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Concept

DGR

Attributes are distributed over space due to a combination of
processes:
Process 1: due to other spatially-distributed attributes
- e.g., elevation — temperature; land cover class —
vegetation density
Process 2: due to a spatial trend (a function of the
coordinates)
- e.g., distance from source — rock stratum thickness
Process 3: due to local effects

- e.g., diffusion from a point source — disease/pest
incidence in a crop field



Autocorrelation

DGR

- “Auto” = self, i.e., an attribute correlated with itself

- Compare the attribute of one instance with that of another
instance of the same attriburte
Define how to compare:

- time: temporal autocorrelation (e.g., of time series)
- space: spatial autocorrelation



Equation

DGR

Z(s) =2Z*(s) + &(s) +&'(s)

(s) alocation in space, designated by a vector of
codrdinates

Z(s) true (unknown) value of some property at the
location

Z*(s) deterministic component, due to some known or
modelled non-stochastic process

&(s) spatially-autocorrelated stochastic component
&' (s) pure (“white”) noise, no structure



Two types of the deterministic components
DGR Z*(S)

- as function of spatially-distributed covariates (Process 1)

- as a trend: a function of the coordinates (Process 2)
- these can have the same mathematical structure and be
determined by the same algorithms
- covariates: multiple regression, random forests ...
- trend: low-degree polynomials, generalized additive
models, thin-plate splines



DGR

Z*(s)

&(s)

&'(s)

How do we fit the universal model?

- by a process model (simulation)
- by an expert or heuristic model, e.g.,

stratification, e.g., into map units (polygons)

- by an empirical-statistical (“regression”)

model in feature (“attribute”) space

- by an empirical-statistical model in

geographic space (“trend surface”)

- as a realization of a spatially-correlated

random field using geostatistics

- can not not be modelled, but can be

quantified — prediction uncertainty
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A 2D geographic example

DGR

- Source: Olea, R. A., & Davis, J. C. (1999). Sampling
- analysis and mapping of water levels in the High Plains
levanen aquifer of Kansas (KGS Open File Report No. 1999-11).
Lawrence, Kansas: Kansas Geological Survey.'

- attribute: elevation (US feet) above sea level of the top of
an aquifer in Kansas (USA)2; NAVD 88 vertical datum

- georeference: observed at a large number of wells,
position UTM Zone 14N, NAD83 meters

- Q: What determines the spatial variation?
- Q: How can we model this from the observations?

- Use the fitted model to predict at unsampled locations,
either individual locations (proposed new wells) or over a
fine-resolution grid

TRetrieved from http://www.kgs.ku.edu/Hydro/Levels/0OFR99_11/
2http ://www.kgs.ku.edu/HighPlains/HPA_Atlas/
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Reality: Z(s) = Z*(s) + &(s) + €'(s)



Some well sites on imagery background
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Observations - text display

Elevation of aquifer, ft
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Observations - postplot

Elevation of aquifer, ft
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Q: How to divide these observations of Z(s) into Z*(s), &(s),
and £'(s)?
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(1) A deterministic trend surface Z*(s)

Second-order trend surface

[ 2000
- 1900

- 1800

UTM N

1700

1600

UTME
Aquifer elevation, ft

process: dipping and slightly deformed sandstone rock
modelled with a 2"d-order polynomial (empirical-statistical
model) trend surface
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(2) A spatially-correlated random field &(s)

SK: residuals of 2nd order trend

UTMN

o

UTME
Deviation from trend surface, ft

process: local variations from trend
modelled by variogram modelling of the random field and
simple kriging



(3) White noise £'(s)

We do not know! but assume and hope it looks like this:

white noise
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Quantified as uncertainty of the other fits



Model with both trend and local variations
Z*(s) + &(s)
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Unexplained variation &'(s)

Trend prediction variances Residuals prediction variances RK prediction variances
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Computation depends on model form (here: Generalized Least
Squares trend + Simple Kriging of GLS residuals)



DGR

Example - aquifer
elevation

Example - soil
spatial variation

Conceptual issues

Definition

Detecting spatial
autocorrelation

Modelling spatial
autocorrelation

Variogram models
Prediction

Model predictions shown on the landscape

Google

Evealt 0801km

Google Earth, PNG ground overlay, KML control file
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Example: soil spatial variation (1)

DGR

(s) area of interest; discretized and considered as
Bxample - soll blocks with some finite support

spatial variation

Z(s) true block mean and within-block variation

Z*(s) effect of soil-forming factors that can be
modelled

- same factors — same soil properties: Jenny
(1941) ‘clorpt’ model.

- includes strata (thematic maps units),
“continuous” fields

- includes regional geographic trends (e.g.,
climate gradient)



Example: soil spatial variation (2)

DGR

Example - soil
spatial variation

&(s) spatially-correlated stochastic component,
modelled in geographic space
- local deviations from average effect of
soil-forming factors
- some part of this is often
spatially-correlated; this we can model



Example: soil spatial variation (3)

DGR

Eoms-sel €' (s) pure (“white”) noise
non-deterministic and not
spatially-correlated
includes variation at finer scale than support
includes sampling and measurement
imprecision (“error”)
measurement imprecision (all included in “noise”):

- georeferencing / field location

- sampling protocol, sampling procedures
lab. methods, lab. procedures, lab. quality
control
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Conceptual issues with the universal model
DGR

@ “Deterministic” implies that some process always
operates the same way with the same inputs.
- Any deviations are considered noise and included in £(s) or
&' (s).
“Deterministic” is operationally defined as “we can model it
as if it were deterministic”
- We are not really asserting that nature is deterministic.

® The spatially-autocorrelated stochastic component is
assumed to be one realization of a spatially-correlated
random process

- This is usually a convenient fiction to allow modelling.
It may include a spatially-correlated deterministic
component that we don’t know how to model.
It is a stochastic process, so there is uncertainty which is
considered pure noise

© The “pure noise” component may also have a structure
but at a finer scale than we can measure.
It also contains our ignorance about the deterministic
process and spatially-correlated random process

Conceptual issues
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Geostatistics

DGR

@ Definition
@® Detecting spatial autocorrelation
©® Modelling spatial autocorrelation

Variogram models

Predictor @ Predicting from a model of spatial autocorrelation and a
set of observations
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DGR

Definition

“Geostatistics” - definition

Inferential statistics about a population with spatial
reference, i.e. coordinates:
- Any number of dimensions (1D, 2D, 3D ...);
- Any geometry;
- Any coordinate reference system (CRS), including
locallly-defined coérdinates;
- There must be defined distance and area metrics.

Key point: observations and predictions of the target

variable (and possibly co-variables) are made at known
locations in geographic space.



DGR

Definition

Simple case: no deterministic component

- Suppose no geographic trend or spatially-distributed

covariates

- Then Z*(s) = u, where u is the stationary spatial mean.
- The universal model:

Z(s) =Z*(s) + £(s) + £'(s) (1M

- becomes:

Z(s) =u+&(s)+&(s) (2)

’This is a model assumption!‘

- The technical term here is first-order stationarity; later

we relax this assumption.

- We want to model the structure of £(s) and ignore the

pure noise £'(s)

- the noise sets a lower bound on the precision of

predictions made with the fitted model.
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DGR

Detecting spatial
autocorrelation

Post plot:

Symbol size
proportional
to attribute
value

Axes are
geographic
coordinate

“point” observation dataset

Soil samples, Swiss Jura

E (km)
Pb (mg kg-1)

Q: Is there spatial autocorrelation of the Pb concentrations?



Observation locations on the landscape
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Detecting local spatial autocorrelation

DGR

If there is local spatial autocorrelation, we need to detect it
Detecting sparial (empirically) and then model it (mathematically).

autocorrelation

- detection: h-scatterplot, correlogram or variogram
- modelling: “authorized” model of spatial covariance



DGR

Detecting spatial
autocorrelation

Point-pairs

- Any two observations in geographic space are a

point-pair.
- We know (1) their co6rdinate s; (2) their attribute values
(what was measured about them) z(s).

- For an n-observation dataset, there are (nx (n—1)/2)

unique point-pairs.
- E.g., 150-point dataset has 150 - 149/2 = 11 175 pairs!

- Each pair is separated in geographic space by a distance

and (if >1D) direction.

- Each pair is separated in feature (attribute) space by the

difference between their attribute values.



DGR

Detecting spatial
autocorrelation

Semivariance of a point-pair

- Define the semivariance y of one point-pair as:

y(si,s)) = %[z(sn — 2(s)?

- This quantifies the textbfdifference between the

attributes values at the two points.

- Squared because the order of point-pairs is irrelevant
- 1/2 for technical reasons in the kriging equations (see

later)
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h-scatterplot: correlation between point-pairs

h-scatter plot, lag distance (0, 0.05) h-scatter plot, lag distance (0.05, 0.1) h-scatter plot, lag distance (0.1, 0.15)
2 3 3
27 @ g4
8 4 8 - 8
E E E
E 8 El
2 8 8
o o o 4
Head Head Head
200 point-pairs in this lag 97 point-pairs in this lag 136 point-pairs in this lag
h-scatter plot, lag distance (0.15, 0.2) h-scatter plot, lag distance (0.2, 0.25) h-scatter plot, lag distance (0.25, 0.3)
3 4 3
8 4 8 4
& & B
3 1 3
o o
Head Head Head
177 point-pairs in this lag 380 point-pairs in this lag 515 point-pairs in this lag

Increasing lag distance h — decreasing linear correlation r.



Evidence of spatial autocorrelation from the
DGR h-scatterplot

- Point-pairs compared against the 1:1 line (equal values
Detecting spatial .
autocorrelation would be on the ||ne)

- More scatter from the 1:1 line — less linear correlation

- If the sequence of lags from close to far also shows
increasing scatter (i.e., decreasing correlation), this is
evidence of local spatial autocorrelation.
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Detecting spatial
autocorrelation

Variogram

A scatterplot showing, for all point-pairs:

(x-axis) the separation distance between the two
observations
(y-axis) their semivariance slide
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semivariance
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Variogram cloud - detail

DGR

> (vc <- variogram(logZn ~ 1, meuse,
cutoff=72, cloud=TRUE))

dist gamma left right
1 70.83784 1.144082e-03 2 1
2 67.00746 9.815006e-05 11 10
_ 3 62.64982 2.504076e-02 22 21
g 4 53.00000 2.375806e-03 23 22
oz e g 5 49.24429 8.749351e-05 26 25
s 6 62.62587 5.128294e-03 33 32
) g 7 65.60488 6.655118¢-04 39 38
Definition = 8 63.07139 2.40308le-03 72 71
Bectiokpate] g 9 63.63961 4.318603e-03 76 75
autocorrelation g 10 60.44005 4.486439e-03 84 9
“,K"\\:j\yuu‘xnynuw < 11 43.93177 1.326441e-02 87 72
autocerrel § 12 65.43699 8.178006e-02 87 80
variogram m 13 56.04463 8.764773e-03 88 73
ezl 14 55.22681 6.198261e-02 88 79
_ 15 60.41523 5.680995e-03 123 58
separation, m 16 60.82763 5.583388e-05 124 52
17 63.15853 1.344946e-01 138 76
18 56.36488 2.996326e-03 139 77

8

19 68.24222 8.550172e-03 140 91

- Note the anomalous point-pair.

- This is difficult to interpret and model, so we summarize
this with an empirical variogram (see next).



Empirical semivariogram - equation

DGR

Summarize the cloud as average semivariance y(h) in some
separation range h

m(h)
N . 2
y(h) = Smih) ,; [z(si) — z(s; + h)]

Detecting spatial
autocorrelation

- m(h) is the number of point pairs separated by vector h,
in practice some range of separations (“bin”)

- these are indexed by i

- the notation z(s; + h) means the “tail” of point-pair i, i.e.,
separated from the “head” s; by the separation vector h.



DGR

Example - aquifer
elevation

Example - soil
spatial variation

Conceptual issues

Definition

Detecting spatial
autocorrelation

Modelling spatial
autocorrelation

Variogram models

Prediction

semivariance

Empirical semivariom

+480
*439
561 °535 57,
500 574
588
300 - N =
«306 419
*357

*251

200 r
206
100 .77 L
3
T T T
10000 20000 30000

distance

- graph



Empirical variogram - numerical

DGR

v

(v <- variogram(logZn ~ 1, meuse, cutoff=1300, width=90))
np dist gamma
41 72.24836 0.02649954
212 142.88031 0.03242411
320 227.32202 0.04818895
371 315.85549 0.06543093
423 406.44801 0.08025949
458 496.09401 0.09509850
455 586.78634 0.10656591
466 677.39566 0.10333481
0
0
0
0
0
0
0

NV A WN R

503 764.55712 0.11461332
T 10 480 856.69422 0.12924402
b= 11 468 944.02864 0.12290106
12 460 1033.62277 0.12820318
13 422 1125.63214 0.13206510
14 408 1212.62350 0.11591294
15 173 1280.65364 0.11719960

np = number of point-pairs in bin
dist = average separation between the point-pairs in bin
(here, meters)

gamma = average semivariance y(h) between the
point-pairs in bin (here, log,,Zn?)

Obvious trend: wider separation — larger semivariance



Separation types

DGR

For >1D geometries:

Detecting spatial

autocorrelation - distance only: the omni-directional variogram
distance and angle: a directional variogram
includes a tolerance angle and/or maximum width



Is there local spatial autocorrelation?

DGR

- Dependence: a relation between semivariance and
separation.
- Closer in geographic space means closer in feature
e Al space.
- i.e., knowing the attribute value at one observation gives
some clue about the value at a “nearby” point
- The closer to known points, the stronger the clue
- Visualize/infer by plotting the empirical
semivariogram(s).

- If there appears to be evidence, then model
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Terminology of spatial autocorrelation

sill (also total Maximum semivariance at any
separation

range separation at which the sill is reached or
approximated

nugget semivariance at zero separation (at a point)
structural sill (also partial sill) the total sill less the nugget

i.e., the portion due to spatial
autocorrelation

nugget/sill ratio proportion of total sill due to the nugget,
i.e., unexplainable



Annotated empirical variogram

DGR
log;Pb, Jura soil samples

Example - aquifer ]
elevation a2
Example - soil 134
spatial variation 1066 130
608 615 1167
05

9802753

Conceptual issues 363-
0% 607 sill: approx. 0.031 log10PbA2 |

Definition *565

Detecting spatial
autocorrelation
Modelling spatial

autocorrelation g *197
5 o002 =
Variogram models §
Prediction g
3
262
nugget

001 4 aPProx. 0.013 log10PbA2) L

range: approx. 0.5 km

separation

Nugget/sill ratio =~ 0.42 — variability not explained €’ (s)



Evidence of spatial autocorrelation from the
DGR variogram

The empirical variogram provides evidence that there is local
spatial autocorrelation.

- The variation between point-pairs is lower if they are
e iay closer to each other; i.e. the separation is small.

- There is some distance, the range where this effect is
noted; beyond the range there is no autocorrelation.

- The relative magnitude of the total sill and nugget give
the strength of the local spatial autocorrelation; the
nugget represents completely unexplained variation.

If there is no spatial autocorrelation, we have a pure
nugget variogram.



Annotated empirical variogram - no spatial
DGR autocorrelation

Example - aquifer
elevation 363 - 608 ogs *1134

Example - soil 2
615 w130 4128
spatial variation 565 67 1130
- +980 4753 *705
Conceptual issues R
sill = nugget = 4

Definition 5] L

Detecting spatial
autocorrelation

Modelling spatial .
autocorrelation range =

Variogram models

semivariance
T

Prediction

separation

Random fluctuations around sill, due to sampling variation and
binning



How reliable is the empirical variogram?

DGR

- Recall: it is based on some sample which represents the
population.

- A different sample of the same size would give a different
variogram. Would they be consistent?

ST - i.e., when modelled (see below) would they result in
more-or-less the same model?

- Simulation studies: e.g., Webster, R., & Oliver, M. A.
(1992). Sample adequately to estimate variograms of soil
properties. Journal of Soil Science, 43(1), 177-192.

- Conclusion: 150 to 200 observations allow reliable
reconstruction of a known variogram model in the
isotropic case.
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Modelling spatial autocorrelation

DGR

- Aim: To fit a mathematical model to an empirical
variogram

e - This model must be based on some theory - this is a
Gutacorrelatior modelling assumption.

- Theory: random fields3

3Source: Webster, R., & Oliver, M. A. (2001). Geostatistics for
environmental scientists, John Wiley& Sons, Ltd.



DGR

Modelling spatial
autocorrelation

Spatially-autocorrelated random processes

- Assumption: The observed attribute values are only one

of many possible realisations of a random (“stochastic”)
process

- This process is spatially autocorrelated, i.e.,

observations are not independent

- The result is called a random field
- Different stochastic processes are represented by different

models of spatial covariance

- There is only one reality (which is sampled)
- From our one reality, we need to infer the process that

produced it

- This dictates the proper authorized variogram (or,

covariance) function.
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Four realizations of the same random field

256 x 256 grid; Spherical model; range 25; no nugget



DGR

Modelling spatial
autocorrelation

Modelling paradigm

@ Assume reality is one realization of a regionalized
varible (structure to be determined)

® Assume any spatial autocorrelation has the same
structure everywhere

- This is 2nd-order stationarity
© Make observations; summarize as an empirical variogram
O Select a model of spatial autocorrelation

© Parameterize (fit) the selected model to the empirical
variogram



Selecting a model of spatial covariance

DGR

Various methods, more-or-less in order of preference:

©@ What is known about the spatial process that produced
the field

® Previous studies of the same variable in similar
circumstances

Modelling spatial

autocorrelation © Visual asssessment of the variogram form
@ Try to fit many, automatic selection by “best” fit

© Problem with “best” fit: depends on:

@ variogram cutoff, bin width

@ criterion for “best”, e.g., more weight to more point-pairs
and closer separations

© other forms may fit almost as well



Four regionalized covariance models
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DGR

Variogram models

Variogram model equations (1)

- Only some forms are authorized, i.e., will lead to

positive-definite kriging matrices (see below). We review a
few common models.

- All can be raised by the nugget variance ¢p.
- Exponential model: sill ¢, effective range 3a

y(h) = c(l - e<‘§))

- Autocorrelation decreases exponentially with separation -

the mimimum spatial dependence.

- This is an asymptotic model: variance approaches a sill at

some effective range, by convention, wherey = 0.95c.



DGR

srrelatior
Variogram models

Variogram model equations (2)

Gaussian model: sill ¢, effective range /3a:
2
y(h) =c (1 - e’(g) )

This has strong spatial continuity near the origin
(O-separation), e.g., water table elevation, smoothly-varying
terrain properties



Variogram model equations (3)
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Matérn model family: generalizes the Exponential, Power,
Logarithmic and Gaussian models

=1 i (2) < (2)

- smoothness parameter is k; this adjust the variogram
model to the process.

Variogram models - small k implies that the spatial process is rough, large k
smooth.

- K, is a modified Bessel function of the second kind

- T is the Gamma function (generalization of the factorial
function)

- if k = 0.5 this reducesto the exponential model
- if kK = o this reduces to the Gaussian model
- most common values are k = 0.5,1,1.5,2



Variogram model equations (4)
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Spherical model: sill ¢, range a
3h 1 (n\3\ .
v | c(38-3(2)) « n<a
c : h=a

wrogammodels 1 NIS iS linear near the origin, reaches the sill ¢ at the range a
and is then constant, with a “shoulder” transition between.

It is often applied when the variable occurs in somewhat
homogeneous patches with gradual boundaries, e.qg.,
vegetation density, soil properties.



Comparing variogram models - same
DGR parameters

Comparaison of variogram models
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Example - soil S T
spatial variation
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Combining models
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- Any linear combination of authorized models is also
authorized

- Models with > 1 spatial structure at different ranges
- Common example: nugget + structural
- e.dg. nugget + exponential

Variogram models y(h) — CO + q (] — e<_g)>

- Structure at two ranges: e.g., hugget + exponential +
exponential

y(h) =co+a (1 - e(_%)> + o <1 - e<_”h2>)
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Predicting from a model of spatial
DGR autocorrelation and a set of observations

- Once we have a variogram model, it can be used to
predict at unobserved locations.
- Model without trend: Z(s) = u + &(s) + €'(s)
- The realization of the random field at point s is:
- some mean value y; plus ...
et - ...a spatially-autocorrelated random component £(s),
with a defined covariance structure (e.g., a variogram
model); plus ...
- ...pure noise ¢'(s): nugget and lack of spatial correlation
with increasing separation
- Both the expected value (1st-order) and covariance structure
(2nd-order) are stationary: the same everywhere in the field



Non-geostatistical prediction methods
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All of these have no theory of spatial autocorrelation, they
have ad hoc implicit models of spatial structure:

- nearest neighbour (Thiessen polygons, Voronoi tesselation
of space)
- average of nearest k-neighbours

- average of nearest k-neighbours weighted by inverse
distance to some power

- average of all neighbours within some radius

- average of all neighbours within some radius weighted by
inverse distance to some power

- ...with de-clustering of compact groups of known points
Choice of k, radius by cross-validation.

Prediction
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Prediction

A geostatical prediction method: Ordinary
Kriging (OK)

- The estimated value Z at a point Xg is predicted as the

weighted average of the values at all sample points x;:

N
2(x0) = > Aiz(x;)

i=1

- The weights A; assigned to the sample points sum to 1:

SN, A; =1, therefore, the prediction is unbiased.

- Many other interpolators (e.g., inverse distance) are also

linear unbiased, but OK is the “best” of all possible
weightings
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Prediction

In what sense is OK the “best” predictor?

- OK is called the “Best Linear Unbiased Predictor” (BLUP)
- “best” = lowest prediction variance of all possible

weightings

- i.e., each prediction has the smallest possible confidence
interval

- This criterion is used to derive the OK system of

equations, which is solved to determine the weights for
each sample point

- Weights depend on the spatial covariance structure as

modelled by the variogram model.

- Spatial structure between observations, as well as

between observations and a prediction point, is
accounted for.



Implications

DGR

- The prediction and its variance are only as good as the
model of spatial structure.

Points closer to the point to be predicted have larger
weights, according to the modelled spatial dependence
- Clusters of points “reduce to” single equivalent points

- i.e., over-sampling in a small area can’t bias result
- automatically de-clusters

Prediction

- Closer sample points “mask” further ones in the same
direction

Error estimate is based only on the spatial configuration
of the sample, not the data values
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Prediction

Derivation of the OK system of equations

- Aim: minimize the prediction variance, subject to the

unbiasedness and spatial covariance constraints.

- Two ways to derive the OK system:

Regression As a special case of weighted least-squares
prediction in the generalized linear model
with orthogonal projections in linear algebra

Minimization Minimizing the kriging prediction
variance with calculus

- Approach (1) is mathematically more elegant and is an

extension of linear modelling theory.

- Approach (2) is an application of standard minimization

methods from differential calculus; but is not so
transparent, because of the use of LaGrange multipliers.



Matrix form of the Ordinary Kriging system
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AN = b

y(x1,x1)  y(xi,x2) - y(xi,xy) 1
y(x2,x1)  y(xz2,x2) -+ y(x2,Xxn)

—_—

[ -

y(xn,x1)  y(Xn,X2) -y (XN, Xn)
1 1 s 1 0

A y (X1, Xo)

Ao y (X2, Xo)
A = : b= :

AN ¥ (Xn, Xo)

W 1
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Prediction

Notation

kriging weights A; to be assigned to each observation
point
semivariances y between

@ point to be predicted xo and observation points x;;

@ pairs of observation points (x;, X;)
LaGrange multiplier ¢ which enters in the prediction
variance
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Prediction

Solution

- This is a system of N + 1 equations in N+ 1 unknowns, so

can be solved uniquely for the weights vector A.
A = Ab

But to compute the matrix inverse A~! the A matrix
(spatial structure) must be positive definite

- This is guaranteed for authorized models of spatial

covariance



OK prediction

DGR

- Now we can predict at the point, as a weighted sum:
N
Z(xo) = > Aiz(x))
i=1
Prediction - The kriging variance at a point is computed as:

0%(xo) = b'A
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Prediction

Characteristics of OK prediction

@ smooth: moving across the map, the kriging weights
change smoothly, because the distance changes smoothly

@ Prediction is “best” (given the model and data) at each
point separately

© But the map is not realistic as a whole (smoother than
reality)

@ Pure noise at each point represented by the prediction
variance

@ Variance depends on the configuation of the sample
points, not the data values!
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Geostatistics with the universal model

- Recall: the universal model is: Z(s) = Z*(s) + £(s) + €'(s)
- In the previous section we replaced Z*(s) with a constant

u — 1storder stationarity.

- Now we return to the full model: both the deterministic

and spatially-autocorrelated must be modelled

- Question: How to separate the effects? or how to model

them in one step?
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Universal Kriging (UK)

- This is a mixed predictor which includes a global trend

as a function of the geographic coordinates in the
kriging system, as well as local spatial dependence.

- Example: The depth to the top of a given sedimentary

layer may have a regional trend, expressed by geologists
as the dip (angle) and strike (azimuth). However, the layer
may also be locally thicker or thinner, or deformed, with
spatial autocorrelation in this local structure - the
residuals of the trend surface.

- UK is recommended when there is evidence of 1st-order

non-stationarity, i.e. the expected value varies across
the map, but there is still 2nd-order stationarity of the
residuals from this trend.
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Base functions

- The trend is modelled as a linear combination of p base

functions f(s) and p unknown constants f8; (these are the
parameters of the base functions):

p
Z*(s) = > Bjfi(s)

j=1

- Base functions for linear drift:

fo(s) =1, fi(s) = x1, f2(s) = xz

where s; is one cooérdinate (say, E) and s, the other (say, N)

- Note that fp(s) = 1 estimates the global mean (as in OK).
- Base functions for quadratric drift: also include

second-order terms:

f3(s) = 52, fa(s) = 5152, fs(s) = 53
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Unbiasedness of predictions

- The unbiasedness condition is expressed with respect to

the trend as well as the overall mean (as in OK):

N

Z ifc(si) = fu(so), Vk

- The expected value at each point of all the functions must

be that predicted by that function. The first of these is the
overall mean (as in OK).

- Example for a linear trend: If f; (sg) = s1, then at each

point sg the expected value must be s, i.e. the point’s E
coordinate:

N

Z ?\,‘S,‘ =5

i=1

This is a further restriction on the weights A.



The UK system (1)
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Aydy = by
[ yoax) o yoaxa) 1 AGG) e fia) |
yOnxi) oo yOewxn) 1 filxw) e fie(xw)
Ay = 1 1 o 0 - 0
fi (x1) fi (xn) 0 0 0
fe(x1) fi(Xn) 0 0 o |

The upper-left block N x N block is the spatial correlation
structure (as in OK)

The lower-left k x n block and its transpose in the upper-right
are the trend predictor values at sample points

The rest of the matrix fits with Ay and by to set up the
solution.



The UK system (2)
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_ _ [ y(xi,x0) ]
A Y (X1,X0
AN ¥ (Xn,Xo0)
Ay = Yo by = 1
Y fi (xo)
L ¥k )
fk(xo0)

The Ay vector contains the N weights for the sample points
and the k + 1 LaGrange multipliers (1 for the overall mean and
k for the trend model)

by is structured like an additional column of A, but referring
to the point to be predicted.



DGR

Predicting by UK

- Same as OK: a weighted linear combination of values at

known points:

N
Z(x0) = > Aiz(xi)

i=1

- But, the weights A; for each sample point take into

account both the global trend and local spatial
autocorrelation of the trend residuals.

- The UK system must include both of these.
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Computing the empirical semivariogram for UK

- The semivariances y are based on the residuals, not the

original data, because the random field part of the spatial
structure applies only after any trend has been removed.

- How to obtain?

@ Calculate the best-fit surface, with the same base
functions to be used in UK;

@ Subtract the trend surface at the data points from the data
value to get residuals;

© Compute the variogram of the residuals.

@ Note that gstat::variogram can do this in one step.

- Problem: the trend should have taken the spatial

correlation into account!
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Characteristics of the residual variogram

- If there is a strong trend, the variogram model

parameters for the residuals will be very different from
the original variogram model, since the global trend has
taken out some of the variation, i.e. that due to the
long-range structure.

- The ususal case is:

- lower sill (less total variability)
- shorter range (long-range structure removed)

- In theory, the nugget should be unchanged (residual

variance at a point is not removed by a trend)



Example original vs. residual variogram
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Variograms, Oxford soils, CEC (cmol+ kg-1 soil)

Example - aquife
elevation

Example - soil / S~

spatial variation | "y
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|
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o

S

o

=

o
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100 200 300 400 500 600

Separation

no trend: blue, 1st-order trend: green

Note lower (partial, total) sill, shorter range, same nugger



Universal Kriging: Local vs. Global trends
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As with OK, UK can be used two ways:
- Globally: using all sample points when predicting each
point

- Locally, or in patches: restricting the sample points used
for prediction to some search radius (or sometimes
number of neighbours) around the point to be predicted
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Why use UK in a neighbourhood?

- This allows the trend surface to vary over the study area,

since it is re-computed at each prediction point

- Appropriate to smooth away some local variation in a

trend

- Difficult to justify theoretically
- Note that the residual variogram was not computed in

patches, but assuming a global trend

- Leads to some patchiness in the map
- There should be some evidence of patch size, perhaps

from the original (not residual) variogram; this can be
used as the search radius.
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Kriging with External Drift (KED)

- This is a mixed interpolator that includes feature-space

predictors, rather than geographic codrdinates (as in UK).

- The mathematics are exactly as for UK, but the base

functions are different.
UK vs. KED:

- In UK, the base functions refer to the grid coordinates;
these are by definition known at any prediction point.
- In KED, the base functions refer to some feature-space
covariates ...
- ... measured at the sample points (so we can use it to set up
the predictive equations) and
- also known at all prediction points (so we can use it in the
prediction itself).



Base functions for KED
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There are two kinds of feature-space covariates:

@ strata, i.e., factors, categorical variables. Examples: soil
type, flood frequency class

- Base function: fx(s) = 1 iff sample or prediction point s is
in class k, otherwise 0 (class indicator variable)

® continuous covariates. Examples: elevation, NDVI
- Base function: fi(s) = v(s), i.e. the value of the predictor at
the point.

Note that fo(s) = 1 for all models; this estimates the global
mean (as in OK).
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