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Topics for this lecture

1. Sampling concepts

2. Design-based spatial sampling

3. Sample size for design-based sampling

4. Model-based spatial sampling

5. Spatial Simulated Annealing

6. Sampling for mixed models of spatial dependence

7. Nested sampling to model the variogram

The topics written in italic script are supplementary; there is not enough time to cover
them in one lecture. They belong logically here, so are included for your future reference.
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Sampling concepts

A sample should be designed to extract the maximum information about reality from a
small portion of it, with a miniumum of cost and effort.

Spatial sampling refers to a sampling design where the observations are at known
locations, and the selection of the locations is part of the design.

D G Rossiter
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Commentary

Our knowledge of nature comes from samples, that is, a set of sampling units (sometimes loosely called

“samples”) taken from the sampling frame, which is a list of all possible units in the underlying population.

On the basis of the sample we make inferences about the population; e.g. we predict on a grid of many

thousands of locations based on a sample of a few hundred observations.

Sampling is expensive and time-consuming, so designing a good sampling scheme (maximum information at

minimum cost) is an important application of sampling theory; some designs require geostatistical

theory as well.

D G Rossiter



Applied geostatistics – Lecture 8 4

References

Here are some accessible texts:

� de Gruijter, J.; Brus, D.J.; Bierkens, M.F.P. and Knotters, M., 2006. Sampling for
Natural Resource Monitoring. Springer.

* Available as Springer e-book via UT/ITC and other libraries; ISBN 8-3-540-22486-0

� Schreuder, H. T; Ernst, R and Ramirez-Maldonado, H., 2004. Statistical techniques for
sampling and monitoring natural resources. Gen. Tech. Rep. RMRS-GTR-126. Fort
Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station; http://www.fs.fed.us/rm/pubs/rmrs_gtr126.html

� Cochran, W. G. 1977. Sampling Techniques (3rd ed.). New York: John Wiley.

* Classical design-based sampling theory
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Why sample?

1. To make some statement about the area as a whole

� Average, total, or variance; e.g. total biomass; average biomass per ha

2. To map some variable over an area

� Predicted values at (usually, a regular grid of) points: expected value, variance of
estimate, confidence intervals, probability of exceeding a threshold, . . .

� Same, for block averages

3. To determine spatial structure: direction, range, strength of dependence → causes,
processes

4. To monitor all of the above over time (repeat sampling)

Different statements have different sampling requirements

D G Rossiter
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To check your understanding . . .

Q1 : Suppose we want to map an area that that has never been sampled. What important property should

the sample have? Jump to A1 •

Q2 : Why might one want to take additional samples to map an area that has already been sampled? What

important property should the sample have? Jump to A2 •

D G Rossiter
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Steps in sampling

1. Define the research questions

2. Define the target population, target variable and target parameter

3. Define the quality measure

4. Specify the sampling frame

5. Specify the sampling design

6. Determine the sample size

7. Determine the sampling plan

8. Carry out the sampling in the field

D G Rossiter
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Step 1: Research questions

Without knowing what you want to know it is impossible to design a sampling scheme
to find out!

Questions should be precise. Compare these questions related to sampling designs for
agricultural research:

� Which is the most widely-grown rice variety in a district?

� What is the total area under rice in the district?

� What proportion of the rice production in a district is from a given variety?

� What was the mean yield of a given rice variety in a given year?

� What is the yield potential of a given rice variety under optimal management?

� What is the relation between yield and soil preparation method? (etc.)

(continued . . . )
D G Rossiter
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And now spatially-explicit research questions:

� Where are different varieties planted?

� What is the yield at each location (e.g., over some fixed grid)?

� Is there any spatial dependence between yields, e.g., are there “hot” and “cold” spots?

� If so, what could be the environmental conditions giving rise to these differences?

For all these: How much certainty (precision) is needed in the answers?

D G Rossiter
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Step 2 (a): Target population

What exactly is the population about which we want to make inferences?

This is the (possibly hypothetical) enumeration of all the individuals that make up the
population:

� Clear rules for inclusion or exclusion from the sample

� If the population is inherently continuous (e.g. “forest cover”), we need a
discretization rule to divide into individuals.

* This is the size and shape of the “individual”
* Equivalent to the concept of geostatistical support

D G Rossiter
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The sampling unit

Given the population, we must define it in terms of the sampling units.

These are the individuals which could be observed or measured.

We must specify:

� How to identify (recognize, limit) it in the field;

� How to actually make the observation (experimental protocol)

* site preparation for sampling
* what is to be measured
* measurement scale and resolution
* how to measure
* its spatial dimensions, called the support

D G Rossiter
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Step 2 (b): Target variable

This is the variable to be measured for each sampling unit.

Note that there may be several target variables of interest in the same sampling campaign.

Examples:

� Soil grain size fractions (gravel, coarse sand . . . ) in the 0-20 cm and 30-50 cm layers;

� Whether the soil is above a regulatory threshold for some pollutant (“contaminated”) or
not

� Age of each child in a household and whether s/he attends school regularly

D G Rossiter
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Step 2 (c): Target parameter

This is the statistical measure which will summarize the target variable. It is closely
related to the research question. What do we really want to know about the population
from which the sample is taken?

Examples:

� Mean proportion of each soil grain size fraction over a study area;

� Mean proportion of each soil grain size fraction of all 1 ha blocks in the study area
(mapping)

� Minimum, maximum, percentiles . . .

� Variance (as a measure of heterogeneity)

These will be estimated by statistical inference.

D G Rossiter
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Step 3: Quality measure

Some numeric measure of the statistical quality of the inference, i.e., how can we
quantify the success of the sample + inference?

Examples (from de Gruijter et al. 2006):

� estimation: the half-width of a 95% confidence interval of the estimate

� prediction (e.g., mapping): the error variance of the prediction

� hypothesis testing: the power of the test

� classification: the error rate of the classification

D G Rossiter
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Step 4: The sampling frame

This is a technical term for the list or enumeration of all possible sampling units for
the survey.

� This does not have to be the population about which the inference will be made, it is
often some sub-population which is eligible to be selected in the sample.

� If not the whole population, the researcher must argue that it is representative of the
population; this meta-statistical reasoning is used to make inferences about the
population from the sample.

� In spatial sampling the frame is often a tesselation (regular division) into grid cells
(squares or hexagons) of the whole area of interest (population) or some representative
sub-area.

D G Rossiter



Applied geostatistics – Lecture 8 16

Example of sampling frame

1. The population is all shifting-cultivation fields in the humid tropical rainforest of
Cameroon;

� This is the population about which we want to make some statistically-valid
statements.

2. The sampling frame includes all shifting-cultivation fields in four “representative”
villages;

� Only these are considered for sampling.

3. The sample will be some selection of these fields.

We have to argue (with evidence) that the four villages represent the whole area.

We have to ensure that each individual in the sample has a known probability of being
selected.

D G Rossiter
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To check your understanding . . .

Q3 : Why would the sampling frame be a sub-population, rather than the whole population? Jump to A3 •

Q4 : Is it statistically-valid to limit the sampling frame to easily-accessible areas, or villages that are known

to be cooperative with researchers? Why or why not? Jump to A4 •

D G Rossiter
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To check your understanding . . .

Suppose we are designing a field sample to determine soil organic carbon (SOC) stocks over an area covered

by a thematic mapper satellite image, of which we will use a vegetation index (e.g., NDVI) as a covariate.

Q5 : What is a reasonable population, i.e., individuals about which we will make an inference? Jump to A5

•

Q6 : If the area covered by the image is very large, so that sampling over the whole area is impractical, what

would be a reasonable sampling frame? Jump to A6 •

D G Rossiter
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Sampling fraction

This is the proportion of individuals in the sampling frame that are actually selected
and sampled. If N is the population size and n is the number of individuals sampled:

f = n
N

Example 1: In a study area of 100 ha = 1 000 000 m2; sampling individuals are defined as
10 x 10 m surface areas; so there are 106/102 = 104 sampling individuals.

If we make 50 observations (e.g. biomass in the 10 x 10 m area) the sampling fraction is
50/104 = 0.005 = 0.5%.

Example 2: Sampling individuals are households; the sampling frame is the 150
households in a village.

If 20 are selected and interviewed, the sampling fraction is 20/150 = 13.3̄%

D G Rossiter



Applied geostatistics – Lecture 8 20

Further steps

5 Specify the sampling design – discussed below (“design-based” and “model-based”)

6 Determine the sample size

7 Determine the sampling plan – the field logistics to reach the sampling individuals

8 Carry out the field sampling

D G Rossiter
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Spatial sampling

We now consider sampling in space.

First, we must distinguish:

� several views of spatial structure; and

� several views of how randomness arises in spatially-distributed samples.

D G Rossiter
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Views of spatial structure

There are three conceptual structures of spatial fields:

DMSV Discrete model of spatial variation: crisp boundaries between homogeneous
units; no spatial structure within units (polygons); widely-separated polygons of the
same class (“mapping unit”) have the same feature-space distribution of the target value.

� Note there is expected to be variability within polygons, but no spatial structure to
this variability.

� Examples: agricultural or forest management parcels; soil mapping units

CMSV Continuous model of spatial variation: no boundaries, no units; the target value
varies continuously (at some discretization) over space.

MMSV Mixed model of spatial variation: there are polygons, grouped in classes, but
within these there is continuous variation of the target variable. All polygons of a class
have the same internal spatial structure.

D G Rossiter
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Views of randomness

There are two approaches to randomness (which is necessary for valid statistical inference).

Design-based : randomness comes from the known probability of including an
individual in the sample;

Model-based : randomness comes from an assumed model of spatial structure; the
realization (what is encountered in nature) is viewed as the result of a
(spatially-correlated) random process.

.

D G Rossiter
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(continued . . . )
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Models of spatial variation – relation to sampling

� DMSV: inferences within class estimated by all samples from the class

* “Design-based” sampling, based on feature-space structure (e.g. strata, classes,
continuous feature-space predictors)

� CMSV: may have spatial dependence to some range, all spatial variability is found by
the variable itself. May include a global (trend) and local component

* “Model-based” sampling (‘model’ of spatial dependence), especially for
– determining spatial structure; and
– mapping as a continuous field

* “Design-based”can be used here too, especially for inferences of
(sub)-population parameters

� MMSV:

* Stratify by DMSV, model within by CMSV

D G Rossiter
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What is different about designs considering spatial structure?

1. DMSV: No assumptions about spatial structure; the probability-based estimates of
(sub)-population paramters are not biased;

2. CMSV: We can place samples for maximum information at minimum cost in a
model-based (geostatistical) sample;

3. MMSV: Must consider both spatial dependence in geographic space and the spread
of samples in feature space.

� DMSV is often used to determine strata and per-stratum sample size; then CMSV is
used for model-based sample placement in space.

D G Rossiter
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Design-based spatial sampling

In the Discrete Model of Spatial Variability (DMSV) we assume all locations in a stratum
have the same probability distribution of the target variable; therefore there is no need to
model spatial dependence. Sampling is design-based.

Even if we know there is spatial dependence, a design-based sample is still valid and
preferred for some inferences.

D G Rossiter
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To check your understanding . . .

Q7 :

(1) In the DMSV, is it necessary that all locations in a stratum have identical values of the target variable?

(2) What must be “the same” about all locations within a stratum for proper statistical inference in the

DSMV? Jump to A7 •

D G Rossiter
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Sampling designs with the DMSV

This is classical statistics applied to sampling units that are located in geographic space,
but where this is not considered a predictive factor.

� Consider the coordinates only as identifiers of candidates in the sampling frame;

� May consider predictive factors in feature space; leads to stratified sampling designs;

� Can use “classical” inference, e.g. multiple regression in feature space assuming no
correlation between residuals.

However, there is often evidence that the residuals (after the stratification or
feature-space prediction) are spatially-correlated; then a scheme based on the MMSV
should give more efficiency (see below).

D G Rossiter
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Design-based unstratified sampling

� Used when there are no sub-areas or feature-space classifiers

� Three main design classes:

1. Completely random
* has observations at different spatial ranges
* may leave “holes” so not optimal for mapping
* gives unbiased estimates of population statistics, e.g. mean

2. Regular grid
* covers the area evenly
* randomness comes from random grid origin

3. Partitioned
* Two stages
(a) coarse grid of blocks covering the area, select blocks at random;
(b) within blocks, either completely random or grid

D G Rossiter
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Logistics

Completely random most difficult to move between locations, complex navigation and
impossible-to-optimize (“travelling salesman” problem) route planning

Grid easy navigation, less total travel, but longer distances between locations

Partitioned the only long distances are between blocks, within blocks less travel time

D G Rossiter
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Two unstratified sampling designs

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
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Stratified sampling

Often we have prior evidence that the whole space is not a homogeneous unit; we can then
make inferences about sub-spaces (“strata”) either by:

1. Design-based unstratified sampling (as above), but recording the discriminating variables
as factors along with the target variables (e.g., land-use class along with biomass);

2. Stratified sampling: dividing the area into strata as part of the design.

(continued . . . )

D G Rossiter



Applied geostatistics – Lecture 8 35

Stratification

� There are sub-areas where there is evidence that the target variables should be different

* In a soil survey the underlying lithology as shown on a geologic map is expected to
influence the soil texture; and the land-use history as shown on a land-use map is
expected to influence the soil organic matter;

* Map units of these maps can be used as strata

� There are continuous feature-space attributes that are expected to influence the
target variables

* E.g. in a soil survey, the terrain slope gradient is expected to influence the soil depth
(steeper slopes → shallower soils)

* These continuous attributes can be classified (“sliced”) to produce strata.

D G Rossiter
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How to divide the sample among strata?

1. Proportional to the area covered by the stratum: proportional stratified sampling;

2. Proportional to the variance within a stratum: more samples to more variable
strata.

� This requires an a priori estimate of within-stratum variance. It concentrates the
sampling effort where more samples are needed to characterize the target variable.

3. According to interest in the stratum.

� More will be known (e.g., lower estimation variance) in the intensively-sampled areas.
� E.g., soils near industrial sites are expected to be more polluted than rural soils; if the

target variable is heavy-metal concentration, we are more interested in the areas
expected to have high values.

� E.g., soils in agricultural areas will be more intensively used than in conservation
areas, so the properties of ag. soils may be of more interest.

D G Rossiter
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Topic: Sample size for design-based sampling

Sampling is expensive, but so is incorrect or imprecise information. These two must be
balanced by determining the sample size that will satisfy information needs while
minimizing costs.

We first illustrate the concept of sampling error, then develop theory to determine sample
size, then see how to compute it:

1. Sampling error

2. Theory

3. Computation

D G Rossiter
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Sampling error

Estimates from samples are almost never equal to true values, and estimates from different
samples differ among themselves.

To quantify this we define the concept of sampling error:

� The amount by which an estimate of some population parameter computed from a
sample deviates from the true value of that parameter for the population.

Example: Estimated total rice production in a district, extrapolated from a sample of fields,
vs. the actual total production.

Of course we usually don’t know this (since we don’t know the true value).

D G Rossiter
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Sampling error

We can appreciate sampling error by simulation from known populations.

Example: Draw 10 different random samples from a normal distribution with true mean
100 and standard deviation 5; size of each sample is 20 observations; compute the sampling
errors:

R> # set up a vector for the results

R> samp <- rep(0, 10)

R> # compute the means of 10 sets of 20 normal variates, true mean=100

R> for (i in 1:10) samp[i] <- mean(rnorm(20, 100, 5))

R> # compute sampling errors

R> 100 - samp

[1] -1.480606 0.256055 0.165392 -0.096576 -0.730931 -0.109797

[7] 1.118741 -0.246498 0.674641 0.887922

R> # mean sampling error

R> mean(100 - samp)

[1] 0.043834

Notice that the mean sampling error is almost zero. This is the result of the central limit
theorem, derived from the law of large numbers.
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Illustrating the central limit theorem

Sample size: 20
Mean of 120 samples: rnorm(20, 100, 5)
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Type I and Type II error

To understand how we determine sample size, we need to recall some basics of hypothesis
testing.

There are two types of inferential errors we might make:

Type I : rejecting the null hypothesis when it is in fact true; a false positive

Type II : not rejecting the null hypothesis when it is in fact false; a false negative

Null hypothesis H0 is really . . .
Action taken True False

Reject Type I error committed success
Don’t reject success Type II error committed
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Significance levels

There are two risk levels associated with the two types of error:

α is the risk of Type I error

We set α to guard against false inference; thus we are inherently conservative.

β is the risk of Type II error

1− β is known as the power of the test (see below).

We get β from the form of the test and true effect (see below).
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Example

Null hypothesis: A new crop variety will not yield at least 100 kg ha-1 more than the
current variety; that is, there is no real reason to recommend the new variety.

Note: this is an informative null hypothesis; not just “no difference”. It is set by the
researcher. In this case, unless we can prove this much difference we won’t bother to
develop the new variety. This is a management decision, not statistical.

Type I error: the new crop variety in fact does not have an average yield (if grown
“everywhere”) at least 100 kg ha-1 more than the current variety, but from our (limited)
sample we say that it does. A “false positive”. So, we develop the variety and recommend
it, but the farmer gets no significant benefit.

Type II error: the new crop variety in fact does have an average yield (if grown
“everywhere”) at least 100 kg ha-1 more than the current variety, but from our (limited)
sample we say that it does not. A “false negative”. So, we abandon the variety, even
though the farmer would have benefitted.

D G Rossiter



Applied geostatistics – Lecture 8 44

Approaches to computing sample size

There are two main approaches:

1. Power analysis

2. Sampling to narrow a confidence interval

For most applications in spatial sampling, we are interested in the confidence interval of
an estimate, and so will use the second approach.

Power analysis is commonly used to design experiments with a known probability of
revealing differences between treatments.

Note: See the website
http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3

(G*Power 3 computer program) for this approach.
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Sampling to narrow a confidence interval

One approach to sample size calculation is to consider the desired width of the
confidence interval for some parameter of interest.

We will use the example of a confidence interval for a mean value.
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Confidence interval for the mean

Recall that the confidence interval for a mean µ is computed as:

(x̄ − tα/2,n−1 · sx̄) ≤ µ ≤ (x̄ + tα/2,n−1 · sx̄)

where:

� x̄ is the sample mean;

� tα/2,n−1 is Student’s t with n− 1 degrees of freedom at confidence level α/2;

� sx̄ is the standard error of the sample mean:

sx̄ = sx√
n

sx =
[ 1
n− 1

n∑
i=1

(xi − x̄)2
]1/2
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Notes on these formulas

� The confidence level α, say 0.05, is halved, say to 0.025 for each side of the interval,
because this is a two-sided interval.

� The t-distribution must be used because we are estimating both the mean and
variance from the same sample; for reasonably-large sample sizes the normal
distribution itself (here called the z distribution) can be used.
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What affects the confidence interval?

1. The t value:

(a) n: sample size: t → z as n→ω
(b) α: risk level set by the experimenter that the computed interval does not contain

the true mean; a higher risk leads to a narrow interval

2. The standard error sx̄:

(a) n: sample size (again): precision increases as
√
n

(b) the sample standard deviation: this is essentially the inherent variability of the
sample
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What can we control?

1. The risk of rejecting a true null hypothesis (α); depends on the cost of a false
positive;

� If there is little cost associated with making a Type I error, α can be high (lenient);
this will narrow the confidence interval.

2. Sample standard deviation

� We have some control by good experimental or observational procedures
� But we can not control the inherent variability in the population, even with perfect

technique;

3. The half-width w of the confidence interval, i.e. the required precision. We set this
according to how precise the computed estimate must be; this depends on the
application.
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Inverting the confidence interval

With the above parameters set, we can compute the required sample size:

1. Set the required risk α that the computed mean value (or mean difference) is outside
the interval;

2. Set the desired (half-)width of the confidence interval w;

3. Estimate the sample standard deviation sx

Then we solve for n:

w = tα/2,n−1 · sx/
√
n

√
n = tα/2,n−1 · sx/w
n = (tα/2,n−1 · sx/w)2
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No closed-form solution for n

There is a problem with this “solution” for n:

The right-hand side also contains n (which we want to compute), because the t-value
depends on the degrees of freedom.

So we must somehow approximate t, solve, and then iterate. In practice either of the
following two methods can be used:

1. Replacing t with z: for larger expected sample sizes

2. Use a conservative estimate of t: for smaller expected sample sizes
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Solution 1: Replacing t with z

Replace tα/2,n−1 with zα/2, i.e. the normal deviate (= t with infinite d.f.).

This leads to under-estimation of n by a factor f of (example for α = 0.05):

n 10 20 50 100 200 500

f 0.268 0.126 0.049 0.024 0.012 0.005

(Note: R code for this: qt(0.975, n) - qnorm(0.975) etc.)

So the sample size estimate will be somewhat too low.

Then iterate with this first estimate of n, using the t value this time.
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Solution 2: Use a conservative estimate of t

Use a small but realistic value of n to compute tα/2,n−1; as long as the computed n is
larger, this is a conservative estimate.

If a more exact n is needed, the new estimate can be used to re-compute tα/2,n−1,
iteratively.
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How to set these values?

1. We set the desired risk based on how often we are willing to be wrong (i.e. the actual
value is outside the computed limits).

2. We set the desired width based on the precision we require.

3. We estimate the sample standard deviation from a previous study on this sampling
frame, or from similar studies. This of course may not be the actual sample standard
deviation we get from the new sample.
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Numeric example: Problem

1. Problem: Determine sample size for a natural resources survey to detect difference in
soil carbon stocks between two land use systems (e.g. conventional vs. organic
agriculture).

2. The population is all fields in either land use system (note – this must be carefully
described).

3. We use a paired design: sets of adjacent fields, as similar as possible in soils and other
management, and measure the soil carbon in each field by some field and lab. protocol.

4. We then compute the paired difference and, from these, the mean difference.

5. We compute the confidence interval of the mean difference based on our sample.
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Use of the confidence interval

� If this interval includes 0 we can not reject the null hypothesis H0 of no difference in soil
carbon stocks between systems.

� But we get more information here: the interval in which the true difference is
expected to lie: i.e. an estimate of the magnitude of the effect. This can be directly
used for decision-making.
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Numeric example: Setup

1. We set the risk of rejecting a true null hypothesis α to 0.1 because we are willing
to accept a 10% risk of falsely rejecting the null hypothesis (i.e. falsely deciding that one
of the alternatives is better than the other). So for each half-width we use half of this,
i.e. 0.05.

2. We set the half-width to 0.5 kg m-2 surface area, because a smaller carbon difference
is not considered important for soil behaviour.

3. From a previous survey we estimate the population standard deviation to be
2 kg m-2; note that this will be higher with on-farm trials than in controlled experiments.
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Numeric example: Solution

We begin with an estimated sample size of 20; we know this is within our budget.

t.05,19 = 1.7291 (R code: qt(.95, 19))

n = (tα/2,n−1 · sx/w)2

n = (1.7291 · (2/0.5))2

n = 47.8 ≈ 48

This suggests that a sample size of 48 should detect a real difference of 0.5 kg m-2 in either
direction, with a risk of 10% of incorrectly calling a chance difference real.

Note this is 48 pairs, since it is a paired test.
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Numeric solution: iteration

Now that we know ≈ n we can recompute t and refine the estimate; with this higher n the
t value will be a bit lower and so will the required sample size.

t.05,47 = 1.6779 (R code: qt(.95, 47))

n = (tα/2,n−1 · sx/w)2

n = (1.6779 · (2/0.5))2

n = 45.047 ≈ 45

The difference is small, only 3 fewer samples.
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Numeric solution: normal approximation to t

z.05 = 1.6449 (R code: qnorm(.95))

n = (zα/2 · sx/w)2

n = (1.6449 · (2/0.5))2

n = 43.289 ≈ 43

This is only two fewer than when using the correct t, so it is also a good approximation.
We could now iterate with t0.05,42 as above, and arrive at the final (correct) sample size,
n = 45.
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Effect of parameters

The following all increase the required sample size:

1. α: α = 0.10→ 45; α = 0.05→ 65; 0.01→ 115

Decreasing risk (i.e. a smaller α)

2. w: w = 1→ 11, w = 0.5→ 45, w = 0.25→ 180

Detecting a small (real) difference

3. s: s = 1→ 11, s = 2→ 45, s = 4→ 180

A more variable population
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Model-based spatial sampling – overview

Continuous Model of Spatial Variability (CMSV): the only structure is spatial.

I.e., we assume that the target attribute is the result of a random field which structure
must be modelled; thus the sampling must be adequate to build this model.

Since we hypothesize a spatially-correlated CMSV, sampling has two main aims:

1. Determine this spatial structure (e.g., fit a variogram model);

2. Map the spatially-correlated field by interpolation with the modelled spatial structure
(e.g., by Ordinary Kriging)
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Commentary

If the analysis of spatial structure is not successful, it is impossible to map by the CMSV; the only honest

approaches are Theissen polygons if there is evidence of continuity or the overall mean otherwise.
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Sampling designs to determine spatial structure

Here the aim is to determine spatial structure:

� as an end in itself (to understand landscape processes);

� to build a model to be used in kriging interpolation.

The sampling scheme is not necessarily optimal for mapping an area; in fact the
requirements are quite different:

� Determine spatial structure: sample at various resolutions;

� Mapping: spread observations over the entire area.

Thus there may be large “holes” in the coverage – but these are assumed to have the same
spatial structure as the areas where observations are located.
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Some recent references

� Webster, R., Welham, S. J., Potts, J. M., & Oliver, M. A. (2006). Estimating
the spatial scales of regionalized variables by nested sampling, hierarchical analysis of
variance and residual maximum likelihood. Computers & Geosciences, 32(9), 1320-1333.

� Lark, R. M. (2002). Optimized spatial sampling of soil for estimation of the variogram
by maximum likelihood. Geoderma, 105(1-2), 49-80.

� van Groenigen, J.-W. (1999). Sampling strategies for effective variogram estimation.
In J.-W. van Groenigen (Ed.), Constrained optimisation of spatial sampling (pp.
105-124). Enschede, NL: ITC.

� Müller, W. G., & Zimmerman, D. L. (1999). Optimal designs for variogram
estimation. Environmetrics, 10(1), 23-37.

� Russo, D. (1984). Design of an optimal sampling network for estimating the
variogram. Soil Science Society of America Journal, 48(4), 708-716.
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Number of observations to model the variogram

Stochastic simulation from a random fields with known variograms suggests:

1. < 50 points: not at all reliable

2. 100 to 150 points: more or less acceptable

3. > 250 points: almost certaintly reliable

More points are needed to estimate an anisotropic variogram

Reference:

� Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of
soil properties. Journal of Soil Science, 43(1), 177-192.
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Sample spacing – widest

We must have some a priori idea of the range of spatial dependence, i.e., the maximum
separation at which there is expected to be any dependence – is it 100 km, 10 km, 1 km,
100 m, 10 m, 1 m, . . . ?

Spacings wider than this will not contribute to discovering the model of spatial dependence.

Spacings that do not reach this will leave part of the spatial structure un-discovered.

This a priori range may be inferred from:

� previous studies of the same target variable in similar areas;

� ranges of covariates.
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To check your understanding . . .

Q8 : Suppose the aim is to map target variable “biomass” of a forested area.

Further suppose we have available a thematic mapper satellite image, from which we can easily

computevegetation indices (e.g., NDVI) which are known to be related to vegetation vigour.

How could we use the image to estimate the a priori range of a variogram for the target variable? Jump to

A8 •
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Sample spacing – narrowest

This depends on the narrowest separation where information is needed.

For eventual mapping, this would be the interpolation block size.

Another way to think about it: what is the closest spacing within which you are willing to
be ignorant of local variability?

Note: narrower separation → lower nugget, therefore lower minimum kriging variance at
that block size.
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Placement of observations

One approach is the nested scheme of Webster; see separate topic below.

Another approach is the geometric-series transect:

� Transect: place lines across landscape, establish sampling points along these

� If anisotropy is suspected, transects along and across main variation (orthogonal)

� Within each transect, a geometric series of spacings
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Geometric series

This most efficiently captures a wide range of variability.

Boundary conditions: widest spacing: s1; narrowest spacing: s2

s3 =
√
s1 · s2; just one of these

s4 =
√
s1 · s3; s5 =

√
s2 · s3: two of these, divides each interval

Can continue to get finer resolution (more variogram bins, so better variogram modelling).

Tradeoff: more stations in each transect → fewer transects (with same total number of
observations)
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Geometric series: example

� Boundary conditions: s1 = 600 m (widest), s2 = 6 m (closest)

� First intermediate spacings s3 =
√

6 m · 600 m = 60 m

� Series now {600m, 60m, 6m}

� Second set of intermediate spacings, as the geometric mean between each adjacent
spacing:

* s4 =
√

600 m · 60 m ≈ 190 m
* s5 =

√
60 m · 6 m ≈ 19 m

� Final series {600 m, 190 m, 60 m, 19 m, 6 m}
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Placement on the transect

In the previous example, the transect is 600 m long, or else divided into 600 m segments;
observations are made at each end.

Then from one end, an observation is placed 190 m from that end.

Then from that end and the new station, observations are placed 60 m from these, in the
same direction.

This is repeated for the 19 m and 6 m spacings.

The final layout is:

0, 6, 19, (19+6)=25, 60, (60+6) = 66, (60+19) = 79, (60+19+6) = 85, 190, (190+6) =
196, (190+60) = 250, (190+60+6) = 256, (190+60+19) = 269, (190+60+19+6) = 275,
600.

When the spacing gets quite close (here, 6 m) it may be possible to omit some (e.g., half)
of these spacings.
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Commentary

This could be extended with a third set of intermediate spacings, as the geometric mean between each

adjacent spacing:

� s6 =
√

600 m · 190m ≈ 338 m

� s7 =
√

190 m · 60m ≈ 107 m

� s8 =
√

60 m · 19m ≈ 34 m

� s9 =
√

19 m · 6m ≈ 11 m

Final series {600 m, 338 m, 190 m, 107 m, 60 m, 34 m, 19 m, 11 m, 6 m}
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Sampling designs for mapping with the CMSV

A main use of the CMSV concept is to map an area as a “continuous” surface – in practice,
it is some tesselation.

Desiderata:

1. Maximize information

� Cover the largest possible area
� Minimize some optimization criterion in the resulting map

2. Minimize costs

3. Incorporate any existing sample (avoid duplication)
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What is to be optimized?

An optimization criterion is some numerical measure of the quality of the sampling
design. Some possibilities:

1. Minimize the maximum kriging variance in the area: nowhere is more poorly
predicted than this maximum

2. Minimize the average kriging variance over the entire area

3. Maximize the information in a sample variogram, to allow reliable variogram
estimation.

Note that if there are areas that need different precisions, the numerical value of the quality
measure can differ between them.
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Optimal point configuration (CMSV)

In a square area to be mapped, given a fixed number of points that can be sampled, in the
case of bounded spatial dependence:

� Points should in on some regular pattern; otherwise some points duplicate information
at others (in kriging, will “share” weights)

� Optimal (for both the “minimal maximum” and “minimal average” criteria): equilateral
triangles (If the triangle is 12, max. distance to a point =

√
7/4 ≈ 0.661)

� Sub-optimal but close: square grid (max. distance =
√

2/2 ≈ 0.707)

* Grid may be perturbed so samples do not line up exactly; avoids unexpected
periodic effects

(Problems: edge effects in small areas; irregular areas.)
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Commentary

Some practicioners add a small random jitter to each location, to avoid undected linear features This alters

the inclusion probabilities in a design-based scheme, but in a model-based scheme randomness does not arise

from observation locations, so there is no need for known inclusion probabilities.
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Optimal point configuration in the presence of anisotropy

Optimal designs are easily adjusted for affine (also called geometric) anisotropy.

This is where the range of spatial dependence differs for two othogonal axes, but the
variogram sill, and model form are the same along both axes.

Adjustment : stretch it in the direction of maximum dependence, based on the anisotropy
ratio, i.e., the ratio of the two ranges.

E.g. for a ratio of 0.5, squares become rectangles, with the distance in the direction with
the longest range twice that of the shortest range.
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Computing an optimal grid size with a known variogram model

� Reference: McBratney, A. B. & Webster, R. (1981) “The design of optimal
sampling schemes for local estimation and mapping of regionalized variables - I and II”.
Computers and Geosciences, 7(4), 331-334 and 335-365; also in Webster & Oliver.

� In kriging, the estimation error is based only on the sample configuration and the
chosen model of spatial dependence, not the actual data values

� So, if we know the spatial structure (variogram model), we can compute the maximum
or average kriging variances before sampling, i.e. before we know any data values.

� Then we can make sampling decisions on the basis of cost-benefit
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Error variance

� Recall: The kriging variance at a point is given by:

σ̂ 2(~x0) = bTλ

= 2
N∑
i=1

λiγ(~xi, ~x0)−
N∑
i=1

N∑
j=1

λiλjγ(~xi, ~xj)

� This depends only on the sample distribution (what we want to optimise) and the
spatial structure (modelled by the semivariogram)

� Note that the values of the target variable are nowhere in this formula!

� In a block this will be lowered by the within-block variance γ(B, B)
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Reducing kriging error

Once a regular sampling scheme is decided upon (triangles, rectangles, . . . ), the kriging
variance is decreased in two ways:

1. reduce the spacing (finer grid) to reduce semivariances; or

2. increase the block size of the prediction

These can be traded off; but usually the largest possible block size is selected, based on the
mimimum decision area.
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To check your understanding . . .

Q9 : What information is lost as the prediction block size increases? Jump to A9 •

Q10 : Suppose the target variable is the concentration of some hazardous soil pollutant, which will be

removed if its concentration is predicted to exceed some threshold. What is the public-health danger of using

too large a block size? Jump to A10 •
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Error as a function of increasing grid resolution

� Consider 4 sample points in a square

� To estimate is one prediction point in the middle (furthest from samples → highest
kriging variance)

� Criterion is “minimize the maximum prediction error”

� If the variogram is close-range, high nugget, low sill, we need a fine grid to take
advantage of spatial dependence; high cost

� If the variogram is long-range, low nugget, high sill, a coarse grid will give similar results
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Kriging variances at centre point
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To check your understanding . . .

Q11 : Considering the long-range variogram, what spacing between observations would be needed to obtain

the same or lower kriging variance for a 20 m block as using a 400 m spacing and a 120 m block? Jump to

A11 •

Q12 : If now the variogram is short-range (i.e., the spatial dependence is only over shorter separations),

what is the widest spacing that could be used to obtain the same or lower kriging variance as using a 400 m

spacing and a 120 m block for the long-range variogram? Jump to A12 •
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Cost of mapping an area

� Given sample spacing (side of grid) g and total area A, the number of sample points

required to cover the area is n = (
√
A
g + 1)2

� Example: 25 km x 25 km area (A = 625 km2)

* g = 5 km→ ((25/5)+ 1)2 = 36
* g = 0.5 km→ ((25/0.5)+ 1)2 = 2601
* g = 10 km→ ((25/10)+ 1)2 = 12.25 ≈ 12

� Multiply this by the cost of each sample

* Fixed per sample: time to acquire, equipment rental for this time, laboratory
* Variable: travel time between samples

� In addition, there is a fixed cost to set up the sampling scheme
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Cost-benefit analysis

� Compute a cost/benefit ratio and plot against a controllable parameter:

* sample spacing at a given block size
* block size for a given sample spacing
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Exercise

At this point you should do Exercise 8: Spatial sampling which is provided on the
module CD:

1. Design completely random, stratified random, and grid sampling schemes;

2. Find the “optimal” regular grid sample for a given variogram model;

As in all exercises there are Tasks, followed by R code on how to complete the task, then
some Questions to test your understanding, and at the end of each section the Answers.
Make sure you understand all of these.
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Spatial Simulated Annealing (SSA)

Problem: how to optimally place a limited number of observations in a study area in
order to extract the maximum information at minimum cost.

We consider here the information to be a map over some study area, made by ordinary
kriging from the sample points; so the assumptions of the CMSV must be met.

Reference:

van Groenigen, J.-W. (2000). The influence of variogram parameters on optimal
sampling schemes for mapping by kriging. Geoderma, 97(3-4), 223-236.

also contained in the PhD thesis:

van Groenigen, J.-W. Constrained optimisation of spatial sampling Enschede, NL: ITC.
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Commentary

The approach can be extended for the mixed model (MMSV), see:

Brus, D. J., & Heuvelink, G. B. M. Optimization of sample patterns for universal kriging of

environmental variables. Geoderma, 138(1-2), 86–95
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Problems with the “optimal” grid

The “optimal” grid presented in the previous section is optimal only in restricted
circumstances. There are many reasons that approach might not apply:

� Edge effects: study area is not infinite

� Irregularly-shaped areas, e.g. a flood plain along a river

� Off-limits or uninteristing areas, e.g. in a soils study: buildings, rock outcrops,
ditches . . .

� Existing samples, maybe from a preliminary survey; don’t duplicate the effort!

Impossible to compute an optimum analytically (as for the regular grid on an infinite plane).
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Annealing

Slowly cooling a molten mixture of metals into a stable crystal structure.

During annealing the temperature is slowly lowered.

At high temperatures, molecules move around rapidly and long distances

At low temperatures the system stabilizes.

Critical factor: speed with which temperature is lowered

� too fast: stabilize in a sub-optimal configuration

� too slow: waste of time
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Simulated annealing

This is a numerical analogy to actual annealing:

� Some aspect of a numerical system is perturbed

� The configuration should approach an optimum

� The amount of perturbation is controlled by a “temperature”
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Outline of SSA

1. Decide on an optimality criterion

2. Place the desired number of sample points “anywhere” in the study area (grid, random
. . . ); compute fitness according to optimality criterion

3. Repeat (iterate):

(a) Select a point to move; move it a random distance and direction
(b) If outside study area, try again
(c) Compute new fitness
(d) If better, accept new plan; if worse also accept with a certain probability

4. Stop according to some stopping criterion
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Example of a single step

Colour ramp is from blue (low kriging variance) to red (high).

Point at lower right is moved to middle-bottom:

A large “hot” area (high kriging variance) is now “cooler”.
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Temperature

The distance to move a point is controlled by the temperature; this is used to multiply
some distance.

Tk+1 = α · Tk (1)

where k is the step number and α < 1 is an empirical factor that reduces the temperature;
we must also specify an initial temperature T0.
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Fitness

Several choices, all based on the kriging variance:

� Mean over the study area (MEAN OK)

* appropriate when estimating spatial averages to a given precision

� Maximum anywhere in the study area (MAX OK)

* appropriate when the entire area must be mapped to a given precision, e.g. to
guarantee there is no health risk in a polluted area.
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Stopping criterion

Possiblities:

� fixed number of iterations

� reach a certain (low) temperature

� after a certain number of iterations with no change.
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Acceptance criterion

Metropolis criterion: the probability P(S0 → S1) of accepting the new scheme is:

P(S0 → S1) = 1, if φ(S1) ≤ φ(S0) (2)

P(S0 → S1) = exp
(φ(S0)−φ(S1)

c
)
, if φ(S1) > φ(S0)

where S0 is the fitness of the current scheme, S1 is the fitness of the proposed new scheme,
and c is the temperature. This can also be written:

p = e−∆f/Tk (3)

where Tk is the current temperature and ∆f is the change in fitness due to the proposed
new scheme.

Note that this will be positive for a poorer solution, so its complement is used for the
exponent.
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To check your understanding . . .

Q13 : Why should the procedure ever accept a worse scheme? Jump to A13 •
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A real example

Industrial area, existing samples; more must be taken to lower the prediction variance to a
target level everywhere; where to place the new samples?

Reference: van Groenigen, J. W., Stein, A., & Zuurbier, R. (1997). Optimization
of environmental sampling using interactive GIS. Soil Technology, 10(2), 83-97
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Sampling for the Mixed Model of Spatial Variability (MMSV)

The MMSV has both feature and geographic space dependence, so both must be
considered when setting up a spatial sampling scheme.
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Motivation for MMSV designs

Regression assumes that the errors from the model are statistically independent; this is
often not be plausible, due to spatial dependence in the sources of error, as demonstrated
by the residual variogram.

Thus the errors are too optimistic, if any points are within the range of spatial dependence;
i.e. there is less error than if the points were uncorrelated.

Recent references:

� Brus, D. J., & Heuvelink, G. B. M. Optimization of sample patterns for universal
kriging of environmental variables. Geoderma, 138(1-2), 86–95

� Lark, R. M. (2000). Regression analysis with spatially autocorrelated error: simulation
studies and application to mapping of soil organic matter. International Journal of
Geographical Information Science, 14(3), 247–264.
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Sampling for MMSV

For a feature-space model, we may want to place points at particular locations in the
feature space, but these may be spatially-correlated.

Reasons:

� cost: blocks or transects are easy to set up and cheap to sample

� specific areas of interest: feature-space characteristics we want to sample may be
only in small areas (e.g. hilltops).

Solution 1: Use design-based inference.

Solution 2: Use GLS to estimate the trend surface and then model the residuals.
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Nested spatial sampling

An efficient way estimate a variogram is with the following nested spatial sampling
scheme. It is based on work from 1937, re-discovered and extended in 1990.

Purpose: establish the structure of spatial dependence (e.g. variogram) with a minimal
number of samples.

Not intended to map an area, although the fitted variogram that results can be used to
design an optimal sampling scheme to map (e.g. OSSFIM).
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References

� Original work: Youden, W. J. & Mehlich A. (1937) Selection of efficient methods for soil
sampling, Contributions of the Boyce Thompson Institute for Plant Research 9 : 59-70

� Summarized in R. Webster & M. Oliver (1990) Statistical methods in soil and land
resource survey ; Oxford University Press, Ch. 13

� Also in R. Webster and M. Oliver (2001) Geostatistics for environmental scientists, §5.3

� Recent paper re-stating the method: Webster, R. Welham, S. J., Potts, J. M.,&
Oliver, M. A. (2006) Estimating the spatial scales of regionalized variables by nested
sampling, hierarchical analysis of variance and residual maximum likelihood, Computers
& Geosciences 32 : 1320-1333
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Nested sampling

� Various spacings between observations, designed in stages

� Widest spacing s1 is the ‘station’, which are assumed so far away from each other as to
be spatially independent

* furthest expected dependence . . .
* . . . based on the landscape . . .
* . . . and expected range of process to be modelled

� Closest spacing sn is the shortest distance whose dependence we want to know

� Fill in the series with a geometric series, each series “nested” within previous ones.
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Geometric series: example

� First series: s1 = 600m (stations), s5 = 6m (closest)

� Intermediate spacing: s3 =
√

6m · 600m = 60m

� Series now {600m, 60m, 6m}

� Fill in with the geometric means

* s2 =
√

600m · 60m ≈ 190m
* s4 =

√
60m · 6m ≈ 19m

� Final series {600m, 190m, 60m, 19m, 6m}
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Locating the sample points

� Objective: cover the landscape, while avoiding systematic or periodic features

� Method: random bearings from centres at each stage

� Stations can be along a transect if desired (no spatial dependence)

� From a centre at stage i (Ei, Ni), to find a point (Ei+1, Ni+1) at the next spacing si+1:

* θ = random uniform[0 . . .2π]
* Ei+1 = Ei + (si+1 ∗ sinθ)
* Ni+1 = Ni + (si+1 ∗ cosθ)
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Number of sample points

� Number of stations selected to cover the area of interest

� At each stage Si, the next stage Si+1 has in principle double the samples

� One is for all the previous centres from stage S1 . . . Si−1 and one is for the new centre
from stage Si

� So the total number doubles: half old, half new centres
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Unbalanced sampling

� After the first 4 stages, use an unbalanced design

� Only half the centres at Si (i ≥ 4) are further sampled at Si+1

� This still covers the area, but only uses half the samples at the shortest ranges

� Number of pairs is still enough estimate short-range dependence
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Number of sample points: example

� Five stages {600m, 190m, 60m, 19m, 6m}

� Nine stations: n1 = 9

� Double at stages 2 . . . 4: n2 = 18, n3 = 36, n4 = 72

� At stage 5, only use half the 72 centres, i.e. 36

� Total at stage 5: 72+ 36 = 108 (would have been 144 with balanced sampling)
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Example of nested sampling

Source: Webster, R., and M.A. Oliver (2008). Geostatistics for environmental
scientists. 2 ed. John Wiley & Sons Ltd.

D G Rossiter



Applied geostatistics – Lecture 8 116

Numbering of sample points

� Use a five-digit number, one place for each distance:
{1−n1}{0− 1}{0− 1}{0− 1}{0− 1}

� except no combination {1−n1}0{0− 1}{0− 1} i.e. only half the stage 4 centres are
used for stage 5

� Angles are measured from a point with n 1’s to the point with n+ 1 1’s, differing in
exactly one place. I.e., one 0 becomes a 1.

� Example:

10000 ⇒ 11000 (190m)
10000 ⇒ 10100 (60m)
10000 ⇒ 10010 (19m)
11000 ⇒ 11001 (6m)
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Nested ANOVA : Partition Variability by sampling level

� Linear model:

zijk...m = µ +Ai + Bij + Cijk + · · · + Qijk...m + εijk...m

� Link with regional variable theory (semivariances): m stages; d1 shortest distance at
mth stage; dm largest distance at first stage

σ 2
m = γ(d1)

σ 2
m−1 + σ 2

m = γ(d2)
...

σ 2
1 + . . .+ σ 2

m = γ(dm)

� F-test from ANOVA table; for stage m+ 1 : F = MSm/MSm+1
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Nested ANOVA : Interpretation

� There is spatial dependence from the closest spacing until the F-ratio is not significant.

� Samples from this distance are independent

� To take advantage of spatial interpolation, must sample closer than this

� Can estimate how much of the variation is accounted for at each spacing
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Answers

Q1 : Suppose we want to map an area that that has never been sampled. What important property should

the sample have? •

A1 : A first sample should establish the range of variability in feature space of the area, e.g. an empirical

distribution of the target variables. It also is used to determine if there is spatial dependence and if so, its

structure; this can later be used for optimal sampling for mapping.

The sample should include locations where we might expect differences; also, there must be locations with

different separations to estimate a variogram. Return to Q1 •

Q2 : Why might one want to take additional samples to map an area that has already been sampled? What

important property should the sample have? •

A2 : A supplementary sample is generally taken to increase the precision of an estimate or reduce the

prediction error of a map. Observations should be located where there is maximum uncertainty with the

existing sample, or in “hot spots” previously identified by earlier surveys. Return to Q2 •
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Answers

Q3 : Why would the sampling frame be a sub-population, rather than the whole population? •

A3 : The main reason is usually logistics: it is impractical to travel to all possible sampling individuals in

the population. In the Cameroon example access in the rainforest zone is slow and uncertain, so it makes

sense to cluster by selected villages. Return to Q3 •

Q4 : Is it statistically-valid to limit the sampling frame to easily-accessible areas, or villages that are known

to be cooperative with researchers? •

A4 : This is only valid if we can argue from other evidence that the limited frame represents the population.

This seems quite doubtful in the two cases mentioned: accessible land by definition has different management

potential (and therefore almost always different use) and often different land characteristics (e.g., gentle

slopes, deep soils . . . ); cooperative villages obviously have a different dynamic towards researchers, so answers

would be expected to be different from un-cooperative villages. Return to Q4 •
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Answers

Suppose we are designing a field sample to determine soil organic carbon (SOC) stocks over an area covered

by a thematic mapper satellite image, of which we will use a vegetation index (e.g., NDVI) as a covariate.

Q5 : What is a reasonable population, i.e., individuals about which we will make an inference? •

A5 : All soil areas covered by one pixel of the covariate image. Return to Q5 •

Q6 : If the area covered by the image is very large, so that sampling over the whole area is impractical, what

would be a reasonable sampling frame? •

A6 : All soil areas covered by a “representative” sub-image. This could be selected by randomly locating one

corner. In practice it may be selected for logistic reasons (accessibility), although the analyst must argue the

purposively-chosen sub-image is representative of the whole. Return to Q6 •
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Answers

Q7 :

(1) In the DMSV, is it necessary that all locations in a stratum have identical values of the target variable?

(2) What must be “the same” about all locations within a stratum for proper statistical inference in the

DSMV? •

A7 :

(1) No, there can well be different values at different locations. For example, topsoil sand proportion could

vary within a “homogeneous” soil map unit.

(2) But, the expected value and associated variance (in general, the probability distribution) of the

target variable must be same everwhere – until we sample at a specific location, we have the same

expectation and same uncertainty. Return to Q7 •
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Answers

Q8 : Suppose the aim is to map target variable “biomass” of a forested area.

Further suppose we have available a thematic mapper satellite image, from which we can easily

computevegetation indices (e.g., NDVI) which are known to be related to vegetation vigour.

How could we use the image to estimate the a priori range of a variogram for the target variable? •

A8 : Compute and model a variogram of the NDVI over the image; the range of the modelled variogram is a

reasonable estimate of the range of biomass. Return to Q8 •
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Answers

Q9 : What information is lost as the prediction block size increases? •

A9 : All information about the distribution of the target property within the block is lost. Return to Q9 •

Q10 : Suppose the target variable is the concentration of some hazardous soil pollutant, which will be

removed if its concentration is predicted to exceed some threshold. What is the public-health danger of using

too large a block size? •

A10 : The larger the block, the more the averaging effect. So a local polluted hot spot may get averaged

with unpolluted areas, so that the block average is below the cleanup threshold, and the entire block is not

treated. The hot spot remains dangerous. Return to Q10 •
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Answers

Q11 : Considering the long-range variogram, what spacing between observations would be needed to obtain

the same or lower kriging variance for a 20 m block as using a 400 m spacing and a 120 m block? •

A11 : The kriging variance for a 400 m spacing and a 120 m block is about 0.6 (dark purple colour in the

map); this is reached for the 20 m block at a 250 m spacing. Return to Q11 •

Q12 : If now the variogram is short-range (i.e., the spatial dependence is only over shorter separations),

what is the widest spacing that could be used to obtain the same or lower kriging variance as using a 400 m

spacing and a 120 m block for the long-range variogram? •

A12 : Looking for 0.6 (dark purple) along the spacing axis of the short-range variogram, we see that 250 m

spacing for the largest block size (120 m) would give this variance. So the reduction in variogram range from

1200 to 600 m (i.e., half) results in a denser sample spacing to obtain the same maximum kriging variance.

Return to Q12 •
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Answers

Q13 : Why should the procedure ever accept a worse scheme? •

A13 : To avoid getting stuck in a local minimum; sometimes a point should “jump” a long way. Return

to Q13 •
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