Applied geostatistics

Lecture 7 – Geostatistical risk mapping

D G Rossiter University of Twente. Faculty of Geo-information Science & Earth Observation (ITC)

January 7, 2014

Copyright © 2012–4 University of Twente, Faculty ITC.

All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly prohibited. To adapt or translate please contact the author (http://www.itc.nl/personal/rossiter).

Topics for this lecture

- 1. Uncertainty, hazard and risk
- 2. Indicator variables
- 3. Indicator variograms
- 4. Probability kriging with indicator variables

Topic 1: Uncertainty, hazard and risk

These three terms are increasing order of difficulty to evaluate.

- 1. In geostatistics we always attempt to quantify **uncertainty**;
- 2. This can be converted to a **hazard** assessment, given appropriate thresholds
- 3. The final **risk assessment** is usually then left to other specialists.

We now define each of these terms.

Uncertainty

Uncertainty: lack of knowledge about the true state of nature

- "What is the concentration of cadmium in the shallowest 20 cm of 10x10 m area of soil centred at UTM coördinates"
- Preferably **quantified** as the **probability** of any state
- "Lognormally-distributed with expected value 3, standard deviation 1"

Hazard

Hazard: the chance of a given (bad) condition or outcome

- "How likely is it that the Cd concentration exceeds the regulatory threshold of 2 mg kg⁻¹?"
- Expressed probabilistically: "p < 0.02 that rejecting the null hypothesis of no risk would be an error", i.e. it's most likely polluted!

Risk

Risk: the chance of something 'bad' happening

- "How likely is it that children playing soccer on a grass field at location UTM ... will become poisened by cadmium?"
- Must be **quantified** as the **probability** of the outcome
- Requires full specification of elements at risk, exposure and vulnerability

Assessing uncertainty

- This requires the specification of a **probability distribution** of a predicted value
- This can be provided by the **kriging prediction variance**

Assessing hazard

- Method 1: Convert the **uncertainty** (full probability distribution) to a single probability of exceeding a **threshold** value
 - * E.g. confidence intervals from kriging prediction and its variance
 - * This was shown in a previous lecture
 - * Requires **strong assumptions** about the probability distribution of the target variable
- Method 2: Predict the probability of occurrence directly, using an non-parametric methods.

We will continue with the second method (below).

Assessing risk

- Knowing the hazard, determine the exposure pathway from the given hazard to a defined risk.
- The risk must be defined from the characteristics of the element at risk
 - * e.g., human health: what concentrations and exposure times / methods lead to a given condition?
 - * this is well outside geostatistics, it requires extensive **domain knowledge**

We continue with the **uncertainty** estimate.

Distribution-free estimates

So far we have assumed an approximately normal or lognormal distribution of the target spatially-correlated random variable. But this may be demonstrably not true.

A **non-parametric** approach does not attempt to fit a distribution to the data, but rather works directly with the experimental CDF, by dividing it into sample **quantiles**.

To work with these, we introduce the idea of **indicator** variables.

Note: there are other methods, such as **disjunctive kriging**, which we do not cover here.

Note: the indicator kriging approach has been strongly criticized on theoretical grounds, see e.g., Papritz (2009) in the "Further reading" (below).

Topic 2 : Indicator variables

- **Binary** variables: Take one of the values {1,0} depending on whether the point is 'in' or 'out' of the set; i.e. if it does or does not meet some criterion
 - * These are suitable for binary **nominal** variables, e.g. {"urban", "not urban"}; {"land use changed", "land use did not change"}
- A continuous variable can be converted to an indicator z_t by a threshold or cut-off value x_t: z_t = 1 ⇔ x ≤ x_t
 - * e.g. $x_t = 350$ to cut-off at 350 mg kg⁻¹
 - * Formally: $I(\vec{x}_i, z_t) = 1$ iff $Z(\vec{x}_i) \le z_t$; 0 otherwise
 - By convention 1 indicates values below the threshold (to model the CDF); inverting reverses the sense
 - * Note we are losing all information from the continuous variable, except at the cut-off!

Computation of indicators

Here are the first 16 observations in the Meuse soil pollution data set, with their actual Cd values and an indication of whether they are below a thresholds of 2, 4, and 8 mg kg⁻¹ or not:

	х	У	Cd	Below2	Below4	Below8
1	181072	333611	11.7	FALSE	FALSE	FALSE
2	181025	333558	8.6	FALSE	FALSE	FALSE
3	181165	333537	6.5	FALSE	FALSE	TRUE
4	181298	333484	2.6	FALSE	TRUE	TRUE
5	181307	333330	2.8	FALSE	TRUE	TRUE
6	181390	333260	3.0	FALSE	TRUE	TRUE
7	181165	333370	3.2	FALSE	TRUE	TRUE
8	181027	333363	2.8	FALSE	TRUE	TRUE
9	181060	333231	2.4	FALSE	TRUE	TRUE
10	181232	333168	1.6	TRUE	TRUE	TRUE
11	181191	333115	1.4	TRUE	TRUE	TRUE
12	181032	333031	1.8	TRUE	TRUE	TRUE
13	180874	333339	11.2	FALSE	FALSE	FALSE
14	180969	333252	2.5	FALSE	TRUE	TRUE
15	181011	333161	2.0	FALSE	TRUE	TRUE
16	180830	333246	9.5	FALSE	FALSE	FALSE

To check your understanding ...

Q1 :	What happens to the number of TRUE indicators as the threshold increses?	Jump to A1 $ullet$
-------------	--	--------------------

Indicator map

- Every sample point is either 1 ('in') or 0 ('out'); a binary map
- No measure of 'how far' in or out
- Prepare a series of indicator maps, with increasing thresholds, to visualise the cumulative sample distribution
- A common strategy is to divide the range of the sample values into **quartiles** or **deciles** and prepare an indicator for each
- The proportion of 1's will **increase** with increasing quantile.

Indicator maps for three cutoffs

Topic 3: Indicator variograms

- Compute as for a parametric variogram; every sample point has either value 1 (below the cutoff, in the set) or 0.
- The semivariance of each point pair is either 0 (both above or below; both out or in) or 0.5 (one above, one below; one out, one in).
- For a quantized continuous variable, each indicator variable (quantile) might have **different spatial structure**
- Variograms near the two ends of the CDF have few 1's or 0's (depending on the end), so few point-pairs will have semivariance 0.5 → hard to model (fluctuates)
- Model as for parametric variogram; however by theory the total sill must be < 0.25 (generally it's a lot lower, except near the median)

Topic 4: Kriging with indicator variables

This is a simple **non-parametric** (also called **distribution-free**) method of **prediction**.

Three types of maps are possible, depending on objective:

- 1. Probability that each point is below a defined threshold: probability kriging
 - This can be used directly in hazard mapping, if the threshold is set to represent the hazard level.
- 2. An entire **cumulative probability distribution** (CDF) at each point.
- 3. Predicted value at each point (as in OK or UK).

The first is useful in e.g. pollution studies. The other two are non-parametric alternatives to parametric OK in the presence of outliers. We will only look at the first.

Probability kriging using indicator variables

- 1. Calculate the **indicator variable** at the required **threshold**
- 2. Calculate the **empirical variogram** for that indicator
 - Note: May have to use a threshold closer to the median if there are too few 1's so that the variogram is erratic.
- 3. Model the variogram; note total sill should be < 0.25.
- 4. Solve the kriging system at each point to be predicted using OK or SK (see next slide)
 - If necessary, **limit the results** to the range [0...1]
- 5. Interepret this map as the **probability** that the point does **not** exceed the selected threshold.

Estimating the mean probability with IK

There are three ways to estimate the mean probability:

- 1. From the sample set itself **during** the kriging process, i.e. using OK or a variant such as UK;
- 2. From the sample set itself **before** the kriging process, from the **indicator proportion** in the sample set;
- 3. From *a priori* knowledge (e.g. previous studies); this is a good idea if the sample is biased in some way, e.g. towards suspected polluted sites.

The second method uses **Simple Kriging (SK)** with the **indicator proportion as the expected value**.

• Recall: SK does not estimate the mean, instead it is supplied by the analyst.

Intepretation of the kriging variance for probability kriging

- The IK predicted 'value' is already a probability!
- So the IK kriging variance is the variance of a probability ... whatever that means

Probability (with data points)

Error variance of this probability

Summary: Advantages of IK

- Makes **no assumption about the theoretical distribution** of the data values, yet still give **realistic probability estimates**
- **Outlier-resistent**: these can not increase the estimate or kriging variances of an indicator arbitrarily; for data values they only affect one quantile
- Simple Kriging may be used at each quantile, which improves the estimate.

Summary: Disadvantages of IK

- Unsound theoretical basis in many cases;
- Variograms may be difficult to model, especially at the highest and lowest quantiles (few pairs with different 0/1 values);
- For estimating values: this combines probabilities computed with different variograms for different quantiles of the same variable; so a single median variogram is used, but is this correct for each quantile?;
- Problem of the meaning of indicator predication variance maps: a probability of a probability means ... what?

Further reading

Isaaks, E. H., and R. M. Srivastava (1990), An introduction to applied geostatistics, Oxford University Press, New York. Chapter 18: "Estimating a distribution"

Goovaerts, P., and A. G. Journel (1995), Integrating soil map information in modelling the spatial variation of continuous soil properties, European Journal of Soil Science, 46(3), 397-414.

Goovaerts, P., R. Webster, and J. P. Dubois (1997), Assessing the risk of soil contamination in the Swiss Jura using indicator geostatistics, Environmental and Ecological Statistics, 4(1), 31-48.

Lark, R. M., and R. B. Ferguson (2004), Mapping risk of soil nutrient deficiency or excess by disjunctive and indicator kriging, Geoderma, 118(1-2), 39-53.

Papritz, A. (2009), Why indicator kriging should be abandoned, Pedometron, 26, 4-7.

Answers

A1 : They increase; more of the CDF is below the specified value.

Return to $Q1 \bullet$