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General objective: spatial prediction

Spatial

Prediction

- Objective: Given a set of attribute values at known
points, predict the value of that attribute at other points.

- Also with the uncertainty of the prediction.

- Objective: Understand why the attribute has its spatial
distribution.

- This lecture: Regression Kriging (RK) for both objectives.
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paring RK

Strata:

Global:

Local:

Mixed:

A taxonomy of prediction methods

divide area to be mapped into ‘homogeneous’
strata; predict within each stratum from all
observations in that stratum.

(or “regional”) predictors: use all observations to
build a model that allows to predict at all points.

predictors: use only ‘nearby’ observations to

predict at each point.

geostatistical with an model of local spatial
dependence, e.g., Ordinary
Kriging

empirical directly adjusting to the data, e.g.,

thin-plate splines

non-geostatistical with an implicit model, not
from the data, e.g., inverse
distance

predictors: some of structure is explained by
strata or globally, the residuals from this are
explained locally, e.g., Regression Kriging;



Which prediction method is “best™

Spatial

Prediction

- There is no theoretical answer.

- It depends on how well the approach models the ‘true’
spatial structure, and this is unknown (but we may have
prior evidence).

- The method should correspond with what we know about
the process that created the spatial structure.

- It should also be achievable with the available data.
(continued ...)




Which prediction method is “best™
(continued)

Spatial

Prediction

- Check against an independent validation dataset
- Mean squared error (“precision”) of prediction vs. actual
(residuals)
- Bias (“accuracy”) of predicted vs. actual mean
- How well it reproduces the spatial variability of the
calibration dataset.

- With large datasets, model with one part and hold out the
rest for validation

- For small datasets use cross-validation




Mixed predictors

Spatial

Prediction

- When there is both long-range structure, (trend, strata, or
covariables and local structure

- Covariable values known at all prediction points
- One approach: Regression Kriging (RK): model
trend/strata/covariables and their residuals separately,
add for final result (see details below).
- advantage: can use any kind of model for the “regression”
part, not just a linear model
- Another approach: model everything together, e.g.
Kriging with External Drift (KED)
- must use a linear model for the “regression” part

- problem: true spatial structure of model residuals not
known




Universal
model

(s)

Z(s)

Z*(s)

&(s)
£ (s)

Universal model of spatial variation

Z(s) = Z*(s) + &(s) + £'(s) M)
a location in space, designated by a vector of
codrdinates

true (unknown) value of some property at the
location

- when modelled, expressed as most likely
value and some uncertainty, or as a
probability distribution

deterministic component, due to some known or
modelled non-stochastic process

spatially-autocorrelated stochastic component
pure (“white”) noise, no structure



Universal
model

Mixed vs. local geostatistical models

- In OK Z*(s) = u, i.e., 15t order stationarity

- same expected value everywhere
- differences are due to spatially-correlated random variation
&(s)

- in RK or KED, relax that assumption: non-stationary

expected value Z*(s)
- This must be predicted by some deterministic model.

- But we still assume 2nd order stationarity:

- the covariance structure of £(s) is the same everywhere
- it only depends on the separation between point-pairs



Regression kriging

@ Predict trend over the area

- typically by multiple linear regression fit by GLS
- Must know the predictor (indepenent) variables at all
locations to be predicted

- e.g., coordinates for a trend surface
- e.d., covariables such as elevation, vegetation index, terrain
parameters ...

@® Model the spatial structure of the residuals from the trend
© Predict residuals over the area with Ordinary Kriging (OK),
O Add predictions from (1) + (2) — prediction

©® Add prediction variances from (1) + (2) — prediction
variance



GLS trend surface model in R/nIlme

> Tlibrary(nlme) ## this includes the gls method
> m.gls <- gls(model1=ANN_GDD50 ~ sqrt(ELEVATION_) + N,
> data=ne.df,
correlation=corExp(value=c(50000, 0.1),
form=~E + N, nugget=FALSE))
> summary(m.gls)

Correlation Structure: Exponential spatial correlation
Formula: ~E + N
Parameter estimate: range 17460.45

Coefficients:
Value Std.Error  t-value p-value

(Intercept) 4090.972 60.15542 68.00671 0
sqrt(ELEVATION_) -30.045 1.41095 -21.29447 0
N -0.002 0.00011 -16.63821 0

Residual standard error: 217.3552
Degrees of freedom: 305 total; 302 residual



Example: (1) trend surface

Annual GDD, base 50F, GLS prediction
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Example: (2) spatial correlation of residuals

795
747 867 gy
40000 =

30000 E

semivariance

20000 E

10000 r

T T T T T
20000 40000 60000 80000 100000
distance




Example: (3) OK of residuals

Residuals from GLS trend surface, GDD base 50F
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Example: (4) trend + OK residuals = RK

GLS-RK surface, GDD base 50F
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Kriging with External Drift (KED)

- Like RK, also predicts the trend plus local deviations
- One prediction step (KED), not two
- RK: trend + kriged trend residuals
- Mathematically equivalent to Universal Kriging (UK)
- UK uses only coordinates for the trend (some say)
- Two steps:
@ Fit a variogram model of the OLS residuals, without

explicitly computing an OLS model
- This differs from GLS, which computes the covariance
structure by REML, and from that the GLS trend.
@ Krige with the same covariates; this does use the GLS
estimate of the trend, assuming the residual variogram
model from step (1)




KED in R/gstat (1) - residual variogram model
fitting

> v.ked <- variogram(ANN_GDD50 ~ sqrt(ELEVATION_) + N,
locations=ne.m,
cutoff=100000, width=16000)
> (vmf.ked <- fit.variogram(v.ked,
vgm(15000, "Exp", 20000, 20000)))
model psill range
1 Nug 1435.79 0.00
2 Exp 37378.22 12104.31

Note the formula ANN_GDD50 ~ sqrt(ELEVATION_) + N, this
first fits an OLS model to this formula, and then extracts the
residuals to build the empirical variogram.

Any long-range structure is taken out by the global model,
using the spatial distribution of the covariates and target.



Ordinary vs. residual variograms
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KED in R/gstat (2) - prediction

> k.ked <- krige(ANN_GDD50 ~ sqrt(ELEVATION_)+ N,
locations=ne.m,
newdata=dem.ne.m.sp, model=vmf.ked)

[using universal kriging]

> summary (k.ked@data)

varl.pred varl.var
Min. : 912.6  Min. 1 2981
1st Qu.:1943.9 1st Qu.:32459
Median :2268.0 Median :36761
Mean :2321.0 Mean 134751
3rd Qu.:2608.3 3rd Qu.:39182
Max. :3943.4 Max. 142476

Note the same formula is used in krige as in variogram.




Example: (5) difference RK-GLS - KED

Difference annual GDD base 50F, RK-GLS - KED
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Practical advantages of KED over RK-GLS

@ It is easier to implement;

SR ® The covariance structure is estimated beforehand, and
there is no risk that the procedure might not converge on
a solution, as in REML;

© It gives a prediction variance in the same step.

But. .. its predictions are suboptimal.




End

Comparing RK
and KED
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