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Statistical modelling

Statistics starts with data: something we have measured

Data is generated by some (unknown) mechanism: input
(stimulus) x, output (response) y

Before analysis this is a black box to us, we only have the
data itself

Two goals of analysis:

@ Prediction of future responses, given known inputs
@® Explanation, Understanding of what is in the “black box”
(i.e., make it “white” or at least “some shade of grey”).



Data-driven .
eihods Modelling cultures
for predictive
modelling
DGR/ k%
Modelling
cultures Data modelling (also called “model-based”)
Data-driven

Explanation vs
S assume an empirical-statistical (stochastic)
metnods data model for the inside of the black box,
e.g., a functional form such as multiple
linear, exponential, hierarchical ...
parameterize the model from the data

ession Trees

Uf - evaluate the model using model diagnostics
Algorithmic modelling (also called “data-driven”)

Bagging and - find an algorithm that produces y given x

AlTE 2 et - evaluate by predictive accuracy (note: not

forest

internal accuracy)

importance

Random forests

Reference: Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments
and a rejoinder by the author). Statistical Science, 16(3), 199-231.
https://doi.org/10.1214/ss/1009213726



https://doi.org/10.1214/ss/1009213726
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Explanation vs.
prediction
Data-driven

Explanation
& - Testing a causal theory - why are things the way they are?
Emphasis is on correct model specification and
coefficient estimation
Uses conceptual variables based on theory, which are

Sensitivity of

e e represented by measureable variables
trees - -
Prediction
‘ ‘ Predicting new (space, members of population) or future
Bagging anc A .
h (time) observations.
forest - Uses measureable variables only, no need for concepts
e
Random forests Reference: Shmueli, G. (2010). To Explain or to Predict? Statistical Science, 25(3),

for categorical

289-310. https://doi.org/10.1214/10-STS330

Predictor selection


https://doi.org/10.1214/10-STS330
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Bias/variance tradeoff

The expected prediction error (EPE) for a new observation with
value x is:

EPE = E{Y-f(x)}?
= E{Y—f(0)}2+ {E(f(0)) - f(x)}?
+E{F(0) - E(F(x)}2
= Var(Y) + Bias? + Var(f(x))

Model variance: residual error with perfect model specification
(i.e., noise in the relation)

Bias: mis-specification of the statistical model:
f(x) # f(x)
Estimation variance: the result of using a sample to estimate f

as f(x)
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Bias/variance tradeoff: explanation vs.
prediction

Explanation Bias should be minimized
correct model specification and correct
coefficients — correct conclusions about the
theory (e.g., causual relation)

Prediction Total EPE should be minimized.

accept some bias if that reduces the
estimation variance
a simpler model (omitting less important
predictors) often has better fit to the data
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When does an underspecified model better
predict than a full model?

the data are very noisy (large o );

the true absolute values of the left-out parameters are
small;

the predictors are highly correlated; and

the sample size is small or the range of left-out variables
is harrow.
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Explanation vs.

predicton - Mosteller and Tukey(1977): “The whole area of guided

Data-driven
(algorithmic

e regression [an example of, model-based inference] is
fraught with intellectual, statistical, computational, and
subject matter difficulties.”

: It seems we understand nature if we fit a model form, but
R in fact our conclusions are about the model’s mechanism,
and not necessarily about nature’s mechanism.

B20gngand - So, if the model is a poor emulation of nature, the

bootstrapping

Bullding a random conclusions about nature may be wrong ...

forest

Variable . .
importancs - ...and of course the predictions may be wrong - we are

Random forests

incorrectly extrapolating.
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Explanation vs
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Data-driven
(algorithmic)
methods

Also called “statistical learning”, “machine learning”
Build structures to represent the “black box” without using

Regression trees

sensity of a statistical model

(ssihcatien - Model quality is evaluated by predictive accuracy on test
sets covering the target population

Bagging and - cross-validation methods can use (part of) the original

— data set if an independent set is not available

forest

Variable

importance

Random forests

or selection
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Data-driven
i _—
@ Covered in this lecture
Classification & Regression Trees (CART) 432 5.[a] A #
A - Random Forests (RF) [i§ #L75 K
e o - Cubist

Classification

trees @ Others
Artificial Neural Networks (ANN) A T #1422 2%

S - Support Vector Machines
ETE A e - Gradient Boosting
Variable

importance

Random forests
for categorical
variables

Predictor selection
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Explanation vs.
prediction

([;7;5{3:‘?0 - Hastie, T., Tibshirani, R., & Friedman J. H. (2009). The elements of

methods statistical learning data mining, inference, and prediction (2nd ed). New
York: Springer. https://doi.org/10.1007%2F978-0-387-84858-7

- James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An
introduction to statistical learning: with applications in R. New York:

Regression trees

Sensitivity of

Sereon e Springer. https://doi.org/10.1007%2F978-1-4614-7138-7

- Statistical Learning on-line course (based on James et al. book):
https://lagunita.stanford.edu/courses/HumanitiesSciences/

Bagging and StatLearning/Winter2016/about

hootstrapping

Bulldinolaon - Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling (2013

Variable edition). New York: Springer.

https://doi.org/10.1007/978-1-4614-6849-3

Random forests
for categorica
variables

Predictor selection


https://doi.org/10.1007%2F978-0-387-84858-7
https://doi.org/10.1007%2F978-1-4614-7138-7
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about
https://lagunita.stanford.edu/courses/HumanitiesSciences/StatLearning/Winter2016/about
https://doi.org/10.1007/978-1-4614-6849-3
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prediction

Data-driven
(algorithmic)

methods - Shmueli, G. (2010). To Explain or to Predict? Statistical Science, 25(3),
289-310. https://doi.org/10.1214/10-STS330

P Breiman, L. (2001). Statistical Modeling: The Two Cultures (with
sensiiviy of comments and a rejoinder by the author). Statistical Science, 16(3),
B 199-231. https://doi.org/10.1214/ss5/1009213726

Classification

o Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5-32.
https://doi.org/10.1023/A:1010933404324

bostssapping - Kuhn, M. (2008). Building Predictive Models in R Using the caret

T e I Package. Journal of Statistical Software, 28(5), 1-26.

.

Random forests

for categorica
variables

Predictor selection


https://doi.org/10.1214/10-STS330
https://doi.org/10.1214/ss/1009213726
https://doi.org/10.1023/A:1010933404324
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Regression trees
Sensitivity of Regression Trees
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Decision trees @5k

Typical uses in diagnostics (medical, automotive ...)
Begin with the full set of possible decisions

Split into two (binary) subsets based on the values of
some decision criterion

Each branch has a more limited set of decisions, or at
least has more information to help make a decision
Continue recursively on both branches until there is
enough information to make a decision

Engineering Flowchart

DOES IT MOVE?
|

! !
No Yes
|
Should it? Should it?
No Yes Yes No
No
Problem

No 4
Problem

i zm —


https://www.flickr.com/photos/dullhunk/7214525854
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Explanation vs

prediction

Data-driven

I - A type of decision tree; decision is “what is the predicted
Classification & response, given values of predictors™?

Regression . . . i

Trees (CARD - Aim is to predict the response (target) variable from one
Sensitivity of or more predictor variables

Regression Trees

Classification

- If response is categorical (class, factor) we build a
classification tree

Bagging and - If response is continuous we build a regression tree
uilding a random . . . .
foest - Predictors can be any combination of categorical or

Variable

importance continuous

Random forests

or selection
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Advantages of CART

A simple model, no statistical assumptions other than
between/within class variance to decide on splits

For example, no assumptions of the distribution of
residuals
So can deal with non-linear and threshold relations

No need to transform predictors or response variable

Predictive power is quantified by cross-validation; this
also controls complexity to avoid over-fitting
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Random forests

Disadvantages of CART

No model to interpret (although we can see variable
importance)

Predictive power over a population depends on a sample
that is representative of that population

Quite sensitive to the sample, even when pruned
Pruning to a complexity parameter depends on 10-fold

cross-validation, which is sensitive to the choice of
observations in each fold

Typically makes only a small number of different
predictions (“boxes”), so maps made with it show
discontinuities (“jumps”)
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Tree terminology

splitting variable variable to examine, to decide which
branch of the tree to follow

root node R #31 & variable used for first split; overall
mean and total number of observations

interior node JEM-+ 5 & splitting variable, value on which
to split, mean and number to be split

leaf 1+ & predicted value, number of observations
contributing to it

cutpoint of the splitting variable: value used to decide
which branch to follow

growing the tree
pruning the tree
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Meuse River soil heavy metals dataset

R - Response variable: log(Zn) concentration in topsoil
Sensitivity of . .
e - Predictor variables
e @ distance to Meuse river (continuous)
@ clevation above sea level (continuous)
e © flood frequency class (categorical, 3 classes)
fﬁgw‘\\cts\\[m] a random
Variable

Random forests
for categorica
variables

Predictor selection



dist.m >= 145
<145

Splitting variable: distance to river

Is the point closer or further than 145 m from the river? 101
points yes, 54 points no.
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Explanation of first split

root: average log(Zn) of whole dataset 2.56 log(mg kg'!)
fine soil; based on all 155 observations
splitting variable at root: distance to river
cutpoint at root: 145 m
leaves
distance < 145 m: 54 observations, their mean is 2.87
log(mg kg™1)
distance > 145 m: 101 observations, their mean is 2.39
log(mg kg™1)
full dataset has been split into two more homogeneous
subsets
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Explanation vs. h
prediction 2.56
Data-driven ’ n=155

(algorithmic

methods dist.m >= 145

<145

Regression trees
Sensitivity of
Regression Trees

Classification elev >=6.94 elev>=8.15
trees
k <6.94

Bagging and
bootstrapping
Building a random
forest

Variable
importance

Random forests
for categorical
variables

Predictor selection For both branches, what is the elevation of the point?

Note: this is a coincidence in this case, different splitting
variables can be used on different branches.
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Random forests
for categorical

Explanation of second split

interior nodes were leaves after the first split, now
‘roots’ of subtrees
left: distance > 145 m: 101 observations, their mean is
2.39 log(mg kg'!) - note smaller mean on left
- right. distance < 145 m: 54 observations, their mean is
2.87 log(mg kg'1)

splitting variable at interior node for < 145 m: elevation

- cutpoint at interior node for < 145 m: 8.15 m.a.s.l.

splitting variable at interior node for > 145 m: elevation

- cutpoint at interior node for > 145 m: 6.95 m.a.s.l.

leaves 93, 8, 15, 39 observations; means 2.35, 2.84,
2.65, 2.96 log(mg kg'1)

- These leaves are now more homogeneous than the interior

nodes.



dist.m >= 230

(256 )

dist.m >= 145

<230

\n=155)
<145
elev >=8.15
<8.15
dist.m >=75



distm >= 145

elev>=6.94
<6.94

dist.m >= 230
<230

elev >=9.03
<9.03

elev>=8.15

<145

<815

distm >= 75



dist.m >= 670

distm >= 230

<670

dist.m >= 145
<145
elev>=8.15
<6.94 <8.15
dist.m >= 75
<230 <75
elev >= 6.99
<6.99
elev<7.69
>=7.69




Example regression tree - maximum possible
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DGR/% K4t

Regression trees
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@ Take all possible predictors and all possible cutpoints
@ Split the data(sub)set at all combinations

Regression trees

PEIL IS © Compute some measure of discrimination for all these -
SrmfiEon i.e., a measure which determine which split is “best”

@ Select the predictor/split that most discriminates

Bagging and . . . . .
LJH .‘ww;_ Criteria for continuous and categorical response variables:
forest see next slides

Vari

importance

Random forests
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Explanation vs.

prediction
B Select the predictor/split that most increases between-class
e variance (this decreases pooled within-class variance):
—2
Regression trees Z Z(ye,l - yl)
R € i

Classification
trees

ye; value i of the target in leaf £

bootstrapping -y is the mean value of the target in leaf £

Building a random
forest

Variable

So the set of leaves are more homogeneous, on average, than
i the root.

for categorica
variables

Predictor selection
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Explanation vs
SR Select the predictor/split that minimizes the impurity of the
memode ™ set of leaves:
Misclassification rate: Nim SicrIlyi # k(m))
RagrrsEn aas - N,;: number of observations at node m
e - R,,: the set of observations
Classiication - k(m) is the majority class; / is the logical T/F function
Impurity is maximal when all classes have same frequency,
Bagging and and minimal when only one class has any observations in
E;\‘\\C(Sh(m a random the |eaf
e So the set of leaves are purer (less confusion), on average,

Random forests

than the root.

or selection
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Example split (1)

> # all the possible cutpoints for distance to river

> (distances <
[1] 10 20
[15] 160 170
[29] 330 340
[43] 470 480
[57] 690 710
> for (i in 1:
branch.less
branch.more
rss.less <-

rss <- sum(r
results.df[i

}
> # find the b

- sort(unique(meuse$dist.m)))

30 40 50 60 70 80 100
190 200 210 220 240 260 270
350 360 370 380 390 400 410
490 500 520 530 540 550 560
720 750 760 860 1000

nd) { # try them all

<- meuse$zinc[meuse$dist.m < distances[i]]

110
280
420
570

120
290
430
630

<- meuse$zinc[meuse$dist.m >= distances[i]]
sum((branch.less-mean(branch.less))A2)
rss.more <- sum((branch.more-mean(branch.more))A2)

ss.less + rss.more)

,2:5] <- c(rss.less, rss.more, rss, l-rss/tss)

est split

> ix.r.squared.max <- which.max(results.df$r.squared)

print(results.
> print(result

distance rs
13 140 7
> # plot the r

df[ix.r.squared.max,])
s.df[ix.r.squared.max,])

s.less rss.more rss r.squared
127795 3030296 10158091 0.510464
esults

plot(r.squared ~ distance, data=results.df, type="h",
col=ifelse(distance==d.threshold,"red","gray"))

130
300
440
650

140
310
450
660



Try to split the root node on this predictor:

r.squared
00 01 02 03 04 05

T T
800 1000

I
_ | |||||1| I
T T T T
0 200 400 600

distance

Best cutpoint is 140 m; this explains 51% of the total variance
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Example split (3): R? vs. cutpoint - elevation

Try to split the root node on this predictor:

(=)
("? -
o
8 8
g o
o el
w
— o
-
=]
(=]
C)_ -
(= T T T T T
5 6 7 8 9 10
elevation

Best cutpoint is 7.48 m.a.s.l.; this only explains 35% of the
total variance; so use the distance to river as the first split
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Explanation vs.
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Regression trees
Sensitivity of
Regression Trees

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance . 7 . . 0

Random forests
for categorical
variables

feddersdesien - Best cutpoint is 6.99 m.a.s.l.; this explains 93.0% of the
variance in this group. Splitting at 290 m distance would
explain 89.1%.

So split this leaf on elevation - it becomes an interior node



fDmp‘h’dd Example split (4b): right first-level leaf
modelling

DGR/ A4t Try to split the right first-level leaf (54 observations):

Explanation vs.
prediction
Data-driven
(algorithmic)
methods

Regression trees
Sensitivity of
Regression Trees

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance s 7 . .

Random forests
for categorical
variables

feddersdesien - Best cutpoint is 8.23 m.a.s.l.; this explains 76.6% of the
variance in this group. Splitting at 60 m distance would
explain 72.6%.

So split on elevation - it becomes an interior node.
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Vari
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Random forests

Controlling tree complexity

Fitting a full tree, until there is only one observation per
leaf, is always over-fitting to the sample set, and will not
be a good predictor of the population.

A full tree fits some noise as well as structure.

Can control by the analyst or automatically by pruning
(see below).
Analyst can specify:
Minimum number of observations in a leaf (fewer: no split
is attempted): minsplit
Maximum depth of tree: maxdepth
Minimum improvement in pooled within-class vs.
between-class variance: cp (see below)
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A simple ‘model’ is applied to each leaf:

sl s - Response variable continuous numeric: mean of observed
e o data in leaf
Classiication - Categorical variable: most frequent category in leaf

Value at new location is predicted by running the covariate
Bagging and data down the tree

bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection



dist.m >= 145

<145

elev>=8.15
<6.94 <8.15
dist.m >= 230 elev <8.48 dist.m >:

elev >=6.94

Question: What is the predicted value for a point 100 m from
the river and 9 m.a.s.l. elevation?




log10(Zn), Meuse topsoils, Regression Tree

actual
26 28 3.0 32
] ] ]

2.4

22
I

2.0

fitted

Note only one prediction per leaf, applies to all points falling in
the leaf.
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Explanation vs

prediction

Data-driven

(algorithmic

etocs - The splitting can continue until each calibration
observation is in its own leaf

Regresion s - This is almost always over-fitting to the current dataset

Sensitivity of

Regression Trees

What we want is a tree for the best prediction

Solution: grow a full tree; then prune it back to a simpler
tree with the best predictive power

Classification
trees

Bagging and

Jooee - Similar to using the adjusted R? to avoid over-fitting a
e multiple linear regression

importance

Random forests

or selection
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DGR/% K 4
e - The cp “complexity parameter” value: Any split that does
TR not decrease the overall lack of fit by a factor of cp is not

Data-driven

i used.
Default value is 0.01 (1% increase in R?)
Can be set by the analyst during growing
Regtesslonjirces - Can also be used as a target for pruning
fresion e Q: How to decide on the value of cp that gives the best
predictive tree?
e A: Use the cross-validation error, also called the
u‘ out-of-bag error.
apply the model to the original data split K-fold (default

Classification
trees

Variable

importance 10), each time excluding some observations; compare

Random forests

for predictions to actual values
Predictor selection - Note how this fits the philosophy of data-driven
approaches: predictive accuracy is the criterion
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trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

X-validation error vs. complexity parameter

size of tree

1 3 5 7 9 12 14 16 20 24 28
T T T M

0.8 10
I

X-val Relative Error
0.6

0.4
I

Ty

0.2

I L L L L L L
Inf 0.089 0.019 0.0075 0.005 0.0047 0.0037 0.0031

cp

Horizontal line is 1 standard error above the minimum error.
Usually choose the largest cp below this; here cp=0.01299
(about 1.3% improvement in R?).



f"mp‘h‘dd Full and pruned trees
modelling

DGR/% K4t

Explanation vs.

prediction i
F r—@—‘

Data-driven

(algorithmic
methods an-o

256
n=155
distm >= 145

ﬁ
& =
d A

235 265 2.96
=93 =15 =39
distm>= 75

e
%)

Regression trees
Sensitivity of

Regression Trees )
Classification

trees ‘
Bagging and

distm >= 230 clev <48
bootstrapping
Building a random

<230 =848
231
=)
elev>= 903
forest EEOEECEEEEC

B 69 ) &)
Variable zzz 237 254 245 . 285 @
T G2 G0 G et w1
Random forests

for categorica
variables

S Full tree built with cp=0.003 = 0.3%; 27 leaves; pruned to 8
(cp=0.013 = 1.3%)

Interpretation: a noisy dataset if using these two predictors



Data-driven

oy Variable importance
modelling

DGR/% K4t

Explanation vs.

prediction
”wﬁ‘:w - Unlike with regression we do not get any coefficient or its
standard error for each predictor
So to evaluate the importance of each predictor we see
fearesson rees how much it’s used in the tree
e - simple:
e - sum of gain in RZ over all splits based on the predictor
complicated;
S - permute predictor values;
Buiding a random - use these to re-build the tree;
N~ compute cross-validation error;
Ll - the larger the difference, the more important

Random forests
for categorica
variables

Predictor selection



variableImportance
dist.m 55.5876
elev 38.9996
ffreq 5.4128

Normalized to sum to 100% of the gain in R?

Distance to river is most important.




Cmeinods Map predicted from Regression Tree
e

DGR/% K4t

Explanation vs.
prediction
Data-driven
(algorithmic
methods

Regression trees
Sensitivity of
Regression Trees
Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

This tree: log(Zn) predicted from dist (45% importance); E
(17%); soil1 (15%); N (11%); ffreq. (11%).



Data-driven

methods Sensitivity of Regression Trees to sample

for predictive
modelling

DGR/% K4t

Explanation vs.

prediction

o

o Question: how sensitive are Regression Trees to the
sample?

ottt - Experiment: build trees from random samples of 140 of

Regression Trees the 155 observations (only 10% not used!)

e How different are the optimized trees and the predictive

maps?

oy - What is the distribution of the optimal complexity

Buldinolede parameter and the out-of-bag (predictive) error?

Variable

Random forests
for categorica
variables

Predictor selection
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Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
prediction
Data-driven
(algorithmic)
methods

Regression trees
Sensitivity of
Regression Trees
Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

Sensitivity: predictive maps




- This is a problem!
- Solution: why have one tree when you can have a forest?



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic
methods

Regression trees
Sensitivity of
Regression Trees

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance

Random forests

Predictor selection

Classification trees

Target variable is a categorical variable

Example (Meuse river): flood frequency class (3 levels)
predicted from distance to river and elevation

Result (pruned): number of observations in each class
(left); proportion (right) - note class 3 not predicted!

1 1 1 ;
84 48 23 2 54 31 15
elev<7.6 elev<76

>=76

>=76
2 2
46 48 21 40 42 18
elev<9.1 elev<9.l

>29.1 ot
1
44 28 15

elev>=838

<88

1 1
30 26 14 .43 37 .20
elev<8.4

>=84
1
82 12 06/ (.28 .60 .12
1 1 2 1 1 2
3802 23 11 11 226 .95 00 05) (51 .24 24) (07 71 21

1 2
1421 7153




Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
prediction

Data-driven
(algorithmic)
methods

... © Random forests
Sensitity of Bagging and bootstrapping

Regression Trees

Qessiftzsien Building a random forest

Random Variable importance

foreses Random forests for categorical variables
— Predictor selection

forest

Variable

importance

Random forests
for categorical
variables

Predictor selection



Data-driven

o Random forests - motivation

for predictive
modelling

DGR/% K4t

Explanation vs.
prediction

Data-driven

(e - Instead of relying on a single (hopefully best) tree, maybe
it is better to fit many trees.

) But. .. how to obtain multiple regression trees if we have
egression trees
- only one data set?

<Rw' Syl - Go into field and collect new sample data? too expensive
R[andom and impractical.

forests - Split the dataset and fit trees to the separate parts? Too few
S observations to build a reliable tree.

e - Solution: Use the single sample to generate an ensemble
. (group) of trees; use these together to predict.

Random forests
for categorica
variables

Predictor selection



Data-driven

i Bagging (1)

for predictive
modelling

DGR/% K4t

Explanation vs

prediction

Data-driven

(algorithmic

e “Bag” = a group of samples “in the bag”; others
“out-of-bag”

Regresson rees - Suppose we have a large sample that is a good

Regression Trees representation of the study area

Classification

Cees - i.e., sample frequency distribution is close to population

frequency distribution
Bt - Generate a new sample is generated by sampling from
E;w‘wlts\w(nu a random the Samp|e|

Variable
importance

Random forests

or selection



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic
methods

Classification

trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance

Random forests

Bagging (2) - Boostrapping

Standard method for sampling in bagging is called
bootstrapping'

Select same number of points as in sample

Sample with replacement (otherwise you get the same
sample)

So some observations are used more than once!

But, the sample is supposed to represent the

population, so these could be values that would have
been obtained in a new field sample.

for historical reasons



Data-driven

ol Sampling with replacement
modelling

DGR/% K4t

Explanation vs.

prediction
B
St > # sample 20 times from (1, 2,... 20) with replacement
> (my.sample <- sample(1:20, 20, replace=TRUE))
[1] 713 5 2 1 919 1 6 2 9 912 411 9 5202011
> sort(my.sample)
‘:“i“z”;’“ [1] 112 2 4 5 5 6 7 9 9 9 91111 12 13 19 20 20
Regression Trees > (1:20) %in% my.sample # in bag
Classification [1] TRUE TRUE FALSE TRUE TRUE TRUE TRUE FALSE TRUE

trees

[10] FALSE TRUE TRUE TRUE FALSE FALSE FALSE FALSE FALSE

[19] TRUE TRUE

R > 1((1:20) %in% my.sample) # Out-of-bag

bootstrapping [1] FALSE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE

E:“‘Cti‘["qmm‘om [10] TRUE FALSE FALSE FALSE TRUE TRUE TRUE TRUE TRUE
[19] FALSE FALSE

Variable
importance
Random forests
for categorical
variables

Predictor selection



Data-driven

methods Example: 10 bootstrap samples from the

for predictive

modelling .
e integers 1 ... 20 - sorted
Explanation vs.
prdcen bl b2 b3 b4 b5 b6 b7 b8 b9 bl0
(algorithmic 1 12112 4211 3
T 2 333236 322 3
3 5332 46 3 43 5
4 6 5 6 4 4 7 4 5 3 10
Regression trees 5 7 5 6 5 7 8 6 6 5 10
Sensitivity of 6 8 5 7 5 810 7 6 6 11
S T 7 11 7 8 7 810 7 6 6 13
ez ety 8 15 7 9 8 811 9 7 7 13
9 15 81310 91210 7 8 13
1016 81510 91310 8 8 14
R 11 16 91510 11 13 13 8 9 14
bootstrapping 12 17 12 16 10 13 14 13 10 12 14
Bulldinolaon 13 17 14 16 14 13 15 14 14 12 15
Variable 14 18 14 17 16 14 16 15 17 13 16
importance 15 18 15 17 16 16 18 15 17 13 16
Rl 16 19 15 18 17 18 18 15 18 14 16
variables 17 19 16 19 17 19 18 16 19 14 17
Aty e 18 19 17 19 19 19 19 17 20 17 19
19 19 18 20 19 19 20 17 20 19 20
20 19 18 20 19 19 20 19 20 20 20



Data-driven

metnocs Forests with bagging - method

for predictive
modelling

DGR/% K4t

Explanation vs

prediction

Data-driven

(algorithmic . .

AR - Fit a full regression tree to each bootstrap sample; do
not prune

Regression trees - Each bootstrap sample results in a tree and in a predicted

S ty of . . .

Regression Trees value for any combination values of the predictors

Classification

- Prediction is the average of the individual predictions
from the “forest” of regression trees

Bagging and . ) ) )

boosrzpping - Jumps in predictions are smoothed; more precise

e predictions

importance

Random forests

or selection



Data-driven

oy Forest with bagging - limitations
modelling

DGR/% K4t

Explanation vs

prediction

Data-driven

(algorithmic

e All predictors are tried at each split, so trees tend to be
similar

Lo - Some predictors may never enter into the trees — missing

e source of diversity

trees

Solution: random forest variation of bagging - two
sources of randomness

e - Random 1: sampling by bagging

uilding a random . . .

e - Random 2: choice of predictors at each split (see next)
Variable

importance

Random forests

or selection



Data-driven

methods Random forests

for predictive
modelling

DGR/% K4t

Explanation vs

e

e Multiple samples obtained by bootstrapping, used to build
trees (as in bagging)

L - Average predictions over all trees (as in bagging)

o - Besides, in each internal node a random subset of

trees

splitting variables (predictors) is used
Extra source of diversity among trees

Bagging and . “ " o H
oo - Predictors that are “outcompeted” in bagging by stronger
o e competitors may now enter the group of trees

Variable
importance

Random forests

or selection



Data-driven

methods Selecting predictors at each split

for predictive
modelling

DGR/% K4t

Explanation vs.
prediction

Data-driven

aloorlihil - randomForest, ranger parameter mtry: Number of
variables randomly sampled as candidates at each split.

ranger default | .,/p|, where p is number of possible

‘;jjjj[f‘jjj@”[j, predictors
e - example: 60 predictors — | /60| = |7.74| = 7 tried at each
split

- randomForest default [ p/3]
Bagaing and - example: 60 predictors — [60/3] =|20] = 20 tried at each
Bulding a andor split
Ve - Can be tuned, see below.

Random forests
for categorica
variables

Predictor selection



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs
prediction

Data-driven
(algorithmic
methods

ession Trees

Classification

trees

Bagging z
bootstrapping
Building a random
forest

Variable
importance

Random forests

Other control parameters

number of trees in the forest
ranger parameter min.node.size
randomForest parameter ntree
default = 500

minimal node size
ranger parameter min.node.size
randomForest parameter nodesize
default =5

(optional) names of variables to always try at each split;
weights for sampling of training observations (to
compensate for unbalanced samples)



log10(Zn), Meuse topsoils, Random Forest

actual
2.6 28 3.0
] ]

24

22
1

2.0

fitted

Average prediction of many trees, comes close to actual value




Preiods Out-of-bag (“OOB”) evaluation

for predictive

modelling
DGR/% K 4
Explanation vs
prediction
L,‘”,,m‘m.,, - In a bootstrap sample not all samples are present:
methods sampling is with replacement.
Sample data not in bootstrap sample: out-of-bag sample:
I these were not used to build the tree.
e e - These data can be used for evaluation (“validation”):
e - Use the tree fitted on the bootstrap sample to predict at
out-of-bag data, i.e., observations not used in that
el bootstrap sample.
Building a random - Compute squared prediction error for out-of-bag data.

forest

e - This gives a very good estimate of the true prediction
e error if the sample was representative of the population.

variables

Predictor selection



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
prediction
Data-driven
(algorithmic
methods

Regression trees
Sensitivity of
Regression Trees

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

Out-of-bag RF predictions vs. observed

log10(Zn), Meuse topsoils, Random Forest

3.2

actual
2.8

2.6

24

2.0

T T T
20 25 3.0

Out-of-bag cross-validation estimates

Average prediction of many trees not using an observation.
Further from actual value; better estimate of predictive
power



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
prediction
Data-driven
(algorithmic)
methods

Regression trees
Sensitivity of
Regression Trees

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

How many trees are needed to make a forest?

Plot mean squared out-of-bag error against number of
trees

Check whether this is stable
If not, increase number of trees

m.lzn.rf
0
8
g
s
g
o o
8
8 4
S
w0
&
S 4
s
T T T T T T
0 100 200 300 400 500

trees



Data-driven

i Variable importance

for predictive
modelling

DGR/% K4t

Explanation vs Importance quantified by permutation accuracy:

prediction

Data-driven

(algorithmit - randomize (permute) values of a predictor
methods
so the predictor can not have any relation with the target

build a random forest with this randomized predictors and
the other (non-randomized) ones

Regression trees

S ty of

f\] ion - compute OOB error; compare with OOB error without
' randomization

o o the larger the difference, the more important

saing a ancer - Example:

forest

. % Increase in MSE under randomization
importance -F-Freq 9 . 4
Random forests .
dist.m 67.5
elev 54.0

or selection



dist.m

elev

ffreq
lime

soil

m.lzn.rf

%IncMSE




Data-driven

ethos Partial dependence plots

for predictive
modelling

DGR/ A4 The effect of each variable, with the others held constant at
their means/most common class.

Explanation vs.
prediction Partial Dependence on "dist.m" Partial Dependence on "elev"
Data-driven
(algorithmic)

methods
«©
N «© |
o
Regression trees
Sensitivity of
Regression Trees ~
. o~
tUajs\ﬁ(anon ~ |
rees ~
© |
o
Feetas Q
apping ~
Building a random
forest ©
X o
Variable
importance 0 |
Random forests o~
for categorical < |
variables N
Predictor selection
<
© T R R N ! N I I B
o~ T T T T T T T T T T T
0 200 400 600 800 1000 5 6 7 8 9 10

"dist.m" "elev"



Data-driven

eihocs Two-way partial dependence

for predictive
modelling

DGR/% K4 Prediction of the forest for different values of dist.m and elev

Modelling
cultures

Explanation vs.

prediction 10
Data-driven

(algorithmic)

methods

Classification &

Regression 9
Trees (CART)

Regression trees

Sensitivity of

Regression Trees

Classification
trees

prediction
3.1

N
27
25

l 23

elev

Random

forests
Bagging and
bootstrapping

Building a random
forest

Variable
importance

Random forests
for categorical
variables 6

Predictor selection

Cubist

Model tuning

Spatial random

0 250 500 750 1000
forests

dist.m

Data-driven vs.
medal.Arivan



Data-driven
methods
for predictive
modelling

DGR/ ks

Modelling
cultures

Explanation vs.

prediction Distribution of minimal depth and its mean
Data-driven

(algorithmic) X
methods dist.m

Minimal depth
Mo
[ K
M-
s
B -

Classification &
Regression

Trees (CART)
Regression trees
Sensitivity of X
Regression Trees

Classification
trees

elev

o

o

Random

forests
Bagging and freq
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Variable
<
2 0 @~
3

]

lime

)

soil

=

z
>

Predictor selection 5 100 20 P o =
Cubist Number of trees

Model tuning

spataliancon Earlier in tree — most discriminating

forests

Data-driven vs.

madal.drivan



Data-driven .
ol Uncertainty of RF maps
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic
methods

Recall: RF is built from many trees, each tree makes a
prediction at each location

Regression trees

Sensitiviy of - These are averaged to get a “best” predictive map

Regression Trees

SoxsiiEm - However, the set of predictions can be considered a
probability distribution of the true value

sasaing and - From this we can make a map of any quantile, e.g., 5%

Building a random and 95% confidence limits, or prediction interval width

Variable

importance

Random forests

or selection



K. Vaysse, P. Lagacherie / Geoderma 291 (2017) 55-64

a
- 47 - 5.57
- 2.55
-4
L3 25
-2
- 2.45
-1
- 061 - 2.40

95% prediction interval for topsoil pH
prediction from 2 024 point observations and 18 covariates
Languedoc-Roussillon region (F)




Data-driven

methods References for quantile random forests

for predictive
modelling

DGR/% K4t

Explanation vs.
prediction

Data-driven
(algorithmic
methods

Meinshausen, N. (2006). Quantile regression forests. Journal of
Machine Learning Research, 7, 983-999.
Regression trees

Sensitivity of - Meinshausen, N., & Schiesser, L., 2015. Quantregforest: Quantile
(earesion Trees Regression Forests. R package. https://cran.r-project.org

Classification

o Vaysse, K., & Lagacherie, P. (2017). Using quantile regression forest to
estimate uncertainty of digital soil mapping products. Geoderma, 291,

pa 55-64. https://doi.org/10.1016/j.geoderma.2016.12.017

fﬁgw‘\\cts\\[m] a random

yariable

importance

Random forests
for categorica
variables

Predictor selection


https://cran.r-project.org
https://doi.org/10.1016/j.geoderma.2016.12.017

Data-driven

methods Random forests for categorical variables

for predictive
modelling

DGR/% K4t

Explanation vs
prediction

Data-driven
(algorithmic

methods - Target variable is categorical, i.e., a class

Example: Meuse river flooding frequency classes (every
year, every 2-5 years, rare or none)

Regression trees
S

ty of

Regression Tres - Final prediction is the class predicted by the majority of
trees the regression trees in the forest

Can also see the probabilty for each class, by predicting
paiiieie with the model with the type="prob” argument to
Building a random .
forest predict.randomForest.
Variable

importance

Random forests
for categorical
variables

Predictor selection



Data-driven

metnocs Predicted class probabilty

for predictive
modelling

DGR/% K4t

Explanation vs.

prediction
Data-driven
(algorithmic
methods Prob. class 1 Prob. class 2 Prob. class 3

1.0 1.0
Regression trees 0.8 0.8
Sensitivity of
Regres: Tree

gression Trees 06 06

Classification
trees

04 04
Bagging and 0.2 0.2
bootstrapping
Building a random
forest 0.0 00
Variable
importance

Random forests
for categorical
variables

Predictor selection



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
prediction
Data-driven
(algorithmic)
methods

Regression trees
Sensitivity of
Regression Trees
Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance
Random forests
for categorical
variables

Predictor selection

Predicted most probable class




Data-driven

methods Accuracy measures

for predictive
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic

e - naive agreement: how often a class in the training set is
correctly predicted - see with a confusion matrix
(“cross-classification”)

eoslon Trees - Out-of-bag (OOB) estimate of error rate

Classification
Gini impurity: how often a randomly chosen training
e observation would be incorrectly assigned ...

bootstrapping ...if it were randomly labeled according to the frequency

Building a random

forest distribution of labels in the subset.

Vari

importance

Random forests
for categorical
variables

Predictor selection



A confusion matrix (a.k.a. cross-classification matrix) of
actual (columns) vs. predicted (rows) classes:

Confusion matrix:

1 2 3 class.error
177 7 0 0.08333333
2 340 5 0.16666667
3 1 9 13 0.43478261




Data-driven . -
methods Predictor selection

for predictive

modelling

DGR/% K 4

Explanation vs

prediction . .

A - Problem: large number of possible predictors, can lead to

(algorithmic
methods

Computational inefficiency
Difficult interpretation of variable importance
Meaningless good fits, even if using cross-validation?

ession Trees

Cassifcation - Solution 1: expert selection from “known” relations
this is then not pure “data mining” for unsuspected
Bagging and rE|ationS
bootstrapping . . . .
Buling a random - Solution 2: (semi-)automatic feature selection, see next.

Vari

importance
Random forests
for categorical
variables
Predictor selection

2Wadoux, A. M. J.-C., et al. (2019). A note on knowledge discovery and
machine learning in digital soil mapping. European Journal of Soil
Science, 71, 133-136. https://doi.org/10.1111/ejss.12909


https://doi.org/10.1111/ejss.12909

Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic
methods

Classification

trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance

Random forests
for categorica
variables
Predictor selection

Feature selection methods

Wrapper methods: “evaluate multiple models using
procedures that add and/or remove predictors to
find the optimal combination that maximizes
model performance.”

risk of over-fitting
high computational load

Filter methods: “evaluate the relevance of the
predictors outside of the predictive models and
subsequently model only the predictors that
pass some criterion”

does not account for correlation among
predictors
does not directly assess model performance



Data-driven

= Recursive feature elimination

for predictive
modelling

DGR/% K4t

Explanation vs
prediction

laoni - A “wrapper” method
methods

Implemented in caret: : rfe “Backwards Feature
Selection” function

Algorithm: “Recursive Feature Elimination (RFE)
coslon Trees incorporating resampling”

Classification
- @ Partition data into training/test sets via resampling
@ Start with full model, compute variable importance

peoglandl © for each proposed subset size

Buldinolede @ Re-compute model with reduced variable sets

@ Calculate performance profiles using test samples
Random forests @ Determine optimum number of predictors

for categorica
variables

Predictor selection



Data-driven

= Reference for feature selection

for predictive
modelling

DGR/% K4t

Explanation vs.

prediction
Data-driven
memode ™
From the documentation of the caret package (§5).
R s - Feature selection: https://topepo.github.io/caret/

S

ty of

Gion Trees feature-selection-overview.html

Regr

e " . Recursive feature elimination:
https://topepo.github.io/caret/

o recursive-feature-elimination.html

e DGR

Variable

o,

Random forests
for categorica
variables

Predictor selection


https://topepo.github.io/caret/feature-selection-overview.html
https://topepo.github.io/caret/feature-selection-overview.html
https://topepo.github.io/caret/recursive-feature-elimination.html
https://topepo.github.io/caret/recursive-feature-elimination.html

© Modelling cultures
Explanation vs. prediction
Data-driven (algorithmic) methods

@ Classification & Regression Trees (CART)
Regression trees
Sensitivity of Regression Trees
Classification trees

© Random forests
Bagging and bootstrapping
Building a random forest
Variable importance
Random forests for categorical variables
Predictor selection

@ Cubist
© Model tuning
@ Spatial random forests

@ Data-driven vs. model-driven methods




Data-driven .
methods Cublst
for predictive
modelling

DGR/% K4t

Explanation vs
prediction

Data-driven - Similar to CART, but instead of single values at leaves it
menods creates a multivariate linear regression for the cases in
the leaf

Advantage vs. CART: predictions are continuous, not
HiEdiy discrete values equal to the number of leaves in the
Classification regression tree.

Also can be improved with nearest-neighbours, see below

Bagging and - Advantage vs. RF: the model can be interpreted, to a

bootstrapping

Building a random certain extent.

forest

e - Disadvantage: its algorithm is not easy to understand;

Random forests

however its results are generally quite good.

Cubist



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs
prediction
Data-driven
(algorithmic
methods

Classification
trees

Bagging and
bootstrapping
Building a random
forest

Variable
importance

Random forests

Cubist

Refinements to Cubist

- “Committees” of models: a sequence of models, where

each corrects the errors in the previous one
nearest-neighbours adjustment: modify model result at
a prediction point from some number of neighbours in
feature (predictor) space.

2

!
x| =
M=

Wi[ti+(f’—fi)] Mm

where t; is the actual value of the neighbour, t; is its value
predicted by the model tree(s), and w; is the weight given
to this neighbour for the adjustment, based on its
distance D; from the target point. These are computed as
w; = 1/(D; + 0.5) and normalized to sum to one.



Data-driven
methods
for predictive
modelling

DGR/% K4t

Explanation vs.
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Example cubist model

Rule 1/1: [66 cases, mean 2.288309, range 2.053078 to 2.89098, err 0.1036
if x > 179095, dist > 0.211846
then outcome = 2.406759 - 0.32 dist

Rule 1/2: [9 cases, mean 2.596965, range 2.330414 to 2.832509, err 0.1163
if x <= 179095, dist > 0.211846
then outcome = -277.415278 + 0.000847 y + 0.56 dist

Rule 1/3: [80 cases, mean 2.772547, range 2.187521 to 3.264582, err 0.157
if dist <= 0.211846
then outcome = 2.632508 - 2.1 dist - 2.4e-05 x + 1.4e-05 vy

Rule 2/1: [45 cases, mean 2.418724, range 2.10721 to 2.893762, err 0.1822
if x <= 179826, ffreq in {2, 3}
then outcome = 128.701732 - 0.000705 x

Rule 2/2: [121 cases, mean 2.443053, range 2.053078 to 3.055378, err 0.18
if dist > 0.0703468
then outcome = 30.512065 - 0.87 dist - 0.000154 x

Rule 2/3: [55 cases, mean 2.543648, range 2.075547 to 3.055378, err 0.125
if dist > 0.0703468, ffreq = 1
then outcome = 37.730889 - 0.000314 x - 0.35 dist + 6.5e-05 y

Rule 2/4: [34 cases, mean 2.958686, range 2.574031 to 3.264582, err 0.139
if dist <= 0.0703468
then outcome = 2.982852 - 0.36 dist
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Map predicted by Cubist

Optimized Cubist prediction




© Modelling cultures
Explanation vs. prediction
Data-driven (algorithmic) methods

@ Classification & Regression Trees (CART)
Regression trees
Sensitivity of Regression Trees
Classification trees

© Random forests
Bagging and bootstrapping
Building a random forest
Variable importance
Random forests for categorical variables
Predictor selection

O Cubist
© Model tuning
@ Spatial random forests

@ Data-driven vs. model-driven methods




Pnethods Model tuning

for predictive

modelling
DGR/% K
Data-driven models have parameters that control their
e behaviour and can significantly affect their predictive

Data-driven power.

(algorithmic
methods

CART: complexity parameter

randomForest: number of predictors to try at each split;
minimum number of observations in a leaf; number of trees
in the forest

et too many predictors — trees too uniform, loss of diversity;
fees too few — highly-variable trees, poor predictions

too few observations per leaf to imprecise prediction; too
many — over-fitting

ession Trees

Bagging and

‘B""““i‘::u““;“‘“‘"%‘dm - too few trees — sub-optimal model; too many trees —
forest wasted computation
‘;;‘”;"‘”“f . - Cubist: number of committees; number of nearest
: neighbours
The model can be tuned to optimize the selection of
these.

Model tuning



Define a set of candidate

values for funing
parameter(s)

For each candidate set:

Predict
Hold-outs

Aggregate the resampling
into a performance profile
Determine the final
tuning parameters

Using the final tuning

parameters, refit the

model with the entire
training set

source: Kuhn, M., & Johnson, K. (2013). Applied Predictive
Modeling (2013 edition). New York: Springer; figure 4.4




Pretnods” Model tuning - algorithm

for predictive
modelling

DGR/% K4t

e @ For each combination of parameters to be optimized:
e @ Split the dataset into some disjunct subsets, for example

Data-driven
o 10, by random sampling.
@® For each subset:
@ Fit the model with the selected parameters on all but one of
the subsets (train subset).

R A @ Predict at the remaining subset, i.e., the one not used for
Qessiftzsien model building, with the fitted model.
- © Compute the goodness-of-fit statistics of fitting to the test
subset
peoglandl e.g., root mean square error (RMSE) of prediction; squared
Building a random correlation coefficient between the actual and fitted values,
et i.e., RZ against a 1:1 line.

Vari

S © Average the statistics for the disjunct test subsets.

Random forests

@® Search the table of results for the best results
e.g., lowest RMSE, highest R?.

Model tuning



el Model tuning - R implementation
modelling
DGR/% K 4
i“f - caret “Classification And REgression Training” package
Bt - Kuhn, M. (2008). Building predictive models in R using the
caret package. Journal of Statistical Software, 28(5), 1-26.
https://topepo.github.io/caret/index.html
E\f:_wicw‘&w:’ws - can tune 200+ models; some built-in, some by calling the
f?ii'm:‘:,':;‘”‘ appropriate package
- method:
@ set up a vector or matrix with the parameter values to test,
s e.g, all combinations of 1 ... 3 splitting variables to try, and
Bulldinolaon 1...10 observations per leaf
@ run the model for all of these and collect the
DT cross-validation statistics
SEELEE © select the best one and build a final model

Predictor selection

Model tuning


https://topepo.github.io/caret/index.html
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Model tuning example - random forest (1)

> ranger.tune <- train(x = preds, y = response, method="ranger",
tuneGrid = expand.grid(.mtry = 1:3,

.splitrule = "variance",
.min.node.size = 1:10),
trControl = trainControl(method = 'cv’))

> print(ranger.tune)

## Resampling: Cross-Validated (10 fold)
## Resampling results across tuning parameters:

##

## mtry min.node.size RMSE Rsquared  MAE

## 1 1 199.7651 0.8862826 156.1662
## 1 2 200.5215 0.8851154 156.3225
## 1 3 200.6421 0.8854146 156.2801
## 3 8 201.9809 0.8793349 158.7097
## 3 9 202.9065 0.8781754 159.7739
## 3 10 202.5687 0.8788200 159.5980
##

## RMSE was used to select the optimal model
## Final values: mtry = 2, min.node.size = 6.



#Randomly Selected Predictors
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Minimal Node Size

Find the minimum RMSE; but favour simpler models (fewer
predictors, larger nodes) if not too much difference
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Model tuning example - Cubist (1)

> cubist.tune <- train(x = all.preds, y = all.resp, method="cubist",
tuneGrid = expand.grid(.committees = 1:12,
.neighbors = 0:5),
trControl = trainControl(method = 'cv’))

## Resampling: Cross-Validated (10 fold)
## Summary of sample sizes: 139, 139, 140, 139, 139, 139,
## Resampling results across tuning parameters:

##t

##  committees neighbors RMSE Rsquared  MAE

## 1 0.1898596 0.6678588 0.1405553
## 1 1 0.1764705 0.6953460 0.1189364
## 1 2 0.1654910 0.7296723 0.1163660
## 1 3 0.1623381 0.7425831 0.1163285
## 1 4 0.1631900 0.7453506 0.1192963
## 12 3 0.1599994 0.7533962 0.1139932
## 12 4 0.1584434 0.7617762 0.1153331
## 12 5 0.1589143 0.7622337 0.1165942
\##

## RMSE was used to select the optimal model using the smallest value.
## The final values: committees = 10, neighbors = 4.



einods. Model tuning example - Cubist (2)
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. Criterion: RMSE Criterion: R?

prediction

Data-driven

(algorithmic) #Instances #Instances

methods 0 o 2 o 4 0 o 2 o 4
10 3 0 5 10— 3 0 5

S ]
k] k-] 4 L
Regression trees S o4 L ; o
Sensitivity of i @ 072+ r
Regression Trees g e L 3
Classification e 5 070 r
w @
trees [ a
Z 0154 s r § 068 1 - [
A
2 4 6 8 10 12 2 a4 6 8 10 12
Bagging and #Committees #Committees
bootstrapping
Building a random
forest
Variable Adding one neighbour reduces predictive power; adding 2

importance

Random forests ...increases it; 3 is close to optimum

for categorical
variables

pedcersdcien - Committees improve predictive power; 3 is optimum

Model tuning
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einods. Spatial random forests

for predictive

modelling
DGR/% k4
Explanation vs . - -
e - Random forests can use coordinates and distances to
Glgorithmi geographic features as predictors

e.g., E, N, distance to river, distance to a single point ...
Can also use distances to multiple points as predictors

S L Distance buffers: distance to closest point with some range
Classiiction of values
Common approach: compute quantiles of the response
variable and one buffer for each

Bagging and

bootstrapping - Each sample point has a distance to the closest pointin

Building a random

forest each quantile

Vari

importance - This uses separation between point-pairs of different

Random forests

values, but with no model.

Spatial random
forests
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P eihods OOB error vs. OK cross-validation error

for predictive
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St Zn, log(mg kg-1) Zn, log(mg kg-1)
Data-driven
(algorithmic
methods —

3.0
3.0

Regression trees
Sensitivity of
Regression Trees

Actual value
2.6
1
Actual value
2.6
Il

Classification
trees

2.2
|
2.2
|

Bagging and
bootstrapping

Building a random
forest . . . i
Variable Cross-validation fit Out-of-bag prediction
importance
Random forests K RF
for categorical

variables 0

Predictor selection

Note that RF does not use any model of spatial autocorrelation!

Spatial random
forests
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Resembles OK map, but no model was used.
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2.0

Ordinary Kriging Random forest on distance buffers

Spatial random
forests
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Hengl, T., Nussbaum, M., Wright, M. N., Heuvelink, G. B. M., & Gréler, B.
(2018). Random forest as a generic framework for predictive modeling
of spatial and spatio-temporal variables. Peer), 6, e5518.
https://doi.org/10.7717/peerj.5518
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Explanation vs
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methods

Classification

trees

Bagging and
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Building a random
forest

Variable
importance

Random forests

Data-driven vs.
madal.Arivan

Conclusion: Data-driven vs. model-based
methods

Data-driven: main aim is predictive power
Individual trees can be interpreted, but forests can not
(only can see variable importance, not choice or cutpoints)
Model-based: main aim is understanding processes

We hope the model is a simplified representation of the
process that produced the observations
If the model is correct, predictions will be accurate



Data-driven

o Conclusion: limitations

for predictive
modelling
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RETl - Data-driven methods depend on their training

"“J“ observations
They have no way to extrapolate or even interpolate to
unobserved areas in feature space

Regression trees - So the observations should cover the entire range of the

S ty of

o e population

Regr

e " - Model-based methods depend on a correct
empirical-statistical model

pa - Model is derived from training observations, but many

BT el models are possible

s - Various model-selection techniques

Random forests - Wrong model — poor predictions, incorrect understanding

of processes

or selection

Data-driven vs.
madal.Arivan
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