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Overview

• Assessment of model quality: overview

• Model evaluation with an independent data set

• Cross-validation
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Assessment of model quality

• With any predictive method, we would like to know how
good it is. This is model evaluation, often called model
validation.

• contrast with model calibration, when we are building
(fitting) the model

• Prefer the term evaluation because “validation” implies
that the model is correct (“valid”); that of course is never
the case. We want to evaluate how close it comes to
reality.

• Oreskes, N. (1998). Evaluation (not validation) of quantitative
models. Environmental Health Perspectives, 106(Suppl 6),
1453–1460.

• Oreskes, N., et al. (1994). Verification, validation, and
confirmation of numerical models in the earth sciences. Science,
263, 641–646.1

• However, we still use the term cross-validation, for
historical reasons and because the gstat function is so
named.

1https://doi.org/10.1126/science.263.5147.641

https://doi.org/10.1126/science.263.5147.641
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Internal vs. external quality assessment (1)

External If we have an independent data set that
represents the target population, we can
compare model predictions with reality. Two
types:

1 Completely separate evaluation dataset
from a target population to be evaluated

2 Cross-validation using the calibration
dataset, leaving parts out or resampling
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Internal vs. external quality assessment (2)

Internal Most prediction methods give some measure of
goodness-of-fit to the calibration data set:

• Linear models: coefficient of
determination R2

• Warning! Adding parameters to a model
increases its fit; are we fitting noise rather
than signal? Use adjusted measures, e.g.
adjusted R2 or Akaike Information Criterion
(AIC)

• Kriging: the uncertainty of each prediction,
i.e., the kriging prediction variance
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Internal evaluation of Kriging predictions

• Because of its model structure, Kriging automatically
computes a kriging prediction variance to go with each
prediction.

• This is because that variance is minimized in kriging,
assuming the model of spatial dependence is correct!

• Variogram form, variogram parameters
• OK: Assumptions of 1st and 2nd order stationarity (mean,

covariance among point-pairs)
• KED/UK: Assumptions of 2nd order stationarity (covariance

among point-pairs model residuals)
• KED/UK: Linear model assumptions to give 1st order

stationarity of residuals

• This kriging prediction variance depends only on the point
configuration of the known points, and the model of
spatial correlation,not on the data values!

• In theory this gives the uncertainty of each prediction →
internal evaluation
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Kriging predictions and variance at points

Predicted values, Co (ppm)
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Kriging variance, Co (ppm^2)
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Jura (CH) topsoil heavy metals – Ordinary Kriging



Model
Evaluation

W'ô

Assessment of
model quality

Internal
evaluation
Kriging prediction
variance

Independent
evaluation
Evaluation
measures

Linn’s
Concordance

Resampling

Cross-
validation

Kriging predictions and variance over a grid

Predicted values, Co (ppm)
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Prediction outside the range of spatial dependence is the
spatial mean and covariance
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Numerical summaries of kriging variance

• Mean, maximum kriging prediction variance
• mean: on average, how precise is the prediction?
• maximum: what is the worst precision?

• These can be used as optimization criteria for comparing
sampling plans, for samples to be used for Kriging
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Model evaluation with an independent dataset

An excellent check on the quality of any model is to compare
its predictions with measured values from an independent
data set.

• This set can not be used in the calibration procedure!
• This set must be from the target population for the

evaluation statistics
• same sampling campaign, observations randomly removed

from the calibration procedure
• a different sampling campaign, either the same or another

target population

• Advantages:
• objective measure of quality
• can be applied to a separate population to determine

extrapolation power of the model

• Disadvantages:
• Higher cost
• Less precision? Not all observarions can be used for

modelling (→ poorer calibration?)
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Selecting the evaluation data set

• The validation statistics presented next apply to the
evaluation (“validation”) set.

• It must be a representative and unbiased sample of the
population for which we want these statistics.

• Two methods:
1 Completely independent, according to a sampling plan;

• This can be from a different population than the calibration
sample: we are testing the applicability of the fitted model
for a different target population.

2 A representative subset of the original sample.
• A random splitting of the original sample
• This evaluates the population from which the sample was

drawn, only if the original sample was unbiased
• If the original sample was taken to emphasize certain areas

of interest, the statistics do not summarize the validity in the
whole study area
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Evaluation measures (1)

• Root mean squared error (RMSE) of the residuals (actual
– predicted) in the validation dataset of n points; how
close on average are the predictions to reality?

• lower is better

• computed as:

RMSE =
1

n

n∑
i=1

(ŷi − yi)2
1/2

• where: ŷ is a prediction; y is an actual (measured) value

• This is an estimate of the prediction error

• An overall measure, can be compared to desired precision

• The entire distribution of these errors can also be
examined (max, min, median, quantiles) to make a
statement about the model quality
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Evaluation measures (2)

• Bias or mean prediction error (MPE) of estimated vs.
actual mean of the validation dataset

• closer to zero is better (0)

MPE = 1
n

n∑
i=1

(yi − ŷi)
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Relative evaluation measures

• The MPE and RMSE are expressed in the original units of
the target variable, as absolute differences.

• These can be compared to criteria external to the model,
i.e., “fitness for use”.

• These can also be compared to the dataset values:
• MPE compared to the mean or median

• Scales the MPE: how signficant is the bias when compared to
the overall “level” of the variable to be predicted?

• RMSE compared to the range, inter-quartile range, or
standard deviation

• Scales the RMSE: how significant is the prediction variance
when compared to the overall variability of the dataset?
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Putting RMSE in context

• The RMSE tells us how closely the model on average
predicts to the true values

• But, is this significant in the real world?
• relative to the values of the target variable;
• relative to precision needed for an application of the model.

• Relative to target variable: RMSE as a proportion of the
mean

• Relative to application: RMSE as uncertainty, e.g., deciding
whether a value is above or below a critical value
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Example: Relative to population

• Meuse heavy metals dataset: Cross-validation RMSE from
OK of log10(Zn) is 0.173.

• How does this compare to the population?
• Estimate from the sample:

> summary(log10(meuse$zinc))
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.053 2.297 2.513 2.556 2.829 3.265

> rmse <- 0.173
> rmse/mean(log10(meuse$zinc))
[1] 0.06767965

• This is about 7% of the mean value of this sample of this
population.
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Example: Regulatory threshold

• According to the Berlin Digital Environmental Atlas2, the
critical level for Zn is 150 mg kg-1; crops to be eaten by
humans or animals should not be grown in these
condition.

• log10(150) = 2.177; suppose we have a RMSE of 0.173.

• So to be sure we are not in a polluted spot with 95%
confidence we should measure no more than 77 mg kg-1.

> (lower.limit <- log10(150)-(qnorm(.95)*0.173))
[1] 1.891532
> 10^(lower.limit)
[1] 77.89895

• So we may be forcing farmers out of business for no
reason.

2http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/
ed103103.htm

http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm
http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm
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Regression of actual on predicted

• We can also compute a linear regression: y = β0 + β1ŷ

• This shows how predictions made by the model from the
calibration set could be adjusted to fit the evaluation set.

• β0 is the bias of the fitted model; this should be 0.

• β1 is the gain of the fitted model vs. the evaluation set;
this should be 1.

• The R2 of this equation is not an evaluation measure of
the model!

• It does tell us how well the adjustment equation is able to
match the two sets.
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Visualizing actual vs. predicted

Scatterplot against 1:1 line Regression
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Lin’s Concordance

• A measure of the deviation from the 1:1 line
• first developed to evaluate reproducibility of test

procedures that are supposed to give the same result
• also valid to compare actual vs. predicted by any model,

these are supposed to be the same

•

ρc =
2ρ1,2σ1σ2

σ2
1 + σ2

2 + (µ1 − µ2)2

• Includes all sources of deviation:
• location shift (bias) (µ1 − µ2)/

√
σ1σ2

• scale shift (slope not 1) σ1/σ2

• lack of correlation (spread) 1− ρ1,2

• if points are independent use the sample estimates
r1,2, S1, S2,Y1,Y2

Reference: Lin, L. I.-K. (1989). A concordance correlation coefficient to

evaluate reproducibility. Biometrics, 45(1), 255–268.
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Lin’s Concordance – examples
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Resampling

• If we don’t have an independent data set to evaluate a
model, we can use the same sample points that were
used to estimate the model to validate that same model.

• For geostatistical models, see next section
“Cross-validation”

• Non-geostatisical: Do many times:
• Randomly split the dataset into calibration and evaluation

parts.
• Build the model using only the calibration part
• Evaluate it against the evaluation part as in “independent

evaluation”, above

Then, summarize the evaluation statistics.

• Build a final model using all the observations; but report
the evaluation statistics from resampling.
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Cross-validation

• For geostatistical models, if we don’t have an
independent data set to evaluate a model, we can use the
same sample points that were used to estimate the
model to validate that same model.

• With enough points, the effect of the removed point on the
model (which was estimated using that point) is minor.
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Effect of removing an observation on the
variogram model
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Cross–validation procedure

1 Compute experimental variogram with all sample points in
the normal way; model it to get a parameterized
variogram model

2 For each sample point
1 Remove the point from the sample set;
2 predict at that point using the other points and the

modelled variogram;

3 This is called leave-one-out cross-validation (LOOCV).

4 Summarize the deviations of the model from the actual
point.
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Summary statistics for cross–validation (1)

Two are the same as for independent evaluation and are
computed in the same way:

• Root Mean Square Error (RMSE): lower is better

• Bias or mean error (MPE): should be 0
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Summary statistics for cross–validation (2)

Since we have variability of the cross–validation, and variability
of each prediction (i.e. kriging variance), we can compare
these:

• Mean Squared Deviation Ratio (MSDR) of residuals with
kriging variance

MSDR = 1
n

n∑
i=1

{z(xi)− ẑ(xi)}2
σ̂2(xi)

where σ̂2(xi) is the kriging variance at cross-validation
point xi.

• The MSDR is a measure of the variability of the
cross-validation vs. the variability of the sample set.
This ratio should be 1. If it’s higher, the kriging prediction
was too optimistic about the variability.

• The nugget has a large effect on the MSDR, since it sets a
lower limit on the kriging variance at all points.
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Summary statistics for cross–validation (3)

• Another way to summarize the variability is the median of
the Squared Deviation Ratio:

MeSDR =median

[
{z(xi)− ẑ(xi)}2

σ̂2(xi)

]
• If a correct model is used for kriging, MeSDR = 0.455,

which is the median of the χ2 distribution (used for the
ratio of two variances) with one degree of freedom.

• MeSDR < 0.455 → kriging overestimates the variance
(possibly because of the effects of outliers on the
variogram estimator)

• MeSDR > 0.455 → kriging underestimates the variance

• Reference: Lark, R.M. 2000. A comparison of some robust
estimators of the variogram for use in soil survey.
European Journal of Soil Science 51(1): 137–157.
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Spatial distribution of cross-validation
residuals

OK Cross−validation residuals
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−9.32
−0.908
−0.005
0.967
5.145

actual – predicted; green are underpredictions
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