.19714 C5 0.14973 C4 0.19734 C5 0.14973 C6 0.079843
Transformation: Initialization Method: Initialization Re-runs: Use specified seed: Maximal Iterations: Distance Function: Output:	10% Standardize (2) Maans+ © 150 © Change Seed 1000 Euclidean ©	The status actilitications and of spanners to 20197 the status actilitications and of spanners to 20197 the status actinities and the status activities and the status of the status of the status of spanners to 2,5442

Algorithm to minimize the within-class/between-class variance

D G Rossiter (CU)

Areal Data Spatial Analysis

Clustering: multivariate geographic k-means (1)

Algorithm to minimize the within-class/between-class variance, while forcing clusters to be **spatially-continguous**

D G Rossiter (CU)

Clustering: multivariate geographic k-means (2)

and any appo	rted for smaller datasets.)		Summary				
iput:							
s	elect Variables		Method: KMeans				
Select Variables X Y POP8 TRACTCAS PROPCAS PCTOWNEONE PCTOWNEONE Z AVIODIST REXPOSIURE Cases			Number of clusters I Filter Initialization method: PMenn*+ Initialization method: PMenn*+ Transformation: PMenn*+ Initialization: PMenn*+ Ini				
Weighting: 0	trolds Auto Weighting		The total sum of squares: 310 Within-Cluster sum of squares: Within cluster 8.8. 				
arameters:			C3 13.1004 C4 15.5716				
Number of Clusters:	8	0	C5 10.423				
Minimum Bound:	□ X ♀ 1 		C6 30.2564 C7 17.2783 C8 9.74216				
Transformation:	Standardize (Z)		The total within-cluster sum of squares: 126.417				
Initialization Method:	KMeans++	0	The between-cluster sum of squares: 183.583 The ratio of between to total sum of squares: 0.592202				
Initialization Do. cupo.							

Algorithm to minimize the within-class/between-class variance, while forcing clusters to be **spatially-continguous**

D G Rossiter (CU)

Clustering: multivariate hierarchical: specification and dendrogram

Group at any level of detail; see "distance" between groups in multivariate attribute space

D G Rossiter (CU)

Areal Data Spatial Analysis

Clustering: cluster statistics

```
Number of clusters: 6
Transformation: Standardize (Z)
Method: Ward's-linkage
Distance function: Euclidean
Cluster centers:
```

	POP8	PCTOWNHOME	PCTAGE65P	Z	PEXPOSURE
C1	4.49078	-1.46223	-0.430876	-0.637778	-0.309463
C2	-0.205116	-0.867063	-0.709461	-0.2613	0.0199737
C3	0.345393	0.56543	0.0892871	-0.13715	-1.08593
C4	-0.173746	0.847444	-0.137512	-0.0483164	1.28624
C5	-1.75555	-0.2365	2.04196	3.16833	0.411726
C6	0.281756	-0.768694	2.39247	-0.012324	-0.00152647

```
The total within-cluster sum of squares: 112.584
The between-cluster sum of squares: 197.416
The ratio of between to total sum of squares: 0.636827
```

Clustering: multivariate hierarchical: maps

Weights and neighbours

Must operationalize the concept of **"neighbour"** and give each one a **weight** for tests of spatial correlation, and to use in spatial regression models.

Moran's I

Click on point in local Moran graph, highlights the polygon on the map; slope of line is global Moran's I

D G Rossiter (CU)

Influential and clustered polygons for Moran's I

Spatial regression model

SUMMARY OF OUT Data set Spatial Weight Dependent Vari	: : : :	yr yr.gal			XIMUM	LIKELIHOOD	ESTI	MATION
Dependent, Vari	able :	2	Z	Number	of Ob	servations	: 6	3
Dependent Vari Mean dependent	var	0.0377	522	Number		riables		
S D dependent	war .	0 996	1.9	Degree		reedom		
S.D. dependent Lag coeff. ((Rho) :	0.210	796	Degree	b or i	reedom		,
R-squared Sq. Correlatio		0.385	150	Log li	keliho	bod		-74.1247
Sq. Correlatio	on :-			Akaike	info	criterion	:	158.249
Sigma-square S.E of regress	:	0.610	576	Schwar	z crit	criterion	:	168.965
S.E of regress	sion :	0.781	394					
Variable	Coeffic	ient	Sto	i.Error		z-value	Prob	ability
W_Z CONSTANT POP8	0.2107	962	0.1	584045		1.330747	0.	1832725
CONSTANT	0.05371	322	1.	964857	(0.02733696	0.	9781909
POP8	-0.000272	356 6	.9877	156e-05		-3.897617	0.	0000972
PCTAGE65P	3.609	485	1.	.053162		3.427284	0.	0006097
PEXPOSURE	0.1670	564	1	.86764	(.08944783	0.	9287259
REGRESSION DIA DIAGNOSTICS FC RANDOM COEFFIC	OR HETEROS	KEDASTI	CITY					
TEST					DF	VALUE		PROB
Breusch-Pagan	test				3	6.185305		0.1029346
DIAGNOSTICS FO								
SPATIAL LAG DE	EPENDENCE	FOR WEIG	GHT N					
TEST					DF	VALUE		PROB
Likelihood Rat					1	1.651197		0.1987961
		== FND (זק או	POPT==				

Note "diagnostics for spatial dependence", this is the next topic here

D G Rossiter (CU)

Areal Data Spatial Analysis

Outline

- Areal data
 - Definition and examples
 - Characteristics
 - The "ecological fallacy"
 - Neighbours
- 2 Spatial autocorrelation
 - Global Moran's I
 - Autocorrelation of categorical variables
 - Local Moran's I
 - Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression

Spatially-explicit linear models

References

Topic: spatial modelling

- Our aim is to **understand** some spatial process what explains the spatial distribution of a target variable?
- We feel we've understood it if we can build a successful model
- A model can be used for prediction or policy decisions
- Special problems in spatial models:
 - How much of the process is local (endogenous to an area)
 - How much of the process controlled by other spatially-distributed attributes (exogenous)?
 - Is there a spillover effect by which exogenous factors in neighbouring areas affect the outcome?
 - What is the proper representation of space? (distance, neighbours, weighting ...)
- How do we know a model is correct, even if it fits well?
- Problem is model mis-specification
- Typical case: **apparent** spatial autocorrelation, caused by an **underlying factor** that is itself spatially-correlated
 - e.g., spatially-correlated productivity of forest blocks; related to spatially-correlated soil conditions.
 - Should analyze according to a hypothesis and assumptions based on theory.
- Method: compare models by their likelihood (see below)

Reference: Bivand et al. [6, §9]

Spatial dependence vs. information (1)

- A non-spatial analysis (in feature space) assumes independence of model residuals.
- "Nearby" (in geographic space) areas may be similar because of some spatially-correlated **underlying factor** in geographic or feature space.
 - e.g., house prices in adjacent city wards all affected by similar proximity to city centre (geographic space)
 - e.g., crop yields in adjacent reporting districts all affected by the same climate and similar soils (feature space).
- Feature-space attributes of "nearby" areas may affect the target attribute ("spillover effect")
 - e.g., attractiveness of a ward for housing may depend not only on its own proportion of green space, but on the proportion in "nearby" neighbours

- Question: does the non-spatial (feature-space) model remove all the apparent spatial correlation?
- If the **residuals** are spatially-correlated, the actual amount of information (roughly, "degrees of freedom") is reduced.
 - Spatial autocorrelation usually reduces the amount of information supplied by each observations
 - This is because once we know surrounding areas we know something about a target area
- The feature-space model may have incorrect coefficients

Zero-mean models

- **Definition**: model where the expected deviance in each polygon from the global mean of a variable is zero
- There may be spatial correlation but it is an attribute of the **spatial process** of the target variable only
 - Example: diffusion of a pollutant from point sources through a homogeneous soil
- Equivalent to **first-order stationarity** in random field theory (geostatistics)
- This is *not valid* if there is **another spatially-distributed variable** that, in feature space, (partially) determines the value of the target variable

Combining feature and geographic space

- Build a feature-space model (e.g., linear model)
- Oheck residuals for spatial autocorrelation
 - for areal data, use global Moran's I; for point data can also use variograms
- If no autocorrelation, we are done, feature space explains everything
- If present, build a model accounting for spatial autocorrelation. Various forms (see below):
 - Simultaneous Autoregressive Models (SAR)
 - ★ spatial error SAR
 - \star spatial lag SAR
 - ★ spatial Durbin SAR
 - ★ spatial Durbin error SAR
 - Conditional Autoregressive Models (CAR)
- Verify that the spatial model is more correct than the non-spatial model (e.g., Likelihood Ratio test)

Linear model with independent residuals

This is the **non-spatial** formulation; response is explained by predictors **in attribute space only**:

$$Y = X\beta + \varepsilon \tag{5}$$

- X: design matrix of predictor values
- arepsilon : independent and identically-distributed $\mathcal{N} \sim (0,1)$ errors
- To estimate: β , the linear regression coefficients
- Solve by minimization of $\varepsilon^2 = (Y X\beta)^2$
- BLUE is Ordinary Least Squares (OLS):

$$\beta = \left(X^{\mathsf{T}}X\right)^{-1}X^{\mathsf{T}}Y \tag{6}$$

Example: Central NY leukemia

Leukemia incidence based on likely feature-space predictors: PEXPOSURE exposure to TCE (tricholoroethylene)⁶ sources

• toxic chemical linked to cancer

PCTAGE65 % of residents > 65 years old

• cancer incidence may increase with age

PCTOWNHOME % of homes owned

• wealthier =? better health care? less likely to have worked in a chemical plant?

281 census tracts in 8 Central NY counties: Cayuga, Onondaga (includes **Syracuse city**), Madison, Chenango, Broome, Tioga, **Tompkins**, Cortland

⁶https://www.atsdr.cdc.gov/substances/toxsubstance.asp?toxid=30

Linear model results

Build an additive linear model using these predictors.

Adjusted R-squared: 0.184

%> 65 years (+), % homeowners (-) significant, TCE (+) not But does the model satisfy linear modelling assumptions?

Spatial correlation of linear model residuals

The residuals are (positively) spatially-correlated among neighbours, i.e., similar residuals are clustered; so the OLS solution to the linear model **is not correct**.

Simultaneous autoregressive models (SAR)

The solution is to use models that **simultaneously** solve for:

- the regression coefficients, i.e., the effects of the predictors on the response;
- the autoregressive error structure, i.e., the strength and nature of the spatial autocorrelation

Several forms of this, depending the cause of spatial autocorrelation:

- as a result of accounting for the predictors; a spatially-correlated residual effect: 'induced spatial dependence' ("spatial error model")
- as a result of a process within the target variable itself: 'inherent spatial autocorrelation' ("spatial lag model")
- both ("mixed model")

SAR model selection I

What process do we think is producing the spatial correlation?

- Spatially-correlated residual effect due to a spatially-correlated feature-space cause not included in the model: **SAR error model**
 - maybe we don't suspect that it is a cause
 - maybe it has not been measured
 - leukemia example: occupation
 - ecology example: soil type (if not known or in model)
 - crime example: gun laws, sentencing guidelines
- A diffusion effect: SAR lag model
 - leukemia example: infection (e.g., feline leukemia, not known to occur in human leukemia)
 - ecology example: spread of an invasive species
 - social example: spread of a rumour by word-of-mouth
- A spillover effect: SAR Durbin model
 - this must also account for possible diffusion effects

SAR model selection II

- leukemia example: exposure to TCE in neighbouring areas, because residents in one area tend to shop or visit in neighbouring areas (??) and so the neighbours add to exposure
- ecology example: habitat quality in neighbouring forest patches affects bird population in a patch
- social example: amenities in neighbouring wards affecting desirability of living in a ward
- Compare models with the **Likelihood Ratio** or **Lagrange Multiplier** [4] tests
 - Likelihood Ratio: both models are fit with maximum likelihood, so the two likelihoods are known
 - "likelihood" = probability of the observed data being produced by the model with the given parameters

"spatial **error**": the autoregressive process is found only in the **error term**, i.e., not accounted for by the linear model

- formula: $Y = X\beta + \lambda Wu + \varepsilon$
- *W* is a matrix representing the spatial structure (e.g., neighbour weights)
- $u = (Y X\beta)$ are the spatially-correlated residuals
- λ is the strength of autoregression of the errors
- ε is the independent error (not autoregressive)

The concept here is that there is some spatially-structured error, which cause we can not identify, but which we must account for to have a correct model.

"spatial lag": the autoregressive process occurs only in the response variable

- formula: $Y = \rho WY + X\beta + \varepsilon$
- also can write $(I \rho W)Y = X\beta + \varepsilon$
- ρ is the strength of autoregression of the response
- Notice how the autocorrelation is applied to the response variable, *not* to the residuals, as in the SAR error model

The concept here is that the target variable in neighbouring areas affects the target in a given area.

"Durbin" or "**mixed**": spatial autocorrelation affects both response ('inherent spatial autocorrelation') and explanatory ('induced spatial dependence') variables

- formula: $Y = \rho WY + X\beta + WX\gamma + \varepsilon$
- ρ is the strength of autoregression of the response
- γ is the strength of autoregression of the errors

- package spdep
- SAR error model: functions errorsarlm
 - also spautlom; this can also compute Conditional Autoregressive (CAR) models
- SAR lag model: function lagsarlm with argument type="lag"
- SAR Durbin model: function lagsarlm with argument type="mixed"

Derivation of the SAR spatial error model

- Accounts for spatial autocorrelation of the residuals by a regression on the residuals from adjacent areas
- Residuals are partially the function of some (unobserved) 'hot' (or 'cold') spot of a spatially-distributed covariable
- Each area's residual is modelled as a **linear function** of all the others (depending on neighbours and weights)

$$e_i = \sum_{j=1}^m b_{ij} e_j + \varepsilon_i \tag{7}$$

• b_{ij} values: spatial dependence of e_i (residual in one area) on e_j (residual in neighbour area); set $b_{ii} \doteq 0$ (don't self-regress)

SAR error model formulation

$$Y = X\beta + B(Y - X\beta) + \varepsilon$$
 (8)

$$(I-B)(Y-X\beta) = \varepsilon$$
(9)

To estimate: *B* (spatial dependence), β (regression) This residual error ε is to be minimized; from the variance:

$$Var[Y] = \sigma^{2}(I - B)^{-1}(I - B^{T})^{-1}$$
(10)

Reparameterize with explicit spatial autocorrelation parameter λ and spatial dependence matrix W (list of weights):

$$\operatorname{Var}[Y] = \sigma^2 (I - \lambda W)^{-1} (I - \lambda W^T)^{-1}$$
(11)

and solve for λ by maximum likelihood.

D G Rossiter (CU)

SAR error model example

Lambda: 0.040487 LR test value: 5.2438 p-value: 0.022026 Asymptotic standard error: 0.016214

- LR test value compares the models with and without spatial autocorrelation.
- *p*-value: probability that rejecting the **null hypothesis** (the two models are equally likely) would be a Type I error.
- If p-value is low \rightarrow residuals of non-spatial model **are** autocorrelated.

SAR error model interpretation

- These coefficients give the influence of **feature-space** predictors, **after** accounting for spatial correlation of residuals
 - i.e., any spatial process is removed (not modelled)
 - computing Moran's I on the SAR residuals should confirm this
- λ gives the relative strength of the spatial process vs. the feature-space process
 - ► can visualize this with trend vs. stochastic residuals fits, see next page
- the **form** of the spatial correlation is modelled by the **form** of **weights**
 - depends on neighbour list and weighting style
 - weighting style is set by modeller based on hypotheses of how the spatially-correlated error occurs; can compare several for robustness

Comparing regression coefficients: OLS vs. SAR/e

OLS

	Estimate	Pr(> t)
(Intercept)	-0.5173	0.0012
PEXPOSURE	0.0488	0.1648
PCTAGE65P	3.9509	0.0000
PCTOWNHOME	-0.5600	0.0011

SAR error model
(Intercept) -0.6182 0.0005
PEXPOSURE 0.0710 0.0913
PCTAGE65P 3.7542 0.0000
PCTOWNHOME -0.4199 0.0282

Substantial change in coefficients; home ownership less important; exposure to TCE more important and now significant at $\alpha < 0.1$.

Contributions to model fit

spatially-correlated residuals

feature space

Areal Data Spatial Analysis

D G Rossiter (CU)

SAR error model residuals

SAR model has not removed spatial correlation of residuals, just changed it

SAR_error vs. SAR_lag

The above analysis is with the **SAR error** model:

- 'induced spatial dependence'
- process is **exogenous** to the response variable: local hotspots of some unmeasured factor
- leukemia example: could be local hotspots of carcinogens not included in the PEXPOSURE (exposure to TCE) term; could be local hotspots of an unknown or unaccounted for risk factor

An alternate formulation is the **SAR lag** model:

- 'inherent spatial autocorrelation'
- process is **endogenous** to the response variable: diffusion or repulsion effects
- leukemia example: could be contagious (this is the case for feline leukemia seems unlikely for humans)

Rho: 0.038893, LR test value: 6.9683, p-value: 0.0082967 Asymptotic standard error: 0.015053

This is more "likely" an explanation than the spatial error model: compare LR test values 6.97 (lag) vs. 5.24 (error). Also, standard error 0.015 (SAR lag) is lower than 0.016 (SAR error)

Comparing regression coefficients: SAR_error vs. SAR_lag

SAR error (Intercept) -0.6182 0.0005 PEXPOSURE 0.0710 0.0913 PCTAGE65P 3.7542 0.0000 PCTOWNHOME -0.4199 0.0282 # SAR_lag Estimate Pr(>|z|) (Intercept) -0.5145 0.0010 PEXPOSURE 0.0476 0.1675 PCTAGE65P 3.6482 0.0000 PCTOWNHOME -0.4146 0.0145

Less effect of all predictors after accounting for endogenous spatial autocorrelation in the leukemia incidence.

SAR models: Relation to Generalized Least Squares (GLS)

- Both incorporate spatial correlation structure of the model **residuals** in a mixed model
 - GLS can include many other kinds of correlation structures
- Spatial correlation in GLS depends on an authorized covariance function of separation between point-pairs
 - If polygons are reduced to their centroids, GLS can be used on area data
- SAR uses weighted adjacency matrices to model the linear dependence of residuals on each other
 - so can work with polygons of any shape and size

To remember:

- areal data: aggregated over (usually irregular) polygons
- apparent spatial autocorrelation may depend on:
 - a spatial process of that variable;
 - spatially-structured covariable(s);
 - both.
- S Moran's *I* measures strength of spatial autocorrelation
- Spatial structure depends on assumed process → weights matrix; based on distance, common boundary count or length ...
- paradigm: (1) formulate hypotheses; (2) build model to match hypotheses; (2) test model to see if there is evidence for/against hypotheses

Outline

- Areal data
 - Definition and examples
 - Characteristics
 - The "ecological fallacy"
 - Neighbours
- 2 Spatial autocorrelation
 - Global Moran's I
 - Autocorrelation of categorical variables
 - Local Moran's I
 - Hot-spot analysis
- 3 GeoDa and LISA
 - Exploratory graphics
 - Clustering
 - Weights and neighbours
 - Spatial correlation
 - Spatial regression
 - Spatially-explicit linear models
 - References

Theory: Anselin [3, 4], Openshaw [14]

Use in ecology, difference between SAR model types: Kissling and Carl [13] Applications: see slide 5

```
In R: Bivand et al. [7, §9–10]
```

8-county leukemia study: Ahrens et al. [1]; original data lwano [11]

Web pages

- Roger Bivand (Bergen): http://www.bias-project.org.uk/ASDARcourse/ Unit 6 "Worked example: Spatial Weights, Autocorrelation"
- Lance Waller (Emory): analysis of public health from Waller and Gotway [19]: http://web1.sph.emory.edu/users/lwaller/ch7index.htm
- GeoDa Center for Spatial Data Science (Univ. Chicago, Luc Anselin); GeoDa computer program for exploratory ADSA http://spatial.uchicago.edu/geoda/ Text: Anselin and Rey [5]
- Workshop: Applied Spatial Statistics in R. by Yuri M. Zhukov, Department of Government, Harvard University; http://www.people.fas.harvard.edu/~zhukov/spatial.html

References I

- Christina Ahrens, Naomi Altman, George Casella, Malaika Eaton, J. T. Gene Hwang, John Staudenmayer, and Catalina Stefanescu. Leukemia clusters in upstate New York: how adding covariates changes the story. *Environmetrics*, 12(7): 659–672, November 2001. doi: 10.1002/env.490.
- [2] L. Anselin. *Spatial econometrics: methods and models*. Kluwer Academic, Boston, 1988.
- [3] L. Anselin. Under the hood issues in the specification and interpretation of spatial regression models. *Agricultural Economics*, 27(3):247–267, 2002. doi: 10.1111/j.1574-0862.2002.tb00120.x.
- [4] Luc Anselin. Lagrange multiplier test diagnostics for spatial dependence and spatial heterogeneity. *Geographical Analysis*, 20(1):1–17, 1988. doi: 10.1111/j.1538-4632.1988.tb00159.x.
- [5] Luc Anselin and Sergio J. Rey. Modern spatial econometrics in practice: A guide to GeoDa, GeoDaSpace and PySAL. GeoDa Press LLC, Dec 2014. ISBN 978-0-9863421-0-3.
- [6] R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio. Applied Spatial Data Analysis with R. UseR! Springer, 2008. http://www.asdar-book.org/.

References II

- [7] Roger S. Bivand, Edzer J. Pebesma, and V. Gómez-Rubio. Applied Spatial Data Analysis with R. Springer, 2nd edition, 2013. ISBN 978-1-4614-7617-7; 978-1-4614-7618-4 (e-book). URL http://www.asdar-book.org/.
- [8] Paul Elliott and Daniel Wartenberg. Spatial epidemiology: Current approaches and future challenges. *Environmental Health Perspectives*, 112(9):998–1006, 2004. doi: 10.1289/ehp.6735.
- [9] Arthur Getis and J. K. Ord. The analysis of spatial association by use of distance statistics. *Geographical analysis*, 24(3):189–206, 1992. doi: 10.1111/j.1538-4632.1992.tb00261.x.
- [10] M.F. Goodchild, Luc Anselin, and E. Diechmann. A framework for the areal interpolation of socioeconomic data. *Environment & Planning A*, 25:383–397, 1993.
- [11] Eric J. Iwano. A comparison of cluster detection procedures. PhD thesis, Cornell University, Ithaca, N.Y., 1989.
- [12] Dennis E. Jelinski and Jianguo Wu. The modifiable areal unit problem and implications for landscape ecology. *Landscape Ecology*, 11(3):129–140, 1996. doi: 10.1007/BF02447512.

References III

- W. Daniel Kissling and Gudrun Carl. Spatial autocorrelation and the selection of simultaneous autoregressive models. *Global Ecology and Biogeography*, 17(1): 59–71, Jan 2008. ISSN 1466-8238. doi: 10.1111/j.1466-8238.2007.00334.x.
- [14] S. Openshaw. The modifiable areal unit problem. Concepts and techniques in modern geography. Geo Books, Norwich, 1983.
- [15] J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics: distributional issues and an application. *Geographical Analysis*, 27(4):286–306, 1995. doi: 10.1111/j.1538-4632.1995.tb00912.x.
- [16] W. S. Robinson. Ecological correlations and the behavior of individuals (reprint of American Sociological Review, Vol 15. No 3 (Jun., 1950),351–35). *International Journal of Epidemiology*, 38(2):337–341, April 2009. doi: 10.1093/ije/dyn357. WOS:000264890300003.
- [17] S. V. Subramanian, Kelvyn Jones, Afamia Kaddour, and Nancy Krieger. Revisiting Robinson: The perils of individualistic and ecologic fallacy. *International Journal of Epidemiology*, 38(2):342–360, April 2009. doi: 10.1093/ije/dyn359. WOS:000264890300004.

- [18] C. J. Vilalta y Perdomo. The local context and the spatial diffusion of multiparty competition in Urban Mexico, 1994-2000. *Political Geography*, 23(4):403–423, May 2004. doi: 10.1016/j.polgeo.2003.12.009.
- [19] L. A. Waller and C. A. Gotway. Applied spatial statistics for public health data. Wiley-Interscience, Hoboken, N.J., 2004.