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Applied geostatistics – Lecture 7 1

Topics for this lecture

1. Uncertainty, hazard and risk

2. Indicator variables

3. Indicator variograms

4. Probability kriging with indicator variables
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Topic 1: Uncertainty, hazard and risk

These three terms are increasing order of difficulty to evaluate.

1. In geostatistics we always attempt to quantify uncertainty;

2. This can be converted to a hazard assessment, given appropriate thresholds

3. The final risk assessment is usually then left to other specialists.

We now define each of these terms.
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Uncertainty

Uncertainty: lack of knowledge about the true state of nature

� “What is the concentration of cadmium in the shallowest 20 cm of 10x10 m area of soil
centred at UTM coördinates . . . ”

� Preferably quantified as the probability of any state

� “Lognormally-distributed with expected value 3, standard deviation 1”

D G Rossiter
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Hazard

Hazard: the chance of a given (bad) condition or outcome

� “How likely is it that the Cd concentration exceeds the regulatory threshold of
2 mg kg-1?”

� Expressed probabilistically: “p < 0.02 that rejecting the null hypothesis of no risk would
be an error”, i.e. it’s most likely polluted!
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Risk

Risk: the chance of something ‘bad’ happening

� “How likely is it that children playing soccer on a grass field at location UTM . . . will
become poisened by cadmium?”

� Must be quantified as the probability of the outcome

� Requires full specification of elements at risk, exposure and vulnerability
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Assessing uncertainty

� This requires the specification of a probability distribution of a predicted value

� This can be provided by the kriging prediction variance
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Assessing hazard

� Method 1: Convert the uncertainty (full probability distribution) to a single probability
of exceeding a threshold value

* E.g. confidence intervals from kriging prediction and its variance
* This was shown in a previous lecture
* Requires strong assumptions about the probability distribution of the target

variable

� Method 2: Predict the probability of occurrence directly, using an non-parametric
methods.

We will continue with the second method (below).
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Assessing risk

� Knowing the hazard, determine the exposure pathway from the given hazard to a
defined risk.

� The risk must be defined from the characteristics of the element at risk

* e.g., human health: what concentrations and exposure times / methods lead to a
given condition?

* this is well outside geostatistics, it requires extensive domain knowledge

We continue with the uncertainty estimate.
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Distribution-free estimates

So far we have assumed an approximately normal or lognormal distribution of the target
spatially-correlated random variable. But this may be demonstrably not true.

A non-parametric approach does not attempt to fit a distribution to the data, but rather
works directly with the experimental CDF, by dividing it into sample quantiles.

To work with these, we introduce the idea of indicator variables.

Note: there are other methods, such as disjunctive kriging, which we do not cover here.

Note: the indicator kriging approach has been strongly criticized on theoretical grounds,
see e.g., Papritz (2009) in the “Further reading” (below).
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Topic 2 : Indicator variables

� Binary variables: Take one of the values {1,0} depending on whether the point is ‘in’
or ‘out’ of the set; i.e. if it does or does not meet some criterion

* These are suitable for binary nominal variables, e.g. {“urban”, “not urban”}; {“land
use changed”, “land use did not change”}

� A continuous variable can be converted to an indicator zt by a threshold or cut-off
value xt: zt = 1 ⇐⇒ x ≤ xt

* e.g. xt = 350 to cut-off at 350 mg kg-1

* Formally: I(~xi, zt) = 1 iff Z(~xi) ≤ zt; 0 otherwise
* By convention 1 indicates values below the threshold (to model the CDF);

inverting reverses the sense
* Note we are losing all information from the continuous variable, except at the

cut-off!
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Computation of indicators
Here are the first 16 observations in the Meuse soil pollution data set, with their actual Cd
values and an indication of whether they are below a thresholds of 2, 4, and 8 mg kg-1 or
not:

x y Cd Below2 Below4 Below8

1 181072 333611 11.7 FALSE FALSE FALSE

2 181025 333558 8.6 FALSE FALSE FALSE

3 181165 333537 6.5 FALSE FALSE TRUE

4 181298 333484 2.6 FALSE TRUE TRUE

5 181307 333330 2.8 FALSE TRUE TRUE

6 181390 333260 3.0 FALSE TRUE TRUE

7 181165 333370 3.2 FALSE TRUE TRUE

8 181027 333363 2.8 FALSE TRUE TRUE

9 181060 333231 2.4 FALSE TRUE TRUE

10 181232 333168 1.6 TRUE TRUE TRUE

11 181191 333115 1.4 TRUE TRUE TRUE

12 181032 333031 1.8 TRUE TRUE TRUE

13 180874 333339 11.2 FALSE FALSE FALSE

14 180969 333252 2.5 FALSE TRUE TRUE

15 181011 333161 2.0 FALSE TRUE TRUE

16 180830 333246 9.5 FALSE FALSE FALSE

D G Rossiter



Applied geostatistics – Lecture 7 12

To check your understanding . . .

Q1 : What happens to the number of TRUE indicators as the threshold increses? Jump to A1 •

D G Rossiter
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Indicator map

� Every sample point is either 1 (‘in’) or 0 (‘out’); a binary map

� No measure of ‘how far’ in or out

� Prepare a series of indicator maps, with increasing thresholds, to visualise the
cumulative sample distribution

� A common strategy is to divide the range of the sample values into quartiles or
deciles and prepare an indicator for each

� The proportion of 1’s will increase with increasing quantile.

D G Rossiter
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Indicator maps for three cutoffs
Cd < 2 ppm
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Topic 3: Indicator variograms

� Compute as for a parametric variogram; every sample point has either value 1 (below
the cutoff, in the set) or 0.

� The semivariance of each point pair is either 0 (both above or below; both out or in) or
0.5 (one above, one below; one out, one in).

� For a quantized continuous variable, each indicator variable (quantile) might have
different spatial structure

� Variograms near the two ends of the CDF have few 1’s or 0’s (depending on the end),
so few point-pairs will have semivariance 0.5→ hard to model (fluctuates)

� Model as for parametric variogram; however by theory the total sill must be < 0.25
(generally it’s a lot lower, except near the median)
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Indicator variogram
(9th decile);

Estimated model
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Topic 4: Kriging with indicator variables

This is a simple non-parametric (also called distribution-free) method of prediction.

Three types of maps are possible, depending on objective:

1. Probability that each point is below a defined threshold: probability kriging

� This can be used directly in hazard mapping, if the threshold is set to represent the
hazard level.

2. An entire cumulative probability distribution (CDF) at each point.

3. Predicted value at each point (as in OK or UK).

The first is useful in e.g. pollution studies. The other two are non-parametric alternatives
to parametric OK in the presence of outliers. We will only look at the first.
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Probability kriging using indicator variables

1. Calculate the indicator variable at the required threshold

2. Calculate the empirical variogram for that indicator

� Note: May have to use a threshold closer to the median if there are too few 1’s so
that the variogram is erratic.

3. Model the variogram; note total sill should be < 0.25.

4. Solve the kriging system at each point to be predicted using OK or SK (see next
slide)

� If necessary, limit the results to the range [0 . . .1]

5. Interepret this map as the probability that the point does not exceed the selected
threshold.

D G Rossiter



Applied geostatistics – Lecture 7 19

Estimating the mean probability with IK

There are three ways to estimate the mean probability:

1. From the sample set itself during the kriging process, i.e. using OK or a variant such as
UK;

2. From the sample set itself before the kriging process, from the indicator proportion
in the sample set;

3. From a priori knowledge (e.g. previous studies); this is a good idea if the sample is
biased in some way, e.g. towards suspected polluted sites.

The second method uses Simple Kriging (SK) with the indicator proportion as the
expected value.

� Recall: SK does not estimate the mean, instead it is supplied by the analyst.

D G Rossiter
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Intepretation of the kriging variance for probability kriging

� The IK predicted ‘value’ is already a probability!

� So the IK kriging variance is the variance of a probability . . . whatever that means

D G Rossiter
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Summary: Advantages of IK

� Makes no assumption about the theoretical distribution of the data values, yet
still give realistic probability estimates

� Outlier-resistent: these can not increase the estimate or kriging variances of an
indicator arbitrarily; for data values they only affect one quantile

� Simple Kriging may be used at each quantile, which improves the estimate.
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Summary: Disadvantages of IK

� Unsound theoretical basis in many cases;

� Variograms may be difficult to model, especially at the highest and lowest
quantiles (few pairs with different 0/1 values);

� For estimating values: this combines probabilities computed with different variograms
for different quantiles of the same variable; so a single median variogram is used, but is
this correct for each quantile?;

� Problem of the meaning of indicator predication variance maps: a probability of a
probability means . . . what?
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Further reading

Isaaks, E. H., and R. M. Srivastava (1990), An introduction to applied geostatistics, Oxford
University Press, New York. Chapter 18: “Estimating a distribution”

Goovaerts, P., and A. G. Journel (1995), Integrating soil map information in modelling the
spatial variation of continuous soil properties, European Journal of Soil Science, 46(3),
397-414.

Goovaerts, P., R. Webster, and J. P. Dubois (1997), Assessing the risk of soil
contamination in the Swiss Jura using indicator geostatistics, Environmental and Ecological
Statistics, 4(1), 31-48.

Lark, R. M., and R. B. Ferguson (2004), Mapping risk of soil nutrient deficiency or excess
by disjunctive and indicator kriging, Geoderma, 118(1-2), 39-53.

Papritz, A. (2009), Why indicator kriging should be abandoned, Pedometron, 26, 4-7.
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Answers

Q1 : What happens to the number of TRUE indicators as the threshold increses? •

A1 : They increase; more of the CDF is below the specified value. Return to Q1 •
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