
Spatial analysis with the
R Project for Statistical Computing

D G Rossiter
Cornell University

ISRIC-World Soil Information
Nanjing Normal University W¬��'f0�ffb

January 14, 2019

Copyright © 2018–19 Cornell University
All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original
copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly
prohibited. To adapt or translate please contact the author (http://www.css.cornell.edu/faculty/dgr2/).

http://www.css.cornell.edu/faculty/dgr2/

Spatial analysis with R 1

Topics

1. Spatial analysis in R

2. The sp package: spatial classes

3. External file formats

4. Interfaces with other spatial analysis tools; Coördinate Reference Systems with rgdal

5. The gstat package: geostatistical modelling, prediction and simulation

D G Rossiter

Spatial analysis with R 2

Spatial analysis in R

1. Spatial data

2. R approaches to spatial data

D G Rossiter

Spatial analysis with R 3

Spatial data – definition

• Spatial data have coördinates, i.e. known locations

– The location itself is spatial information
– Often have attributes – other information about the spatial object

• Coördinates are absolute locations in one, two or three dimensions . . .

– . . . in some defined coördinate reference system (CRS)
– If referring to real objects referenced to the Earth, must have a defined projection

and datum

D G Rossiter

Spatial analysis with R 4

Spatial objects: location and attributes

D G Rossiter

Spatial analysis with R 5

Types of spatial objects

Points 0-dimensional

Lines 1-dimensional, defined by points, linked as polylines

Polygons area enclosed by connected polylines

Curves defined by control points and piecewise polynomials of the coördinates

Grid cells ; “rasters”; (usually regular) tesselation of space

D G Rossiter

Spatial analysis with R 6

Types of spatial objects

D G Rossiter

Spatial analysis with R 7

Spatial data – what is special?

• Points are implicitly related by distance and direction of separation

• Polygons are implicitly related by adjacency, containment, distance between
centroids

• Polygons have shape, perimeter, compactness . . .

• Such data requires different analysis than non-spatial data

– e.g. can’t assume independence of observations (spatial dependence/correlation)

• All objects with the same CRS are implicitly related, can be overlayed

• Some analysis is purely spatial (e.g., point-pattern analysis)

• They need special data structures which recognize the special status of coördinates

D G Rossiter

Spatial analysis with R 8

R approaches

• No native S classes for these

• S is extensible with new classes, methods and packages

• Add-in package which defines spatial classes and methods: sp (Bivand, Pebesma)

• Add-in packages to manipulate external files: rgdal (Geographic Data Abstraction
Language), sf (Simple Features)

• Add-in packages for spatial analysis:

– spatial (Ripley)
– geoR, geoRglm (Ribeiro & Diggle Model-based geostatistics)
– gstat (Pebesma)
– spatstat (Baddeley & Turner): point patterns
– RandomFields (Schlather)
– circular: directional statistics

D G Rossiter

Spatial analysis with R 9

Interface to GIS

• Add-in packages:

– rgdal: interface to Geospatial Data Abstraction Library (GDAL)
∗ Coördinate Reference Systems, transformations
∗ Read/write to foreign files

– sf: interface to Simple Features specification
– raster read, write, manipulate grid (“raster”) data structures
– maptools: interface to external spatial data structures e.g. shapefiles

(See later topic)

D G Rossiter

Spatial analysis with R 10

CRAN Task View: Analysis of Spatial Data

http://cran.r-project.org/web/views/Spatial.html explains what packages are
available for:

• Classes for spatial data

• Handling spatial data

• Reading and writing spatial data

• Point pattern analysis

• Geostatistics

• Disease mapping and areal data analysis

• Spatial regression

• Ecological analysis

D G Rossiter

http://cran.r-project.org/web/views/Spatial.html

Spatial analysis with R 11

Advanced textbook

Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). Applied Spatial Data Analysis
with R, 2nd ed.: Springer. http://www.asdar-book.org/; ISBN 978-1-4614-7617-7;
978-1-4614-7618-4 (e-book)

D G Rossiter

http://www.asdar-book.org/

Spatial analysis with R 12

The sp package

• This package provides classes and methods for dealing with spatial data in S

• It does not provide methods for spatial analysis

• Other packages can use these classes for spatial analysis

D G Rossiter

Spatial analysis with R 13

sp Spatial data structures

• Spatial data structures (S4 classes):

– points
– lines
– polygons
– grids (rasters)

• These may all have attributes (dataframes)

• S4 class names like SpatialPointsDataFrame

• Generic methods with appropriate behaviour for each class

D G Rossiter

Spatial analysis with R 14

Representation in sp – vector data structures – points

Source: Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2008). Applied Spatial Data
Analysis with R. Springer. (ASDAR)

D G Rossiter

Spatial analysis with R 15

Representation in sp – vector data structures – lines & polygons

Source: ASDAR

D G Rossiter

Spatial analysis with R 16

Representation in sp – raster data structures

Source: ASDAR

D G Rossiter

Spatial analysis with R 17

sp Methods for handling spatial data

Some standard methods:

• bbox: bounding box: extreme coördinates enclosing object

• dimensions: number of spatial dimensions

• coordinates: set or extract coördinates

• over: combine two spatial layers of different type

– e.g., retrieve the polygon or grid values on a set of points
– e.g., retrieve the points or their attributes within (sets of) polygons

• spsample: point sampling schemes within a geographic context (grids or polygons)

• spplot: visualize spatial data

D G Rossiter

Spatial analysis with R 18

Converting data to sp classes

Simple rule: data is spatial if it has coördinates.

The most common way to assign coördinates is to use the coordinates method as the
left-hand side of an assignment.

First we see how spatial data looks in a data.frame (base S class):

> library(gstat) # meuse is an example dataset in this package

> data(meuse); str(meuse); spsample(meuse, 5, "random")

'data.frame': 155 obs. of 14 variables:

$ x : num 181072 181025 181165 181298 181307 ...

$ y : num 333611 333558 333537 333484 333330 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...

$ copper : num 85 81 68 81 48 61 31 29 37 24 ...

Error in function (classes, fdef, mtable) :

unable to find an inherited method for function "spsample",

for signature "data.frame"

Fields x and y are coördinates but they have no special status in the data.frame. The
method spsample expects a spatial object but does not find it.

D G Rossiter

Spatial analysis with R 19

Converting a data frame to spatial data

We explicitly identify the fields that are coördinates:

> coordinates(meuse) <- ~ x + y # or coordinates(meuse) <- c("x", "y")

> str(meuse)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 155 obs. of 12 variables:

.. ..$ cadmium: num [1:155] 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...

.. ..$ copper : num [1:155] 85 81 68 81 48 61 31 29 37 24 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr NA

The S4 class has slots (@) for coördinates, dimensions, data, bounding box, CRS
D G Rossiter

Spatial analysis with R 20

• Now the spsample method works

• It returns an object of class SpatialPoints (i.e. just the locations, no attributes)

> spsample(meuse, 5, "random")

SpatialPoints:

x y

[1,] 179246 330766

[2,] 180329 330055

[3,] 181280 329798

[4,] 180391 330627

[5,] 178725 330202

D G Rossiter

Spatial analysis with R 21

Assigning a CRS to a newly-converted object

When a data.frame is converted to an sp object, there is no way for the coordinates

method to determine the CRS, because the data.frame only has a list of attributes for
each object.

Therefore by default the @proj4string slot is set to NA = “not available”.

If the analysis does not depend on knowing the CRS, it can be left as-is.

Otherwise, assign after conversion, with the CRS method, e.g.,

> proj4string(meuse) <- CRS("+init=epsg:28992")

See details in next section.

D G Rossiter

Spatial analysis with R 22

External file formats

R can deal with geographic data in “all” file formats.

• vector

• gridded (“raster”)

D G Rossiter

Spatial analysis with R 23

Vector data structure: ESRI shapefiles

• Proprietory format, but reasonably well-documented1

• Geometry + attributes of 2D geometries

• Does not explictly store topology, must be built on-the-fly

1https://en.wikipedia.org/wiki/Shapefile
D G Rossiter

https://en.wikipedia.org/wiki/Shapefile

Spatial analysis with R 24

Vector data structure: Simple features

• open standard ISO 19125

• specifies a common storage and access model of geometries used by GIS

– e.g., 2D point, line, polygon, multi-point, multi-lines; also 3D

• encoded as text, easy to interpret

• implemented within R as data tables with geometry

• supports the Dimensionally Extended nine-Intersection Model (DE-9IM), which specifies
topological relations

D G Rossiter

Spatial analysis with R 25

Dimensionally Extended nine-Intersection Model (DE-9IM)

source: https://en.wikipedia.org/wiki/DE-9IM

D G Rossiter

https://en.wikipedia.org/wiki/DE-9IM

Spatial analysis with R 26

Grid data structures

• Many standards: GeoTIFF, NetCDF (Network Common Data Form, from UCAR
(University Corporation for Atmospheric Research) . . .

• represented in R as (sparse) matrices, sometimes implicit by the grid topology (e.g., sp
package)

• raster package; analysis in sp, spatial, fields . . .

D G Rossiter

Spatial analysis with R 27

Interfaces with other spatial analysis tools

Most spatial data is prepared outside of R, usually in a GIS or spreadsheet.

Results of R analyses are often presented outside of R, e.g., as GIS maps. How is
information exchanged?

• Import and export

• Projections and Datums

• Transformations

D G Rossiter

Spatial analysis with R 28

The rgdal package

This package provides bindings for the Geospatial Data Abstraction Library
(GDAL)2, which is an open-source translator library for geospatial data formats.

rgdal uses the sp classes.

• readGDAL; writeGDAL: Read/write between GDAL grid maps and Spatial objects

• readOGR, writeOGR: Read/write spatial vector data using OGR (including KML for
Google Earth)

– OGR: C++ open source library providing read (and sometimes write) access to a
variety of vector file formats including ESRI Shapefiles, S-57, SDTS, PostGIS,
Oracle Spatial, and Mapinfo mid/mif and TAB formats

2http://www.gdal.org/
D G Rossiter

http://www.gdal.org/

Spatial analysis with R 29

Example Google Earth layers created with writeOGR

D G Rossiter

Spatial analysis with R 30

D G Rossiter

Spatial analysis with R 31

The CRS method

sp uses the CRS (Coördinate Reference System) method of the rgdal package to interface
with the proj.4 cartographic projection library from the USGS3.

For example, to specify the Dutch Rijksdriehoek (RDH) coördinate system:

> proj4string(meuse) <- CRS("+proj=stere

+ +lat_0=52.15616055555555 +lon_0=5.38763888888889

+ +k=0.999908 +x_0=155000 +y_0=463000

+ +ellps=bessel +units=m +no_defs

+ +towgs84=565.2369,50.0087,465.658,

+ -0.406857330322398,0.350732676542563,-1.8703473836068,

+ 4.0812")

ellps: ellipsoid; towgs84: relative datum;
proj: projection; lat, long: origin of projection;
k: scale factor at the origin; units of distance;
x 0, y 0: values of coördinates at origin (false E, N)

3http://trac.osgeo.org/proj/
D G Rossiter

http://trac.osgeo.org/proj/

Spatial analysis with R 32

The EPSG database

Most systems are included in the European Petroleum Survey Group (EPSG) database4, in
which case just the system’s numbrer in that database is enough to specify it:

> library(rgdal)

> proj4string(meuse) <- CRS("+init=epsg:28992") # assign a CRS by EPSG code

> proj4string(meuse)

[1] "+init=epsg:28992 +proj=sterea

+lat_0=52.15616055555555 +lon_0=5.38763888888889

+k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel

+towgs84=565.4171,50.3319,465.5524,

-0.398957388243134,0.343987817378283,

-1.87740163998045,4.0725

+units=m +no_defs"

4http://www.epsg.org/
D G Rossiter

http://www.epsg.org/

Spatial analysis with R 33

Finding EPSG codes in the database

> library(rgdal)

> epsg <- make_EPSG() # Make a data frame of EPSG projection codes

> (epsg.zh <- epsg[grep("China", epsg$note), 1:2]) # search data frame

code note

254 4490 # China Geodetic Coordinate System 2000

1882 3415 # WGS 72BE / South China Sea Lambert

4836 4479 # China Geodetic Coordinate System 2000

> epsg[epsg.zh[1,"code"],"prj4"] # display CRS information for one system

code note

[1] +proj=utm +zone=11 +south +ellps=WGS72 +towgs84=0,0,4.5,0,0,0.554,0.2263

+units=m +no_defs

D G Rossiter

Spatial analysis with R 34

Information on PROJ.4 in rgdal

> getPROJ4VersionInfo()

[1] "Rel. 4.9.1, 04 March 2015, [PJ_VERSION: 491]"

> str(proj <- projInfo("proj"))

'data.frame': 137 obs. of 2 variables:

$ name : Factor w/ 137 levels "aea","aeqd","airy",..

$ description: Factor w/ 135 levels "Airy","Aitoff",..

> str(ellps <- projInfo("ellps"))

'data.frame': 43 obs. of 4 variables:

$ name : Factor w/ 43 levels "airy","andrae",..

$ major : Factor w/ 40 levels "a=6370997.0",..

$ ell : Factor w/ 26 levels "b=6355834.8467",..:

$ description: Factor w/ 43 levels "Airy 1830","Andrae 1876 (Den., Iclnd.)",..

> ellps[ellps$name == "krass",]

name major ell description

31 krass a=6378245.0 rf=298.3 Krassovsky, 1942

continued . . .

D G Rossiter

Spatial analysis with R 35

> str(datum <- projInfo("datum"))

'data.frame': 10 obs. of 4 variables:

$ name : Factor w/ 10 levels "carthage","GGRS87",..

$ ellipse : Factor w/ 8 levels "airy","bessel",..

$ definition : Factor w/ 9 levels "nadgrids=@conus,@alaska,@ntv2_0.gsb,@ntv1_can.dat",..

$ description: Factor w/ 10 levels "","Airy 1830",..

> datum[datum$name == "OSGB36", 2:3]

ellipse definition

10 airy towgs84=446.448,-125.157,542.060,0.1502,0.2470,0.8421,-20.4894

D G Rossiter

Spatial analysis with R 36

Converting between CRS

The spTransform method of the rgdal R package:

• implements the PROJ.4 system5 also found in the GDAL “Geospatial Data Abstraction
Library” program6

• can convert between projections, backwards and forwards to/from geodetic coördinates

• with or without a datum transformtation

5http://trac.osgeo.org/proj/
6http://www.gdal.org/

D G Rossiter

http://trac.osgeo.org/proj/
http://www.gdal.org/

Spatial analysis with R 37

Example – Meuse River soil pollution dataset (NL)

> require(sp)

> ## load an example dataset from the sp package

> data(meuse)

> ## convert to a spatial object; we must know which fields represent coordinates

> coordinates(meuse) <- ~x + y

> proj4string(meuse)

[1] NA

> ## no CRS yet; define the CRS from metadata; first load GDAL

> require(rgdal)

> proj4string(meuse) <- CRS("+init=epsg:28992")

> proj4string(meuse)

[1] "+init=epsg:28992 +proj=sterea

+lat_0=52.15616055555555 +lon_0=5.38763888888889 +k=0.9999079

+x_0=155000 +y_0=463000 +ellps=bessel

+towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725

+units=m +no_defs"

> ## EPSG database contained all required parameters

continued . . .
D G Rossiter

Spatial analysis with R 38

. . . continued

> ## un-project to geodetic system, also changing the datum

> meuse.wgs84 <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))

> proj4string(meuse.wgs84)

[1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

> ## now this could be forward-projected into, e.g., UTM 31N on the WGS84 datum

> ## we find the appropriate initializtion in the EPSG database

> meuse.wgs84.utm31 <- spTransform(meuse.wgs84, CRS("+init=epsg:32631"))

> proj4string(meuse.wgs84.utm31)

[1] "+init=epsg:32619 +proj=utm +zone=31 +datum=WGS84 +units=m

+no_defs +ellps=WGS84 +towgs84=0,0,0"

> ## note the origin is implicit in the definition of UTM31N

> ## now go directly from RDH to geographic coords, keeping the ellipsoid

> meuse.rdh.geo <- spTransform(meuse, CRS("+proj=longlat"))

> ## and to UTM31N on that ellipsoid

> meuse.rdh.utm31 <- spTransform(meuse, CRS("+proj=utm +zone=31"))

D G Rossiter

Spatial analysis with R 39

Compare coördinates of the first point in different CRS:

> coordinates(meuse)[1,] # RDH

181072 333611

> coordinates(meuse.wgs84)[1,] # WGS84 datum long/lat

5.758536 50.991562

> coordinates(meuse.rdh.geo)[1,] # RDH datum long/lat

5.759029 50.992415

> coordinates(meuse.wgs84.utm31)[1,] # UTM31N on WGS84 datum

693585 5652509

> coordinates(meuse.rdh.utm31)[1,] # UTM31N on RDH datum

693616 5652605

Discrepency in UTM coördinates
√
(585− 616)2 + (509− 605)2 = 100.9 m

D G Rossiter

Spatial analysis with R 40

The gstat package

• R implementation of the stand-alone gstat package for geostatistics

• Author and maintainer Edzer Pebesma

– mostly developed at Physical Geography, University of Utrecht (NL)
– since Oct 2007 at Institute for Geoinformatics, University of Münster (D)

• 1992 – ???

• Purpose: “modelling, prediction and simulation of geostatistical data in one, two or
three dimensions”

• Uses the sp spatial data structures

There are other R packages with overlapping aims but different methods and interfaces
(e.g, geoR, spatial, RandomFields).

D G Rossiter

Spatial analysis with R 41

Modelling with gstat

• variogram: Compute experimental variograms (also directional, residual)

– User-specifiable cutoff, bins, anisotropy angles and tolerances
– Can use Matheron or robust estimators
– Optional argument to produce a variogram cloud (all point-pairs)
– Optional argument to produce a directional variogram surface (“map”)

• vgm: specify a theoretical variogram model for an empirical variogram

– Many authorized models
– Can specify models with multiple structures

• fit.variogram: least-squares adjustment of a variogram model to the empirical model

– User-selectable fitting criteria
– Can also use restricted maximum likelihood fit.variogram.reml

• fit.lmc: fit a linear model of coregionaliztion (for cokriging)

• gstat: complicated procedures, e.g., co-kriging.

D G Rossiter

Spatial analysis with R 42

Conclusion

• A disadvantage of working in R is the lack of interactive graphical analysis (e.g. in
ArcGIS Geostatistical Analyst)

• The main advantage of doing spatial analysis in R is that the full power of the R
environment (data manipulation, non-spatial modelling, user-defined functions, graphics
. . .) can be brought to bear on spatial analyses

• The advantages of R (open-source, open environment, packages contributed and
vetted by statisticians) apply also to spatial analysis

D G Rossiter

	1: Spatial analysis in R
	1.1. Spatial data -- definition
	1.2. Types of spatial objects
	1.3. Spatial data -- what is special?
	1.4. R approaches
	1.5. Interface to GIS
	1.6. CRAN Task View: Analysis of Spatial Data
	1.7. Advanced textbook

	2: The sp package
	2.1. sp Spatial data structures
	2.2. sp Methods for handling spatial data
	2.3. Converting data to sp classes
	2.4. Converting a data frame to spatial data
	2.5. Assigning a CRS to a newly-converted object

	3: External file formats
	3.1. Vector data structure: ESRI shapefiles
	3.2. Vector data structure: Simple features
	3.3. Dimensionally Extended nine-Intersection Model (DE-9IM)
	3.4. Grid data structures

	4: Interfaces with other spatial analysis tools
	4.1. The rgdal package
	4.2. The CRS method
	4.3. The EPSG database
	4.4. Finding EPSG codes in the database
	4.5. Information on PROJ.4 in rgdal
	4.6. Converting between CRS

	5: The gstat package
	5.1. Modelling with gstat

