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Data Quality and Uncertainty 1

Data

From observations/measurements of
some kind...

Never “perfect” ...

Natural variation, sampling error,
observer bias ...
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Data Quality and Uncertainty 2

Natural variability — Uncertainty

Natural variability in
nature ...

Where to describe the
“representative”  soil
profile?

How to describe the
variation?
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Data Quality and Uncertainty 4

Uncertainty and data quality

Related concepts:

Uncertainty lack of knowledge about the “truth”

Data quality fitness for use of the data

So uncertainty is only one aspect of data quality

Uncertain data can be useful... but how “uncertain” is too much?
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Data Quality and Uncertainty 5

Topic: Data quality

e External quality is “fitness for use”, so depends on intended uses

- EPA: “The totality of features and characteristics of data that bears on their
ability to satisfy a given purpose’]|
- Emphasize: “to satisfy a given purpose”
* Example: precision of georeference to find an area for further study vs. an
area for direct intervention

e Internal quality is the consistency, completeness, documentation of a dataset

- Explained by the metadata (see below)

Thttp://www.epa.gov/emap/html/pubs/docs/resdocs/mglossary.htm]

t@ Cornell University
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Data Quality sources

e Glossary of terms from EPA’s Environmental Sampling and Analytical Methods
(ESAM) Program?|

e Shi, W., Fisher, P., & Goodchild, M. F. (2003). Spatial Data Quality. CRC Press.

e Guptill, S. C., & Morrison, J. L. (2013). Elements of Spatial Data Quality.
Elsevier (on behalf of International Cartographic Association)

e eBird. (2020). The eBird review process. Retrieved 27-April-2020, from
https://support.ebird.org/en/support/solutions/articles/
48000795278-the-ebird-review-process

thtps://www.epa.qov/esam/q]ossary
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Data quality components

Completeness : degree to which the dataset represents the population of
interest

e what is the population about which we want to make decisions or maps?

Consistency : degree to which different items in the dataset are coherent
e internal: among data items;
e external: with other sources of similar information
Currency : when was the data collected? To what time period is it relevant?
Lineage : how has the data arrived from original observations to its current
state? how has it been “massaged™

e Are the data as directly measured (how?) or manipulated? How and why?
e Were any observations (“outliers”) adjusted or deleted? How and why?
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Data Quality and Uncertainty 8

Accuracy : difference between data and reality

e e.g., evaluation (“validation”) RMSE (average error), MAE (accuracy, bias)

Precision : dispersion of data around true value

e e.g., 0%, IQR etc. of measurements

Credibility : reliability of information source

e is the data source technically competent?

e does the source have a political or economic interest in the data or its
interpretation?

e is the data source explicit about its funding sources and possible biases?

Subjectivity : how much and what kind of human interpretation was used?

e e.g., automated vs. manual photointerpretation

T C PLSCS/NTRES 6200
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Topic: Metadata - documenting data quality

“Data about the data”; document and communicate all the above aspects of
data quality

e Formal: according to a standard, in a machine-readable format (e.g., XML) can
be searched by a program

e Informal: described in text or non-standard database

e It is a revealing exercise to create proper metadata - one rapidly discovers that
one doesn’t know as much about the dataset as one thought

For geospatial data: ISO 19115, (USA) Federal Geographic Data Committee
(FGDC) Content Standard for Digital Geospatial Metadata (CSDGM)?|

Metadata tools built-into GIS or standalone

3http://www.fgdc.gov/metadata/geospatial-metadata-standards
‘http://www.fgdc.gov/metadata/geospatial-metadata-tools

t@ Cornell University
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FGDC metadata sections

1. Identification Information

8.

9.

10.

. Data Quality Information

. Spatial Data Organization Information
. Spatial Reference Information

. Entity and Attribute Information

. Distribution Information

. Metadata Reference Information

Citation Information

Time Period Information

Contact Information

(— Cornell University
' College of Agriculture and Life Sciences
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Metadata in plain language

1. What does the data set describe?

(@) What is the title of the data set?
(b) What geographic area does the data set cover?
(c) Does the data set describe conditions during a particular time period?
) Is this a digital map or remote-sensing image, or something different like
tabular data?
(e) How does the data set represent geographic features?
i. How are geographic features stored in the data set?
ii. What coordinate reference system is used to represent geographic
features?
(f) How does the data set describe geographic features?
i. What are the types of features present?
ii. For each feature, what attributes of these features are described?
iii. What sort of values does each attribute hold?
iv. For measured attributes, what are the units of measure, resolution of the
measurements, frequency of the measurements in time, and estimated
accuracy of the measurements?

o PLSCS/NTRES 6200
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2. Who produced the data set?

3. Why was the data set created?

4. How was the data set created?

5. How reliable are the data; what problems remain in the data set?
6. How can someone get a copy of the data set?

7. Who wrote the metadata?

source: http://geology.usgs.gov/tools/metadata/tools/doc/ctc/

- - -~ ) . PLSCS/NTRES 6200
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Metadata template

[ JoN ) Metadata viewer

USDA-NRCS Staff. 2007. Unified Climate Access Network Cooperative Climate Stations with 1971-2000 Normals for
Growing Degree Da s Base 50 De rees Fahrenhelt for the United States - GIS Points with monthly and annual attrlbutes

atural Resources Conserv n Service and Northeast Regional Climate Center, Cornell Universi
Geospatlal Development Center, 157 Clark Hall Annex, West Virginia University, Morgantown, WV
Shapefile - gdd50_7100j
FGDC, ESRI Metadata
Show Definitions

Description | Spatial | Data Structure | Data Source | Data Distribution | Metadata
+ Resource Description

Citation
Description

Point Of Contact
Data Type

Time Period of Data
Status

Key Words

+ Spatial Reference Information

Horizontal Coordinate System

Spatial Domain

+ Data Structure and Attribute Information

Overview
Attributes of gdd50_7100j
SDTS Feature Description

+ Data Source and Process Information

+ Data Distribution Information
General

Standard Order Process

+ Metadata Reference
Metadata Date

Metadata Point of Contact
Metadata Standards
FGDC Plus Metadata Stylesheet

Federal Geographic Data Committee

PLSCS/NTRES 6200
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Example: Administrative units

Download GADM data (version 3.6)

Country

Ak

Cambodia

Geopackage

Shapefile

R (sp): level-0, levell, levelZ, level3, leveld
R (sF): level-0, level1, level2, level3, leveld
KMZ: level-0, levell, level2, level3, leveld

The coordinate reference system is longitude/latitude and the WG584 datum.
Description of file formats.

source: http://gadm.org We know the political unit, file format, and CRS.

PLSCS/NTRES 6200
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It opens in QGIS, with projection intact, good, but ...
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Data Quality and Uncertainty 16

... What do these fields mean? (see next slide)
How current is the information? Or to what time period does it refer?

How precise are the boundaries?
Are these from field measurements, official gazette, a government map ...?

Are these legal or customary boundaries?
Any disputes?

PLSCS/NTRES 6200
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Variable names for level 0 (country)

Variable Type  Description

uiD Integer Unique 1D across all geometries at the highest level of subdivisions
ID_0 Integer Unique numeric 1D For level O {country)
GID_0O String | Preferred unigue ID For level 0 (see below). 150 3166-1 alpha-3 country code when available

MAME_O  String  Counbry Mame in English

Variable names for level "i", where "i" canbe 1, 2, 3, 4, or 5

Variable Type Description

GID_ String | Preferred unique ID at level i. See discussion below
1D_i Integer Alternative unique identifies at level 1. See discussion below
MAME_I String | Official mname in latin script

VARMAME_| String | Variant name. Alternate names in usage For the place, separated by pipes |

ML_MAME i String | Mon-Latin name. Official mame in a nen-latin script (e.g. Arabic, Chinese, Russian, Korean)

HASC i String | HASC. A unique ID Frem Statoids
CC i String | Country code. Unige ID used within the country
TYPE_i String | Administrative type in local language

EMGTYPE_i |String  Administrative type in English (Following commonly used translations)

Waliid From. Date from which data is known to have started. default: Unknown.

VALIDFRI /Sting | ook is YYYY-MM-DD or YYYY-MM or YYYY

Valid To. Date at which daka is no longer valid. default: Present or Current.

VALIDTO1 |Sting | 3t S YYYY-MM-DD or YYYY-MM or YYYY

REMARKS_| String  Comments about edits, relevant to history. For example “This is a split from Matam region.”

PLSCS/NTRES 6200
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Reduced metadata standards

3TU.patacentrum

Dataset: Limpopo National Park (Mozambique) Soil Organic Carbon study

# & b Link/cite as doi:10.4121/uuid:6cb98f84-f0de-47d4-8a2c-dGaaeafSdb0B (show link code) | full citation

w | B | contact | Terms of use | Login

¥ go to DATA seclion'¥
title : Limpopo Mational Park {Mozambique) Soil Organic Carbon study
creator Cambule, A. H. (Armindo)
R = 5
contributor Stoorvogel, J. J. (Jetse)
Home date accepted 2013
date created 2013-06-29
Upload datasets date published 2013
description 410 field observations of topsoils in Limpopo National Park (Mozambique), 128 of which were analyzed by wet chemistry for ph, scil organic
Personal page C, sand, silt, clay; all of which have predicted soil organic C concentration by lab. spectroscopy calibrated with lab. analysis
format shapefile
language en
publisher University of Twente
subject soil arganic Carbon
Q, A in collection Datasets of dissertations
» Search in Data q:.::: coverege |{:' 7] i:ﬂpo{k_n:]Natlonal Fark
» Search in "info" time coverage months 2009-07 to 2009-09
related publication EF hitp:iwww.ite.nllibraryipapers _2013iphdicambule. pdf

[ 7 ) Dataset files (354.2 kB) >> download complete dataset (zip) | download separate files &
bag-info

[=] contents of this dataset, 13 files
3tu.RData

3tu.htmi
'?UDelft 3tu.xml
3tu_Inp_stations_lab.csv
3tu_Inp_stations_pred.csv

shape/LMNPstatiocnsLab.dbf

shape/LNPstationsLab.prj

shape/LMNPstatiocnsLab.shp

shape/LMPstationsLab.shx
UNIVERSITEIT i

shape/LNPstationsPred.dbf
TWENTE.

shape/LMPstationsPred.prj
shape/LNPstationsPred.shp
shape/LNPstationsPred.shx

Atop of page s ORE RDF /X
& 2016 3TU.Datacentrum

=
E

Refers to another document (here, a thesis) for further information.

. PLSCS/NTRES 6200
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Lineage

Part of (2) “Data Quality Information”

Shows how the product was derived from original sources

Should explain the choices made

Source(s) information + process step(s)

- Source information: type of media, time period of content, source
contribution

- Process step: process description, process date; optional source used for
process

- - -~ ) . PLSCS/NTRES 6200
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Lineage example: Raw and adjusted time series
Adjust T for a change in weather station location (Wellington, NZ):
157 15¢ | |
L Airport .
Thorndon -
g 145'- g 14 - Airport
§ | Kelburn Q‘g’ B Kelburn
& | = - Thorndon .
&= . l [ I' ||| i : l 'I; II ||| .'JI| (
i AT s | (LA /AN
g F II ll l'\l ll'- 'III III\ 'ff | E L I| | II'-l n'lll -"'."I ;
< 12 B . < 12 (g ¥ o
E || ;’l r |I .-"J
[ / _' /
I] I | | | | | | ] ll 1 1 ki i 11 - i 1 ki | |
1910 1930 1950 1970 1990 2010 1910 1930 1950 1970 1990 2010
Year Year

“When we create a time series using adjusted data, we retain all the original raw
data. It remains available on-line in the National Institute of Water & Atmospheric
Research (NIWA) climate database so others can conduct their own analysis.P)

Shttp://www.niwa.co.nz/our-science/climate/information-and-resources/nz-temp-record/

why-climate-data-sometimes-needs-to-be-adjusted

(— Cornell University
College of Agriculture and Life Sciences
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Lineage: Tompkins County (NY) Agricultural Districts

21

Lineage:
Source_Information:
Source_Citation:
Citation_Information:
Originator: Tompkins County Planning
Publication_Date: unknown
Title: none
Source_Scale_Denominator: 24000
Tvpe_of Source_Media: Hard copy on Mylar, vellum or paper; digital on CD-ROM.
Source_Time_Period_of Content:
Time_Period_Information:
Multiple_Dates/Times:
Single_Date/Time:
Calendar_Date: 20131010 (district #1)
Single_Date/Time:
Calendar_Date: 20090407 (district #2)
Source_Currentness_Reference: 8-year certification date
Source_Citation_Abbreviation: agTOMP
Source_Contribution: original district boundaries
Process_Step:

Process_Description: 1) ORIGINAL SCAN PROJECT In 1996, the entire set of NYS Agricultural District maps in the collection of Cornell IRIS [originally CLEARS) was
converted to digital format. This was done by shipping blueprint copies of the maps to the NYS DEC for scanning. Digital Line Graph files were returned, which
were converted to ArcInfo Coverages. These coverages represented one map sheet apiece. Original maps with multiple sheets were represented by multiple
coverages. Coverages were compared to the original maps and edited as necessary to create an accurate representation of the Ag District boundaries shown on the
maps. After accuracy was confirmed, coverages representing multiple sheets were merged to create district coverages. Districts were then merged to create
county coverages. Merged districts sometimes created slivers, which were eliminated, and gaps, which are flagged with district value of zero. Overlaps between
districts also occurred in a few cases. These were flagged with district value "66". For each coverage, an attribute table was built to record the information shown

on the Cornell IRIS title block of each Ag District hardcopy map. These tables are further described in the Entity and Attribute Information section of the metadata.
Process_Date: 19960100 through 20010131

Process_Contact:
Contact_Information:

Contact_Organization_Primary:
Contact_Organization: Cornell [RIS

Contact_Address:
Address_Type: mailing
Address: 1015 Bradfield Hall
Address: Cornell University
City: Ithaca
State_or_Province: New York
Postal_Code: 14853-1901

R PLSCS/NTRES 6200
Cornell University
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Process_Step:

Process_Description: 2) CONVERSION FROM COVERAGES TO SHAPEFILES: Internal polygons were labeled zero; coverages were reprojected from UTMz18 NADZ27 to
UTMz18 NADB3; Coverages were converted to shapefiles; zero polygons were deleted; attribute table was modified: deleted fields are AREA, PERIMETER, FILE#,
FILE_ID, AGDIST#, DOTQUADS. Modified fields are DISTCODE and DISTRICT. DISTCODE is 12 characters to accommodate changing abbreviations -- currently four
characters and three digits to represent a key code for county name and district number. The field DISTRICT was enlarged to accommodate district numbers up to
five digits. Also, DISTCODE, the key field, was moved to the end of the attribute table columns.

Process_Date: 20080101 through 20080331

Process_Contact:

Contact_Information:
Contact_Organization_Primary:
Contact_Organization: Cornell IRIS
Contact_Address:
Address_Type: mailing
Address: 1015 Bradfield Hall
Address: Cornell University
City: Ithaca
State_or_Province: New York
Postal Code: 14853-1901
Country: USA

Contact_Voice_Telephone: 607-255-6520 or 607-255-6529
Process_Step:

Process_Description: 3) UPDATING COUNTY BOUNDARY DATA: County shapefiles are updated to reflect modifications that occurred during the eight-year review
process. Boundaries are revised using one or more of the three methods: Tablet digitizing; On-screen digitizing; Copying boundaries from county-supplied
shapefiles. All modifications are proofread against the original maps to confirm accuracy. Attributes are updated and checked against the information on the map
title blocks, as well as information on file. If individual tax parcels are dissolved to form an aggregate boundary, slivers and gaps may be formed by drafting
discrepancies. These are visually compared to the map and eliminated when they do not represent intended exclusions. Discrepancies between the title block

information and file information are clarified by contacting the county and,/or New York State Department of Agriculture and Markets.
Process_Date: 20130131 through 20140131

Process_Contact:
Contact_Information:
Contact_Organization_Primary:
Contact_Organization: Cornell IRIS
Contact_Address:
Address_Type: mailing
Address: 1015 Bradfield Hall
Address: Cornell University
City: Ithaca
State_or_Province: New York
Postal Code: 14853-1901
Country: USA
Contact_Voice_Telephone: 607-255-6520 or 607-255-6529

Now we see exactly how the delivered product was dervied from the original.

-

A

College of Agriculture and Life Sciences

. . PLSCS/NTRES 6200
Cornell University



Data Quality and Uncertainty 23

Topic: Uncertainty

Concepts related to uncertainty:

Error two uses of this word:

1. a mistake, incorrect measurement;
2. lack of fit of a statistical model (residuals).

Uncertainty lack of knowledge about reality, e.qg.,:

e the true state of nature (data uncertainty)
e the true model form or model parameters (model uncertainty)
e the true location (spatial uncertainty)

Risk related uses of this word:

1. the likelihood of an incorrect decision

2. this, multiplied by the consequences of an incorrect decision

3. hazard (chance of something bad happening) times vulnerability to the
event times exposure to the event (e.g., “earthquake risk”)

5w PLSCS/NTRES 6200
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Sources of uncertainty (0)

e “uncertainty uncertainty”: not knowing the sources of uncertainty and how to
assess them

“There are those who know, those who don’t know, and then there are those who
don’t even suspect.”
- standard English translation of a folk saying

o _ ) , PLSCS/NTRES 6200
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Sources of uncertainty (1)

e measurement uncertainty

- instrument/operator errors (malfunction)
- instrument/operator precision (signal vs. noise)
- instrument/operator accuracy (systematic bias)

e observation uncertainty

- classification uncertainty (compare complicated vs. simple legends)
- observer bias (e.g., soil classification)

e scale uncertainty

- attribute space: precision; categorization/classification
- geographic space: location precision vs. support

- - -~ ) . PLSCS/NTRES 6200
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Sources of uncertainty (2)

e sampling uncertainty: we do not see the whole population

- object/location selection uncertainty (probability sampling vs. purposive
sampling)
- if probability, can be quantified by e.g., the sampling error

e algorithm uncertainty
- e.g., supervised classification, any machine learning algorithm:

representativeness of the target population

e model form uncertainty: does the model form accurately represent the
underlying process that produced the observations?

- - -~ ) . PLSCS/NTRES 6200
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Model form uncertainty

Four uses of a linear model - in which cases is it justified?

scattered linear quadratic

high-leverage

(Use regression diagnostics to detect non-linearity)

(— Cornell University
College of Agriculture and Life Sciences
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Sources of uncertainty (3)
e model fit uncertainty: lack of fit of the model to the observations; “noise”

e prediction uncertainty: making statements about (some individuals in) the
population that have not been observed
- spatial: unobserved locations
- temporal: unobserved times (future; past, e.g., gap filling)
“Det er svaert at spa, iser om fremtiden’, i.e.,
“Prediction is very difficult, especially if it’s about the future”
- Niels Bohr, quoting Robert Storm Petersen, Danish cartoonist

@ Cornell University PLSCS/NTRES 6200

W2 College of Agriculture and Life Sciences



Data Quality and Uncertainty

29

Model fit vs. prediction uncertainty

log10(Zn), Meuse topsoils, Random Forest

actual
2.8
]

2.6

2.4

2.0
|

fitted

Uncertain fit, more uncertain predictions

actual

2.2 2.4 2.6 2.8 3.0 3.2

2.0

log10(Zn), Meuse topsoils, Random Forest

Out-of-bag cross-validation estimates

(— Cornell University
' College of Agriculture and Life Sciences
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Example of prediction uncertainty

Winning time (s)

6 T T T T T T T T T T T T T T T T T T T T ‘I. = T
O O AN 0O < O © AN 0O < O O AN O < O © N O O O
O ™ MO < © 0 O ~ AN g O© &~ O O N < I M~ 00 O N MO W
o OO O O OO O OO O O O O O O @™ ™ ™~ ™ ™ ™ O AN &N o
™ T ™ ™ ™ v v O] AN A AN AN AN AN NN NN AN AN NN

Year

Figure 1 The winning Olympic 100-metre sprint times for men (blue points) and women (red points), with superimposed best-fit linear regres-
sion lines (solid black lines) and coefficients of determination. The regression lines are extrapolated (broken blue and red lines for men and
women, respectively) and 95% confidence intervals (dotted black lines) based on the available points are superimposed. The projections inter-
sect just before the 2156 Olympics, when the winning women'’s 100-metre sprint time of 8.079 s will be faster than the men’s at 8.098 s.

Source: Nature, 431, 525.

P o PLSCS/NTRES 6200
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Sources of uncertainty (4)

e purposive uncertainty, e.g., to ensure confidentiality

Locations of cases Number of cases per 10,000 residents

source: Zandbergen, P. A. (2014). Ensuring confidentiality of geocoded health data: assessing geographic masking

strategies for individual-level data Advances in Medicine, e567049. http://doi.0org/10.1155/2014/567049

; PL NTRES 62
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Some techniques for anonymizing points

@0

direction direction & distance Gaussian donut bimodal Gaussian

This uncertainty is known from the algorithm used and should be explained in the
“lineage” section of the metadata.

PLSCS/NTRES 6200
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Dealing with measurement uncertainty

Best practices in field, lab., transcription, data processing

Instrument calibration / check against standards

- quality control / quality assurance procedures

Exploratory data analysis for unusual values (“outliers”)

- Non-spatial, non-temporal: unusual values overall

- Spatial: unusual values in spatial context

- Temporal: unusual values in temporal context (e.g., quality control in a
process; sensor drift)

Automated detection of unusual values by a rule set

- “unusual” just means to examine the cause; it may not be an error

- - -~ ) . PLSCS/NTRES 6200
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Example of EDA

Check if two lab. methods / sample sets are consistent;
Develop transfer functions between them.

Rwanda SOC lab. duplicate analyses

o _|

™

o

(qV] L o O

o forest oo
= A ag e
Q o L 00
T W
) 0o
[ < OA
> o >
L 5 oph A
© - 7] . o 9o
= 80 e, 0°
< AN
S N
0 o _| ®
o - ° A
0 ,’ o oo
o
o - @g&
A
o —]
I I I I I I I
0 5 10 15 20 25 30

SOC % (loss on ignition)
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Unusual model residuals can reveal data problems

Annual GDD50 Annual GDD50
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Note original points at (= 1250 fit, = 2000 observed), underfit, and (= 2600 fit,

~ 1700 observed), overfit.

We have a well-fit model for almost all observations; the worst fits may be good
data but with some unusual circumstance; but they may be incorrect data
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Dealing with observation uncertainty

e Operator training / consistency checks
e Document methods, make sure they are achievable (simplify?)

e Allow fuzzy classification - observer records degree of agreement with all
classes
- Gopal, S., & Woodcock, C. (1994). Theory and methods for accuracy assessment of thematic maps using
fuzzy sets. Photogrammetric Engineering & Remote Sensing, 60(2), 181-188.

- Woodcock, C. E., & Gopal, S. (2000). Fuzzy set theory and thematic maps: Accuracy assessment and area
estimation. International Journal of Geographical Information Science, 14(2), 153-172.

- Laba, M., et al. (2002). Conventional and fuzzy accuracy assessment of the New York Gap Analysis Project

land cover map. Remote Sensing of Environment, 81(2-3), 443-455.

e Report statistics at different levels of certainty.

- - -~ ) . PLSCS/NTRES 6200
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Dealing with sampling uncertainty

e |f a probability sample, easily quantified

- e.g., 0f =0?%/yn

e Compute required sample size to achieve a desired statistical power or
confidence interval

- power analysis; programs such as
G*Power:http://www.gpower.hhu.de/en.html; also in R

- depends on variance of the target variable

- depends on the target parameter

(; . -~ ) . PLSCS/NTRES 6200
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Dealing with model form uncertainty

e Check that model assumptions are met

- e.g., linear models: independent and normally-distributed residuals; no
dependence of residuals on fits; no spatial or temporal correlation of
residuals; no excessively influential (high-leverage) residuals ...

- e.g. Cook, R. D., & Weisberg, S. (1982). Residuals and influence in
regression. New York: Chapman and Hall.

e Attempt to reduce models to their most parsimonious form: the fewest
predictors and simplest form to give a reasonable fit/prediction.

- variable selection by principal components, removing colinearity with
variance inflation factors, stepwise models ...

- - -~ ) . PLSCS/NTRES 6200
(— 2 Cornell University
W2 College of Agriculture and Life Sciences



Data Quality and Uncertainty

39

Dealing with model fit uncertainty

e Quantify model fit to the calibration (“training”) dataset

- Amount of Variance Explained (AVE =~ R?)

- Root of Mean Squared Error of fit (RMSE): precision

- Mean Error (ME): bias, systematic fitting error

- Linn’s concordance coefficient, etc. (composite measures)

(: ' 2 Cornell University
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Dealing with prediction uncertainty

e Quantify fit to an evaluation (“validation”) dataset

- Requires independent dataset from the target population to be predicted
- Requires observations of a probability sample from this dataset
* some cross-validation techniques - but the training dataset must
represent the target populatuion
- Amount of Variance Explained (AVE =~ R?) against 1:1 line predicted:actual
- Root of Mean Squared Error of fit (RMSE): precision
- Mean Error (ME): bias, systematic fitting error

- - -~ ) . PLSCS/NTRES 6200
(— 2 Cornell University
W2 College of Agriculture and Life Sciences



Data Quality and Uncertainty 41

Uncertainty in spatial models

Components:

1. Structured, non-spatial; explainable in attribute space

e linear, non-linear, GAM, regression tree, random forest ...

2. Structured, spatial; explainable by spatial covariables (including codrdinates)

e SAR, GLS trend surfaces ...

3. Stochastic, spatial; partially explainable by models of spatial autocorrelation

e OK, CoK; with previous GLS, RK, KED ...
e “partially”: decreasing spatial correlation with separation

4. Stochastic, non-spatial: unexplainable

5. Stochastic, spatial: partially unexplainable

e these two combined in the nugget variance of a variogram model

PLSCS/NTRES 6200
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Mapping uncertainty due to spatial uncertainty

Example: topsoil organic carbon
mapping Tanzania
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point observations predictions by regression kriging
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Map quality quantified by lower and upper limits
of a 90% prediction interval

—T 20

lower limit

15

- 10

Show both the prediction and its uncertainty
(here, the kriging prediction variance).
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How much uncertainty is “too much”?

e A problem in decision theory

- correct representation of the uncertainty
* e.g., probability distribution of some parameter

- Sensitivity of decision to the uncertainty
- Expected loss due to incorrect decision due to uncertainty

e For monitoring or change detection: how much is the parameter expected to
change? Is our measurement sensitive enough to detect this?

PLSCS/NTRES 6200
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Uncertainty propagation

Data — data manipulation — models — predictions

Heuvelink, G. B. M. (1998). Error propagation in environmental modelling with
GIS. London: Taylor & Francis.

e Closed-form solutions are sometimes not possible; often not realistic

e Solution: Monte Carlo simulation through the entire chain, summarize results

- - -~ ) . PLSCS/NTRES 6200
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Example

correct representation of the uncertainty

- e.g., kriged map of probability of exceeding a defined threshold

- e.g., kriged map of pollutant concentration; map of kriging prediction
variances; combine to upper confidence level

- e.g., statistical summary of a design-based sample of whole area, tested
against Hy : X > x; decide based on probability of a Type 1 error

Sensitivity of decision to the uncertainty

- how far above the threshold is the prediction?

Expected loss due to incorrect decision due to uncertainty

- How expensive to clean up? How expensive if houses later have to be
destroyed and residents treated?
- e.g., famous case in Lekkerkerk (Zuid Holland)?|

6

https://nl.wikipedia.orq/wiki/Gifschandaal_l ekkerkerk

ok

t@ Cornell University
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Topic: Assessing the effect of uncertainty

e Question: how to know if uncertainty affects decisions?

e Answer: simulate possible (uncertain) values and make the decision on this
basis

1. Must assume the univariate probability distribution of the uncertain value
of each model input

2. If several (partially) correlated inputs, must assume the multivariate

probability distribution

Then, sample from this (univariate, multivariate) distribution

4. Collect the model outputs and summarize as risk of incorrect decisions

w
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Example: non-spatial

Risk of an overweight airplane on 19-seat plane

Passengers weights assumed to follow a normal distribution

- Estimate mean and standard deviation from measurements from the target
population
* separate distributions for males/females

- Estimate proportion of female passengers (binomial, estimate 0)

Random sample of 19 passengers

Binomial proportion of females/males

Simulate each individual’s weight; sum all 19

Compare to maximum allowable weight; find proportion overweight

e PLSCS/NTRES 6200
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Simulation R code

# parameters: mean, s.d. of fe/male weights, kg

mu.m <- 80; sd.m <- 14; mu.f <- 65; sd.f <- 12

# parameter: mean proportion of female passengers
prop.f.mu <- 0.35

# Fairchild Metro II: empty 3380 kg, max takeoff 5670kg
Toad.wt <- (5670-3380); pilots.wt <- 200; fuel.wt <- 600
n <- 19 # number of passengers

nsim <- 2048 # number of simulations
n.females <- vector(mode="1integer", Tength=nsim)
wt.sum <- vector(mode="1integer", length=nsim)
for (run in 1l:nsim) {
num.f <- rbinom(n=1, size=n, prob=prop.f.mu)
num.m <- n - num.f
wts.f <- rnorm(num.f, mean=mu.f, sd=sd.f)
wts.m <- rnorm(num.m, mean=mu.m, sd=sd.m)
n.females[run] <- num.f
wt.sum[run] <- ceiling(sum(wts.f) + sum(wts.m))

}

(n.overweight <- sum(wt.sum > (load.wt-pilots.wt-fuel.wt)))

(prob.overweight <- round(n.overweight/nsim,3))

(@ Cornell University
A ’_;)' College of Agriculture and Life Sciences
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2048 simulations; number of females

frequency
200 300 400
I I I

100
I

females per 19 passengers

Per 19 passengers; 0 = 0.35.
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2048 simulations; proportion of flights overweight 4.5%
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Key concepts

Simulate reality: “what if?”

Inputs are probabilistic

So we need reliable probability distributions

More runs — more accurate results, especially “long tails”

o ~ . PLSCS/NTRES 6200
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Example: spatial

e Aim: see how much positional uncertainty in species occurrence records
affects a model of species distribution (= habitat suitability)’]

e Distribution is modelled by comparing species occurence locations with
spatially-distributed covariables

- e.g., elevation, slope, land cover, distance to ocean ...

e Occurence locations are not precise, so randomly perturb recorded locations
Ei: Ef = E; + &g, same for N;

- example: € ~ N (0,5000): no positional bias, standard deviation 5 km

e Then run models and compare maps - how much do they differ? in which
areas?

7 Naimi, B. et al. (2011). Spatial autocorrelation in predictors reduces the impact of positional uncertainty in
occurrence data on species distribution modelling. Journal of Biogeography, 38(8), 1497-1509. https://doi.
orqg/10.1111/7.1365-2699.2011.02523.x
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Simulating the effect of spatial uncertainty

Journal of Biogeography 38, 1497-1509 1501
© 2011 Blackwell Publishing Ltd

B. Naimi et al.

Assigning PDF 1o XY coordinates of species occurrences " Environmental variables
E'\ g of s [ SDM algorithm ] - S
)
Prediciar |
simulation Predictar ¥

. RS Ehgiut< Chpuiveg Figure 3 Conceptual framework of species
* positional error propagation analysis. PDF,
1000 realizations of . . s .
Sy DAl [ Beifiosiifiaresnii ‘] probability density function; SDM, species
distribution model.

Repeated with different assumptions about the degree of spatial correlation
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Topic: Representing /communicating uncertainty

1. Blanket statement of accuracy and/or precision

2. Statistical reports

3. Cartographic techniques to visualize degree and type of uncertainty

Requires understanding the psychology of the intended reader/viewer - different
cultural, educational, professional contexts and assumptions.

There are, however, universal psychological/perceptual facts.
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Example of accuracy statement

NMAS, National Map Accuracy Standards. Created in 1941, revised in 1947.
Scale dependent, 90% confidence intervals.
Horizontal accuracy:

“For maps on publication scales larger than 1:20,000, not more that 10

percent of the points tested shall be in error by more than 1/30 inch,

measured on the publication scale; for maps on publication scales of
1:20,000 or smaller, 1/50 inch.”

Vertical accuracy:

‘. ..not more than 10 percent of the elevations tested shall be in error more
than one-half the contour interval.”

- - -~ ) . PLSCS/NTRES 6200
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Example of statistical reports

NSSDA, National Standard for Spatial Data Accuracy, 1998

Reports positional accuracy at ground scale, and does not set thresholds. Users
can evaluate if these are sufficent for their purposes.

“Accuracy is reported in ground distances at the 95% confidence level. Accuracy reported at the 95%
confidence level means that 95% of the positions in the dataset will have an error with respect to true
ground position that is equal to or smaller than the reported accuracy value. The reported accuracy value
reflects all uncertainties, including those introduced by geodetic control coordinates, compilation, and final
computation of ground coordinate values in the product.”

Problem: How to determine this over a whole map?
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Cartographic methods

e Geometric simplification (e.g., remove intermediate points in
lines/boundaries)

- Scale reduction: area — line (road, river), area — point (city)

- Map readers understand this simplification - everyone knows a city is not a
point

- Experiment at https://bost.ocks.org/mike/simplify/

o Attribute simplification: grouping into more general categories or fewer
classes

- Example: low-accuracy detailed land cover map from remote sensing,
generalize classes, should have higher accuracy

e Visualization: visual display of classification or continuous uncertainty

- - -~ ) . PLSCS/NTRES 6200
(— 2 Cornell University
W2 College of Agriculture and Life Sciences


https://bost.ocks.org/mike/simplify/

Data Quality and Uncertainty 59

Example: visualizing classification uncertainty

(b)

1 Hin
Bl Hi112
Hl Hi211
B Hi212
I Hiz11
Bl Hiz1z
= Hisa11
B P31
B P11

0 2.5 km

Figure 5. Comparison of different cartographic techniques: (a) defuzzification; (b) pixel
mixture; (¢) colour mixture with the circular fuzzy-metric legend.

source: Hengl, T., Walvoort, D. J. J., Brown, A., & Rossiter, D. G. (2004). A double continuous approach to
visualization and analysis of categorical maps. International Journal of Geographic Information Science, 18(2),

183-202. http://doi1.0rg/10.1080/13658810310001620924
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TO SEE THE MOST
ANIMAL IN THE WORLD,

OPEN THE DOOR

Conclusion

Uncertain world,
uncertain observations,
uncertain models ...

Uncertain inferences,
uncertain decisions.

(Madras Crocodile Bank Trust
and Centre for Herpetology)

Cornell University
College of Agriculture and Life Sciences
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