罗大维

Spatial Predictior

Universal model

RK

KED

Comparing Rk and KED

Regression Kriging (RK) Kriging with an External Drift (KED)

D G Rossiter

Nanjing Normal University, Geographic Sciences Department 南京师范大学地理学学院

November 8, 2018

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

1 Spatial Prediction

2 Universal model

3 Regression kriging (RK)

4 Kriging with External Drift (KED)

罗大维

Spatial Prediction

Universa model

RK

KED

Comparing RK and KED

General objective: spatial prediction

- **Objective**: Given a set of **attribute values** at **known points**, **predict** the value of that attribute at other points.
 - · Also with the **uncertainty** of the prediction.
- **Objective**: **Understand** why the attribute has its spatial distribution.
- · This lecture: Regression Kriging (RK) for both objectives.

罗大维

Spatial Prediction

Universa model

RK

KED

Comparing RK and KED

A taxonomy of prediction methods

- Strata: divide area to be mapped into 'homogeneous' strata; predict within each stratum from all observations in that stratum.
- **Global**: (or "regional") predictors: use **all observations** to build a model that allows to predict at **all points**.
 - Local: predictors: use only 'nearby' observations to predict at each point.

geostatistical with an model of local spatial dependence, e.g., Ordinary

Kriging

empirical directly adjusting to the data, e.g., thin-plate splines

non-geostatistical with an implicit model, not from the data, e.g., inverse distance

Mixed: predictors: some of structure is explained by strata or globally, the **residuals** from this are explained **locally**, e.g., **Regression Kriging**;

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Which prediction method is "best"?

- · There is **no theoretical answer**.
- It depends on how well the approach models the 'true' spatial structure, and this is unknown (but we may have prior evidence).
- The method should correspond with what we know about the **process** that created the spatial structure.
- \cdot It should also be achievable with the available data.

(continued ...)

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Which prediction method is "best"? (continued)

- · Check against an independent validation dataset
 - **Mean squared error** ("precision") of **prediction** vs. **actual** (residuals)
 - · Bias ("accuracy") of predicted vs. actual mean
 - How well it reproduces the **spatial variability** of the calibration dataset.
- With **large** datasets, model with one part and hold out the rest for **validation**
- · For small datasets use cross-validation

Mixed predictors

罗卡维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

- $\cdot\,$ When there is both long-range structure, (trend, strata, or covariables and local structure
 - · Covariable values known at all prediction points
- One approach: **Regression Kriging** (RK): model trend/strata/covariables and their residuals **separately**, add for final result (see details below).
 - · advantage: can use any kind of model for the "regression" part, not just a linear model
- Another approach: model everything together, e.g.
 Kriging with External Drift (KED)
 - · must use a linear model for the "regression" part
 - problem: true spatial structure of model residuals not known

罗大维

Spatial Predictior

Universal model

RK

KED

Comparing RK and KED

Universal model of spatial variation

$$Z(\mathbf{s}) = Z^*(\mathbf{s}) + \varepsilon(\mathbf{s}) + \varepsilon'(\mathbf{s})$$
(1)

- (s) a location in space, designated by a **vector** of coördinates
- Z(s) true (unknown) value of some property at the location
 - when modelled, expressed as most likely value and some uncertainty, or as a probability distribution
- Z*(s) deterministic component, due to some known or modelled non-stochastic process
 - $\epsilon(s)$ spatially-autocorrelated stochastic component
 - $\varepsilon'(\mathbf{s})$ pure ("white") **noise**, no structure

.

罗大维

Spatial Predictior

Universal model

RK

KED

Comparing RK and KED

- · In OK $Z^*(\mathbf{s}) \equiv \mu$, i.e., 1st order stationarity
 - · same expected value everywhere
 - differences are due to spatially-correlated random variation $\epsilon(\boldsymbol{s})$
- · in RK or KED, relax that assumption: non-stationary expected value $Z^*(s)$
 - · This must be predicted by some deterministic model.
- · But we still assume 2nd order stationarity:
 - \cdot the covariance structure of $\epsilon(\mathbf{s})$ is the same everywhere
 - \cdot it only depends on the separation between point-pairs

Regression kriging

罗大维

Spatial Prediction

Universa model

RK

KED

Comparing RK and KED

Predict trend over the area

- \cdot typically by multiple linear regression fit by GLS
- Must know the predictor (indepenent) variables at all locations to be predicted
 - · e.g., coördinates for a trend surface
 - e.g., covariables such as elevation, vegetation index, terrain parameters . . .
- 2 Model the spatial structure of the **residuals** from the trend
- 3 Predict residuals over the area with Ordinary Kriging (OK),
- 4 Add predictions from $(1) + (2) \rightarrow$ prediction
- S Add prediction variances from (1) + (2) → prediction variance

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

GLS trend surface model in R/nlme

```
> library(nlme) ## this includes the gls method
> m.gls <- gls(model=ANN_GDD50 ~ sqrt(ELEVATION_) + N,</pre>
               data=ne.df,
>
               correlation=corExp(value=c(50000, 0.1),
                            form=\sim E + N, nugget=FALSE))
> summary(m.gls)
Correlation Structure: Exponential spatial correlation
Formula: ~E + N
 Parameter estimate: range 17460.45
Coefficients:
                    Value Std.Error t-value p-value
(Intercept)
                 4090.972 60.15542 68.00671
                                                     0
sqrt(ELEVATION_) -30.045 1.41095 -21.29447
                                                     0
Ν
                   -0.002 0.00011 -16.63821
                                                     0
Residual standard error: 217.3552
Degrees of freedom: 305 total; 302 residual
```

Example: (1) trend surface

Annual GDD, base 50F, GLS prediction

Spatial Predictior

Universal model

RK

KED

Comparing RK and KED

罗大维

Spatial Predictior

Universa model

RK

KED

Comparing RI and KED

Example: (2) spatial correlation of residuals

Example: (3) OK of residuals

罗大维

Spatial Prediction

Universa model

RK

KED

Comparing RK and KED

Residuals from GLS trend surface, GDD base 50F

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Example: (4) trend + OK residuals = RK

GLS-RK surface, GDD base 50F

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Kriging with External Drift (KED)

- · Like RK, also predicts the trend plus local deviations
- · One prediction step (KED), not two
 - · RK: trend + kriged trend residuals
- · Mathematically equivalent to Universal Kriging (UK)
 - $\cdot\,$ UK uses only coördinates for the trend (some say)
- · Two steps:
 - Fit a variogram model of the OLS residuals, without explicitly computing an OLS model
 - This differs from GLS, which computes the covariance structure by REML, and from that the GLS trend.
 - 2 Krige with the same covariates; this does use the GLS estimate of the trend, assuming the residual variogram model from step (1)

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

KED in R/gstat (1) - residual variogram model fitting

Note the formula ANN_GDD50 ~ sqrt(ELEVATION_) + N, this first fits an OLS model to this formula, and then extracts the **residuals** to build the empirical variogram.

Any long-range structure is taken out by the global model, using the spatial distribution of the covariates and target.

Ordinary vs. residual variograms

Unbounded (no range) to \geq 400 km

KED in R/gstat (2) - prediction

> summary(k.ked@data)

var1.pred		var1.var	
Min.	: 912.6	Min.	: 2981
1st Qu.	:1943.9	1st Qu.	:32459
Median	:2268.0	Median	:36761
Mean	:2321.0	Mean	:34751
3rd Qu.	:2608.3	3rd Qu.	:39182
Max.	:3943.4	Max.	:42476

Note the *same formula* is used in krige as in variogram.

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Example: (5) difference RK-GLS - KED

罗大维

Spatial Prediction

Universal model

RK

KED

Comparing RK and KED

Practical advantages of KED over RK-GLS

- 1 It is easier to implement;
- 2 The covariance structure is estimated beforehand, and there is no risk that the procedure might not converge on a solution, as in REML;
- 3 It gives a prediction variance in the same step.

But... its predictions are suboptimal.

罗大维

Spatial Predictior

Universa model

RK

KED

Comparing RK and KED