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Definition

Remote sensing:“obtaining information about objects . . . by using
electromagnetic radiation without being in direct contact with the object”

Geographic remote sensing: obtaining information about the Earth’s surface
. . . by using electromagnetic radiation without being in direct contact with the
Earth’s surface
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Why use remote sensing?

• Uniform coverage of “large” areas

– especially with Earth-orbiting satellites

• Consistent and objective information over a wide area

• Repeat sensing of same areas by same or similar systems

– → monitoring, change detection

• Low cost per unit area (even at commercial prices)

– If successful, avoids costly or even impossible field work.
– Results from accessible areas can be extrapolated to inaccessible areas

• Inference about objects imaged by the physics of their interactions with
energy

• Inference about objects imaged by data mining or statistical models (e.g.,
land cover classification)
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Physics

1. the source of the electromagnetic energy (active vs. passive sensors)

2. the path through the atmosphere

3. the interaction with the object

4. the recording of the radiation by the sensor.
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The electro-magnetic spectrum

Base-10 logarithmic scales – energy per photon decreases 10x at each division

e.g., mid-IR has 10x less energy per photon than near UV.

Note very narrow range of visible light.

Source: Viscarra Rossel, R. A., et al. (2011). Proximal soil sensing: an effective approach for soil measurements in

space and time. In D. L. Sparks (Ed.), Advances in Agronomy, Vol 113 (Vol. 113, pp. 237–291). San Diego: Elsevier

Academic Press Inc. http://dx.doi.org/10.1016/B978-0-12-386473-4.00005-1
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Sources

1. no external energy source, emitted from object

• e.g., γ-rays from radioactive decay of minerals

2. energy emitted from sun, (part) reflected from object (most common,
visible-NIR energy) – passive sensor systen

3. energy emitted from sensor system, (part) reflected from object – active
sensor system

• e.g., microwave radar “backscatter”; lidar (visible light energy)

4. energy emitted from sun, (part) re-emitted (with delay) from object

• e.g., land surface thermal

D G Rossiter
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Source: Jong, S. M. de, Meer, F. D. van der, & Clevers, J. G. P. W. (2004). Basics of Remote Sensing. In Remote

sensing image analysis: including the spatial domain (pp. 1–15).

http://dx.doi.org/10.1007/978-1-4020-2560-0_1
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No external energy – γ-rays

Airborne γ-ray survey, flying
height 400 m above terrain,
flight lines spaced 2 km

Interpolated to 400 x 400 m
pixels

Red: K; Green: Th; Blue: U

Superimposed on hill-shaded
DEM

Upper Pasak watershed,
Petchaboon province, Thailand
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Interaction with atmosphere

• Atmosphere transmits/absorbs electromagnetic energy

(Note logarithmic scale of wavelengths)
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Interaction with objects

This allows differentiation of objects based on their spectra
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Sensor system

• reception, transmission, and pre-processing of the recorded radiance

• post-processing to remove “noise” vs. desired “signal”

– atmospheric correction – this is usually “noise” but can be “signal” for some
applications

– land cover change studies vs. atmospheric pollution studies

D G Rossiter
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Resolutions

Can be described on four axes:

spatial (smallest object imaged – averaged in the instantaneous field of view
(IFOV)) mini

spectral (number of bands, their width)

radiometric (number of digital levels detectable by sensor)

temporal (repeat interval)

E.g., LANDSAT 4/5: 30x30 m, 8 bands (4 visible, 3 NIR, 1 thermal); 256 levels; 16
day repeat
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Platforms

Earth-observation satellites e.g., Landsat, SPOT, MODIS, AVHRR, Quickbird,
Ikonos, ASTER (Terra/Aqua), RADARSAT; GOES (geostationary), Cartosat

Aircraft often used for LIDAR (elevation models, forest inventory), γ-ray

• much closer to object, allows finer spatial and spectral resolution, detection
of low-energy photons

Drones precision agriculture, infrastructure mapping
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Elevation model from airborne LIDAR

Westerbouwing, Oosterbeek (NL); Source: https://www.ahn.nl/ahn-viewer
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Lists of satellite sensor systems

• https://en.wikipedia.org/wiki/Category:
Earth_observation_satellites

• https://en.wikipedia.org/wiki/Remote_sensing_satellite_and_
data_overview

These pages point to specific information for each system. Examples:

MODIS https://en.wikipedia.org/wiki/Remote_sensing_satellite_and_
data_overview

LANDSAT https://www.usgs.gov/land-resources/nli/landsat

ASTER http://asterweb.jpl.nasa.gov
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The conceptual remote sensing model (1) – scene vs. image

• scene: “the spatial and temporal distribution of matter and energy fluxes from
which the sensor draws measurements”

• image: “a collection of measurements from a sensor that are arrayed in a
systematic fashion”

Reference: Strahler, A. H., Woodcock, C. E., & Smith, J. A. (1986). On the nature of models in remote sensing.

Remote Sensing of Environment, 20(2), 121–139. http://doi.org/10.1016/0034-4257(86)90018-0

D G Rossiter
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The conceptual remote sensing model (2) – models

1. scene model

“the form and nature of the energy and matter within the scene and their
spatial and temporal order”

2. atmospheric model

“the interaction between the atmosphere and the energy entering and
being emitted from the scene”

3. sensor model

“the behavior of the sensor in responding to the energy fluxes incident
upon it and in producing the measure- ments that constitute the image”

D G Rossiter
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The remote sensing problem

“inferring the order in the properties and distributions of matter and energy
in the scene from the set of measurements comprising the image.”

• “simple”: soil moisture by direct physical measurements and a physical model

• “complex”: land use

These all require explicit models (scene, atmospheric, sensor).

D G Rossiter
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Processing levels

• From sensor to scene. Terminology varies a bit, but these are typical:

Level 0 raw instrument data (generally not distributed)
Level 1A corrected for instrument variations

– e.g., among the detectors along a scan line
Level 1B corrected for sensor platform geometry

– note: platform is moving during acquisition of a single scene
Level 2A mapped into a projection based on expected sensor position (not

ground control)
– geolocation accuracy not good, typically > 100 m

Level 2B mapped into a projection based on ground control
– geolocation accuracy similar to pixel size

Level 3A also corrected for elevation displacements (ortho-rectification)

• For use in a GIS or for co-registration with other sources, Level 2B (no
mountains) or 3A (mountains) are needed.

• Analyst can perform 1B to 2B, 3A with sufficient ground control and (3A) a
digital elevation model (DEM).

D G Rossiter
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Resolution in scene models

L-resolution : scene elements are smaller than the resolution cells

• “L” ≈ “Low”, here with a specific definition, depends on the size of the scene
elements

• scene elements are not individually detectable
• cells (“pixels”) are an area-weighted average of scene elements, i.e., mixed

pixels
• (note: weighting by point-spread function of the sensor)
• low spatial correlation
• may attempt spectral unmixing of compound pixels to determine proportion

of “pure” components
• may attempt image fusion with higher-resolution imagery to disaggregate

mixed pixels

(continued) . . .

D G Rossiter



Remote Sensing 20

. . . (continued)

H-resolution : scene elements are larger than the resolution cells

• “H” ≈ “High”, here with a specific definition, depends on the size of the
scene elements

• only mixed pixels are at boundaries
• higher resolution, larger scene objects → fewer mixed pixels
• high spatial correlation
• allows object-based image analysis (OBIA), texture analysis

D G Rossiter
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Example L-resolution image

Scene elements in
this application are
individual farm fields

typical size ≈ 1 ha
(100x100 m)

Resolution of MODIS:
1x1 km pixels

Scene elements not
resolved in the images

D G Rossiter
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Example H-resolution image

Soil-adjusted vegetation index (SAVI) from Landsat 8: 30x30 m pixels
Individual fields are resolved

D G Rossiter
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Topic: Properties inferred by remote sensing

1. Physical properties – directly-sensed, using physical models

2. Conceptual properties – inferred, using knowledge models

D G Rossiter
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Properties inferred by remote sensing & physical models

These use a direct physical interaction between the sensor system and the
property of interest.

• Chlorophyll concentration

• Green vegetation intensity; vegetative vigour (red-edge); phytoplankton

• Surface temperature (e.g., volcanoes, fire detection); thermal capacity (a
property of materials and moisture)

• Soil moisture, actual evapotranspiration

• Ice

D G Rossiter
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Properties inferred by remote sensing & knowledge models

These require conceptual definitions, and a way to relate the physics of remote
sensing (and often ancillary information as other GIS coverages) to these
concepts.

Two levels of abstraction, depending on how close the physics are to the concept.
E.g.,

• Land cover – requires a model of how different land covers relate to the sensor
model

• Land use – requires a model of how cover relates to use; requires a defined
ontology of land use

D G Rossiter
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Land cover mapping (1/3)

Three main approaches:

1. Unsupervised pixel-based

• Machine-learning algorithms cluster pixels in spectral space
– multivariate (hierarchical) clustering, multiple regression classifiers,

random forests, artificial neural networks . . .
• Analyst assigns labels to clusters, by ground or airphoto inspection of some

examples
• Analyst may merge clusters that represent the same land cover (e.g., type of

vegetation at different growth/maturity stages)
• Analyst assigns class labels to (possibly merged) clusters

– names based on what could be distinguished in the imagery
– or, the classes may be assigned to pre-defined legend classes

. . .

D G Rossiter
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Land cover mapping (2/3)

. . .

(2) Supervised pixel-based

• a priori list of classes
• Analyst identifies areas in the scene known to be in the various classes
• Spectral characteristics of these are extracted from the image(s) →

distribution; often assumed multivariate normal
– n.b., problems if one class has several realizations in the scene

• Each pixel in image is matched to the most likely distribution, usually by
maximum likelihood

D G Rossiter
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Land cover mapping (2/3)

. . .

(3) Object-oriented (contextual)

• Considers the context of a pixel, not in isolation

• (see below, “Object-oriented” classification)

D G Rossiter
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Land cover mapping – example (1/3)

Reference: Friedl, M. A., et al. (2002). Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of

Environment, 83(1–2), 287–302. https://doi.org/10.1016/S0034-4257(02)00078-0

• Legend: land cover categories; here from IGBP

– IGBP = International Geosphere-Biosphere Programme1

– categories and level of detail are from the client/user
example: “Evergreen needleleaf forests (127): Lands dominated by
needleleaf woody vegetation with a percent cover >60% and height
exceeding 2 m. Almost all trees remain green all year. Canopy is never
without green foliage.”

– the imagery may or may not be able to distinguish these
∗ maybe with ancillary information, e.g., a prior land cover maps from an

independent source

1http://www.igbp.net/
D G Rossiter
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Land cover mapping – example (2/3)

• Supervised classification

– training sites, must be representative
– some classes may need sites with different characteristics (e.g., spectral

characteristics depends on growth stage), mapped separately, later to be
merged

These authors used the System for Terrestrial Ecosystem
Parameterization (STEP): “a classification-free and versatile database
structure for site-based characterization of global land cover
. . . explicitly designed as a general purpose database for ecological
studies.”

– algorithms: C4.5 decision trees; Artificial Neural Networks

D G Rossiter
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Land cover mapping – example (3/3)

• RS products used as predictors in the classification algorithm:

– MODIS reflectance,
– MODIS Enhanced Vegetation Index
– MODIS Bi-directional reflectance
– USGS land/sea mask
– MODIS snow/ice
– maximum MODIS surface temperature
– USGS DEM elevation, slope aspect, slope gradient

D G Rossiter
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IGBP first-level categories

D G Rossiter
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Improving land cover mapping with newer products

(a) previous map; (b) prototype land cover map from AVHRR; (c) four Landsat TM
images;(d) the MODIS Beta release classification

D G Rossiter
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Per-pixel confidence for first mapped class
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Using ancillary information

Classification changes due to inclusion of prior probabilities for agriculture:
yellow = change from agriculture to natural vegetation; green = change from
natural vegetation to agriculture.

D G Rossiter
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Land use mapping

• What is a “land use?” – must have a legend according to client/user needs

• What land covers are possible within a land use?

– e.g., grassland cover could be a golf course (recreational land use), pasture
(agricultural), large lawn (residential)

• Ancillary information is needed

– e.g., grass on very steep slope on mountainside, in a “finger” pattern is likely
a ski slope (recreation).

• A single land use may include diverse land covers in a spatial arrangement

– e.g., dairy farms with buildings, pasture, cropland

D G Rossiter
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Land use mapping – example

Reference: Nguyen, Thu Thi Ha, et al. (2012). Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through

hyper—Temporal SPOT NDVI image analysis. International Journal of Remote Sensing, 33(2), 415–434.

https://doi.org/10.1080/01431161.2010.532826

• Land uses: cropping systems

• Imagery: long time-series – to capture detailed phenology

D G Rossiter
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Prior land use map by ground survey

Notice fairly general legend – six cropping categories

D G Rossiter
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Land use map by hyper-temporal remote sensing

D G Rossiter
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Cropping patterns time-sequence

D G Rossiter



Remote Sensing 41

Accuracy assessment

• Must compare predicted land cover or land use class with actual class

• This requires a probability sample (simple random, stratified random . . . )
across the map of ground truth points

– field sampling or identification with air photos/very high-resolution imagery
– problem of yes/no identification → fuzzy accuracy assessment

• Compare actual vs. predicted with a cross-classification (also called
confusion) matrix

• Compute accuracy statistics

D G Rossiter
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Accuracy statistics

Overall accuracy proportion of ground truth samples where actual = predicted

• diagonal of cross-classification matrix

User’s accuracy or “map unit purity” (Brus 2011); per-class predicted = actual

• rows of cross-classification matrix

Producer’s accuracy or “class representation” (Brus 2011); per-class actual =
predicted

• columns of of cross-classification matrix

τ corrects these for prior probabilities, assessed mapper skill (replaces the
obsolete, incorrect κ)

D G Rossiter
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Sample cross-classification matrix

source: Laba at al. (2002)

D G Rossiter
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Topic: Change detection

• Two or more images of the same scene – what has changed?

– in the remote sensing product
– on the ground

• Method: pre-classification: co-registration, change in pixel values

– problem: exact co-registration
– problem: comparable digital numbers vs. variable illumination/atmosphere
– problem: significance of change in values vs. actual change
– multi-temporal: change vectors

• Method: post-classification: independent allocation to same classification,
co-registration, map overlay to find differences

– problems: exact co-registration, independent allocations each have
(correlated?) errors

D G Rossiter
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Change detection example

Source: Nyland, Kelsey E. et al. (2018). Land cover change in the lower Yenisei river using dense stacking of Landsat imagery in Google

Earth Engine. Remote Sensing, 10(8), 1226. https://doi.org/10.3390/rs10081226

D G Rossiter
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Time resolution of change detection

1. Seasonal (e.g., vegetation phenology, atmospheric pollution, cloudiness)

• May look for cycles

2. Annual

3. Long-term

• often to look for trends

Reference: Eastman, J. R., et al. (2009). Seasonal trend analysis of image time series. International Journal of

Remote Sensing, 30(10), 2721–2726. https://doi.org/10.1080/01431160902755338

D G Rossiter
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Change detection of a property

• Example: time-series of NDVI to estimate trends in vegetation health or land
use

• See example of long-term PCA for Africa

– Eastman, J., & Fulk, M. (1993). Long Sequence Time-Series Evaluation Using Standardized Principal

Components (reprinted from Photogrammetric Engineering and Remote-Sensing , Vol 59, Pg 991–996,

1993). Photogrammetric Engineering and Remote Sensing, 59(8), 1307–1312.

• More explanation in lecture about Principal Components Analysis

D G Rossiter
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Topic: Geographic Object-Based Image Analysis (GEOBIA)

• Image is matched to the scene as discrete objects

• Must have H-resolution imagery – objects are made up of groups of pixels

• Hierarchical concept of objects – group low-level objects into higher-level
objects

• This requires a definite ontology

– Information science concept: naming and definition of all the entities in
some domain (their data types and attributes)

– Also their permissible interrelationships

Reference: Blaschke, T., et al. (2014). Geographic Object-Based Image Analysis – Towards a new paradigm.

ISPRS Journal of Photogrammetry and Remote Sensing, 87, 180–191.

http://doi.org/10.1016/j.isprsjprs.2013.09.014
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Landsat TM: Alaska Bangladesh
water-filled and sedimented channels intermingled overgrown channel

D G Rossiter
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GEOBIA workflow: iterative (1) object building and (2) classification
D G Rossiter
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From the image to a classification
D G Rossiter
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Spatial relations across the hierarchy and at one level (topological)
D G Rossiter
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Conceptual illustration of a multi-scale representation of a landscape scene
D G Rossiter
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Semantic/ontological relations between image objects
D G Rossiter
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Topic: Big data in remote sensing

1. Bewildering and ever-expanding sensor systems

2. Ever-increasing data stream: higher spatial/spectral/temporal resolutions

3. Historical archives

4. Opportunity for sophisticated research . . . but how to handle all that data?

D G Rossiter



Remote Sensing 59

Google Earth Engine

• https://earthengine.google.com/

• “A planetary-scale platform for Earth science data & analysis – Powered by
Google’s cloud infrastructure”

• “hosts satellite imagery and stores it in a public data archive that includes
historical earth images going back more than forty years . . . made available
for global-scale data mining.

• Aimed at consistent Earth-wide analyses, but can be used regionally or locally

D G Rossiter
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Use of GE Engine

• Computation is all done remotely (parallel processing)

– local computer only for coding/viewing

• Accessible via an Application Programming Interface (API)

– Javascript, Python

• Built-in code editor

• Direct access to the datasets

• Image processing, Geometry algorithms

• Machine-learning algorithms: un/supervised classification

D G Rossiter
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Datasets

https://developers.google.com/earth-engine/datasets/catalog

• Imagery (Landsat, Sentinel, MODIS . . . )

• Atmospheric conditions (can help correct other products)

• Weather

• Geophysical: terrain (e.g., SRTM), elevation

• Nighlights

• Administrative

• Interpreted: land cover, land use, cropland (e.g., USDA NASS; Global Food
Security)

D G Rossiter
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Reference texts

These are entry-level with some applications.

• Lillesand, T. M. (2015). Remote sensing and image interpretation (R. W. Kiefer & J. W. Chipman, Eds.; Seventh edition). John Wiley &
Sons, Inc.

• Jensen, J. R. (2007). Remote sensing of the environment: An earth resource perspective (2nd ed.). Pearson Prentice Hall.

• Campbell, J. B., & Wynne, R. H. (2011). Introduction to remote sensing (5th ed). Guilford Press.

• Wang, G., & Weng, Q. (2014). Remote sensing of natural resources. CRC Press; WorldCat.org. http://dx.doi.org/10.1201/b15159
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