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PCA 1

Topic: Factor Analysis

A generic term for methods that consider the inter-relations between a set of
variables.

e Often the set of predictors which might be used in a multiple linear regression.

- Multivariate observations on same objects (e.g., soil samples)
- Remote sensing: a set of co-registered images of a scene
* all bands of one image
* bands of multiple (co-registered) sensors
* one band or band product (e.g., NDVI) of a time-series of images

e This is an analysis of the structure of the multivariate feature space covered
by a set of variables.
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PCA 2

Uses of factor analysis in remote sensing

1. Discover relations between images, and possible groupings of them
2. Discover groupings of pixels in a set of images (— classification)
3. Interpret the resulting groupings in terms of processes

4. Diagnose multi-collinearity, since images are usually correlated

e determine which images are most correlated

e quantify redundancy, find the most informative subset of images
5. For data reduction for model inputs; two approaches:

e ldentify representative images for a minimum data set
e Compute synthetic images
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Topic: Principal Components Analysis (PCA)

e The simplest form of factor analysis; a data reduction technique.

e Gives insight into the relation between a set of variables within a dataset

- This is completely data driven; different sets of observations from the same
population will give different relations
- So, a data mining approach

e Gives insight into the relation between a set of pixels in the multivariate
space spanned by the set of images
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What does PCA do?

1. The vector space made up of the original observations (e.g., stack of pixel
values in a set of images) is projected onto another vector space;

2. The new space has the same dimensionality as the originalm, i.e., there are as
many variables in the new space as in the old;

3. In this space the new synthetic images, also called principal components are
orthogonal to each other, i.e. completely uncorrelated;

4. The synthetic images are arranged in decreasing order of variance
explained; and the total variance is unchanged;

5. The contribution of each original variable to each synthetic image is given;

6. Each observation can be re-projected into the new (PC) space, by its value of
the synthetic images

1unless the original was rank-deficient
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Mathematics: the data matrix

PCA is a direct calculation from a matrix constructed from the multivariate
dataset.

X: centred data matrix (i.e., difference from mean), where:

e rows are observations (e.g., pixels, observation locations, sampled
individuals)

e columns are variables (e.g., reflectance in a band, pixel values) measured at
each observation

e may scale by dividing values by the variable’s sample standard deviation

- standardized vs. unstandardized, see below

This gives the location of each observation in multivariate attribute space.
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PCA 6
Mathematics: the covariance or correlation matrix

The data matrix X is used to build a matrix that shows the relation between data
items:

e C =X'X: the covariance (unscaled) or correlation (scaled) matrix

e this is symmetric and positive (semi-)definite, so has all real roots
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PCA

Why can the correlation matrix be misleading?

e The individual pairwise correlations do not take into account the degree to
which both of the variables may be correlated to others

e |In the case where both are highly correlated to a several others this is apparent
correlation, which may not reflect a real process

e Solution: compute partial correlations

- the bivariate correlation between the two residuals from linear regression of
each variable on all the others, less the one with which to pair

- this accounts for the “lurking” effect of other variables, and shows what
correlation remains that can not be otherwise accounted for

- (see example below)
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PCA 8
Mathematics: Eigen decomposition

The key insight is that the Eigen decomposition? of C orders the synthetic
variables into descending amounts of variance, and ensures they are orthogonal
(Hotelling 1933).

e Decompose a square, symmetric positive-definite matrix, e.g., the correlation
matrix C formed from a data matrix such that AC = AC

e Eigenvalues: a diagonal matrix A; off-diagonals 0, i.e., no covariances, so
orthogonal; Eigenvectors: the transformation matrix A

e The eigenvectors provide a codrdinate transformation such that the matrix
multiplied by the diagonal eigenvalues matrix is the same as multiplication by
a matrix made up of the eigenvectors

e Eigenvectors span an orthogonal vector space onto which we can project the
original data.

2 (German eigen =~ English “own, belonging to oneself”)
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Computation

e |C— AIl = 0: a determinant to find the eigenvalues of the correlation matrix

- these are sometimes called the characteristic values

- their relative magnitude is the proportion of the original covariance
explained

e Then the axes of the new space, the eigenvectors y; (one per dimension) are
the solutions to (C—-A;I)y; =0

e Obtain synthetic variables by projection: Y = PC where P is the row-wise
matrix of eigenvectors (rotations).
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Details

In practice the system is solved by the Singular Value Decomposition (SVD) of the
data matrix.

This is equivalent but more stable than directly extracting the eigenvectors of the
correlation matrix.

Accessible explanations with worked examples:

e Davis, J. C. (2002). Statistics and data analysis in geology. New York: John
Wiley & Sons.

e Legendre, P., & Legendre, L. (1998). Numerical ecology. Oxford: Elsevier
Science.
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Standardized vs. unstandardized - 1

Standardized each variable (e.g., reflectance in a band) has its mean subtracted
(so X = 0) and is divided by its sample standard deviation (so o (x ;) = 1);

e All variables (e.g., bands) are equally important, no matter their absolute
values or spreads;

e Gives equal weight to all variables;

e This is usually what we want if variables are measured on different scales.
- e.g., multivariate measurements of soil constituents
- e.g., co-registered images from different sensors
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Standardized vs. unstandardized - 2

Unstandardized use the original variables, in their original scales of
measurement; generally the means are also subtracted to centre the variables

e Variables with wider spreads (often due to measurement scale) are more
important, since they contribute more to the original variance

e This preserves the importance of variables with more variance = more
information

e E.g., sensor with different radiometric resolutions (so wider range of numeric
values); higher resolution will have more weight

e Bands with more variability will have more weight - maybe we want this.
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Potential difference between un/standardized!

Example: variables with three orders of magnitude difference in standard
deviation (in original measurement scale):

First, unstandardized PCs:

k.a k.b p.a caco3.a caco3.b sand.b
206.1333028 172.1004094 53.2891699 25.5945396 24.9265695 20.3849822
p.b clay.b clay.a sand.a silt.b silt.a
19.1486608 15.1824385 15.0226513 14.7909094 13.1101435 11.3642023
cec.b cec.a oc.a oc.b ph.b ph.a
1.3351728 0.9138645 0.7702299 0.7265857 0.4260936 0.4153947
dens.b dens.a

0.2721703  0.2313593

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6
Standard deviation 250.7955 100.7590 47.69829 34.18739 27.84061 16.31755
Proportion of Variance 0.8092 0.1306 0.02927 0.01504 0.00997 0.00343
Cumulative Proportion 0.8092 0.9398 0.96909 0.98413 0.99410 0.99753

PC1 is numerically very large; K values have much larger standard deviations
(higher absolute values of all measurements).
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PCA 14
Second, standardized PCs

dens.a silt.a ph.a cec.a caco3.a p.a dens.b sand.b clay.b oc.b
1 1 1 1 1 1 1 1 1 1
cec.b caco3.b p.b sand.a clay.a oc.a k.a silt.b ph.b k.b
1 1 1 1 1 1 1 1 1 1
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7
Standard deviation 2.4798 1.8233 1.4605 1.36289 1.16650 1.08224 0.85127

o

.1663 0.1067 0.09289 0.06805 0.05857 0.03624
.4738 0.5805 0.67336 0.74141 0.79998 0.83622

Proportion of Variance 0.3075
Cumulative Proportion 0.3075

o

Same standard deviation (by design), much less total variance explained by PC1.
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Difference in variance represented by PCs
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Difference in biplots
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Topic: Remote sensing examples

These will help visualize the transformation from original space into PC space.
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Example: Time series of diurnal temperature differences

h [ 7T 75y & Pei county in JiangSu province, PRC
e MODIS? daily land-surface temperature product?

e Images are diurnal temperature differences (day - night) between two MODIS
products, units are A°C

e 30 Oct - 03 Nov 2000 (Julian days 304 ff.); Soil is drying after a heavy rain
e Objective: try to relate DTD to soil texture and organic matter

e Reference: Zhao, M.-S., Rossiter, D. G., Li, D.-C., Zhao, Y.-G., Liu, F., & Zhang,
G.-L. (2014). Mapping soil organic matter in low-relief areas based on land

surface diurnal temperature difference and a vegetation index. Ecological
Indicators, 39, 120-133.7]

3http://mod'is.gsfc.nasa.gov
4https://modis.gsfc.nasa.gov/data/dataprod/modl1l.php
>http://doi.org/10.1016/j.ecolind.2013.12.015
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Original images
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Reading in the dataset to R

## read images as a raster stack
require(raster)

(Tist <- dir(pattern="CK_DTD_30[0-9]{1}.img$’))
stackDTD <- stack(list, RAT=FALSE)

## add a Z value to represent the time
stackDTD <- setZ(stackDTD, c(304,306,307,308))
## PCA works with points

stackDTD.pts <- rasterToPoints(stackDTD)
stackDTD.df <- as.data.frame(stackDTD.pts)
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Simple and partial correlations

> with(stackDTD.df, cor(CK_DTD_307, CK_DTD_308)) # simple correlation of two days
[1] 0.9029475

> # compute residuals from linear model on other days

> r307 <- residuals(Im(CK_DTD_307 ~ CK_DTD_304+CK_DTD_306, data=stackDTD.df))

> r308 <- residuals(Im(CK_DTD_308 ~ CK_DTD_304+CK_DTD_306, data=stackDTD.df))

> cor(r307, r308) # partial correlation = simple correlation of residuals

[1] 0.5054682

> plot(CK_DTD_308 ~ CK_DTD_307, data=stackDTD.df); plot(r308 ~ r307)
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PCA processing in R

In this example we use unstandardized PCA because the four DTD images are on
the same scale from the same sensor and represent the same phenomenon.

## PCA -- unstandardized, use original DTD, ignore coordinates

pca <- prcomp(stackDTD.pts[,3:dim(stackDTD.pts)[2]], scale = FALSE, retx=TRUE)
summary(pca) # show variance explained by each PC

pc$rotation # show contribution of each original band to each PC
screeplot(pca)

## extract synthetic bands, convert back to raster stack

stackDTD.scores <- cbind(stackDTD.pts[,1:2], pca$x)

stackDTD.scores <- data.frame(stackDTD.scores)
coordinates(stackDTD.scores) <- ~ x + y; gridded(stackDTD.scores) <- TRUE
stackDTD.scores <- stack(stackDTD.scores)

# name the synthetic bands in the raster stack

stackDTD.scores <- setZ(stackDTD.scores, paste("PC", 1:4, sep=""))

e o D G Rossiter
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Structure of prcomp object

> str(pca)
List of 5
$ sdev : num [1:4] 1.823 0.404 0.323 0.208
$ rotation: num [1:4, 1:4] -0.459 -0.59 -0.466 -0.474 -0.675 ...
..- attr(x, "dimnames")=List of 2
..$ : chr [1:4] "CK_DTD_304" "CK_DTD_306" "CK_DTD_307" "CK_DTD_308"
.. ..% : chr [1:4] "PC1"™ "PC2" "PC3" "PC4"
$ center : Named num [1:4] 10.6 13.4 12.9 11.8
..—- attr(x, "names")= chr [1:4] "CK_DTD_304" "CK_DTD_306" "CK_DTD_307" "CK_DTD_308"

$ scale : Togi FALSE
$ x : num [1:784, 1:4] -6.17 -5.71 -4.64 -4.83 -4.43 ...
..- attr(x, "dimnames'")=List of 2
..$ : NULL

..$ : chr [1:4] "PC1" "PC2" "PC3" "PC4"
- attr(x, "class")= chr "prcomp"

rotation are the eigenvectors
x are the PC scores (location of each pixel in the PC space)

center are the image means (subtracted from all values)
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PCA results - Importance of components

> summary(pca)
Importance of components:

PC1 PC2 PC3 PC4
Standard deviation 1.8232 0.40406 0.3230 0.20810
Proportion of Variance 0.9145 0.04492 0.0287 0.01191
Cumulative Proportion 0.9145 0.95938 0.9881 1.00000

The four DTD images are highly-correlated, 92% of the information is in
common

l.e., over the four days the same areas tend to have narrow and wide DTD ranges
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PCA results - rotations

> pc$rotation

PC1 PC2 PC3 PC4
DTD304 -0.4447 0.5893 0.5870 0.3322
DTD306 -0.6084 0.3379 -0.5200 -0.4952
DTD307 -0.4717 -0.3857 -0.3677 0.7025
DTD308 -0.4578 -0.6243 0.4998 -0.3884

PC1 “intensity” of the phenomenon over all days - all signs the same (arbitrary),
similar magnitudes

PC2 contrast between first two and second two days
PC3 contrast between middle two and end two days

PC4 Third and first days, contrasted with second and fourth days

Note PCs are orthogonal (independent)
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Screeplot
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Biplots

These show scores of the observations as synthetic variables in the 2-PC space

(observation numbers)

Loadings of each variable in the 2-PC space shown by the arrows (longer = higher

loading).
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PCs (synthetic bands) - same stretch
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PCs (synthetic bands) - individual stretch

PC1 PC2
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Another example of synthetic images

Cordillera de la Costa, W branch Rio Aragua, Aragua state, Venezuela
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Conclusion

e PCA is a powerful data reduction technique

e It is linear - so if variables are highly skewed or multi-model, apply a
transformation

e It can also reveal the inter-relation between variables (e.g., reflectances in
various spectral bands)

e It is completely data-driven and is scene-specific

e An important choice is between standardized and unstandardized
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Topic: PCA of long time series of imagery to reveal seasonality

Groundbreaking paper, 200+ citations:

Eastman, J., & Fulk, M. (1993). Long Sequence Time-Series Evaluation Using
Standardized Principal Components (reprinted from Photogrammetric
Engineering and Remote-Sensing , Vol 59, Pg 991-996, 1993).
Photogrammetric Engineering and Remote Sensing, 59(8), 1307-1312.

e Sensor was AVHRR

e Images were monthly maximum NDVI, 1986-1988 (three full years)
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Synthetic images

Standardized Principal Components of Monthly NDVI Images, Jan. 1986 - Dec. 1988

Green = “+” score, Red

Sign is arbitrary, here
chosen to show high
NDVI in green.

High Negative
Correlation

No Correlation i

High Positive
Correlation
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Loadings

PC1 All bands contribute =~
equally:(overall intensity)

PC2 shows annual movement of
Intertropical Convergence Zone

e s e S g PC3/4 show deviations from PC2
seasonality
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Interpretation

Synthetic bands images summarizing all original images, according to the PCs
Loadings relation between original images (dates, x-axis) and contribution to the
PC (y-axis).

e Note decreased absolute loadings at higher PCs, this is because they
represent less of the total variability of the 36 images

PC1: =~ equal contribution of all dates (overall vegetation vigour averaged over
the 3 years)

PC2: + correlation in N. hemisphere summer, - in winter (seasonality) -
Intertropical Convergence Zone

PC3/4: deviations from PC2 seasonality - note time lag of greening/senescence

PC5: detecting sensor drift
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Topic: PCA for a multi- to hyper-variate dataset

A small dataset of 30 soil properties observed at 87 locations in the Lake Valencia
basin, Venezuela

Also recorded codrdinates (not used here) and geomorphic region

Main interest is to see the inter-relation between variables (grouping, contrasts)

e Could we only measure surface soil properties w.o. loss of informtion?

e Could we omit some (expensive?) measurements w.o. loss of informtion?

> dim(dlv.r)

[1] 87 33
> names(dlv.r)
[1] "utm.n" "utm.e" "r.geo" "dens.a" '"vcs.a" "cs.a" "ms.a" "fs.a"
[9] "vfs.a" "sand.a" "silt.a" "clay.a" "oc.a" "ph.a" "cec.a" "caco3.a"
[17] "p.a" "k.a" "dens.b" "vcs.b" "cs.b" "ms.b" "fs.b" "vfs.b"
[25] "sand.b" "silt.b" "clay.b" "oc.b" "ph.b" "cec.b" "caco3.b" "p.b"
[33] "k.b"

N ) , D G Rossiter
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Geomorphic regions explain some variation

> ## boxplot of bulk density of the subsoil, by geomorphic region
> require(ggplot2)
> gplot(x=as.factor(r.geo), y=dens.b, data=dlv.r, geom=c("boxplot", "point"), shape=I(3))
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Computing standardized PCs

> pc <- prcomp(dlv.r[4:33], center=TRUE, scale.=TRUE)
> summary(pc)
Importance of components:
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
Standard deviation 3.1651 1.9973 1.8312 1.48272 1.33402 1.14400 1.06427 1.01107
Proportion of Variance 0.3339 0.1330 0.1118 0.07328 0.05932 0.04362 0.03776 0.03408
Cumulative Proportion 0.3339 0.4669 0.5787 0.65195 0.71127 0.75490 0.79265 0.82673
PC9 PC10 PC11 PC12 PC13 PC14  PC15 PC16
Standard deviation 0.87600 0.79861 0.76065 0.71565 0.68304 0.60664 0.5797 0.52760
Proportion of Variance 0.02558 0.02126 0.01929 0.01707 0.01555 0.01227 0.0112 0.00928
Cumulative Proportion 0.85231 0.87357 0.89285 0.90992 0.92548 0.93774 0.9489 0.95822
PC17 PC18 PC19 PC20 PC21  PC22 PC23 PC24
Standard deviation 0.50731 0.43862 0.42948 0.38868 0.33886 0.3146 0.28247 0.25723
Proportion of Variance 0.00858 0.00641 0.00615 0.00504 0.00383 0.0033 0.00266 0.00221
Cumulative Proportion 0.96680 0.97322 0.97936 0.98440 0.98823 0.9915 0.99418 0.99639
PC25 PC26 PC27 PC28 PC29 PC30
Standard deviation 0.20782 0.1647 0.14647 0.11458 0.04917 0.03113
Proportion of Variance 0.00144 0.0009 0.00072 0.00044 0.00008 0.00003
Cumulative Proportion 0.99783 0.9987 0.99945 0.99989 0.99997 1.00000

o
o

o

12 PCs (out of 30) explained 90% of the standardized variance of 30
standardized variables

e o D G Rossiter
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Screeplot

> screeplot(pc, npcs=16)
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Synthetic variables

The standardized variables are multiplied by these factors to make up the synthetic variables (PCs)
> print(pc$rotation[,1:4])

PC1 PC2 PC3 PC4
dens.a  0.18958475 0.3139849696 -0.096232326 0.088356551
vCcs.a 0.07924278 0.0403831655 0.230370094 -0.048419791
cs.a 0.16208849 -0.1202754319 0.363705662 -0.078683279
ms.a 0.25194385 -0.1284850503 0.210080111 0.008324169
fs.a 0.28293845 -0.1363107368 -0.014925221 0.054220372
vfs.a 0.27325614 -0.0910810904 -0.064745942 0.041049247
sand.a  0.22462929 -0.2282354263 -0.122083768 0.004537925
silt.a -0.04055455 -0.0339314591 0.094532854 -0.128362638
clay.a -0.19025200 0.2451180696 0.037298357 0.096288845
oc.a -0.22319928 -0.0981217660 0.117350816 -0.103240123
ph.a -0.02002915 -0.1607898185 -0.341449972 -0.032629362
cec.a -0.11061555 -0.3136921769 0.084300743 0.073849593
caco3.a -0.16458980 -0.3322511108 -0.087971037 -0.214771086
p.a -0.04422812 -0.1751203044 0.041317218 0.493486269
k.a -0.14509102 -0.1129631442 0.068684059 0.389384538
dens.b  0.21263155 0.2860476925 -0.081790307 0.119293244
vcs.b 0.09246395 0.0124449952 0.416921421 -0.096156354
cs.b 0.14040571 -0.0003804787 0.390813767 -0.054448951
ms.b 0.23184462 -0.0820839309 0.213227766 -0.002106178
fs.b 0.26409667 -0.1415713026 -0.048437418 0.072954308
vfs.b 0.27090087 -0.0808317887 -0.116662538 0.078520254
sand.b  0.25024710 -0.1834095557 -0.092293422 0.045293178
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clay.b -0.19685387 0.2769034074 -0.000293272 -0.046612720
oc.b -0.18170694 -0.1227445391 0.191119295 0.086771096
ph.b 0.07542964 -0.1271823250 -0.326496078 -0.036204018
cec.b  -0.15933624 -0.2679633668 -0.019482653 -0.050358586
caco3.b -0.14353695 -0.3045767375 -0.026160011 -0.290825175

p.b -0.07072839 -0.0569701860 0.100738984 0.438684722

k.b -0.15217588 -0.1233052242 -0.006211632 0.404872772

(: 5 3y Cornell University D G Rossiter
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Biplot

> plot.it <- function(which) {
+ g <- ggbiplot(pc, choice=which, obs.scale = 1, var.scale = 1,
groups = r.geo.f, ellipse = TRUE, circle = TRUE)
g <- g + scale_color_discrete(name = ’’) + theme(legend.direction = ’horizontal’,
legend.position = ’top’)

plot.1t(1:2)

+
+
+ print(g)}
>
> plot.it(3:4)

(see next slides)

e - : - D G Rossiter
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PC2 (13.3% explained var.)
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PC1 (33.4% explained var.)

- normal ellipse of each group in PC space; 1 s.d. by default

- distance between the points =~ Mahalanobis distance; inner product between the
variables ~ correlation

- graph produced with ggbiplot package
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Interpretation of PC1 and 2

e strong correlations between top/sub for most properties
e sand fractions highly correlated

e clay opposite sand

e bulk density opposite CEC/OC/silt/CaCO3

e PC1 +dense, sandy, low silt, low OC

e PC2 +low fertility, base saturation, carbonates

e But these are not exactly aligned with the PCs

e Geomorphic regions cluster points in PC1/2 space

e especially 2 (piedmont) and 7 (recently-emerged lake sediments)

e o D G Rossiter
( 3y Cornell University
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PC4 (7.3% explained var.)

_25 -

-2.5 0.0 25 5.0
PC3 (11.2% explained var.)

- PC3 contrasts top and subsoil sand
- PC4 contrasts K, P with CaCO3
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Topic: Factor analysis: beyond PCA

Limitations of PCA:

e PCA is a data reduction technique
e |t does not impose any structure on the PCs or synthetic variables, they come
out directly from the eigen decomposition of the correlation or covariance

matrix

e SO, the resulting PCs or synthetic variables may not be easily interpretable

- the loadings may not line up with any of the axes - see|Lake Valencia

example
- Clear associations of variables but none lined up with a PC

N ) , D G Rossiter
—\ Cornell University
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Latent variable analysis - concept

e “Factor analysis” as used in social sciences

e Hypothesis: the set of observed variables is a measureable expression of
some (smaller) number of latent variables

- These can not be directly measured,
- They influence a number of the observed variables.

- Example: “math ability”, “ability to think abstractly” are assumed to exist

(based on external evidence or theory) and measured with various tests
(observed variables).

e The set of observed variables can be analyzed with PCA and then (1) reduced;
(2) rotated into interpretable components

e o D G Rossiter
@ Cornell University
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Latent variable analysis - computation

e from k observed variables hypothesize p < k latent variables (“factors”)

e decompose k X k variance-covariance matrix X of the original variables into:

1. a p X k loadings matrix A (the k columns are the original variables, the p
rows are the latent variables);

2. and a k x k diagonal matrix of unexplained variances per original variable
(its uniqueness) ¥,so X =A'A+VY

e In PCA p =k, there is no ¥, and all variance is explained by the synthetic
variables; there is only one way to do this.

e |n factor analysis, the loadings matrix A is not unique

- it can be multiplied by any k x k orthogonal matrix, known as rotations.

- The factor analysis algorithm finds a rotation to satisfy user-specified
conditions; e.qg., varimax.

e o D G Rossiter
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Latent variables - example

Lake Valencia| topsoils only; 15 observed variables

Hypothesize two latent variables (1) particle-size distribution (texture), (2)

reaction (pH, carbonates)

> (fa <- factanal(dlv.r[4:18], 2))
Uniquenesses:

dens.a vcs.a cs.a ms.a
0.840 0.960 0.683 0.280
oc.a ph.a cec.a caco3.a

0.618 0.983 0.970 0.911

Factorl Factor?
Cumulative Var 0.325 0.414

Loadings:

Factorl Factor?2
dens.a 0.401 vfs.a
vCs.a 0.199 sand.a
cs.a 0.547 0.133 silt.a
ms.a 0.848 clay.a
fs.a 0.983 oc.a

fs.a
0.030

p.a
0.998

vfs.a
0.153

k.a
0.891

sand.a silt.a
0.243 0.005

Factorl Factor?2

0.919
0.843
-0.136
-0.717
-0.618

-0.216
0.988
-0.519

ph.a
cec.a
caco3.a

p.a
k.a

Factorl Factor?

-0.161
-0.286

-0.328

clay.a
0.218

-0.131

(: e 3y Cornell University
W2y College of Agriculture and Life Sciences
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Latent variables - interpretation

e uniqueness: ¥, noise left over after factors are fitted, i.e., variable is
unexplained

- here P, K, pH, CaCO3 most unique — more factors are needed

e variance explained as in PCA. Note in PCA k = p and all variance is eventually
explained

e loadings as in PCA

- Factor 1 is associated with all sand fractions (coarse-textured soils) and bulk
density, opposed to clay concentration and organic C

- Factor 2 is associated with silt opposed to clay

- So both latent variables are most associated with particle-size distribution;
not according to our original hypothesis - this should be modified

e o D G Rossiter
@ Cornell University
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Latent variables - plot

Lake Valenica topsoils, 2 factors

S - siltae

0 I
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o clay.a .

o | I

I T i | |
-1.0 -0.5 0.0 0.5 1.0
Factor1

Factor 1 (most variance explained) was rotated to show the maximum contrast
(varimax rotation)

- ) , D G Rossiter
Cornell University

(& -
@ College of Agriculture and Life Sciences




PCA

52

Latent variables - DTD images example
Hypothesis: one factor, “intensity”

Uniquenesses:
CK_DTD_304 CK_DTD_306 CK_DTD_307 CK_DTD_308
0.181 0.047 0.073 0.171

Loadings:

Factorl
CK_DTD_304 0.905
CK_DTD_306 0.976
CK_DTD_307 0.963
CK_DTD_308 0.910

Factorl
SS loadings 3.527
Proportion Var 0.882

Strong correlation with each image, little uniqueness, 88% of variance explained.

Compare with |PCA results|.

(: ' 3y Cornell University
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4-day DTD reduced to one latent variable

3830000 3835000 3840000 3845000

3820000 3825000

480000 485000 450000 4895000 500000

X

Single “best” image under the hypothesis of one process
Compare with [PCA synthetic band 1|.
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Conclusion: PCA vs. latent variable analysis

PCA pure data reduction, maybe can interpret

Latent variable analysis aim is to produce interpretable variables representing
the latent process

P D G Rossiter
: uﬂz Cornell University

EE; College of Agriculture and Life Sciences




	1: Factor Analysis
	1.1. Uses of factor analysis in remote sensing

	2: Principal Components Analysis
	2.1. What does PCA do?
	2.2. Mathematics: the data matrix
	2.3. Mathematics: the covariance or correlation matrix
	2.4. Mathematics: Eigen decomposition
	2.5. Computation
	2.6. Standardized vs. unstandardized -- 1

	3: Remote sensing examples
	3.1. Example: Time series of diurnal temperature differences
	3.2. Original images
	3.3. Reading in the dataset to R
	3.4. Simple and partial correlations
	3.5. PCA processing in R
	3.6. Structure of prcomp object
	3.7. PCA results -- Importance of components
	3.8. PCA results -- rotations
	3.9. Screeplot
	3.10. Biplots
	3.11. PCs (synthetic bands) -- same stretch
	3.12. PCs (synthetic bands) -- individual stretch
	3.13. Another example of synthetic images

	4: PCA of Long time series to reveal seasonality
	4.1. Synthetic images
	4.2. Loadings
	4.3. Interpretation

	5: PCA for a multi- to hyper-variate dataset
	5.1. Geomorphic regions explain some variation
	5.2. Computing standardized PCs
	5.3. Screeplot
	5.4. Synthetic variables
	5.5. Biplot
	5.6. Interpretation of PC1 and 2

	6: Factor analysis
	6.1. Latent variable analysis -- concept
	6.2. Latent variable analysis -- computation
	6.3. Latent variables -- example
	6.4. Latent variables -- interpretation
	6.5. Latent variables -- plot
	6.6. Latent variables -- DTD images example
	6.7. Conclusion: PCA vs. latent variable analysis


