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Background

Bayes’ 1763 paper [2]: theory of inverse probability in
order to make probabilistic statements about the future
- A simple use of conditional probability: “Bayes’ Rule”

- Later extended to statistical distributions: “Bayesian” =
“Bayes-like”

Focus is on decision-making under uncertainty

- A useful way of thinking about probability.
- An increasingly common way of making inferences,

because of its flexibility

- Can handle arbitrarily complex models, e.g., hierarchical
- Modern computing methods make this accessible
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Frequentist
S - R A Fisher at Rothamstead Experimental Station (England),
e 1920’s and 1930’s
Probability - developed by well-known workers (Yates, Snedecor,
e Cochran ...)
inference - Common statistical computing packages follow this
Bayesian

- named for Thomas Bayes (1701-1761)

- developed since the 1960’s (Jeffreys, de Finetti, Wald,
Savage, Lindley ...)

- requires sophisticated computing and complex
mathematics
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Principal differences

Interpretation of the meaning of probability
Hypothesis testing
Prediction
Presentation of probabilistic results

e.g. confidence intervals vs. credible intervals
Computational methods
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What is probability?

Frequentist the probability of an outcome is the proportion
of experiments in which the outcome occurs, in
some hypothetical repetitions of the experiment
under the same conditions and with the same
population

Bayesian subjective belief in the probability of an outcome,
consistent with some axioms

In both cases, experiments/observations of a sample are used
for inference.
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Bayesian concept of probability

- the degree of rational belief that something is true;

- so certain rules of consistency must be followed

- All probability is conditional on evidence;
- Any statement has a probability distribution;,
- any value of a parameter has a defined probability;

Probability is continuously updated in view of new
evidence.

- So, there is a degree of subjectivity; but this is reduced as

more evidence is accumulated.
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Types of probability

Prior probability: before observations are made, with
previous knowledge;

Posterior probability: after observations are made, using
this new information;

Unconditional probability: not taking into account other
events, other than general knowledge and agreed-on facts;

- Joint probability: of two or more event(s);

Conditional probability: in light of other information, i.e.,
some other event(s) that may affect it.
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Background

Parameters of statistical distributions are random
variables, i.e., they also have their own statistical
distributions, which in turn have parameters, often called
hyperparameters

- Statistical inferences are based on a posterior (“after the
fact”) distribution of parameters of statistical distributions

- These are updated versions of prior (“before the fact”)
beliefs based on data from experiments or observations.

- The updating depends on the likelihood of each possible
value of the parameters, given the data actually observed.
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Background

It is required to have prior probability distributions, set by
Bayesian inference the analyst

for the Binomial
distribution

Probability - “Solution”: non-informative (actually, “minimum prior

" information”) priors
But do we want these? In most situations we have prior
evidence to incorporate in the decision-making.

- The selection of model form in both Bayesian and
classical approaches is subjective

- although the fit of the model form to the data can be
compared (internal evaluation).
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Bayes’ Rule (1)

- One aspect of Bayesian computation is not controversial:

Bayes’ Rule derived from the definition of conditional
probability.

- P(A), P(B) unconditional probability of two events
- Joint probability P(A n B) of two events A and B, i.e., that

both occur.

- Reformulated in terms of conditional probability, i.e., that

one event occurs conditional on the other having occurred:
P(AnB) =P(A|B)-P(B)=P(B|A)-P(A (1)

where | indicates that the event on the left is conditional
on the event on the right.
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Bayes’ Rule (2)

- Equating the two right-hand sides and rearranging gives

Bayes’ Rule:
B P(B|A)
P(A| B) = P(A) - P (2)
o P(A|B)
P(B| A) = P(B) - W (3)

- P(B|A)/P(B), P(A| B)/P(A) are likelihood ratios - the

additional strength of evidence
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Reformulation

The denominator P(B) can also be written as the sum of the
two mutually-exclusive intersection probabilities, one if event
A occurs P(A) and one where it does not occur P(—A):

P(B) = P(B| A) - P(A) + P(B| —A) - P(-A) (4)

We rename the probabilities to correspond to the concept of
an observed “event” E and an unobserved or unknowable event
for which we want to estimate the probability H (“hypothesis”).

Bayes’ Rule for the binary case then can be written:

P(E | H)
P(E| H) - P(H) + P(E| —~H) - P(—H)

P(H| E) = P(H) - (5)



o Example - land cover classification (1)
modelling
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- P(H) the probability that a pixel in the image covers an
Bayes’ Rule area of water
- P(E) pixel NDVI is below a certain threshold, say 0.1
- P(H|E) the probability that, given that a pixel’s NDVI is
below the threshold, it covers water
- this is what we want to know
- P(H N E): the probability of a pixel in the image covers
water and its NDVI is below the threshold
- P(HnN —E): the probability of a pixel in the image covers
water, but its NDVI is not below the threshold
- water body contains many aquatic plants, specular
reflection ...
- P(E|H) the probability that, given that a pixel covers
water, its NDVI is below the threshold
- P(E|=H) the probability that, given that a pixel covers
water, its NDVI is not below the threshold
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Bayes' Rule - We want to classify the image into water/non-water:
hypothesis H is that the area represented by a pixel is in
fact mostly covered by water

Bayesian inference
fo nomial

- We have a training sample with some pixels in each class
distribution for

the binomal - For each of these, we compute the NDVI of the pixel, from
the imagery: event E that we can observe is that a pixel’s
NDVI < 0.1.

P(H) is the prior probability that a random pixel area
mostly covers water

- proportion from training sample or prior estimate

P(E | H) if a pixel really does cover water, what is the
conditional probability it will have a low NDVI: sensitivity

P(E | —H): false positives, inverse of specificity
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Example - computation

prior estimate 20% of the image covered by water

.h <- 0.2

sensitivity: 90% of water pixels have Tow NDVI
(from training sample)

.e.h <- 0.9

false positive rate: 10% of non-water pixels have Tow NDVI
(from training sample)

.e.nh <- 0.1

denominator of 1ikelihood ratio:

predicted overall proportion of low-NDVI pixels in the iamge

(p.e <- (p.e.h = p.h) + (p.e.nh = (1 - p.h)))

## [1] 0.26

# likelihood ratio: increase in probability of hypothesis

# given the evidence

(lr.h <- p.e.h/p.e)

## [1] 3.461538

# posterior probability

(p.h.e <- p.h = 1r.h)

## [1] 0.6923077

HHHDT HHT HHT R
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@ P(H), the prior probability of the hypothesis.

Bayesian ference - The higher the prior, the higher the posterior, other factors
or the Binomia . . . .

distribution being equal. In the absence of any information in a

1121’\“5\’,’.”-\‘2,’1‘“,‘ two-class problem, we could set this to 0.5.

paramete

Pt ® P(E | H), the sensitivity of the hypothesis to the evidence.

e - The higher this is, the more diagnostic is the NDVI; it is in
the numerator of the likelihood ratio.
©® P(E | —H), the false positive rate (complement of the
specificity).

- The higher this is, the less diagnostic is the NDVI, since it is
in the denominator.
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Bayes’ Rule for multivariate outcomes

This can be generalized to a sequence of n mutually-exclusive
hypotheses H,, given some evidence E.
The posterior probability of one of the hypotheses H; is:

P(E | H))
P(E)
P(E) = X[L; P(E | Hj) - P(H;) is the overall probability of the
event.
This normalizes the conditional probability P(H; | E).

P(H; | E) = P(H)) - (6)
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The term “Bayesian” has been extended to a form of inference

Bayesian for statistical models where we:
statistical
nierence - update a prior probability distribution (“before
e observations or experiments”) of model parameters . ..
Probability . . . . .
distribution or - with some evidence to obtain a posterior probability

distribution (“after observations or experiments”) of
model parameters ...

based on the likelihood of the results of observations or
experiments considering possible values of the
parameters.

- This step is called estimation of the model parameters ...

- We can then use these estimates for prediction of the
target variable(s).
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A statistical model has the following general form, using the
notation [-] to indicate a probability distribution:

Beyssan

[Y,S10] 7)

"“ - Y is the joint distribution of some variable(s) for given

Posteriof

inference values of model parameter(s) 0

- the values of the variables are determined by some
unobservable process S: the signal

- we can not account the noise, i.e., random variations not
accounted for by the process.

- decompose as:

[Y,S10]=[SI|0O][Y]S, 0] (8)
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Bayesian inference from data

@ Assume some model form, with unknown parameters 0,
which is supposed to produce signal S

® Observe some of the Y produced by the signal S
© use these to estimate a probability distribution for 0

@ then use the statistical model to predict other values
produced by the process.

[5|Y]=L[S|Y,e][9|nd9 )

Note that the prediction depends on the entire posterior
distribution of the parameters 0
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Model parameters are random variables

In Bayesian inference we assume that the true values of
model parameters 0 are random variables, and therefore
have a joint probability distribution with the observations:

[Y,01=1[Y|0][0] (10)

- The term [0] is the marginal distribution for 6, i.e., before

any data is known; therefore it is called the prior
distribution of 6.

Inference is then based on sampling from the posterior
distributions of the different model parameters.

- Can find the most likely value, but also use the full

distribution for simulating possible scenarios.

Example: linear regression: a joint probability distribution
of the parameters of the regression model (coefficients,
their errors, their inter-correlation).



Introduction to

Bayesian Frequentist view
(geo)-statistical

modelling

DGR

Bayesian
statistical
inference
Eayesanlinteronce - parameters of statistical models are considered to be
e fixed, but unknowable by finite experiment.
distribution for
B - Conduct more experiments, collect more evidence —
o come closer to the “true” value as a point estimate

Assume an error distribution — confidence intervals
around the “true” value

Assumes that there is a “true” population value.
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Bayesian Bayesian inference for the Binomial
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. distribution
- The Binomial distribution: a continuous probability
distribution, with one parameter 0 € [0...1]
p(k, n) = (Z) ok(1 — o)k an

-k is the number of “successes” in n independent,
exchangeable Bernoulli trials

- i.e., with two mutually-exclusive possible outcomes
conventionally referred to as “successes” and “failures”,
0/1, True/False

It models any situation where a number of independent
observations n is made, each with one of two
mutually-exclusive outcomes.

- The process S is thus some process that only gives one of
these outcomes for each observation.
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Example

(1) Plot a histogram of the probability of 0...24 heads in 24
flips of a fair coin with the dbinom “binomial density” function.

(2) Compute the probability of exactly 10 heads in 24 flips.

24 0.5'°(1 - 0.5)%4719 = 0.1169
10
> plot(dbinom(0:24, size=24, prob=0.5), type="h",

x1im=c(0,24),

xlab="# of heads (k)", ylab="Pr(k)",

main="probability of 0..24 heads in 10 flips of a fair coin")
> dbinom(10, size=24, prob=0.5)
[1] 0.1169
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see that if we observe any number 0...24 heads in 24 trials,
this is evidence of different strength for all values of 9.

binomial probabilities, given 10 heads in 24 coin flips
Bayesian inference
for the Binomial

distribution
Probability 0
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Posterio
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Probability distribution of a model parameter

- The aim of Bayesian inference is to have a full probability
distribution for a parameter, here 0 of the Binomial
distribution.

- That is, we do not want to determine a single most
probable value for 0;

Instead we want to determine the probability of any value,
or that the value is within a certain range, or that the value
exceeds a certain number.

For this we need a distribution for 8, parameterized by
one or more hyperparameters.



Introduction to . . .
Bayesi_an_ LIkEIIhOOd ratlo
(geo)-statistical
modelling
DGR X X X
We extend Bayes’ Rule to full distributions of a parameter,
given the evidence of k successes in n trials:

p(k,n| 0)
01k n) = plo). LY
sovsian ferece pOTlm =P =ptm

(12)

- The posterior probability of any proportion of successes
0, given that we observe k successes in n trials:

- the prior probability distribution of 0 € [0...1] from
previous evidence or knowledge ...
- ... multiplied by the likelihood ratio

p(k,n| 0)
p(k, n)

LR: probability of finding a given number k success in n
trials for a known value of 0. ..

...divided by the probability of finding k successes in n
trials, no matter what value of 6.

(13)
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v Denominator of the likelihood ratio
modelling
DGR For the binomial distribution, the denominator is an integral
over all possible values of 8, which reduces to a very simple
form:

Bayesian inference

1
p(k,n) = J p(k,n|0)do
for the Binomial 9:0

-Beta(k+1,(n—k)+ 1)

I'tk+ I'((n—k)+1)

y
y

I'(n+2)
_(n _k!(n—k)!
“\k (n+ 1!
_ n! _k!(n—k)!
T kitn=Kk)'  (n+1)!
1
R (a4)

Most distributions do not integrate so easily! In those cases
numerical integration must be used.
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Likelihood function

Plot the continuous distribution of the likelihood

> (p.k.n <- 1/(n+1)) # normalizing constant
[1] 0.04
> curve(dbinom(k, size=n, prob=x)/p.k.n,
xlab=expression(theta),
ylab=expression(paste(plain("p( (k, n) | "),
theta, plain(") / pC (k, n) )"))),
main="Likelihood ratio, given 10 heads in 24 coin flips")
> abline(v=k/n, col="red", Tty=2)
> abTline(h=1, col="blue", Tty=3)
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Likelihood function (2)

The likelihood ratio can also be written with the reverse
functional relation, i.e., @ as a function of k, n:

(0| k,n) = p(k,n| 0) (15)
where the £ function is read as “the likelihood of”.

This is another way of thinking about the relation between the
observations and the parameter: the likelihood that the
parameter has a certain value, knowing the observations, i.e.,
considering the data as fixed.
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Computing the unnormalized posterior
distribution

- The likelihood function is also called the sampling density

because it depends on having taken a sample, i.e., having
made a trial.

- Once we have the prior probability distribution and the

likelihood function, we compute the (un-normalized)
posterior probability distribution by a modification of
Bayes’ Rule, applying to distributions:

p(0 | x) o< p(0) - £(0 | x) (16)

Note o« “proportional to”, not = “equals”.

- This is the fundamental equation of Bayesian inference.
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Probability distribution for the binomial
parameter

- 0 can take any value from [0...1]
- we need to find a probability distribution for it

- function f(0): domain R € [0...1] (possible values of 0)
and range [0 - - - 1] (their probability)

L f) =1

- this distribution will be parametrized by one or more

hyperparameters
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Conjugate prior distribution

preferable to find a function that has the same form prior
and posterior, i.e., after being multiplied by the likelihood

- this is called a conjugate prior

It is desirable because we may want to later use the
posterior distribution as a prior in further analysis
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Conjugate prior for the binomial distribution

- Beta distribution with two hyperparameters « and

1

Beta(0; &, B) = B(o, f)

0 1(1 — 9)F! (17)

- The first term is a normalizing constant to ensure that the

total probability integrates to 1, using the Beta function:

_ T(x)I(B)
B(e, B) = T(x+f) 8) (18)
- T(x) = f(;” t*~ e tdt, the generalization to the real
numbers of the factorial. For integer x, I'(x + 1) = x!.
- So, the normalizing constant is:
IMNx+
1/B(ct, ) = X P) 19)

I'(e)I'(B)



p(0) oc 0% (1 — 9)FT
Ck,n|0) o 0K(1 —0)nk

p0 | k,n) < p(0) -L(k,n|0)
p(0 | k,n) oc O*k=T(1 — 9)B+(n-k)-1 (20)

So the posterior also has the form of a Beta distribution
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Why is it conjugate? (2)

- If prior p(0) ~ Beta(«, B), and the number of successes k

in n trials follows the binomial distribution with parameter
0, then the posterior becomes

p(0 | k,n) ~Beta(x + k, B+ (n—k))

- This simple updating formula allows us to modify a prior

Beta distribution to posterior Beta distribution that takes
into account the data.

Note that the larger the n, the less important are the prior
values of the hyperparameters.



« &+ 1 number of “successes”
B B + 1 number of “failures”
(x + B —2) total number of trials
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Parameterizing the Beta distribution

- Expected value of a Beta-distributed 0 is:

_ (' T(x+B)
o I'(e)I'(B)
=o/(x+ B) (21)

EO 011 - 0)-10do

- Because of the —1 in the exponents of the Beta

distribution, this number is better given as («x + 8 + 2),
and the numerator as (x + 1)

- Then expected proportionis (x—1)/(x+ 5 —2)
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Selecting prior hyperparameters

@ « as the modal number of “successes” in (x + ) trials.
more trials — more prior evidence
@® Use the expected mean and the variance to solve two

equations in two unknowns to obtain the two
hyperparameters:

X
" (a+B) (22)

_ B
var0 = (x+B)2(x+B+1) 23)

EO

- As the number of trial increases, the variance decreases
- This requires an expert judgement of a variance, which is
not as intuitive as a mean and sample size.
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Non-informative prior

Parameterize the Beta distribution such that all values of 6
are a priori equally likely, and all inferences about the
distribution of 0 come from the data.

- “Non-informative” is not really good terminology, as even
absence of information is information. The idea is to
represent in some sense the least amount of information,
i.e., maximum a priori ignorance, consistent with the form
of the prior distribution.

One choice' is x =B =1:

L
B(1,1)

1
- = 1-1 — 1-1 = — =
Beta(x;1,1) = X (1 —x) B(I.T) 1 (24)

Uniform on [0...1], does not depend on the Binomial
parameter

Tused by Bayes in his Essay
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Updating based on evidence

Suppose we observe 10 “successes” in 24 Bernoulli trials

- What is the distribution of the parameter of the Binomial

distribution 0 ...
starting from the non-informative prior cx = 8 =1
posterior x =11, =15

starting from an informative prior somewhat far from this,
x =19, = 13; total “prior evidence” 30 trials.

posterior @ = 33, = 27
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Credible intervals

- compute a credible interval within which we believe, with

some probability, the parameter lies

- We obtain credible intervals from the quantiles of the

distribution, prior or posterior.

- To do this, we find the upper limit ¢ of the definite integral

of the distribution, such that it equals the desired
quantiles g, for example g = 0.05 and g = 0.95 for the
90% credible interval.

J:p(9|k,n)d9:q 25)
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> ## informative prior
> (cred.inf.pre <- gbeta(c(0.05, 0.95),
shapel=prior.a, shape2=prior.b))
[1] 2
> (cred.inf.post <- gbeta(c(0.05, 0.95),
shapel=prior.a+k, shape2=prior.b+(n-k)))
[1] 0.4085025 0.6264798

> ## non-informative prior

> (cred.non.inf.pre <- gbeta(c(0.05, 0.95),
shapel=1, shape2=1))

[1] 0.05 0.95

> (cred.non.inf.post <- gbeta(c(0.05, 0.95),
shapel=1+k, shape2=1+(n-k)))

[1] 0.2698531 0.5831620

Note the narrower credible interval 0.218 from the informative
prior vs. the non-informative prior 0.281.
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Simulation of posterior intervals

Can also compute intervals by simulation:

@ draw samples with the rbeta “random value from the beta
distribution” function

@® find the quantiles of the simulated draw with the
quantiTe function

© compute any summary (>, < some quantile, within some
range ...)

Note: not necessary in this case because the posterior is

expressible analytically, but this method works for any
posterior distribution
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- Recall the general form of the predictive distribution:

[S|Y]:J9[5\Y,9][9|Y]d9 )

- Here the process S is the set of Bernoulli trials
- We want to predict results of a future set, based on the set

we’ve seen (Y) and the posterior distribution of the
parameter of the Binomial process (9).

- Integrate the predictions from each value of the parameter

based on its posterior probability:

p( 1 y) = jpcw 0)p(0]y)do 26)

- Can evaluate this by simulation of 0, and from that p(k, n).



Introduction to
Bayesian
(geo)-statistical
modelling

DGR

Frequency of 6 for 2048 draws from its posterior distribution

Random draws of 8 from posterior distribution; non-informative prior Random draws of 8 from posterior distribution; informative prior

Bayesian inference
for the Binomial &
distribution g
Probability g
distribution for
the binomial R s
parameter g g-
Posterior & LI
inference h

°7 Tm . . . ’ I © . » » T

02 03 04 0s 06 07 08 03 04 0s 0s 07



Introduction to
Bayesian
(geo)-statistical
modelling

DGR

Background
Bayes’ Rule

Bayesian
statistical
inference
Bayesian inference
for the Binomial
distribution
Probability
distribution for
the binomial
parameter
Posterior
inference

Hierarchical
models

Multi-
parameter
models

Numerical
methods

Multivariate
regression

Spatial
Bayesian
analysis

References

Density of p(k,24) for 2048 draws from the posterior

distribution

Number of successes, non-informative prior

0.08
I

density
0.06
I

0.00

LA JL
3 5 7 9 11 13 15 17 19 21

k

density

0.14

0.12

000 002 004 006 008 010

Number of successes, informative prior

TT T T T T 17T
10 12 14 16 18 20 22

k




Number of successes Number of successes

density.
density
006 008 010

004
L

002

000 002 004 006 008 010 012 0.4

s
|| I 8. || |||I.
L e e L e e

'
T
2 4 6 8 10 12 14 16 18 0 3 5 7 9 11 13 15 17 19 21

3 k

Number of successes Number of successes

0.10
L
010
L

density
006
|
density
006

0.04
L
0.04

002
L

002
L

0.00
0.00

87 gi

g

i .|‘ ||I| 1. i
e - :

T L
5 7 9 11 13 15 17 19 13 5 7 9 11 13 15 17 19

k k




Introduction to

ebesan Prediction from non-informative prior
modelling

DGR

Density of p(k,24) for 2048 draws from the posterior
distribution - in theory all values are equally likely

Bayesian inference

for the Binomial Number of successes
distribution
Probability
distribution for 2 -
the binomial
parameter
Posterior 2 -
inference
Random drawis of &
3 84
8 H
3
El
z
J g
= o
&
g s
£ e
B o4
L e
° f " . " . | 0 2 4 6 8 10 12 14 16 18 20 22 24

k



@ Background

@ Bayes’ Rule

© Bayesian statistical inference
Bayesian inference for the Binomial distribution
Probability distribution for the binomial parameter
Posterior inference

@ Hierarchical models

© Multi-parameter models

@ Numerical methods

@ Multivariate regression

@ Spatial Bayesian analysis




Introduction to

Bayesian HierarChicaI mOdels

(geo)-statistical
modelling

DGR

- A hierarchical model, also called a multilevel model, is
one where several posterior distributions must be
estimated, with some depending on others.

Example: a multinomial mixture of binomial distributions

Bayesia w The population is divided into m groups, each with its own

Lot separate binomial distribution:

nj\ Ak ke
p(kj) = (k{)efu — oyl (27)
Hiegarlchical J
- The division of the population into groups is also
probabilistic and represented by a multinomial

distribution:

f(m,na,...0m; B P1, W2, .. WYm) =Pr(Xy = m, X2 = n2,... Xim = N

n! "
=7qj] Yot ..ol

m 'I’lz'
(28)



128 draws of 100 items each from y; = 0.2, @, = 0.5, Y3
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- A soil sampling campaign where we will make a fixed
number n of spatially-random observations, constrained
by the budget, to determine the proportion of soils that
forthe Binomal require some intervention based on a critical limit.

- Several soil types: a multinomial distribution

Within each soil type, a proportion of soils 0; that exceed
e the limit: k; of the n; samples of that soil type will require
AR intervention: a set of binomial distributions
- Q: Why not just use the maximum likelihood binomial
mean/standard deviation from the completely random
sample?
- A: The hierarchical approach allows the use of prior
probability distributions. This is especially important with
small sample size.

distribution for

the ial
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Multilevel model

Level 1 k; | 0}, n; ~ Binomial(6}, n;), the number of
observations of the total n; in soil type j
requiring intervention,;

Level 2 0; | «;, Bj ~ Beta(xj, B)), the distribution for the
binomial parameter 6; in soil type j;

Level 3 n; [ w1, @2,...¢mn ~
Multinomial(y1, Y2, ... Ym, n), the number of
observations of soil type j, out of the total
number of observation n, for each of the m
possible soil types;

Level 4 ;| o1, 2 ...y ~ Dirichlet(or, &z ... &), the
distribution of the m multinomial parameters.

The Dirichlet distribution is the multivariate analogue of the
Beta distribution:

1 =1
D(O() = mjng (29)



Informative: estimate (0.2,0.5,0.3); non-informative all 0.3

Informative prior Non-informative prior
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Posterior proportions

Suppose 128 observations in classes (24,64,40):

Posterior from informative prior Posterior from non-informative prior

Type2 Type2

Note how information concentrates the posterior distributions
of Dirichlet(«;, o2, x3)
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modelling

BIER Suppose the soils requiring intervention are
(12/24,20/64,10/40); all with non-informative prior

Type 1 proportion Type 2 proportion Type 3 proportion
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Multi-parameter models

Models have > 1 parameter; in general not independent;
their joint as well as marginal distributions must be
estimated
Example: normal (“Gaussian”) distribution; two
parameters:

@ the location u, also called the mean;

@ the dispersion o2, also called the variance.
Can be convenient to work with the inverse 1/02, called the

precision, written as T.
The density function is:

_ 1 1=
f(XIu,U)—Wexp{ > o2 } (30)



probability density

0.4
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Variance=1, different means
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L(u,0° | x) = (31

p(x | p,0%) =[]pxilp o) 32)

i=1

-I n
= 2mo?) "% exp (—— (X,'—u)z) (33)
2072 ,;'

As the parameters u and o2 change, so does the likelihood of
having observed the values x.
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Distributions for the Normal distribution
parameters

Most common:
For u, another Normal distribution
- hyperparameters (Uo, 0% );
For 02, an inverse x2 distribution
- hyperparameter v, the degrees of freedom:
-v/2

—(v)2)=1 ,=1/(2x)
F(v/Z)X e (34)

Xy (x) =

More degrees of freedom — more probable that the
variance o2 is small.

- Usually scaled: additional parameter T2 = 1/0°2, the inverse
of the variance of the process.
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Multivariate normal distribution

Several variables; all marginal distributions are normal,
each with their own parameters

The variables may be correlated, i.e., instead of a
variance, there is a variance-covariance matrix

Parameters:

u vector of means
> variance-covariance matrix

PDF: a generalization of the univariate normal distribution:

det (21TZ)_]j exp{- %(x —)'Z(x— )}
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Most models can not be reduced to analytical forms.

- Their posterior distributions can not be computed as a
Bayesian inference CIosed form
for th nomial

distrbution - This is often because the denominator (proportionality

disrbution for constant) in the fundamental Bayesian inference formula
has no closed form.

[p(e) . p(Y | 0)d0

- The required integration over the parameter space must
e be done by numerical simulations of the posterior
distribution

- This requires substantial computer power and some
mathematical tricks.
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- The most common method to simulate posterior
distributions is the Markov chain Monte Carlo? (MCMC)
method.

- This is an algorithm for sampling from a (multivariate)
probability distribution that can not be expressed as a
closed form, based on constructing a Markov chain that
has the desired distribution, e.g., posterior or predictive,
as its equilibrium distribution.

Markov chain: sequence of values of parameter(s) where

value at 0,1 depends only on previous value 6;, not on
methods the entire history of the chain

so, conditional on the present value, future and past values
are independent.

2Just a fancy name for “random”
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The Gibbs sampler

Repeatedly sample from the full conditional distribution of
each of the k parameters in the posterior distribution, one
parameter j at a time: p(0; | 0j4;,i=1,2,...k)
@ Pick arbitrary starting values x° = (x?,...x). This does
not depend (yet) on the observations Y.
® Make a random drawing from the full conditional
distribution m(x; | x_;,i = 1,...k), as follows:
x; fromw(x; | X% | Y)
xa from i | X, x3,...x2 1Y)
X3 from s | X, X, x3,...x2 | Y)

xp from (x| X!, | Y)
This results in an updated full conditional distribution
x'= (... x 1Y),
Under certain conditions this converges to a steady-state
distribution.
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Multivariate regression

- This model has the well-known form: y; = (X;))TB + &;, with

i.i.d. Gaussian errors: & ~ N (0, 0?)

- Can be directly solved by OLS, but that assumes

independence of the S.

- B is a vector of regression coefficients; each of these has

its own standard error and these may be correlated with
each other

- The priors are semi-conjugate and a priori independent:

B ~ MVN(bo, By") (35)
1/0% =1 ~T(c/2,do/2) (36)

- Assume a priori (without evidence) that the distribution of

the B vector is independent of the distribution of the
1/o2=T1



Introduction to
Bayesian
(geo)-statistical
modelling

DGR

Bayesian inference
for the Binomial
distribution
Probability
distribution for
the binomial
parameter
Posterior
inference

Multivariate
regression

Conditional posterior probability for

p(B 1 o?,y,X) ~MVN((X'X)"'Xy',o2(X'X)"") (37)
which is the OLS formulation.

Note how the variance-covariance matrix of the regression
parameters depends on the residual variance of the regression.
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Marginal posterior distributions for S,

This requires integrating out the variance:

pP(Bm |y, X) = JO p(Bm | 0%,y,X)do? (38)

Similarly, for the marginal posterior distribution of the
regression variance o2, we need to integrate out the
regression coefficients.
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- The MCMCregress function of the MCMCpack package
S generates a sample from the posterior distribution of a
e (multiple) linear regression model with Gaussian errors,

Probability

distrbition for using using Gibbs sampling.

the binomial

- The prior distribution for the  vector (regressors) must
be multivariate Gaussian, and that for the error variance
an inverse-I" prior.

- The returned sample from the posterior distribution can
be analyzed with functions provided in the coda
“Convergence Diagnosis and OQutput Analysis and
Multivariate Diagnostics for MCMC” package

regression
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The MCMCregress function

generates a sample from the posterior distribution of a

(multiple) linear regression model with Gaussian errors,
using the Gibbs sampler.

Hyperparameters:

b0 a vector of the mean prior values of §;

BO a matrix of the prior precisions of each B; this can be a
full matrix (precisions of different predictors are
correlated).

c0 c¢p/2 is the shape parameter of the inverse-T' prior for
02; the amount of information represents co
pseudo-observations;

d0 dy/2 is the scale parameter of the inverse-T prior for
02; it represents the sum of squared errors of the cg
pseudo-observations;

Control arguments:

burnin the number of burn-in iterations, i.e., before statistics
are collected for the posterior distribution; default
1000;
mcmc The number of MCMC iterations after burn-in; default
10000.
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Example: Meuse River soil pollution

> m <- MCMCregress(1ogl0(zinc) ~ dist.m + elev, data=meuse)

> summary (m)

Iterations = 1001:11000

Thinning interval = 1
Number of chains = 1

Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,

plus standard error of the mean:

Mean
(Intercept) 3.7131559
dist.m -0.0007622
elev -0.1145986
sigma2 0.0333455

SD
1.223e-01
7.581e-05
1.604e-02
3.902e-03

2. Quantiles for each variable:

2.5% 25% 50% 75%
(Intercept) 3.4770168 3.6302124 3.7135632 3.794888
dist.m -0.0009079 -0.0008138 -0.0007618 -0.000711
elev -0.1466163 -0.1253493 -0.1146035 -0.103790

sigma2

0.0265521 0.0305927 0.0330553 0.035702

97.5%
3.9520484
-0.0006137
-0.0837966
0.0419692
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Compare to OLS fit

> summary(m <- 1m(l1ogl0(zinc) ~ dist.m + elev, data=meuse))
Coefficients:
Estimate Std. Error t value
(Intercept) 3.713e+00 1.223e-01 30.366
dist.m -7.607e-04 7.489e-05 -10.158
elev -1.146e-01 1.604e-02 -7.144

Residual standard error: 0.1815 on 152 degrees of freedom

> (summary(m)$sigma)A2 # sigmaA2 of residuials
[1] 0.03294231

> coefficients(m)[3] + # 97.5 quantile of elevation coef

(summary(m) $coefficients[3,"Std. Error"]=qnorm(0.975))
elev
-0.08317467

Mean values of coefficients, o2, 97.5% confidence
limit/credible limit not too different.



Introduction to
Bayesian
(geo)-statistical
modelling

DGR

Bayesian inference

for the Binomial
distribution
Probability
ion for

Posteriof
inference

Multivariate
regression

Meuse River soil pollution - informative priors

Large negative coefficients for elevation, slope; precise; but

large s.e.

> m.i <- MCMCregress(logl0(zinc) ~ dist.m + elev, data=meuse,

> summary(m.i)

(Intercept) 3.

dist.m -0.
elev -0.
sigma2 0.

(Intercept) 3.
dist.m -0.
elev -0.
sigma2 0.

b0=c(0, -0.3 , -0.3),
BO=c(le-6, .0001, .0001),
c0=10, d0=10)
Mean SD
7139349 0.2049347
0007631 0.0001272
1146691 0.0268936
0936901 0.0106301
2.5% 25% 50% 75%
317704 3.5752025 3.7143326 3.8510817
001007 -0.0008501 -0.0007626 -0.0006769
168530 -0.1326239 -0.1146034 -0.0965921
075109 0.0861624 0.0929222 0.1001137

97.5%
4.1149562
-0.0005147
-0.0630443
0.1170061
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m <- MCMCregress(10gl0(zinc) ~ dist.m + elev, data=meuse)
m.i <- MCMCregress(logl0(zinc) ~ dist.m + elev, data=meuse,
bO=c(0, -0.3 , -0.3),
BO=c(le-6, .0001, .0001),
c0=10, d0=10)

Bayesian inference
for the Binomial
distribution

+ 4+ + VvV

Probability
distribution for
the binomial
parameter

A\

summary(m) $statistics[2:3, " "Mean"]
Rty dist.m elev
-0.0007622489 -0.1145985676
> summary(m.i)$statistics[2:3,"Mean"]
dist.m elev
-0.0007631305 -0.1146691391

> summary(m)$statistics["sigma2","Mean"]
Multivariate [1] 0.0333455
regression > Summal‘y(m.i)$stat1'stics["sigmaZ","Mean"]
[1] 0.09369014
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Comparing models with the Bayes factor

- Bayes Factor: the ratio of posterior likelihoods of the data,

given the fitted models:

_ply | X, mg) (39)

BF =
ply | X, mp)

mg, my, two models to compare, X design matrix, y
observed data.

- The Bayes factor quantifies the support from the data for

one model compared to another.

- Jeffreys [7] subjective scale:

factor | In(factor) strength of evidence for m,

<10°] <0 negative, supports my
100...1093 .= 1.5 barely worth mentioning

o

10%>,...10" | = 1.5... ~ 2.3 | substantial

10'...103/2 | = 2.3...~ 3.5 | strong

103/2,..10% | =3.5... = 4.6 | very strong
>10% | >~ 4.6 decisive
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Bayes Factor example

> m <- Tm(logl0(zinc) ~ x + y + dist.m + elev, data=meuse)
> Im.1l.posterior <- MCMCregress(formula(m),
data=meuse,
BO=c(le-6, .01, .01, .01, .01), marginal.likelihood="Chib95
> Im.2.posterior <- MCMCregress(update(formula(m), . ~ . -x -y),
data=meuse,
BO=c(le-6, .01, .01), marginal.likelihood="Chib95")
> round(summary(Im.1l.posterior)$statistics[2:5,"Mean"],6)
X y dist.m elev
-0.000061 0.000062 -0.000680 -0.117053
> round(summary(1m.2.posterior)$statistics[2:3,"Mean"],6)
dist.m elev
-0.000762 -0.114598
> (bf.1.2 <- BayesFactor(Im.1l.posterior, Im.2.posterior))
The matrix of the natural log Bayes Factors fis:
Im.1l.posterior 1m.2.posterior

Tm.1l.posterior 0.0 -23.6
Tm.2.posterior 23.6 0.0
Tm.1l.posterior : log marginal Tikelihood = -15.92415

Tm.2.posterior : log marginal likelihood = 7.685869

The more complex model is preferred.
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> Im.1 <- Im(formula(m), data=meuse)
> Im.2 <- update(Im.1, ~ . - X - y)

> summary(Im.1)$adj.r.squared
Bayesian nference [1] 0.6697626
or the Binomia

distribution > summary(1m.2)$adj.r.squared
Probability [1] 0 R 6648385

distribution for
the binomial
parameter

Postrior > anova(lm.1,1m.2)
Model 1: ToglO(zinc) ~ x + y + dist.m + elev
Model 2: 1ogl0(zinc) ~ dist.m + elev
Res.Df RSS Df Sum of Sq F Pr(>F)
1 150 4.8687
2 152 5.0072 -2 -0.13848 2.1332 0.122

e > AIC(Im.1); AIC(Im.2)

[1] -84.52019
[1] -84.17308

The more complex model (include coérdinates) is preferred.
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The same kind of reasoning for non-spatial models applies to
spatial models:

- We have a model form, which usually includes a model of
spatial dependence.

- We consider the parameters of the model to be random
variables each with a distribution.

- These have prior distributions, updated by the evidence to
posterior distributions.

- Predictions are made by sampling from the posterior
distributions.

R packages: spBayes [4], geoR, [14], geoGLM

geoR: Bayesian methods for point geostatistics, analogous to
2patial the gstat, spatial and fields packages that take a

Bayesian

UELEH frequentist approach to geostatistical inference
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Gaussian Model

General linear model with a linear regression for the spatial
trend and residual spatial correlation:

[Y] ~ N (XB,0%R(p) + T2 (40)

X nx p matrix of covariates
B vector of regression parameters (coefficients)
R spatial correlation function depending on a decay
(“range”) parameter ¢
spherical, exponential ...
generalized exponential/Gaussian: Matérn,
extra parameter k (see next slide)
o2 overall variance of the residual spatial process
(“sill”)

2 nugget effect, pure noise of the process

T
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Matérn model of spatial covariance

A general model with variable shape, adds a shape parameter
K to the scale parameter needed by all spatial covariance
functions; Reference: [12].

ph) = (257100} (1)K (h/b) @n

K (-) a modified Bessel function of order k

¢ > 0 scale parameter with the dimensions of distance

Kk > 0 the order: a shape parameter which determines
the analytic smoothness of the spatial process

- K = 0.5 exponential exp(—h/¢)

- Kk — oo Gaussian exp {(—(h/¢p)?}

- generally try a few values of k, not fit by
likelihood over the whole range



Matérn models varying  with fixed range parameter

o)

separation h

Matérn models with equivalent range

W)
04

separation h




- For fixed ¢ (range), priors for B, 02 as for the Normal
distribution: Normal - scaled inverse x?2

- For variable ¢:
1/2
p(d | y) () |Vz| " IRITZ (82)(nme 2
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> bsp4 <- krige.bayes(s100, loc = loci,
SR prior = prior.control(phi.discrete =
e i sea(0,5,1-101),
i phi.prior="rec"),
Gleiiution for output=output.control(n.post=5000))
L > summary (bsp4)
inference Length Class Mode
posterior 6 posterior.krige.bayes list
predictive 7 -none- Tist
prior 4 prior.geoR Tist
mode’ 6 model.geoR Tist
.Random.seed 626 -none- numeric
max.dist 1 -none- numeric
call 5 -none- call
Spatial
Bayesian

analysis
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vV Vv

vV Vv

vV Vv

Prediction

## prediction grid
pred.grid <- expand.grid(seq(0,1, 1=31), seq(0,1, 1=31))

## best prediction
bsp4 <- krige.bayes(s100, loc = loci,
prior = prior.control(phi.discrete =
seq(0,5,1=101),
phi.prior="rec"),
output=output.control(n.post=5000))

## simulation
bsp <- krige.bayes(s100, loc = pred.grid,
prior = prior.control(phi.discrete =
seq(0,5,1=51)),
output=output.control(n.predictive=2))
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Compare to conventional kriging

3




- texts: [5, 6, 8, 9]

- computation in R: [1, 10, 11, 13]
- historical: [2]

- MCMC: [3, 15]

- spatial: [4, 14]
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