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Background

• Bayes’ 1763 paper [2]: theory of inverse probability in
order to make probabilistic statements about the future

• A simple use of conditional probability: “Bayes’ Rule”
• Later extended to statistical distributions: “Bayesian” =

“Bayes-like”

• Focus is on decision-making under uncertainty

• A useful way of thinking about probability.
• An increasingly common way of making inferences,

because of its flexibility
• Can handle arbitrarily complex models, e.g., hierarchical
• Modern computing methods make this accessible
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History

• Frequentist
• R A Fisher at Rothamstead Experimental Station (England),

1920’s and 1930’s
• developed by well-known workers (Yates, Snedecor,

Cochran . . . )
• Common statistical computing packages follow this

• Bayesian
• named for Thomas Bayes (1701–1761)
• developed since the 1960’s (Jeffreys, de Finetti, Wald,

Savage, Lindley . . . )
• requires sophisticated computing and complex

mathematics
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Principal differences

• Interpretation of the meaning of probability

• Hypothesis testing

• Prediction
• Presentation of probabilistic results

• e.g. confidence intervals vs. credible intervals

• Computational methods
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What is probability?

Frequentist the probability of an outcome is the proportion
of experiments in which the outcome occurs, in
some hypothetical repetitions of the experiment
under the same conditions and with the same
population

Bayesian subjective belief in the probability of an outcome,
consistent with some axioms

In both cases, experiments/observations of a sample are used
for inference.
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Bayesian concept of probability

• the degree of rational belief that something is true;
• so certain rules of consistency must be followed

• All probability is conditional on evidence;

• Any statement has a probability distribution;

• any value of a parameter has a defined probability;

• Probability is continuously updated in view of new
evidence.

• So, there is a degree of subjectivity; but this is reduced as
more evidence is accumulated.
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Types of probability

• Prior probability: before observations are made, with
previous knowledge;

• Posterior probability: after observations are made, using
this new information;

• Unconditional probability: not taking into account other
events, other than general knowledge and agreed-on facts;

• Joint probability: of two or more event(s);

• Conditional probability: in light of other information, i.e.,
some other event(s) that may affect it.
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Bayesian thinking about statistical
distributions

• Parameters of statistical distributions are random
variables, i.e., they also have their own statistical
distributions, which in turn have parameters, often called
hyperparameters

• Statistical inferences are based on a posterior (“after the
fact”) distribution of parameters of statistical distributions

• These are updated versions of prior (“before the fact”)
beliefs based on data from experiments or observations.

• The updating depends on the likelihood of each possible
value of the parameters, given the data actually observed.
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Subjectivity in Bayesian thinking

• It is required to have prior probability distributions, set by
the analyst

• “Solution”: non-informative (actually, “minimum prior
information”) priors

• But do we want these? In most situations we have prior
evidence to incorporate in the decision-making.

• The selection of model form in both Bayesian and
classical approaches is subjective

• although the fit of the model form to the data can be
compared (internal evaluation).
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Bayes’ Rule (1)

• One aspect of Bayesian computation is not controversial:
Bayes’ Rule derived from the definition of conditional
probability.

• P(A),P(B) unconditional probability of two events

• Joint probability P(A∩ B) of two events A and B, i.e., that
both occur.

• Reformulated in terms of conditional probability, i.e., that
one event occurs conditional on the other having occurred:

P(A∩ B) = P(A | B) · P(B) = P(B | A) · P(A) (1)

where | indicates that the event on the left is conditional
on the event on the right.
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Bayes’ Rule (2)

• Equating the two right-hand sides and rearranging gives
Bayes’ Rule:

P(A | B) = P(A) · P(B | A)
P(B)

(2)

or

P(B | A) = P(B) · P(A | B)
P(A)

(3)

• P(B | A)/P(B), P(A | B)/P(A) are likelihood ratios – the
additional strength of evidence
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Reformulation

The denominator P(B) can also be written as the sum of the
two mutually-exclusive intersection probabilities, one if event
A occurs P(A) and one where it does not occur P(¬A):

P(B) = P(B | A) · P(A)+ P(B | ¬A) · P(¬A) (4)

We rename the probabilities to correspond to the concept of
an observed “event” E and an unobserved or unknowable event
for which we want to estimate the probability H (“hypothesis”).

Bayes’ Rule for the binary case then can be written:

P(H | E) = P(H) · P(E | H)
P(E | H) · P(H)+ P(E | ¬H) · P(¬H)

(5)
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Example – land cover classification (1)

• P(H) the probability that a pixel in the image covers an
area of water

• P(E) pixel NDVI is below a certain threshold, say 0.1
• P(H|E) the probability that, given that a pixel’s NDVI is

below the threshold, it covers water
• this is what we want to know

• P(H ∩ E): the probability of a pixel in the image covers
water and its NDVI is below the threshold

• P(H ∩¬E): the probability of a pixel in the image covers
water, but its NDVI is not below the threshold

• water body contains many aquatic plants, specular
reflection . . .

• P(E|H) the probability that, given that a pixel covers
water, its NDVI is below the threshold

• P(E|¬H) the probability that, given that a pixel covers
water, its NDVI is not below the threshold



Introduction to
Bayesian

(geo)-statistical
modelling

DGR

Background

Bayes’ Rule

Bayesian
statistical
inference
Bayesian inference
for the Binomial
distribution

Probability
distribution for
the binomial
parameter

Posterior
inference

Hierarchical
models

Multi-
parameter
models

Numerical
methods

Multivariate
regression

Spatial
Bayesian
analysis

References

Example (2)

• We want to classify the image into water/non-water:
hypothesis H is that the area represented by a pixel is in
fact mostly covered by water

• We have a training sample with some pixels in each class

• For each of these, we compute the NDVI of the pixel, from
the imagery: event E that we can observe is that a pixel’s
NDVI < 0.1.

• P(H) is the prior probability that a random pixel area
mostly covers water

• proportion from training sample or prior estimate

• P(E | H) if a pixel really does cover water, what is the
conditional probability it will have a low NDVI: sensitivity

• P(E | ¬H): false positives, inverse of specificity
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Example – computation

# prior estimate 20% of the image covered by water
p.h <- 0.2
# sensitivity: 90% of water pixels have low NDVI
# (from training sample)
p.e.h <- 0.9
# false positive rate: 10% of non-water pixels have low NDVI
# (from training sample)
p.e.nh <- 0.1
# denominator of likelihood ratio:
# predicted overall proportion of low-NDVI pixels in the iamge
# (p.e <- (p.e.h * p.h) + (p.e.nh * (1 - p.h)))
## [1] 0.26
# likelihood ratio: increase in probability of hypothesis
# given the evidence
(lr.h <- p.e.h/p.e)
## [1] 3.461538
# posterior probability
(p.h.e <- p.h * lr.h)
## [1] 0.6923077
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What affects the posterior probability?

1 P(H), the prior probability of the hypothesis.
• The higher the prior, the higher the posterior, other factors

being equal. In the absence of any information in a
two-class problem, we could set this to 0.5.

2 P(E | H), the sensitivity of the hypothesis to the evidence.
• The higher this is, the more diagnostic is the NDVI; it is in

the numerator of the likelihood ratio.

3 P(E | ¬H), the false positive rate (complement of the
specificity).

• The higher this is, the less diagnostic is the NDVI, since it is
in the denominator.



Introduction to
Bayesian

(geo)-statistical
modelling

DGR

Background

Bayes’ Rule

Bayesian
statistical
inference
Bayesian inference
for the Binomial
distribution

Probability
distribution for
the binomial
parameter

Posterior
inference

Hierarchical
models

Multi-
parameter
models

Numerical
methods

Multivariate
regression

Spatial
Bayesian
analysis

References

Effect of prior

●

●

●

●

●
● ●

0.0 0.2 0.4 0.6 0.8 1.0

0.
2

0.
4

0.
6

0.
8

1.
0

Sensitivity 0.9, Specificity 0.9
Prior

P
os

te
rio

r



Introduction to
Bayesian

(geo)-statistical
modelling

DGR

Background

Bayes’ Rule

Bayesian
statistical
inference
Bayesian inference
for the Binomial
distribution

Probability
distribution for
the binomial
parameter

Posterior
inference

Hierarchical
models

Multi-
parameter
models

Numerical
methods

Multivariate
regression

Spatial
Bayesian
analysis

References

Effect of sensitivity
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Bayes’ Rule for multivariate outcomes

This can be generalized to a sequence of n mutually-exclusive
hypotheses Hn, given some evidence E.
The posterior probability of one of the hypotheses Hj is:

P(Hj | E) = P(Hj) ·
P(E | Hj)

P(E)
(6)

P(E) =
∑n

j=1 P(E | Hj) · P(Hj) is the overall probability of the
event.
This normalizes the conditional probability P(Hj | E).
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Bayesian statistical inference

The term “Bayesian” has been extended to a form of inference
for statistical models where we:

• update a prior probability distribution (“before
observations or experiments”) of model parameters . . .

• with some evidence to obtain a posterior probability
distribution (“after observations or experiments”) of
model parameters . . .

• based on the likelihood of the results of observations or
experiments considering possible values of the
parameters.

• This step is called estimation of the model parameters . . .

• We can then use these estimates for prediction of the
target variable(s).
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Bayesian view of statistical models

A statistical model has the following general form, using the
notation [·] to indicate a probability distribution:

[Y , S | θ] (7)

• Y is the joint distribution of some variable(s) for given
values of model parameter(s) θ

• the values of the variables are determined by some
unobservable process S: the signal

• we can not account the noise, i.e., random variations not
accounted for by the process.

• decompose as:

[Y , S | θ] = [S | θ] [Y | S, θ] (8)
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Bayesian inference from data

1 Assume some model form, with unknown parameters θ,
which is supposed to produce signal S

2 Observe some of the Y produced by the signal S

3 use these to estimate a probability distribution for θ
4 then use the statistical model to predict other values

produced by the process.

[S | Y] =
∫
θ
[S | Y , θ] [θ | Y]dθ (9)

Note that the prediction depends on the entire posterior
distribution of the parameters θ
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Model parameters are random variables

• In Bayesian inference we assume that the true values of
model parameters θ are random variables, and therefore
have a joint probability distribution with the observations:

[Y , θ] = [Y | θ] [θ] (10)

• The term [θ] is the marginal distribution for θ, i.e., before
any data is known; therefore it is called the prior
distribution of θ.

• Inference is then based on sampling from the posterior
distributions of the different model parameters.

• Can find the most likely value, but also use the full
distribution for simulating possible scenarios.

• Example: linear regression: a joint probability distribution
of the parameters of the regression model (coefficients,
their errors, their inter-correlation).
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Frequentist view

• parameters of statistical models are considered to be
fixed, but unknowable by finite experiment.

• Conduct more experiments, collect more evidence →
come closer to the “true” value as a point estimate

• Assume an error distribution → confidence intervals
around the “true” value

• Assumes that there is a “true” population value.
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Bayesian inference for the Binomial
distribution

• The Binomial distribution: a continuous probability
distribution, with one parameter θ ∈ [0 . . .1]

p(k,n) =
(

n
k

)
θk(1− θ)n−k (11)

• k is the number of “successes” in n independent,
exchangeable Bernoulli trials

• i.e., with two mutually-exclusive possible outcomes
conventionally referred to as “successes” and “failures”,
0/1, True/False

• It models any situation where a number of independent
observations n is made, each with one of two
mutually-exclusive outcomes.

• The process S is thus some process that only gives one of
these outcomes for each observation.
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Example

(1) Plot a histogram of the probability of 0 . . .24 heads in 24
flips of a fair coin with the dbinom “binomial density” function.

(2) Compute the probability of exactly 10 heads in 24 flips.(
24
10

)
0.510(1− 0.5)24−10 = 0.1169

> plot(dbinom(0:24, size=24, prob=0.5), type="h",
xlim=c(0,24),
xlab="# of heads (k)", ylab="Pr(k)",
main="probability of 0..24 heads in 10 flips of a fair coin")

> dbinom(10, size=24, prob=0.5)
[1] 0.1169
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Binomial probabilities
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The inverse view

Looking at this distribution from the opposite perspective, we
see that if we observe any number 0 . . .24 heads in 24 trials,
this is evidence of different strength for all values of θ.
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Probability distribution of a model parameter

• The aim of Bayesian inference is to have a full probability
distribution for a parameter, here θ of the Binomial
distribution.

• That is, we do not want to determine a single most
probable value for θ;

• Instead we want to determine the probability of any value,
or that the value is within a certain range, or that the value
exceeds a certain number.

• For this we need a distribution for θ, parameterized by
one or more hyperparameters.
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Likelihood ratio

We extend Bayes’ Rule to full distributions of a parameter,
given the evidence of k successes in n trials:

p(θ | k,n) = p(θ) · p(k,n | θ)
p(k,n)

(12)

• The posterior probability of any proportion of successes
θ, given that we observe k successes in n trials:

• the prior probability distribution of θ ∈ [0 . . .1] from
previous evidence or knowledge . . .

• . . . multiplied by the likelihood ratio

p(k,n | θ)
p(k,n)

(13)

LR: probability of finding a given number k success in n
trials for a known value of θ. . .
. . . divided by the probability of finding k successes in n
trials, no matter what value of θ.
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Denominator of the likelihood ratio

For the binomial distribution, the denominator is an integral
over all possible values of θ, which reduces to a very simple
form:

p(k,n) =
∫ 1

θ=0
p(k,n|θ)dθ

=
(

n
k

)
· Beta(k + 1, (n− k)+ 1)

=
(

n
k

)
· Γ(k + 1)Γ((n− k)+ 1)Γ(n+ 2)

=
(

n
k

)
· k!(n− k)!
(n+ 1)!

= n!
k!(n− k)!

· k!(n− k)!
(n+ 1)!

= 1
n+ 1

(14)

Most distributions do not integrate so easily! In those cases
numerical integration must be used.
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Likelihood function

Plot the continuous distribution of the likelihood:

> (p.k.n <- 1/(n+1)) # normalizing constant
[1] 0.04
> curve(dbinom(k, size=n, prob=x)/p.k.n,

xlab=expression(theta),
ylab=expression(paste(plain("p( (k, n) | "),

theta, plain(") / p( (k, n) )"))),
main="Likelihood ratio, given 10 heads in 24 coin flips")

> abline(v=k/n, col="red", lty=2)
> abline(h=1, col="blue", lty=3)
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Likelihood function (2)

The likelihood ratio can also be written with the reverse
functional relation, i.e., θ as a function of k,n:

`(θ | k,n) = p(k,n | θ) (15)

where the ` function is read as “the likelihood of”.

This is another way of thinking about the relation between the
observations and the parameter: the likelihood that the
parameter has a certain value, knowing the observations, i.e.,
considering the data as fixed.
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Computing the unnormalized posterior
distribution

• The likelihood function is also called the sampling density
because it depends on having taken a sample, i.e., having
made a trial.

• Once we have the prior probability distribution and the
likelihood function, we compute the (un-normalized)
posterior probability distribution by a modification of
Bayes’ Rule, applying to distributions:

p(θ | x)∝ p(θ) · `(θ | x) (16)

Note ∝ “proportional to”, not = “equals”.

• This is the fundamental equation of Bayesian inference.
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Probability distribution for the binomial
parameter

• θ can take any value from [0 . . .1]
• we need to find a probability distribution for it

• function f (θ): domain R ∈ [0 . . .1] (possible values of θ)
and range [0 · · ·1] (their probability)

•
∫ 1
0 f (θ) = 1

• this distribution will be parametrized by one or more
hyperparameters
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Conjugate prior distribution

• preferable to find a function that has the same form prior
and posterior, i.e., after being multiplied by the likelihood

• this is called a conjugate prior

• It is desirable because we may want to later use the
posterior distribution as a prior in further analysis
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Conjugate prior for the binomial distribution

• Beta distribution with two hyperparameters α and β

Beta(θ;α,β) = 1
B(α,β)

θα−1(1− θ)β−1 (17)

• The first term is a normalizing constant to ensure that the
total probability integrates to 1, using the Beta function:

B(α,β) = Γ(α)Γ(β)Γ(α+ β) (18)

• Γ(x) = ∫∞0 tx−1e−tdt, the generalization to the real
numbers of the factorial. For integer x, Γ(x + 1) = x!.

• So, the normalizing constant is:

1/B(α,β) = Γ(α+ β)Γ(α)Γ(β) (19)
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Why is it conjugate? (1)

p(θ)∝ θα−1(1− θ)β−1

`(k,n | θ)∝ θk(1− θ)n−k

p(θ | k,n)∝ p(θ) · `(k,n | θ)
p(θ | k,n)∝ θα+k−1(1− θ)β+(n−k)−1 (20)

So the posterior also has the form of a Beta distribution
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Why is it conjugate? (2)

• If prior p(θ) ∼ Beta(α,β), and the number of successes k
in n trials follows the binomial distribution with parameter
θ, then the posterior becomes

p(θ | k,n) ∼ Beta(α+ k, β+ (n− k))

• This simple updating formula allows us to modify a prior
Beta distribution to posterior Beta distribution that takes
into account the data.

• Note that the larger the n, the less important are the prior
values of the hyperparameters.
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Hyperparameters of the Beta distribution

α α+ 1 number of “successes”

β β+ 1 number of “failures”

(α+ β− 2) total number of trials
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Parameterizing the Beta distribution

• Expected value of a Beta-distributed θ is:

Eθ =
∫ 1

0

Γ(α+ β)Γ(α)Γ(β)θα−1(1− θ)β−1θdθ

= α/(α+ β) (21)

• Because of the −1 in the exponents of the Beta
distribution, this number is better given as (α+ β+ 2),
and the numerator as (α+ 1)

• Then expected proportion is (α− 1)/(α+ β− 2)
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Selecting prior hyperparameters

1 α as the modal number of “successes” in (α+ β) trials.
• more trials → more prior evidence

2 Use the expected mean and the variance to solve two
equations in two unknowns to obtain the two
hyperparameters:

Eθ = α
(α+ β) (22)

Varθ = αβ
(α+ β)2(α+ β+ 1)

(23)

• As the number of trial increases, the variance decreases
• This requires an expert judgement of a variance, which is

not as intuitive as a mean and sample size.
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Plot of informative priors
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Non-informative prior

• Parameterize the Beta distribution such that all values of θ
are a priori equally likely, and all inferences about the
distribution of θ come from the data.

• “Non-informative” is not really good terminology, as even
absence of information is information. The idea is to
represent in some sense the least amount of information,
i.e., maximum a priori ignorance, consistent with the form
of the prior distribution.

• One choice1 is α = β = 1:

Beta(x;1,1) = 1
B(1,1)

x1−1(1− x)1−1 = 1
B(1,1)

= 1 (24)

Uniform on [0 . . .1], does not depend on the Binomial
parameter

1used by Bayes in his Essay
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Plot of non-informative prior
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Updating based on evidence

• Suppose we observe 10 “successes” in 24 Bernoulli trials
• What is the distribution of the parameter of the Binomial

distribution θ . . .
• starting from the non-informative prior α = β = 1

• posterior α = 11, β = 15
• starting from an informative prior somewhat far from this,
α = 19, β = 13; total “prior evidence” 30 trials.

• posterior α = 33, β = 27
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Posterior distributions for θ
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Credible intervals

• compute a credible interval within which we believe, with
some probability, the parameter lies

• We obtain credible intervals from the quantiles of the
distribution, prior or posterior.

• To do this, we find the upper limit c of the definite integral
of the distribution, such that it equals the desired
quantiles q, for example q = 0.05 and q = 0.95 for the
90% credible interval.∫ c

0
p(θ|k,n)dθ = q (25)
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> ## informative prior
> (cred.inf.pre <- qbeta(c(0.05, 0.95),

shape1=prior.a, shape2=prior.b))
[1] 2
> (cred.inf.post <- qbeta(c(0.05, 0.95),

shape1=prior.a+k, shape2=prior.b+(n-k)))
[1] 0.4085025 0.6264798

> ## non-informative prior
> (cred.non.inf.pre <- qbeta(c(0.05, 0.95),

shape1=1, shape2=1))
[1] 0.05 0.95
> (cred.non.inf.post <- qbeta(c(0.05, 0.95),

shape1=1+k, shape2=1+(n-k)))
[1] 0.2698531 0.5831620

Note the narrower credible interval 0.218 from the informative
prior vs. the non-informative prior 0.281.
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Simulation of posterior intervals

Can also compute intervals by simulation:

1 draw samples with the rbeta “random value from the beta
distribution” function

2 find the quantiles of the simulated draw with the
quantile function

3 compute any summary (>,< some quantile, within some
range . . . )

Note: not necessary in this case because the posterior is
expressible analytically, but this method works for any
posterior distribution
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Simulated credible intervals for θ

Simulated Binomial parameter, non−informative prior

90% credible interval
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Prediction

• Recall the general form of the predictive distribution:

[S | Y] =
∫
θ
[S | Y , θ] [θ | Y]dθ (9)

• Here the process S is the set of Bernoulli trials

• We want to predict results of a future set, based on the set
we’ve seen (Y ) and the posterior distribution of the
parameter of the Binomial process (θ).

• Integrate the predictions from each value of the parameter
based on its posterior probability:

p(ỹ | y) =
∫

p(ỹ | θ)p(θ|y)dθ (26)

• Can evaluate this by simulation of θ, and from that p(k,n).
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Frequency of θ for 2048 draws from its posterior distribution

Random draws of θ from posterior distribution; non−informative prior
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Density of p(k,24) for 2048 draws from the posterior
distribution
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Compare 4 simulations
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Prediction from non-informative prior

Density of p(k,24) for 2048 draws from the posterior
distribution – in theory all values are equally likely

Random draws of θ
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Hierarchical models

• A hierarchical model, also called a multilevel model, is
one where several posterior distributions must be
estimated, with some depending on others.

• Example: a multinomial mixture of binomial distributions
The population is divided into m groups, each with its own
separate binomial distribution:

p(kj) =
(

nj

kj

)
θkj

j (1− θj)nj−kj (27)

• The division of the population into groups is also
probabilistic and represented by a multinomial
distribution:

f (n1,n2, . . .nm;n;ψ1,ψ2, . . .ψm) = Pr(X1 = n1,X2 = n2, . . .Xm = nm)

= n!
n1!n2! . . .nm!

ψn1
1 ψ

n2
2 . . .ψ

nm
m

(28)
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Example

128 draws of 100 items each from ψi = 0.2,ψ2 = 0.5,ψ3 = 0.3
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Application

• A soil sampling campaign where we will make a fixed
number n of spatially-random observations, constrained
by the budget, to determine the proportion of soils that
require some intervention based on a critical limit.

• Several soil types: a multinomial distribution

• Within each soil type, a proportion of soils θj that exceed
the limit: kj of the nj samples of that soil type will require
intervention: a set of binomial distributions

• Q: Why not just use the maximum likelihood binomial
mean/standard deviation from the completely random
sample?

• A: The hierarchical approach allows the use of prior
probability distributions. This is especially important with
small sample size.
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Multilevel model

Level 1 kj | θj ,nj ∼ Binomial(θj ,nj), the number of
observations of the total nj in soil type j
requiring intervention;

Level 2 θj | αj , βj ∼ Beta(αj , βj), the distribution for the
binomial parameter θj in soil type j;

Level 3 nj | ψ1,ψ2, . . .ψm,n ∼
Multinomial(ψ1,ψ2, . . .ψm,n), the number of
observations of soil type j, out of the total
number of observation n, for each of the m
possible soil types;

Level 4 ψj | α1, α2 . . . αm ∼ Dirichlet(α1, α2 . . . αm), the
distribution of the m multinomial parameters.

The Dirichlet distribution is the multivariate analogue of the
Beta distribution:

D(α) = 1
B(α)

m∏
j=1

x
αj−1
j (29)
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Draws from Dirichlet distribution

Informative: estimate (0.2,0.5,0.3); non-informative all 0.3
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Posterior proportions

Suppose 128 observations in classes (24,64,40):

●

●●
●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Type2Ty
pe

1

Type3

Type2

Type1 Type3

Posterior from informative prior

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

● ●
●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●
●

●

●
●

●

●

●●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

● ●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

● ●●

●

●

●

● ●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9 1

Type2Ty
pe

1

Type3

Type2

Type1 Type3

Posterior from non−informative prior

Note how information concentrates the posterior distributions
of Dirichlet(α1, α2, α3)
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Posterior counts – per soil type

Suppose the soils requiring intervention are
(12/24,20/64,10/40); all with non-informative prior
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Posterior counts – for all soil types
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1 Background

2 Bayes’ Rule

3 Bayesian statistical inference
Bayesian inference for the Binomial distribution
Probability distribution for the binomial parameter
Posterior inference

4 Hierarchical models

5 Multi-parameter models

6 Numerical methods

7 Multivariate regression

8 Spatial Bayesian analysis
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Multi-parameter models

• Models have > 1 parameter; in general not independent;
their joint as well as marginal distributions must be
estimated

• Example: normal (“Gaussian”) distribution; two
parameters:

1 the location µ, also called the mean;
2 the dispersion σ 2, also called the variance.

Can be convenient to work with the inverse 1/σ 2, called the
precision, written as τ.

The density function is:

f (x | µ,σ) = 1√
2πσ2

exp

{
−1

2
(x − µ)2
σ2

}
(30)
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Likelihood

`(µ,σ2 | x) = (31)

p(x | µ,σ2) =
n∏

i=1

p(xi | µ,σ2) (32)

= (2πσ2)−n/2 exp

− 1
2σ2

n∑
i=1

(xi − µ)2
 (33)

As the parameters µ and σ2 change, so does the likelihood of
having observed the values x.
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Distributions for the Normal distribution
parameters

Most common:
• For µ, another Normal distribution

• hyperparameters (µ0, σ 2
0 );

• For σ2, an inverse χ2 distribution
• hyperparameter ν, the degrees of freedom:

χ−2
ν (x) =

2−ν/2Γ(ν/2)x−(ν/2)−1e−1/(2x) (34)

More degrees of freedom → more probable that the
variance σ 2 is small.

• Usually scaled: additional parameter τ2 = 1/σ 2, the inverse
of the variance of the process.
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Inverse χ2 distribution
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Multivariate normal distribution

• Several variables; all marginal distributions are normal,
each with their own parameters

• The variables may be correlated, i.e., instead of a
variance, there is a variance-covariance matrix

• Parameters:

µ vector of meansΣ variance-covariance matrix

• PDF: a generalization of the univariate normal distribution:

det (2πΣ)− 1
2 exp

{
− 1

2
(x− µ)′Σ(x− µ)}
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Numerical methods

• Most models can not be reduced to analytical forms.

• Their posterior distributions can not be computed as a
closed form

• This is often because the denominator (proportionality
constant) in the fundamental Bayesian inference formula
has no closed form.∫

p(θ) · p(Y | θ)dθ

• The required integration over the parameter space must
be done by numerical simulations of the posterior
distribution

• This requires substantial computer power and some
mathematical tricks.
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MCMC

• The most common method to simulate posterior
distributions is the Markov chain Monte Carlo2 (MCMC)
method.

• This is an algorithm for sampling from a (multivariate)
probability distribution that can not be expressed as a
closed form, based on constructing a Markov chain that
has the desired distribution, e.g., posterior or predictive,
as its equilibrium distribution.

• Markov chain: sequence of values of parameter(s) where
value at θt+1 depends only on previous value θt, not on
the entire history of the chain

• so, conditional on the present value, future and past values
are independent.

2Just a fancy name for “random”
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The Gibbs sampler

Repeatedly sample from the full conditional distribution of
each of the k parameters in the posterior distribution, one
parameter i at a time: p(θi | θj 6=i , i = 1,2, . . .k)

1 Pick arbitrary starting values x0 = (x0
1 , . . . x

0
k ). This does

not depend (yet) on the observations Y .

2 Make a random drawing from the full conditional
distribution π(xi | x−i , i = 1, . . .k), as follows:

x1
1 from π(x1 | x0

−1 | Y)
x1

2 from π(x2 | x1
1 , x

0
3 , . . . x

0
k | Y)

x1
3 from π(x3 | x1

1 , x1
2 , x

0
4 , . . . x

0
k | Y)

. . .
x1

k from π(xk | x1
−k | Y)

This results in an updated full conditional distribution
x1 = (x1

1 , . . . x
1
k | Y).

Under certain conditions this converges to a steady-state
distribution.
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Multivariate regression

• This model has the well-known form: yi = (Xi)Tβ+ εi, with
i.i.d. Gaussian errors: εi ∼N (0, σ2)

• Can be directly solved by OLS, but that assumes
independence of the β.

• β is a vector of regression coefficients; each of these has
its own standard error and these may be correlated with
each other

• The priors are semi-conjugate and a priori independent:

β ∼ MVN(b0,B−1
0 ) (35)

1/σ2 = τ ∼ Γ(c0/2,d0/2) (36)

• Assume a priori (without evidence) that the distribution of
the β vector is independent of the distribution of the
1/σ2 = τ
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Conditional posterior probability for β

p(β | σ2,y,X) ∼ MVN((X′X)−1Xy′, σ2(X′X)−1) (37)

which is the OLS formulation.

Note how the variance-covariance matrix of the regression
parameters depends on the residual variance of the regression.
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Marginal posterior distributions for βm

This requires integrating out the variance:

p(βm | y,X) =
∫ +∞

0
p(βm | σ2,y,X)dσ2 (38)

Similarly, for the marginal posterior distribution of the
regression variance σ2, we need to integrate out the
regression coefficients.
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Computation

• The MCMCregress function of the MCMCpack package
generates a sample from the posterior distribution of a
(multiple) linear regression model with Gaussian errors,
using using Gibbs sampling.

• The prior distribution for the β vector (regressors) must
be multivariate Gaussian, and that for the error variance
an inverse-Γ prior.

• The returned sample from the posterior distribution can
be analyzed with functions provided in the coda
“Convergence Diagnosis and Output Analysis and
Diagnostics for MCMC” package
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The MCMCregress function

• generates a sample from the posterior distribution of a
(multiple) linear regression model with Gaussian errors,
using the Gibbs sampler.

• Hyperparameters:
b0 a vector of the mean prior values of β;
B0 a matrix of the prior precisions of each β; this can be a

full matrix (precisions of different predictors are
correlated).

c0 c0/2 is the shape parameter of the inverse-Γ prior for
σ2; the amount of information represents c0
pseudo-observations;

d0 d0/2 is the scale parameter of the inverse-Γ prior for
σ2; it represents the sum of squared errors of the c0
pseudo-observations;

• Control arguments:
burnin the number of burn-in iterations, i.e., before statistics

are collected for the posterior distribution; default
1000;

mcmc The number of MCMC iterations after burn-in; default
10000.
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Example: Meuse River soil pollution

> m <- MCMCregress(log10(zinc) ~ dist.m + elev, data=meuse)
> summary(m)
Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD
(Intercept) 3.7131559 1.223e-01
dist.m -0.0007622 7.581e-05
elev -0.1145986 1.604e-02
sigma2 0.0333455 3.902e-03

2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

(Intercept) 3.4770168 3.6302124 3.7135632 3.794888 3.9520484
dist.m -0.0009079 -0.0008138 -0.0007618 -0.000711 -0.0006137
elev -0.1466163 -0.1253493 -0.1146035 -0.103790 -0.0837966
sigma2 0.0265521 0.0305927 0.0330553 0.035702 0.0419692
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Compare to OLS fit

> summary(m <- lm(log10(zinc) ~ dist.m + elev, data=meuse))
Coefficients:

Estimate Std. Error t value
(Intercept) 3.713e+00 1.223e-01 30.366
dist.m -7.607e-04 7.489e-05 -10.158
elev -1.146e-01 1.604e-02 -7.144

Residual standard error: 0.1815 on 152 degrees of freedom

> (summary(m)$sigma)^2 # sigma^2 of residuials
[1] 0.03294231

> coefficients(m)[3] + # 97.5 quantile of elevation coef
(summary(m)$coefficients[3,"Std. Error"]*qnorm(0.975))

elev
-0.08317467

Mean values of coefficients, σ2, 97.5% confidence
limit/credible limit not too different.
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Meuse River soil pollution – informative priors

Large negative coefficients for elevation, slope; precise; but
large s.e.

> m.i <- MCMCregress(log10(zinc) ~ dist.m + elev, data=meuse,
b0=c(0, -0.3 , -0.3),
B0=c(1e-6, .0001, .0001),
c0=10, d0=10)

> summary(m.i)
Mean SD

(Intercept) 3.7139349 0.2049347
dist.m -0.0007631 0.0001272
elev -0.1146691 0.0268936
sigma2 0.0936901 0.0106301

2.5% 25% 50% 75% 97.5%
(Intercept) 3.317704 3.5752025 3.7143326 3.8510817 4.1149562
dist.m -0.001007 -0.0008501 -0.0007626 -0.0006769 -0.0005147
elev -0.168530 -0.1326239 -0.1146034 -0.0965921 -0.0630443
sigma2 0.075109 0.0861624 0.0929222 0.1001137 0.1170061
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Effect of informative priors

> m <- MCMCregress(log10(zinc) ~ dist.m + elev, data=meuse)
> m.i <- MCMCregress(log10(zinc) ~ dist.m + elev, data=meuse,
+ b0=c(0, -0.3 , -0.3),
+ B0=c(1e-6, .0001, .0001),
+ c0=10, d0=10)

> summary(m)$statistics[2:3,"Mean"]
dist.m elev

-0.0007622489 -0.1145985676
> summary(m.i)$statistics[2:3,"Mean"]

dist.m elev
-0.0007631305 -0.1146691391

> summary(m)$statistics["sigma2","Mean"]
[1] 0.0333455
> summary(m.i)$statistics["sigma2","Mean"]
[1] 0.09369014
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Comparing models with the Bayes factor

• Bayes Factor: the ratio of posterior likelihoods of the data,
given the fitted models:

BF = p(y | X ,ma)
p(y | X ,mb)

(39)

ma,mb two models to compare, X design matrix, y
observed data.

• The Bayes factor quantifies the support from the data for
one model compared to another.

• Jeffreys [7] subjective scale:
factor ln(factor) strength of evidence for ma

< 100 < 0 negative, supports mb

100 . . .100.5 0 . . . ≈ 1.5 barely worth mentioning
100.5 . . .101 ≈ 1.5 . . . ≈ 2.3 substantial
101 . . .103/2 ≈ 2.3 . . . ≈ 3.5 strong
103/2 . . .102 ≈ 3.5 . . . ≈ 4.6 very strong

> 102 >≈ 4.6 decisive
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Bayes Factor example

> m <- lm(log10(zinc) ~ x + y + dist.m + elev, data=meuse)
> lm.1.posterior <- MCMCregress(formula(m),

data=meuse,
B0=c(1e-6, .01, .01, .01, .01), marginal.likelihood="Chib95")

> lm.2.posterior <- MCMCregress(update(formula(m), . ~ . -x -y),
data=meuse,
B0=c(1e-6, .01, .01), marginal.likelihood="Chib95")

> round(summary(lm.1.posterior)$statistics[2:5,"Mean"],6)
x y dist.m elev

-0.000061 0.000062 -0.000680 -0.117053
> round(summary(lm.2.posterior)$statistics[2:3,"Mean"],6)

dist.m elev
-0.000762 -0.114598
> (bf.1.2 <- BayesFactor(lm.1.posterior, lm.2.posterior))
The matrix of the natural log Bayes Factors is:

lm.1.posterior lm.2.posterior
lm.1.posterior 0.0 -23.6
lm.2.posterior 23.6 0.0
lm.1.posterior : log marginal likelihood = -15.92415
lm.2.posterior : log marginal likelihood = 7.685869

The more complex model is preferred.
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Frequentist model comparison

> lm.1 <- lm(formula(m), data=meuse)
> lm.2 <- update(lm.1, ~ . - x - y)

> summary(lm.1)$adj.r.squared
[1] 0.6697626
> summary(lm.2)$adj.r.squared
[1] 0.6648385

> anova(lm.1,lm.2)

Model 1: log10(zinc) ~ x + y + dist.m + elev
Model 2: log10(zinc) ~ dist.m + elev
Res.Df RSS Df Sum of Sq F Pr(>F)

1 150 4.8687
2 152 5.0072 -2 -0.13848 2.1332 0.122

> AIC(lm.1); AIC(lm.2)
[1] -84.52019
[1] -84.17308

The more complex model (include coördinates) is preferred.
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Spatial Bayesian analysis

The same kind of reasoning for non-spatial models applies to
spatial models:

• We have a model form, which usually includes a model of
spatial dependence.

• We consider the parameters of the model to be random
variables each with a distribution.

• These have prior distributions, updated by the evidence to
posterior distributions.

• Predictions are made by sampling from the posterior
distributions.

R packages: spBayes [4], geoR, [14], geoGLM

geoR: Bayesian methods for point geostatistics, analogous to
the gstat, spatial and fields packages that take a
frequentist approach to geostatistical inference
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Gaussian Model

General linear model with a linear regression for the spatial
trend and residual spatial correlation:

[Y] ∼N (Xβ,σ2R(φ)+ τ2I) (40)

X n× p matrix of covariates

β vector of regression parameters (coefficients)

R spatial correlation function depending on a decay
(“range”) parameter φ

• spherical, exponential . . .
• generalized exponential/Gaussian: Matérn,

extra parameter κ (see next slide)

σ2 overall variance of the residual spatial process
(“sill”)

τ2 nugget effect, pure noise of the process
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Matérn model of spatial covariance

A general model with variable shape, adds a shape parameter
κ to the scale parameter needed by all spatial covariance
functions; Reference: [12].

p(h) =
{
2κ−1Γ(κ)}−1

(h/φ)κKκ(h/φ) (41)

Kκ(·) a modified Bessel function of order κ
φ > 0 scale parameter with the dimensions of distance

κ > 0 the order: a shape parameter which determines
the analytic smoothness of the spatial process

• κ = 0.5 exponential exp(−h/φ)
• κ →∞ Gaussian exp

{
(−(h/φ)2

}
• generally try a few values of κ, not fit by

likelihood over the whole range
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Matérn model
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Distributions

• For fixed φ (range), priors for β,σ2 as for the Normal
distribution: Normal – scaled inverse χ2

• For variable φ:

p(φ | y)∝ π(φ)
∣∣∣Vβ̃

∣∣∣1/2
|R|−1/2 (S2)−(n+nσ )/2
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Example dataset – elevation points
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Model fitting

> bsp4 <- krige.bayes(s100, loc = loci,
prior = prior.control(phi.discrete =

seq(0,5,l=101),
phi.prior="rec"),

output=output.control(n.post=5000))
> summary(bsp4)

Length Class Mode
posterior 6 posterior.krige.bayes list
predictive 7 -none- list
prior 4 prior.geoR list
model 6 model.geoR list
.Random.seed 626 -none- numeric
max.dist 1 -none- numeric
call 5 -none- call
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Posterior distribution of parameters

spatial trend covariance sill covariance range
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Prediction

> ## prediction grid
> pred.grid <- expand.grid(seq(0,1, l=31), seq(0,1, l=31))

> ## best prediction
> bsp4 <- krige.bayes(s100, loc = loci,

prior = prior.control(phi.discrete =
seq(0,5,l=101),
phi.prior="rec"),

output=output.control(n.post=5000))

> ## simulation
> bsp <- krige.bayes(s100, loc = pred.grid,

prior = prior.control(phi.discrete =
seq(0,5,l=51)),

output=output.control(n.predictive=2))
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Compare to conventional kriging
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• texts: [5, 6, 8, 9]

• computation in R: [1, 10, 11, 13]

• historical: [2]

• MCMC: [3, 15]

• spatial: [4, 14]
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