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Overview

- Kriging is a Best Linear Unbiased Predictor (BLUP) of the
value of an attribute at an unsampled location.

- “Best” is defined as the lowest prediction variance
among all possible combination of weights for the
weighted sum prediction.

- Derivation of the weights from this optimization
criterion' depends on a theory of random fields.

- This is a model of how the reality that we observe, and
which we want to predict, is structured.

- The model represents a random process with spatial
autocorrelation.

12nd section of this lecture



Theory of
random fields

Theory of random fields

Presentation is based on R. Webster and M. Oliver, 2001
Geostatistics for environmental scientists, Chichester etc.: John
Wiley & Sons, Ltd.; ISBN 0-471-96553-7

Notation: A point in space of any dimension is symbolized by a
bold-face letter, e.g. x. In 2D this is (x7, x2).



Theory of
random fields

Ordinary
Kriging

Theory of random fields - key idea

@ Key idea: The observed attribute values are only one of
many possible realisations of a random process (also
called a “stochastic” process)

® This random processes is spatially auto-correlated , so
that attribute values are somewhat dependent.

© At each point x, an observed value z is one possiblility of
a random variable Z(x)

@ There is only one reality (which is sampled), but it is one
realisation of a process that could have produced many
realities. u and variance o2 etc.

©® Cumulative distribution function (CDF):

F{Z(x;z)} =Pr[Z(x < z)]

@ the probability Pr governs the random process; this is

where we can model spatial dependence
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random fields

Ordinary
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Random functions

- Each point has its own random process, but these all have

the same form (same kind of randomness)

- However, there may be spatial dependence among

points, which are therefore not independent

- As a whole, they make up a stochastic process over the

whole field R
- i.e., the observed values are assumed to result from some
random process but one that respects certain
restrictions, in particular spatial dependence

- The set of values of the random variable in the spatial

field: Z = {Z(x), Vx € R} is called a regionalized variable

- This variable is doubly infinite: (1) number of points; (2)

possible values at each point



Simulated fields

- Equally probable realizations of the same
spatially-correlated random process

- The fields match an assumed variogram model

- These are equally-probable alternate realities, assuming
the given process

- We can determine which is most likely to be the one reality
we have by sampling.

- Next pages: simulated fields on a 256x256 grid




Four realizations of the same field - before sampling

Unconditional simulations, Co variogram model




Four realizations of the same field - after sampling

Conditional simulations, Jura Co (ppm), OK




Fields with same variogram parameters, different models




Fields with same model, different variogram parameters




Uncorrelated field with first-order stationarity (same expected
value everywhere)

Corresponds to pure “nugget” variogram model.

white noise




First-order stationarity

- Problem: We have no way to estimate the expected
values of the random process at each location u(x) ...

...since we only have one realisation (what we actually
measure), rather than the whole set of realisations that
could have been produced by the random process.

- Solution: assume that the expected values at all
locations in the field are the same:

E[Z(X,’)] = [.l,VX,' €R

- This is called first-order stationarity of the random
process

- so u is not a function of position x.

- Then we can estimate the (common) expected value from
the sample values and their spatial structure.




Problems with first-order stationarity

- It is often not plausible:

@ We observe the mean value to be different in several
regions (strata)

@® We observe a regional trend

- In both cases there is a process that is not stationary
which we can model:

@ model the strata or trend, then the residuals may be
first-order stationary — Kriging with External Drift or
Regression Kriging)

@® model a varying mean along with the local structure —
Universal Kriging

- Another solution: study the differences between values,
not the values themselves, and in a “small” region.




Spatial covariance

- Key idea: nearby observations may be correlated.
- Since it's the same variable, this is autocorrelation

- There is only one realisation of the random field per
point, but each point is a different realisation, so in
some sense they are different variables, which then have a
covariance.

- Key Insight: Under certain assumptions (see below), this
covariance can be considered to depend only on the
separation (and possibly the direction) between the
points.




Covariance

- Recall from non-spatial statistics: the sample covariance
between two variables z; and z, observed at n points is:

A 12

Ca,z2) = Dz, -¥) - (22, - %)
i=1

- Spatial version: there is only one variable x:

C(xi,x2) = E[Z(x1) —u(x)} - {Z(x2) — p(x2)}]

- Because of first-order stationarity, the expected values are
the same, so:

Cx1,%2) = E[{Z(x1) —p} - {Z(x2) — u}]



Second-order stationarity (1) - At one point

- Problem: The covariance at one point is its variance:
0 = E[{Z(x;) — u}?]
- This can not be estimated from one sample of the many

possible realisations.

- Solution: assume that the variance is the same finite
value at all points.

- Then we can estimate the variance of the process from the
sample by considering all the random variables (at
different points) together.

- This assumption is part of second-order stationarity



Second-order stationarity (2) - Over the spatial
field

- Problem: The covariance equation as written is between
all the points in the field. It is huge! And again, there is no
way to estimate these from just one point pair per variable
pair.

- Solution (the key insight): Assume that the covariance
between points depends only on their separation

- Then we can estimate their covariance from a large
number of sample pairs, all separated by
(approximately) the same separation vector h (distance,
possibly with direction).




Derivation of the covariance function

- Autocovariance (‘auto’ = same regionalized variable), at a
separation h:

Cl[Z(x),Z(x +h)]

E[{Z(x) — p} - {Z(x+h) — u}]
E[{Z(x)} - {Z(x+h)} — p?]
C(h)

- Autocorrelation: Autocovariance normalized by total
variance o2, which is the covariance at a point:

p(h) = C(h)/C(0)

- Semivariance: deviation of covariance at some separation
from total variance:

y(h) = C(0) — C(h)



Characteristics of Spatial Correlation functions

- symmetric: C(h) = C(-h) etc.

- rangeof p(h) e [-1---1]

- Positive (covariance) or negative (variogram) semi-definite
matrices; this restricts the choice of models

- Continuity, especially at 0. But this is often not observed,
the “nugget” effect.

- Solved by adding a nugget structure to the spatial
correlation model.




Problems with second-order stationarity

- It assumes the existence of a covariance and, so, a finite
variance Var(Z(x)) = C(0)

- This is often not plausible; in particular the covariance
often increases without bound as the area increases.

- Solutions

@ Study the differences between values, not the values
themselves, and in a “small” region; then he covariances
may be bounded — the intrinsic hypothesis (see next);

® So, model the semi-variance, not co-variance.

© This is a weaker assumption.



The Intrinsic Hypothesis

- Replace mean values Z(x) with mean differences, which
are the same over the whole random field, at least within
some ‘small’ separation h. Then the expected value is 0:

E[Z(x) - Z(x+h)] = 0

- Replace covariance of values with variances of
differences:

Var[Z(x) — Z(x + h)] = E[{Z(x) — Z(x + h)}?] = 2y (h)

- The equations only involve the difference in values at a
separation, not the values, so the necessary assumption
of finite variance need only be assumed for the
differences, a less stringent condition.

- This is the intrinsic hypothesis.



Using the empirical variogram to model the
random process

- The semivariance of the separation vector y(h) is now
given as the estimate of covariance in the spatial field.

- It models the spatially-correlated component of the
regionalized variable

- We must go from the empirical variogram to a
variogram model in order to be able to model the
random process at any separation.



Ordinary Kriging

In this section we:
Krging” @ Present OK and its optimization criterion;
@ Derive a computable form of the prediction variance;
© Derive the OK system of equations;
@ Show the solution to the OK syste,
This all depends on the theory of random fields,




Ordinary Kriging (OK) - Overview

Theory of

random fields

- A linear predictor of the value at an unknown location,
given the locations of a set of points and their known
values.

- The linear predictor is a weighted sum of the known
values.

- The weights are based on a model of spatial
autocorrelation between the known values.

- This model is of the assumed spatial autocorrelated
random process that produced a random field.

- We have observed the values of some attribute at some
locations in this random field, we want to predict others.




OK as a weighted sum

- The estimated value Z at a point Xg is predicted as the
weighted average of the values at the observed points x;:

N
2(xo) = D Ajz(x;)
i=1

- The weights A; assigned to the observed points must sum
tol:

M=z

Aj=1

- Therefore, the prediction is unbiased with respect to the
underlying random function Z:

E[Z(x0) — Z(X0)] = O



What makes it “Ordinary” Kriging?

- The expected value (mean) is unknown, and must be
estimated from the sample

- If the mean is known we use Simple Kriging (SK)
- There is no regional trend
- If so we use Universal Kriging (UK).

- There is no feature-space predictor, i.e. one of more
other attributes, known at both the observation and
prediction points, that helps explain the attribute of
interest

- If so we use Kriging with External Drift (KED) or
Regression Kriging (RK).




Weighted-sum linear predictors

- There are many of these! The only restriction is
Z/ 1 AI - ]
All weight to closest observation (nearest-neighbour)
Ai=T1,A54 =0.
- Average of points within some specified distance (average
in radius)
- Average of some number of nearest points
- Inverse distance-weighted averages within radius or some
specified number
- declustered versions of these
- kriging: weights derived from the kriging equations
- Which is “optimal”?
- To decide, we need an optimization criterion.




Optimization criterion

- “Optimal” depends on some objective function which can
be minimized with the best weights;

- We choose the variance of the prediction as the
objective function; i.e. we want to minimize the
uncertainty of the prediction.



Prediction Variance

Theory of

random fields

For any predictor (not just the kriging predictor):

- The prediction Z(xg) at a given location xo may be
compared to the true value z(xg); note the “hat” symbol to
indicate an estimated value rather than a measured one.

Ordinary

Kriging - Even though we don’t know the true value, we can write
the expression for the prediction variance

- This is defined as the expected value of the squared
difference between the estimate and the (unknown) true
value:

o2(Z(x0)) = E[{é(xo) - z<xo)}2]

- If we can express this in some computable form (i.e.
without the unknown true value) we can use it as an
optimality criterion




Derivation of the prediction variance

(Based on P K Kitanidis, Introduction to geostatistics:
applications to hydrogeology, Cambridge University Press,
1997, ISBN 0521583128; §3.9)

® In OK, the estimated value is a linear combination of data
values x; , with weights A; derived from the kriging
system:

N
2(xo) = > Ajz(x;)
i=1
® Kriging variance:

o2(Z(x0)) = E[{é(x()) - z<xo)}2]

© Re-write the kriging variance with the weighted linear sum:

N
02(2(x0)) = E| | 3 Nizlx)) = Z(x0))

i=1




Expanding into parts

® Add and subtract the unknown mean u:
N
07 (2(x0)) = E| [ X Ai(z(x) — ) = (Z(x0) = )} |
i=1

@ Expand the square:

=

0?(Z(x0)) = [Z Aiz(x;) — p

N
=2 > Ai(z(x)) — u)(Z(x0) — )
i=1

+(Z(x0) — )?]



Bring expectations into each term

@ Replace the squared single summation (first term) by a
double summation, i.e. with separate indices for the two
parts of the square (two observation points):

N N
Niz(xi) = 1)? = 30D Adj(z(xi) — ) (2(x)) — 1)

j=

M=

(

i=1

—_

@ Bring the expectation into each term?:

N N
o3(Z(x0)) = > > NNE[(z(x) — ) (z(x)) — p)]

i=1j

=1

N
~2 > NE[(2(x) = ) (Z(x0) = p)]
i=1

+E|(Z(x0) — ]

Zexpectation of a sum is the sum of expectations



From expectations to covariances

® The three expectations in the previous expression are the
definitions of covariance or variance:
O E[(z(x;) — u)(z(x;) — w)] : covariance between two
observation points
@ E[(z(x;) — 1) (Z(xp) — u)] : covariance between one
observation point and the prediction point
© E[(Z(xp) — u)?] : variance at the prediction point

O So, replace the expectations with covariances and
variances:

N N

02(Z(x0)) = > > AiAjCov(z(xi), z(x)))
i=1j=1
N

-2 Z AiCov(z(xi), Z(Xo))

+Var(Z(x0))



How can we evaluate this expression?

Problem 1: how do we know the covariances between
any two points?
- Answer: by applying a covariance function which only
depends on spatial separation between them.

Problem 2: how do we find the correct covariance
function?

- Answer: by fitting a variogram model to the empirical
variogram

Problem 3: how do we know the variance at any point?

- Answer: The actual value doesn’t matter

- it will be eliminated in the following algebra ...

- ...but it must be the same at all points

- this is the assumption of second-order stationarity.




Stationarity (1)

- This is a term for restrictions on the nature of spatial
variation that are required for OK to be correct

- First-order stationarity: the expected values (mean of the
random function) at all locations in the random field are
the same:

E[Z(xj))] =pu,VX; €R
- Second-order stationarity:

@ The variance at any point is finite and the same at all
locations in the field

@® The covariance structure depends only on separation
between point pairs



Stationarity (2)

random fields

The concept of stationarity is often confusing, because
stationarity refers to expected values, variances, or
co-variances, rather than observed values.

Ordinary
Kriging

Of course the actual values change over the field! That is
exactly what we want to use to predict at unobserved
points.

First-order stationarity just says that before we sampled,
the expected value at all locations was the same.

- That is, we assume the values result from a
spatially-correlated process with a constant mean - not
constant values.

Once we have some observation values, these influence

the probability of finding values at other points, because
of spatial covariance.




Unbiasedness

- An unbiased estimate is one where the expectation of the
estimate equals the expectation of the true (unknown)
value:

E[E(xo] = E[Z(xo)] =u

- We will estimate E[E(xo] as a weighted sum:
N N N
E[E(XO] => A;E[Z(xi)] =D Au=HY A
i=1 i=1 i=1

- Since E[E(xo)] = u (unbiasedness), we must have

2

Ai=1

This is a constraint in the kriging system.



From point-pairs to separation vectors

Theory of
random fields

- As written above, the covariances between all point-pairs
must be determined separately, and since there is only
one realization of the random field, it's imposible to know
these from the observations.

Ordinary
Kriging

- However, because of second-order stationarity, we can
assume that the covariances between any two points

depend only on their separation and a single covariance
function.

- So rather than try to compute all the covariances, we just
need to know this function, then we can apply it to any
point-pair, just by knowing their separation and this
function.

- So, OK is only as good as the covariance model!




Replace point-pairs with separation vectors

Continuing the derivation of the OK equations:

@ Substitute the covariance function of separation h into
the expression:

N

N
o2(Z(x0)) = > > AiACov(h(i,j))
i=1j=1

N

—2 > AiCov(h(i,0))
i=1

+Cov(0)

- h(i,0) is the separation between the observation point x,
and the point to be predicted xo.

- h(i,j) is the separation between two observation points Xx;
and x;.

- Cov(0) is the variance of the random field at a point



From covariances to semivariances

Theory of

random fields ® Replace covariances by semivariances, using the relation
Cov(h) = Cov(0) — y(h):

N N N
0%(Z(x0)) = = > > Aidjy(h(i,j)) +2 > Ajy(h(i,0))

i=1j=1 i=1

Ordinary
Kriging

Replacing covariances by semivariances changes the sign.

- First term: depends on the covariance structure of the
known points; the greater the product of the two weights
for a given semivariance, the lower the prediction variance
(note — sign)

- Second term: depends on the covariance between the
point to be predicted and the known points

- This is now a computable expression for the kriging
variance at any point Xo, given the locations of the
observation points x;, once the weights A; are known.




Computing the weights

- Q: How do we compute the weights A to predict at a
given point?

- A: We compute these weights for each point to be
predicted, by an optimization criterion, which in OK is
minimizing the kriging variance.




Objective function (1): Unconstrained

- In a minimization problem, we must define an objective
function f to be minimized. In this case, it is the kriging
variance in terms of the N weights A;:

N N N
FQ) =2 Aiy(xiyxo) = > > Aidjy (xi, X;)
i=1 i=1j=1
- This expression is unbounded and can be trivially solved
by setting all weights to 0. We must add another
constraint to bound it.




Objective function (2): Constrained

- The added constraint is unbiasedness: the weights must
sumto 1.
- This is added as term in the function to be optimized,

along with a new argument to the function, the LaGrange
multipler @

Ajy (Xi, Xo)
1
N

N

Z Aidjy (X, X;)
i=1j=1

N

-2y ZA,—]}

N
faw) = 23
2.

i=1

- The last term = 0, i.e. the prediction is unbiased; v must
be added as a variable so there is one variable per
equation




Minimization

- Minimize by setting all N + 1 partial derivatives to zero
(N prediction points; 1 constraint):

oFAnw)

T = O, Vi

of Ai,y) 0
oy B

- In the differential equation with respect to y, all the A are
constants, so the first two terms differentiate to O; in the
last term the  differentiates to 1 and we are left with the
unbiasedness condition:

M=z
el
I



The Ordinary Kriging system

- In addition to unbiasedness, the partial derivatives with
respect to the A; give N equations (one for each Aj) in
N + 1 unknowns (the A; plus the LaGrange multiplier y):

N

D Ay (X X)) + @ = y(Xi,Xo0), Vi
j=

—_

- This is now a system of N + 1 equations in N + 1
unknowns and can be solved by linear algebra.



Solving the OK system

@ For the system as a whole: compute the semivariances
between all pairs of observed points y(x;, x;) from their
separation, according to the variogram model

@® At each point xg to be predicted:

@ Compute the semivariances y(x;, xo) from the separation
between the point and the observed values, according to
the variogram model

® Solve simultaneously for the weights and multiplier

© Compute the predicted value as the weighted average of
the observed values, using the computed weights

@ Compute the kriging variance.



Matrix form of the OK system

AN = b
y(xi,x1)  y(xi,x2) - y(xi,xn) 1
y(x2,x1)  y(xz2,x2) -+ yxo,xn) 1
A = : : : :
y(xn,X1)  y(Xn,x2) -0 y(xn,Xn) 1
1 1 1 0
A y (X1, X0)
AZ Y(XZ,XO)

A = : b = :

An ¥ (Xn, Xo)

W 1




Inside the OK Matrices

The block matrix notation shows the semivariances and
LaGrange multiplier explicitly:

o (5



Solution of the OK system

- This is a system of N + 1 equations in N + 1 unknowns, so
can be solved if A is positive definite; this is guaranteed
by using authorized models:

A = Ab

- Predict at a point xg, using the weights:
N

Z(xo) = Z] Aiz(x;)

- The kriging variance at a point is:

G2(x0) = b’A

- The last element of A is ¢, which depends on covariance
structure of the observed points.



End

Key points to remember about OK:

© It depends on the theory of random fields.

® It requires the assumption of 15t and 2nd order
stationarity

©® Computations are based on a model of spatial
autocorrelation

@ Its prediction is the Best Linear Unbiased Predictor (BLUP),
if “best” means “lowest prediction variance”.




	Theory of random fields
	Random functions
	First-order stationarity
	Spatial covariance
	Second-order stationarity
	The intrinsic hypothesis

	Ordinary Kriging
	Optimization criterion
	Computing the kriging variance
	Computing OK weights
	The OK system
	Solution of the OK system


