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General objective: spatial prediction

- Objective: Given a set of attribute values at known
points, predict the value of that attribute at other
points.

- Generalize: predict the mean value over some region,
e.g., grid cells, polygons.

- Objective: Understand why the attribute has its
spatial distribution.

- Helps determine the process that produced the
spatial distribution.
- Helps select the best modelling approaches.

Trend

surfaces

- This lecture: trend surfaces for both objectives.




Universal model of spatial variation

Z(s) =2Z*(s) + &(s) + £ (s) (1)

(s) alocation in space, designated by a vector of
Trend coordinates

surfaces

Z(s) true (unknown) value of some property at the
location

Z*(s) deterministic component, due to some
known or modelled non-stochastic process

£(s) spatially-autocorrelated stochastic
component

&' (s) pure (“white”) noise, no structure




Universal model of spatial variation - trend
surface

The trend surface presented in this lecture does not

g separate spatially-correlated residuals from pure noise, so
surfaces the model is:

Z(s) = Z*(s) + €'(s) ()

- The deterministic function is of the coordinates

- The same mathematics are used if the deterministic
function is from a covariate which is known at each
point s.




Trend
surfaces

Example target variable

- Target variable: annual cumulative growing-degree

days base 50° F (GDD50)
- 50°F=10°C
- Temperature at which warm-season crop species
(e.g., maize, sorghum) can grow

- Predict at every location in region, based on a set of

point observations at weather stations with known
locations



Example observations

GDD5O0, Four northeastern US states (NJ, NY, PA, VT)
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Q: is there a trend with N and/or E codrdinates? With
elevation?




Trend surfaces - definition

- One method of modelling or predicting the values of
some spatially-distributed variable

- Model and predict using a continuous mathematical
function of geographic position

- Trend: varies monotonically (i.e., always increasing
or decreasing) with geographic position

- Surface: continuous prediction

Trend

surfaces




Trend surface - physical model

- Target variable varies over space, consistently with
coordinates(E, N, H)

Tirades - There is a physical reason for this

- temperature: less solar radiation going from S — N,
in N hemisphere

- temperature: less dense atmosphere at higher
elevations, holds less heat, so cooler

- temperature: less seasonal/daily variation near large
water bodies, more variation further away




Trend
surfaces

Models

Simple
regression

Trend surfaces - conceptual model

- dependent variable (to be predicted, to be modelled)

is a function of the coordinates
-y =f(x1,x2,x3) coordinates
- e.d., GDD50 = f(E, N, H) (easting, northing, height)

- This function has the same form everywhere in the

observation/prediction area
- a global model (vs. local)

- So we say the dependent variable has a geographic

trend

- Example: GDD (dependent variable, to be modelled)

are fewer towards the North and at higher elevations
(two predictors, independent variables)



Trend
surfaces

Trend surfaces - predictors

- Geographic coordinates

- with respect to some origin (0,0)

- should be metric codrdinates, with true distances

- so geographic coordinates (longitude, latitude) must
be transformed

- For data collected in 3D, include elevation

above/below some datum



Other predictors (not geographic codrdinates)

- The same model forms can be used with other
global predictors, not just codrdinates
Tirades - Examples:
- Distance from one or more features (urban areas,
water bodies ...)
- Terrain (slope, aspect, curvature ...)
- Land cover / land use
- The mathematics is the same as will be presented
in this lecture




Models

- A simplified representation of reality
- Can compute with the model to make predictions

- The model will not exactly reproduce reality — lack of
fit of observations, these are model residuals



Structure vs. noise in reality and the model

- Reality - as it exists
- Reality = f(Structure; Noise)

- Reality = f(deterministic or stochastic processes;
random variation)

- Observations - what we measure

- Observations = f(Structure; Noise) - as part of reality
- Observations = f(model; unexplained variation)

- We want to match these




Trend surface example

Reality: Growing Degree Days (GDD) =~ heat available
for crop growth

- GDD = f(coordinates, elevation, “random” variation)
- “Random variation” = unexplained + observational
error
- Unexplained: other factors not known or not
measured
- e.g., aspect, surrounding land cover, nearby water or
buildings ...

- Trend surface model:

- GDD = f(coordinates, elevation) + noise



Model forms - 1 - Linear or not

- Linear: constant change in independent variable per
unit of predictor, does not depend on where in the
predictor range

- Linearizable: same, with a transformation of either
independent or predictor variables

- Non-linear: change varies with predictor value —
smooth function of predictor



Model forms - 2 - Spatial extent

- Global: model parameters are the same throughout
the range of the predictor

- e.g., multiple regression

- Piecewise: model parameters are different in
different parts of the range of the predictor

- e.g., thin-plate splines
- Local: no trend, model from “nearby” observations
(e.g., Kriging)



Number of predictors

Univariate: single predictor

Bivariate: two predictors, e.g., geographic
coordinates
Multivariate: two or more predictors

Must consider non-independence of predictors

- e.g., for linear models, (partial) co-linearity: the
predictors themselves have a linear relation

May consider interaction of predictors

- effect of a combination is more or less than would be
predicted considering them separately
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Simple linear regression - concept

Linear model, one predictor

- The dependent variable only depends on one

predictor

- e.d., distance along a transect (1D) or one
coordinate(2D)

- The dependence is linear

- constant change in independent variable per unit of
predictor

- The model is global - it applies throughout the

range, all observations are used to calibrate

- Are these realistic assumptions?

- We can check with model diagnostics
- But also think beforehand, based on our knowledge
of the process



Simple
regression

Example: GDD50 physical model

- Why could it depend on Northing?

- Physical principles: sum of solar radiation; longer
days in northern hemisphere summer

- Why could it depend on Easting?

- Proxy for distance from ocean with a N/S coastline?
- Proxy for distance from centre of continent?

- Why could it depend on elevation?

- Physical principles: less air pressure at higher
elevations, lower heat capacity

- Which of these would be the most important single

factor to use in simple regression?
- Does the study area affect this answer?



Relation of GDD with single predictors
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Simple linear regression - model

Model form: y = Bo + B1x + & &~ N(0,02)
- y: dependent variable, to be modelled/predicted
- X: independent variable, predictor

- &: error, lack of fit, noise ...

Simple - independently and identically distributed (IID)

regression from a 0-mean normal distribution with some error
variance o2

- B1: coefficient for x, “slope” for simple regression
- Bo: centering coefficient, “intercept” for simple
regression




Simple linear regression - one observation

Each observation i: y; = Bo + Bixj + ¥
- Same coefficients B, at all observations — a global
model
- Once B, are known, computed fitted values at each
Simple o point: yj = Bo + Bixi
- At each point the residual lack of fit: r; = (y; — y;)

- The rj are assumed to be independently and
identically distributed




Ordinary Least Squares (OLS)

- Least squares: parameters Bg, B are selected to
minimize the sum of squared residuals:
Silyi = (Bo + Bixi)?

- This is not the only possible optimization criterion!

- For example, it can be greatly influenced by extreme
values, so there are optimization criteria that attempt
to fit “most” of the values well, ignoring extremes

- These are called robust regression methods

- Ordinary: IID residuals, no weighting of
observations, no covariance between residuals




Fitting the simple linear regression by OLS

- Objective: select Bg, 81 to optimize the fit

- Optimization criterion: minimize the sum of
squared residuals > ;(yi — (Bo + B1xi))?

- squared, so that + residuals are equally influential
- ordinary sum, so all residuals are equally important

- This is not the only possibility! e.g., could weight the
residuals

- by their observation precision, spatial correlation ...
- It has strong model assumptions




Fitting by OLS

- Minimize 3 &f = 3i(yi — (Bo + B1x1)?

- Method: take partial derivatives with respect to the
two parameters; solve system of two simultaneous
equations

- Solution:
B - 2ixi =X (yi—Y)
b >lilxi —X)?2
Bo = v-Bix

X,y are the means
- Bo centres the regression on (X,y)



Relation to variance/covariance

- Another way to write this:

Bo= v
1= 2

© Sxy is the sample covariance

- s2 is the sample variance

- These are unbiased estimates of the population

variance/covariance:

Covar(x, y)

b = Var(x)

- Note that all the error is assumed to be in the

dependent variable



OLS linear model fit - 1st order trend on one
coordinate

> summary(m.ols.n)

Call:
Tm(formula = ANN_GDD50 ~ N, data = ne.df)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.320e+03 2.493e+01 93.08 <2e-16
N -2.554e-03 1.379e-04 -18.52 <2e-16

Residual standard error: 393.7 on 303 degrees of freedom
Multiple R-squared: 0.5311, Adjusted R-squared: 0.5295

Trend on N explains 53% of the variability in GDD50 over
this area (see next slide)



Evaluating the success of the model fit

Total Sum of Squares TSS: deviation of observations from
a null (mean z) model (no predictors)
TSS = >i(zi — 2)2

Residual Sum of Squares RSS: deviation of observations z;
from fitted model predictions Z;
RSS= >;(zj — Zj)?

Coefficient of determination (Multiple) R2 = 1 — (RSS/TSS)

- perfect fit: R =1-0/1 =1

- nofit: RZ=1-1/1=0.

- proportion of the variance in the
dependent variable explained by the
model (i.e., not left in the residuals)
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Adjusted evaluation of model fit

Idea: avoid over-fitting to this dataset (sample), so
the model is more likely to fit the whole population
from which the sample is taken

Idea: avoid over-optimistic estimation of model
success

- Adjusted R? penalizes R? for the number of

predictors p in the model (i.e., loss of degrees of
freedom), compared to the number of observations n
-1
: Rezldj =1-0- RZ) (nfp—1>

b2 _ 4 RSS/di,
Ria5 = 1 — Tss/ar,

more p — more adjustment

more n — less adjustment

- Somewhat ad hoc (empirical), there are more formal

ways to evaluate this



OLS 1st order trend surface, N only

Annual GDD base 50F, 1st order trend on N only
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OLS 1st order trend surface, N only
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Minimize the squared residuals

Residuals from mean Residuals from model

If we set Eo =Y, E1 = 0 (left graph) we get a “free” model;
the independent variable is not used.
This is the null model.




Prediction variance - |

- The fit of the line to the points is not exact, i.e., the
estimated parameters f, are uncertain

- So any predictions made with the equation are also

uncertain.
e - The prediction variance depends on
Models @ the variance of the regression s{ ,; and
Simple ® the distance (xp — X) of the predictand at value xg
regression from the centroid of the regression, X

OoLS
- The first term is the uncertainty of the regression

Multiple
1 el parameters.

Diagnostics

- The second term shows that the further from the
centroid of the regression, the more any error in
e o estimating the slope of the line will affect the

results predictiOI‘l.
GAM

Higher-order

GLS




Prediction variance - Il

Then the estimation variance is:

=2
2 2 [ 1 (X0 — X) ]
sy, = s I e e ——
o = Al ST - w0
This shows that if we try to predict “too far’ (xo — X)?
from the centroid X, the uncertainty will be so large that
any prediction is meaningless.

The variance of the regression s% , is computed from the

residuals:
-I n

> (yi— )2

n—-2i5

2 _
Syx =

The better the fit, the smaller the uncertainty in the
regression parameters.




Visualizing OLS uncertainty

Straw yield predicted by grain yield

~
g
@
©
n
<
3.0 3.5 4.0 4.5 5.0
grain

Prediction (blue) and confidence (red) intervals

Note more error away from centroid.




Multiple linear regression - |

Extend to p predictors:
y=Bo+Bixi+Bax2+ ...+ Bpxp+&
- e.g., two codrdinates, maybe with their interaction or
powers
More easily written in matrix notation
cy=XB+e¢
- &~ N(0,0°0)
- X is the design matrix
- B is the coefficient vector
Multiple - lis the identity matrix: diagonals all 1, off-diagonals
regression a” 0
- Notice that this means there is no correlation among
the errors!
- This is the assumption we will relax in generalized
least squares (GLS)




Multiple linear regression - Il

- The matrix notation for simple linear regression can

be expanded as:
unl]

- The matrix notation for multiple linear regression
can be expanded as:

Bo
Multiple B]
regression

y = [l X] X2 ... xp] Ba| +¢

Bp
- In the expanded design matrix X, the 1 and x; are
column vectors of the predictors.




Solution

- Solve for B by minimizing the sum of squares of the
residuals: S=¢e"e = (y—XB) (y - XB)
- This expands to
S = yly-B'XTy—y'XB+BX"XB
S = yy-28"XTy+BTX"XB
- Minimize by finding the partial derivative with
respect the the unknown coefficients B, setting this
equal to 0, and solving:
0 T T
el agTs = XY XD
0 = X'y+X'Xxp
X™x)B = Xy
XXX = (XX Xy
Bors = (XTX)"'XTy




Analogy with simple OLS

(XTX) is the matrix equivalent of s2, the variance of
the predictor x
- Dimensions: [p,n] - [n,p] = [p, p], i.e., the
product-crossproduct matrix of the predictors
- Products are positive, crossproducts may be positive
or negative

- taking the matrix inverse (X"X)~! is the matrix
equivalent of division: 1/s2

Multiple T . . .
regression - X'y is the matrix equivalent of sy, i.e., the

covariance between predictor and predictand.
- Dimensions: [1,n] - [n, 1] =1[1,1], i.e., a scalar




Multiple
regression

OLS linear model fit - 15t order trend on two
coordinates

> summary(m.ols.ne)
Call: Tm(formula = ANN_GDD50 ~ N + E, data = ne.df)

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 3.706e+03 6.154e+01 60.21 < 2e-16
N -2.818e-03 1.370e-04 -20.58 < 2e-16
E 7.480e-04 1.210e-04 6.18 2.07e-09

Residual standard error: 371.5 on 302 degrees of freedom
Multiple R-squared: 0.5837, Adjusted R-squared: 0.5809

Trend on N and E explains 58% of the variability in GDD50
over this area



OLS 1st order trend surface, N and E

Annual GDD base 50F, 1st order trend
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OLS 1st order trend surface, N and E

Annual GDD50
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Regression diagnostics

- We can always solve the OLS equation! but recall that

the OLS solution depends on assumptions.

So, must check that the model assumptions are
satisfied; including non-spatial:
residuals are approximately normally distributed
no relation between residuals and fitted values (i.e.,
mean residual should be 0 no matter what the fitted
value)
no difference in spread of residuals at different fitted
values

...and spatial:

- for OLS, independent residuals (spatial, temporal,
observation sequence ...)

- for trend surfaces this implies no spatial
dependence



Checking non-spatial diagnostics - graph

Residuals vs Fitted Normal Q-Q
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estimating normal o2 from residuals




Diagnostics

Detail: standardized residuals

- The Quantile-Quantile (‘QQ’) plot compares

standardized residuals with the same number of
points drawn from a Normal distribution

- Standardization adjusts the residuals to distribute as

N (0, 1) with equal variance.

- They are computed as:

v = i

e s-J1 = h,’i
ri: unstandardized residuals; s: sample standard

deviation of the residuals; hjj: diagonal entries of the
“hat” matrix V = X(X'X) ' X’



Diagnostics

Detail: residual standard deviation

The sample standard deviation of the residuals is
computed as:
2
(n p) P

n: number of observations; p number of predictors

This is an overall measure of the variability of the
residuals, and so can be used to standardize the residuals
to N (0,1).
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Detail: “Hat” matrix

- The “hat” matrix V = X(X'X) " 'X’ is another way to

look at linear regression.

- When this multiplies the observed vector y it

produces the fitted values y; it “puts the hat symbol
on” - the “hat” symbol signifies “estimated” or
“predicted”

- The hat value for an observation is the diagonal

element V [i, i] = hj;; it gives the overall leverage of
that observation

- 4/1 = hjj in the denominator: high influence (large h;;)

the denominator is small and so the standardized
residual is increased.

- Thus the standardized residuals are higher for points

with high influence on the regression coefficients.
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Checking non-spatial diagnostics -
interpretation

- There is a relation between residuals and fitted

values: residuals at both extremes are positive
(under-predictions); in the mid-range most residuals
are negative (over-predictions)
- Mean residual is not 0 through the range of fitted
values

Extreme residuals are not from a normal distribution.

- This linear model is not justified - it is not reliable for

predictions, especially at the extremes

- add a quadratic term?

- or are E, N coordinates not sufficient predictors?

- add elevation?

- fit piecewise or with smooth function of the
predictor?

- add local deviations by Regression Kriging (RK)?



Checking for spatial independence of residuals

Empirical variogram of residuals, ANN_GDD50 ~ N + E:

2105 .-
4986, 2126 2175
20872111

cccccc

semivariance

Diagnostics S0 100000 150000 200000 250000 300000

There is definitely spatial dependence! l.e., closer
separation in geographic space — closer separation in
feature (attribute) space. Range about 150 km.




Higher-order

Higher-order polynomial trend surfaces

- Multiple regression can also use higher-order terms

of predictors in a polynomial of the predictors

- E.g., 2nd order:

y =Bo+ B1E+BaN+B3E? + BaN? + Bs(E* N) + ¢

- Higher-order terms allow closer fit - but will only be

justified if the form of the surface matches the form
of the phenomenon being modelled

- Should not be extrapolated - higher-order terms lead

to extreme predictions outside the range of
calibration

- Solve by OLS as with any multiple regression



Higher-order

Example with GDD50

Four orders, p-values from the nested ANOVA - is the
additional complexity statistically-significant?

- 1storder (N only), adjusted R2 = 0.530, p-value ~ 0

- 1St order (N, E); adjusted RZ = 0.584, p-value ~ 0

- 2nd order (N, E); adjusted R2 = 0.687, p-value ~ 0

- 3rd order (N, E); adjusted R? = 0.709, p-value 0.0002
- 4th order (N, E); adjusted R2 = 0.718, p-value 0.0825

Question: What physical reason could there be for a
higher-order trend surface for GDD50 over this region?



Higher-order

Regression diagnostics - 1st order trend

Residuals vs Fitted
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Higher-order

Regression diagnostics - 2nd order trend

o Residuals vs Fitted Normal Q-Q
8 o
—
3 | © H N p{’"ﬁo
n @
[
S o
h=]
@
% °© 1 S o -
2 3
[ N
€ g e <
£ g
1 <
[CRN of
S 3817006
(=}
bl P 31200
04716
T T T T T T T T T T T T
2000 2500 3000 3500 4000 -3 -2 -1 0 1 2 3
Fitted values Theoretical Quantiles

Relation of fits vs. residuals seen in 15t order trend has
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Higher-order

Regression diagnostics - 3rd order trend

Residuals vs Fitted
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Checking for spatial independence of residuals

Empirical variogram of residuals, 15t order trend surface

150000 | 1831 2105 F
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semivariance
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50000 100000 150000 200000 250000 300000
distance

Higher-order

Clear spatial dependence! l.e., closer separation in
geographic space — closer separation in feature
(attribute) space. Range about 150 km.




Checking for spatial independence of residuals

Empirical variogram of residuals, 2"d order trend surface
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Same as 15t order, spatial dependence to about 150 km.
Total sill reduced from 150 000 to 120 000 GDD?




Higher-order
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2nd order trend

Annual GDD base 50F, 2nd order trend
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3rd order trend

Annual GDD base 50F, 3rd order trend
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4th order trend

Annual GDD base 50F, 4th order trend
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Generalized least squares (GLS)

- The OLS fit to a linear model is only optimum if the

residuals (what the model does not explain) are
independent.

In most trend surfaces this is not realistic: Nearby
residuals tend to be similar.

Physical reason: the “unexplained” part of the
residual is due to some spatially-correlated factor
that is not in the model.

- GDD example: model uses codérdinates , but GDD
also is affected by elevation, slope and aspect (solar
radiation), and maybe nearby land cover (urban area,
forest ...).

- These are not in our model.

- But these effects are themselves spatially correlated
at some scales.



Evidence for spatial correlation of residuals
from the OLS fit

Empirical variogram Variogram model

1890
150000 1 4831

PCER
986 2175
20872111

4205

4049

istance

The residuals are not independent.
Effective range 155 km: exponential model fit

a =51 600 m; total sill 148 800 GDDZ2, nugget 16 470
GDD?



OLS is imprecise under spatial correlation - 1

Unbiased but imprecise, shown in a simulation study
(known regression parameters all 0).
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Estimated regression coefficients for 1000 simulations, with
increasing spatial autocorrelation from (a) to (c). GLS estimates
are illustrated by the thick line and the thin line gives the OLS
results. Ecography, 30(6): 845

https://doi.org/10.1111/3j.2007.0906-7590.05338.x
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OLS is imprecise under spatial correlation - 2
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Density plot of absolute values of regression coefficients estimated
by (a) GLS and (b) OLS for 1000 simulations. True parameter values
underlying the simulations are 0 in all cases. The dashed, thin and
thick lines represent estimates of parameters for covariates with low,
intermediate and high autocorrelation, respectively.



Other uses for GLS

- Residuals are correlated in time, e.g., hydrologic or
climate time series

- Residuals depend on the sequence of observation
(e.g., an instrument drifts out of calibration)

- Residuals depend on the observer



GLS conceptual model - |

- OLS model: independent residuals:
y=XB+¢ £~ N(0,0?l)

- GLS model: the residuals are a random variable n
that has a covariance structure:

y=XB+n,n~N(O,V)

- Vs a positive-definite variance-covariance matrix of
the model residuals.
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GLS conceptual model - 1l

This is called a mixed model:

- The coefficients 8 are fixed effects, because their
effect on the dependent variable is fixed once the
parameters are known.

- The covariance parameters n are called random
effects, because their effect on the dependent
variable is stochastic, depending on a random
variable with these parameters.

In the OLS conceptual model the random effects ¢ are
the same for all observations, in GLS they have a
covariance between each pair.



Variance-covariance matrix

The variance-covariance matrix of the residuals in GLS:

2
07y 012 -+ O1,n
2 2
v=|[%102 " O2n
e g2
On1 Onp,2 o,

In the OLS case this is just:

og20---0

2 ...
V= OU.__ O 52y

00 --. o2
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Estimating V

How to estimate all these variances and covariances?
We only have one sample, not the whole population.

Assumption 1, homoscedascity of the variances:

of =02, Vi
i.e., each observation’s variance is from the same
distribution
so V = 02C, where o2 is the variance of the residuals

and C is the correlation matrix.

Assumption 2, between-observation covariances
follow some function
so once we have one function we can compute the
covariances between all the residuals
geostatistics: covariances in C depend only on the
separation distance d between them:
0f = Clxi, X)) = f(d(xi, X))
we get this information from the variogram or
correlogram



Optimization criterion - |

- As in OLS we want to minimize the sum-of-squares of
the residuals S = £'¢.

However, the error vectors can now not be assumed
to be spherically distributed around the 0 expected
value

- So the distance measure, previously estimated by the
sum-of-squares, must be generalized

- Generalize by taking into account the covariance V
between error vectors.




Optimization criterion - |

- Generalized estimate of S:
S=(y-XB TV '(y-XxB

- Dimensions: [1,n]-[n,n]-[n,1]1=1[1,1],i.e., ascalar
- This reduces to the OLS formulation of S when V =1




GLS Solution

- Expanding the equation for S, taking the partial
derivative with respect to the parameters, setting
equal to zero and solving we obtain:

0
%s

0 = —X'V'y+X'vIXp
Bas = X'V 1x)7'XTvly

= 2X"vly+2X"V'xB

- This reduces to the OLS estimate EOLS of Equation 3 if
there is no covariance, i.e., V = L.
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Key point GLS vs. OLS

Regression coefficients E now depend on the
observations and also the covariance of the model
residuals.

For geographic trend surfaces the covariance is the
spatial correlation.

So if there is spatial dependence of the residuals, the
GLS regression cgef'ﬁcients Bars will differ from the
OLS coefficients Bors.

Clustered observations have less influence on the
regression coefficients

especially at the extreme values of independent
variable (high-leverage)



Computing the GLS coefficients

- Problem: we need to know V before we can solve the
GLS equation for the the regression coefficients Bgis.

- But if V is estimated from the spatial correlation
structure of the regression residuals (y — X) we
need to know the regression coefficients  before we
can compute a variogram to model the spatial
correlation of the residuals.

- “Which came first, the chicken or the egg?”
- Solution 1: iteration
- Solution 2: REML




GLS solution by iteration

© Compute EOLS by OLS

® Compute and model the empirical variogram from
the OLS residuals

© Compute ﬁGLg by GLS, using the variogram model to
build the correlation structure V

O Repeat step (2) using the empirical variogram from
the GLS residuals

© Repeat step (3) to get a new estimate of EGLS

@ Repeat steps (4) and (5) until there is no significant
change in EGLS.

- In practice this almost always converges after only a

few iterations.
- But it has no theoretical basis.




GLS solution by REML - |

- A method to compute EGLS and the covariance
structure in one pass.

- REML = “Residual maximum likelihood”
- Method:
@ express V in terms of the parameters 0 = [0, s, a]
of its covariance function.
- 0?2 =total sill, s = nugget proportion, a = range.
® Maximum likelihood (MLE): find the values of 0 that

are most likely (in a defined probabilistic sense) to

have produced the observed values, given the
model.

© Once these are known, compute BGLS by GLS.




GLS solution by REML - II

- The trick is to reduce the unknown S to a sufficient
statistic that allows the MLE of just the random
effects 6.

Lark, R. M., & Cullis, B. R. (2004).

Model based analysis using REML for inference from
systematically sampled data on soil.

European Journal of Soil Science, 55(4), 799-813.
https://doi.org/10.1111/j.1365-2389.2004.00637.x
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GLS solution by REML - llI

- The log-likelihood of the regression and covariance
parameters is:

0(B,01y) = ¢~ 3109 IV ~ 5y - XV (y - XB)

where c is a constant and V is built from the variance
parameters 0 and the distances between the
observations.

- Integrate out the nuisance parameters 3 and express
the likelihood as:

2(0ly) = J#(B,Hly) dp

- This can be solved for 8 by maximum likelihood.



Difference between OLS and GLS coefficients

- This depends on the strength of spatial correlation.
If none, OLS = GLS. As strength increases, possible
change in coefficients increases

- Also depends on the configuration of the
observations: If evenly-spaced grid, OLS = GLS. More
clustering, more possible change in coefficients

- Also depends on the data values of the response
variable at clusters - if these are extreme values the
cluster has more influence on the OLS coefficients




Specifying the GLS mode in R

Tibrary(nlme) ## this includes the gls method
m.gls.ne <- gls(model=ANN_GDD50 ~ N + E,
data=ne.df,
correlation=corExp(value=c(50000, 0.1),
nugget=TRUE,
form=~E + N))

- Correlation structure is typically initialized from a
variogram model fit to the OLS residuals, but can be
directly specified.

If there is consistent spatial structure the solution is
not so sensitive to the starting values.

- The nugget, if present, is specified as a proportion of
the total sill.




Example GLS R model fit

Model: ANN_GDD50 ~ E + N
AIC BIC ToglLik
4380.513 4399.065 -2185.256

Correlation Structure: Exponential spatial correlation
Formula: ~E + N
Parameter estimate: range 36007.4

Coefficients:

Value Std.Error  t-value p-value
(Intercept) 3516.002 155.08352 22.671668 0.0000
N -0.002 0.00033 -7.234058 0.0000
E 0.000 0.00029 1.255212 0.2104

Residual standard error: 381.3984
Degrees of freedom: 305 total; 301 residual
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GLS model fit: spatial structure

- The REML fit found a range parameter 36 km

Recall, the exponential model range parameter is
1/3 of the effective range, where the semivariance
reaches 95% of the sill
- The exponential model is asymptotic to the sill
parameter and never reaches it

- The variogram model estimate of the range was fit to

155 km; 36 % 3 =108 km

So in this case the REML fit a somewhat shorter range
of spatial correlation of the residuals than the
estimate from the OLS residuals.
- Note that the estimate from the OLS variogram is
based on a sub-optimal model, so this correction is
to be expected.
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Difference between GLS and OLS fits

> round(coef(m.gls.ne) - coef(m.ols.ne),6)
(Intercept) N E
-189.859956 0.000449 -0.000380

> 100=((coef(m.gls.ne) - coef(m.ols.ne))/coef(m.ols.ne))
(Intercept) N E
-5.123233 -15.942841 -50.802335

> AIC(m.ols.ne); AIC(m.gls.ne)
[1] 4480.302
[1] 4380.513

Coefficients change by about -16% (N) and -51% (E), so
GLS surface is less steep in both dimensions.
AIC (Akaike’s Information Criterion) is lower (better) for

GLS vs. OLS

results GLS




GLS - OLS trend surfaces

N.

GLS vs. OLS
results

GLS surface is higher in the NW, lower in SE
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Conclusion

- The assumptions of OLS require that the residuals

from the model fit be independently and identically
distributed, usually following a normal distribution.

In this case, OLS gives one kind of optimum fit.

In many geographic applications such as trend
surfaces the residuals have spatial correlation -
check for this with a variogram of the residuals.

In that case GLS computes correct regression
coefficients.

- The advantage of the REML method vs. iteration to

compute the GLS fit is that REML computes both the
regression parameters and the spatial correlation
parameters.



Generalized Additive Models (GAM)

- Problem: what if a relation is:
- not linear over the whole range of
predictor/predictand ...
- not linearizable by a transformation of the predictor
over its whole range?

- One solution: GAM as an extension of linear models




GAM as extension of linear models

Each term in the linear sum of predictors need not be the
predictor variable itself, but can be an empirical smooth
function of it.

So instead of the linear additive model of k predictors:

vi=Bo+ > Bixk,i+ €i (3)
K

we allow additive functions f of the predictors:

vi=Bo+ > filxii) + & (4)
K




Advantages

Non-linear relations in nature can be fit, without any
need to try transformations or to fit piecewise
regressions.

If this is a better model fit, it should result in better
predictions.

- The model is additive, so the marginal contribution
of each predictor to the model fit can be determined.

Interactions can be included via 2D (etc.) surfaces



Disadvantages

- An empirical fit, no theory
- but shape of marginal fits can suggest causes
- Can not be extrapolated beyond the range of
calibration.

- The choice of smooth function, and the degree of
smoothness, is arbitrary

- the degree of smoothness determined by
cross-validation.




Empirical smooth relations
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Empirical smoothers

- Tloess Local Polynomial Regression Fitting

- Fit at each point using some subset of the points
- fitting method: default weighted least squares
- proportion of points to use controlled by span

parameter (default 0.75)

- tricubic weighting, proportional to (1 — (ﬁﬁ)i‘
- degree of polynomial, default 2 (quadratic)

- With all these choices, fit is empirical

- Analyst must subjectively match smoothness of fit to
smoothness of real-world relation




GAM model formulation for the 2D trend
surface

- gam function of the mgcv package

- call:

gam(ANN_GDD50 ~ s(E, N), data=ne.df)

- Predictor: 2D thin-plate spline of the codrdinates
s(E,N)



GAM model summary - 2D trend

Parametric coefficients:
Estimate Std. Error
(Intercept) 2517.518 9.986
Approximate significance of smooth terms:
edf Ref.df F
s(E,N) 24.46  27.8 36.98

R-sq.(adj) = 0.771

Compare: R2gam = 0.771, R%o15 = 0.584; adjusts “locally”




Fitted 2D geographic trend
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Spatial correlation of GAM residuals

Residuals from GAM

@ -1093.807
~157.785
© 1061

175.086
77391

Some spatial correlation at finer scale than GAM smoother




GAM predictions - 2D trend

Annual GDD base 50F, GAM prediction
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Standard errors of GAM 2D trend predictions

Annual GDD base 50F, Standard error of GAM prediction
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GAM model formulation for the trend surface -
2D trend + 1D elevation

- call:
gam(ANN_GDD50 ~s(E, N)+s(ELEVATION_),data=ne.df)

- Term 1: 2D thin-plate spline of the codrdinates
s(E,N)
- Term 2: 1D spline of the elevation s(ELEVATION_)




GAM model summary - 2D trend + 1D
elevation

Parametric coefficients:
Estimate Std. Error
(Intercept) 2517.518 9.986
Approximate significance of smooth terms:
edf Ref.df F
s(E,N) 23.529 27.300 37.8 <2e-16
s(ELEVATION_) 8.521 8.922 51.6

R-sq.(adj) = 0.908

Adding elevation greatly improves the model; it also
modifies the fit for the 2D trend term




red/green are +/- 1.96 s.e.

Fitted 2D geographic trend - with s.e.




Fitted 1D relation with elevation

1000
|

500
|

_8.52)
0
L

S(ELEVATION
-500

-1000

-1500

WWMMWWMMMM |1 |
T T
0 1000 2000 3000 4000
ELEVATION_

Wide confidence interval at the high elevations - few
points — large uncertainty




Spatial correlation of GAM residuals

Residuals from GAM
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No residual spatial correlation, elevation term has
removed it (finer-scale smooth)




GAM predictions - 2D trend + elevation

Annual GDD, base 50F, GAM prediction
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Standard errors of GAM 2D trend + elevation
predictions

Annual GDD base 50F, Standard error of GAM prediction

2e+05-

GDD50 s.e.
- 250
0e+00- 200
z 150
100
P
~2e+05-
-4e+05-

—4e+05 —2e+05 0e+00 2e+05 4e+05



Conclusion: GAM for trend surfaces

- Good fit, adjusts within the region
- No theory, smoothers are empirical

- Independent marginal effect of predictors: 2D trend,
1D elevation

- Removes spatial dependence of OLS residuals at the
range of the empirical smoother, but not finer

- So, could refine map by OK of the residuals
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