
Applied geostatistics

Lecture 6 – Assessing the quality of spatial predictions

D G Rossiter
University of Twente.

Faculty of Geo-information Science & Earth Observation (ITC)

June 27, 2014

Copyright © 2012–4 University of Twente, Faculty ITC.

All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original

copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly

prohibited. To adapt or translate please contact the author (http://www.itc.nl/personal/rossiter).

http://www.itc.nl/personal/rossiter


Applied geostatistics – Lecture 6 1

Topics for this lecture

1. Assessment of model quality: overview

2. Model evaluation with an independent data set

3. Cross-validation

4. Kriging prediction variance

5. Spatial simulation
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Topic 1: Assessment of model quality

With any predictive method, we would like to know how good it is. This is model
evaluation, often called model validation.

� cf. model calibration, when we are building (fitting) the model.

We prefer the term evaluation because “validation” implies that the model is correct
(“valid”); that of course is never the case. We want to evaluate how close it comes to
reality.

However, we still use the term cross-validation, for historical reasons and because the
gstat function is so named.
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Internal vs. external quality assessment

External If we have an independent data set that represents the target population, we
can compare model predictions with reality. Two main methods:

1. Completely separate evaluation dataset
2. Cross-validation using the calibration dataset, leaving parts out or resampling

Internal Most prediction methods give some measure of goodness-of-fit to the
calibration data set:

� Linear models: coefficient of determination
* Warning! Adding parameters to a model increases its fit; are we fitting noise

rather than signal? Use adjusted measures, e.g. adjusted R2 or Akaike Information
Criterion (AIC)

� Generalized linear models: residual deviance
� Kriging: the variability of each prediction, i.e. the kriging prediction variance

D G Rossiter
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To check your understanding . . .

Q1 : What is a major advantage of an external quality assessment? Jump to A1 •

Q2 : What is a major disadvantage of an external quality assessment? Jump to A2 •
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Prediction error

The prediction (fitted value) will in general not be the same as the observed value.

In linear modelling it is usual to define the residual ei for one observation as:

� the actual value as measured yi; less . . .

� . . . the estimate from the model ŷi (Note the use of the “hat” notation)

� ei ≡ yi − ŷi

For model evaluation the sign is often inverted, because we want to express this as
prediction error: how wrong was the prediction? So, prediction less actual:

� êi ≡ ŷi −yi

D G Rossiter
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Residuals from evaluation and their location; Jura cobalt

Actual − Predicted, OK, Jura
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To check your understanding . . .

Q3 : What are the largest over- and under-estimates? Does the distribution of residuals appear to be

normal, as expected by theory? Jump to A3 •
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Topic 2 : Model evaluation with an independent dataset

An excellent check on the quality of any model is to compare its predictions with actual
data values from an independent data set.

� Advantages: objective measure of quality

� Disadvantages: requires more samples; not all samples can be used for modelling (→
poorer calibration?)

D G Rossiter
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Selecting the validation data set

� The validation statistics presented next apply to the evaluation (“validation”) set.

� It must be a representative and unbiased sample of the population for which we
want these statistics.

� Two methods:

1. Completely independent, according to a sampling plan;
* This can be from a different population than the calibration sample: we are testing

the applicability of the fitted model for a different target population.
2. A representative subset of the original sample.

* A random splitting of the original sample
* This evaluates the population from which the sample was drawn, only if the

original sample was unbiased
* If the original sample was taken to emphasize certain areas of interest, the statistics

do not summarize the validity in the whole study area

D G Rossiter
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Measures of validity

� Root mean squared error (RMSE) of the residuals in the validation dataset of n
points; how close on average are the predictions to reality? lower is better:

RMSE =
1
n

n∑
i=1

(ŷi −yi)2
1/2

* where: ŷ is a prediction; y is an actual (measured) value
* This is an estimate of the prediction error
* An overall measure, can be compared to desired precision
* The entire distribution of these errors can also be examined (max, min, median,

quantiles) to make a statement about the model quality

� Bias or mean prediction error (MPE) of estimated vs. actual mean of the validation
dataset; should be zero (0)

MPE = 1
n

n∑
i=1

(ŷi −yi)
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Relative measures of validaity

The MPE and RMSE are expressed in the original units of the target variable, as absolute
differences.

The magnitude of these can be judged by absolute criteria, but is also relevant to compare
them to the dataset itself:

� MPE compared to the mean or median

* Scales the MPE: how signficant is the bias when compared to the overall“level”of the
variable to be predicted?

� RMSE compared to the range, inter-quartile range, or standard deviation

* Scales the RMSE: how significant is the prediction variance when compared to the
overall variability of the dataset?

D G Rossiter
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To check your understanding . . .

Q4 : Why, in the RMSE, are the differences between predicted and actual values squared? Jump to A4 •

Q5 : Why then is the square root of the sum taken? Jump to A5 •
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Model efficiency

Another measure is the Nash-Sutcliffe model efficiency coefficient

� Proposed (1970) to validate hydrologic models against real-world output

� Can apply to any actual-vs-predicted

� Standardizes prediction error vs. spread of data

� Equivalent to coefficient of determination (“R2”)

N = 1−
∑
i(yi − ŷi)2∑
i(yi − ȳ)2

= 1− SSerror

SStotal

� ranges from −ω. . .1

� N = 0: model = mean; could have just used the mean ȳ of the observations

� N = 1: model explains all the variation in the observations (no residuals)
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Visualizing actual vs. predicted

Scatterplot against 1:1 line Regression
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Topic 3: Cross-validation

If we don’t have an independent data set to evaluate a model, we can ause the same
sample points that were used to estimate the model to validate that same model.

This seems a bit dubious, but with enough points, the effect of the removed point on the
model (which was estimated using that point) is minor.

Note: This is not legitimate for non-geostatistical models, because there is no theory of
spatial correlation.
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Effect of removing an observation on the variogram model
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Cross–validation procedure

1. Compute experimental variogram with all sample points in the normal way; model it to
get a parameterized variogram model;

2. For each sample point

(a) Remove the point from the sample set;
(b) predict at that point using the other points and the modelled variogram;

3. Summarize the deviations of the model from the actual point.

This is called leave-one-out cross-validation (LOOCV).

Then models can be compared by their summary statistics, also by looking at individual
predictions of interest.

D G Rossiter
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To check your understanding . . .

Q6 : What would be the kriging prediction at a sample point, if it were included in the prediction dataset?

Jump to A6 •
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Summary statistics for cross–validation (1)

Two are the same as for independent evaluation and are computed in the same way:

� Root Mean Square Error (RMSE): lower is better

� Bias or mean error (MPE): should be 0

* this is almost guaranteed because kriging is unbiased

D G Rossiter
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Summary statistics for cross–validation (2)

Since we have variability of the cross–validation, and variability of each prediction (i.e.
kriging variance), we can compare these:

� Mean Squared Deviation Ratio (MSDR) of residuals with kriging variance

MSDR = 1
n

n∑
i=1

{z(xi)− ẑ(xi)}2

σ̂ 2(xi)

where σ̂ 2(xi) is the kriging variance at cross-validation point xi.

The MSDR is a measure of the variability of the cross-validation vs. the variability
of the sample set. This ratio should be 1. If it’s higher, the kriging prediction was too
optimistic about the variability.

Note: the nugget has a large effect on the MSDR, since the nugget sets a lower limit on
the kriging variance at any point.

D G Rossiter
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Summary statistics for cross–validation (3)

Another way to summarize the variability is the median of the Squared Deviation Ratio:

MeSDR =median

[
{z(xi)− ẑ(xi)}2

σ̂ 2(xi)

]

If a correct model is used for kriging, MeSDR = 0.455, which is the median of the standard
χ2 distribution (used here for the ratio of two variances) with one degree of freedom.

“If the sample median is significantly less than 0.455 then this suggests that kriging
overestimates the variance (possibly because of the effects of outliers on the
variogram estimator) . . .
. . . significantly greater . . . suggests that kriging underestimates the variance.”

– Lark, R.M. 2000. A comparison of some robust estimators of the variogram for use
in soil survey. European Journal of Soil Science 51(1): 137–157.
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Residuals from cross-validation and their location; Jura cobalt

OK Cross−validation residuals

Co (ppm)
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Topic 4: Kriging prediction variance

Recall from Lecture 4 that kriging is “optimal” with respect to a given model of spatial
dependence, because the kriging equations minimize the prediction variance at
each point to be predicted.

This is an internal measure of quality, because there is no independent dataset.

� Advantage: gives a measure of quality at all points

� Disadvantage: depends on the correctness of the variogram model

This variance presumably is from the normally-distributed errors, so we can use it
accordingly to compute confidence intervals or threshold probabilities. This is quite useful
in risk assessment.

Important: this makes the strong assumption that the random field is Gaussian – that
is, the distribution of (spatially-correlated) deviations from the constant spatial mean is
Gaussian!

D G Rossiter
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Confidence intervals

Recall from Lecture 4:

The two-sided interval which has probability (1−α) of containing the true value
z(x0) is:

(ẑ(x0)− ζα/2 · σ) ≤ ẑ(x0) ≤ (ẑ(x0)+ ζα/2 · σ)

where:

� ẑ is the estimated value from OK;

� ζα/2 is the value of the standard normal distribution at confidence level α/2;

� σ is the square root of the prediction variance from OK;

D G Rossiter
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Topic 5: Spatial simulation

Simulation is the process or result of representing what reality might look like, given a
model.

In geostatistics, this reality is usually a spatial distribution (map).

D G Rossiter
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What is stochastic simulation?

� “Simulation” is a general term for studying a system without physically implementing
it.

� “Stochastic” simulation means that there is a random component to the simulation
model: quantified uncertainty is included so that each simulation is different.

� Non-spatial example: planning the number and timing of clerks in a new branch bank;
customer behaviour (arrival times, transaction length) is stochastic and represented by
probability distributions.

� Reference for spatial simulation:
Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Applied Geostatistics
Series. Oxford University Press, New York; Chapter 8.

D G Rossiter
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Why spatial simulation?

� Recall: the theory of regionalized variables assumes that the values we observe
come from some random process; in the simplest case, with one expected value
(first-order stationarity) with a spatially-correlated error that is the same over the
whole area (second-order stationarity).

� So we’d like to see“alternative realities”; that is, spatial patterns that, by this theory,
could have occurred in some “parallel universe” (i.e. another realization of the spatial
process).

� In addition, kriging maps are unrealistically smooth, especially in areas with low
sampling density.

* Even if there is a high nugget effect in the variogram, this variability is not reflected
in adjacent prediction points, since they are computed from the same observations,
with almost the same weights.
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When must simulation be used?

Goovaerts: “Smooth interpolated maps should not be used for applications sensitive to the
presence of extreme values and their patterns of continuity.” (p. 370)

Example: ground water travel time depends on sequences of large or small values (“critical
paths”), not just on individual values.
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Local uncertainty vs. spatial uncertainty

� Recall: kriging prediction also provides a prediction error; this is the BLUP and its
error for each prediction location separately.

� So, at each prediction location we obtain a probability distribution of the prediction, a
measure of its uncertainty. This is fine for evaluating each prediction individually.

� But, it is not valid to evaluate the set of predictions! Errors are by definition
spatially-correlated (as shown by the fitted variogram model), so we can’t simulate the
error in a field by simulating the error in each point separately.

� Spatial uncertainty is a representation of the error over the entire field of
prediction locations at the same time.
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Practical applications of spatial simulation

� If the distribution of the target variable(s) over the study area is to be used as input to a
model, then the uncertainty is represented by a number of simulations.

� Procedure:

1. Simulate a “large” number of realizations of the spatial field
2. Run the model on each simulation
3. Summarize the output of the different model runs

� The statistics of the output give a direct measure of the uncertainty of the model in
the light of the sample and the model of spatial variability.
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Conditional simulation

This simulates the field, while respecting the sample.

The simulated maps resemble the best (kriging) prediction, but usually much more
spatially-variable (depending on the magnitude of the nugget).

These can be used as inputs into spatially-explicit models, e.g. hydrology.
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What is preserved in conditional simulation?

1. Mean over field

2. Covariance structure

3. Observations (sample points are predicted exactly)

See figures on the next page.

The OK prediction is then reproduced for comparison.
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Conditional simulations: same field, different realizations
Conditional simulations, Jura Co (ppm), OK
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To check your understanding . . .

Q7 : In what respect do the conditional simulations resemble each other? In what respect do they not? In

both cases, why? Jump to A7 •
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OK prediction

Compare the conditional simulations with the single “best” prediction made by OK:

OK prediction, Jura Co (ppm)
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To check your understanding . . .

Q8 : What is the principal difference between the conditional simulations and the OK prediction? Jump to

A8 •
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Unconditional simulation

In unconditional simulation, we simulate the field with no reference to the actual sample,
i.e. the data we have. (It’s only one realisation, no more valid than any other.)

This is used to visualise a random field as modelled by a variogram, not for prediction.
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What is preserved in unconditional simulation?

1. Mean over field

2. Covariance structure

See figure on the next page. Note the similar degree of spatial continuity, but with no
regard to the values in the sample.
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Unconditional simulations: same field, different realizations
Unconditional simulations, Co variogram model
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To check your understanding . . .

Q9 : In what respect do the unconditional simulations resemble each other? In what respect do they not? In

both cases, why? Jump to A9 •
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Unconditional simulation: increasing nugget
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Unconditional simulation: different models
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Simulation algorithm

There are several ways to simulate; see Emery, X. (2008). Statistical tests for validating
geostatistical simulation algorithms. Computers & Geosciences, 34(11), 1610-1620.
doi:10.1016/j.cageo.2007.12.012.

One algorithm is sequential simulation as used in the gstat package; in simplified form:

1. If conditional, place the data on the prediction grid

2. Pick a random unknown point; make a kriging prediction, along with its prediction
variance

3. Assuming a normally-distributed prediction variance, simulate one value from this; add
to the kriging prediction and place this at the previously-unknown point

4. This point is now considered “known”; repeat steps (2)-(3) until no more points are left
to predict

Pebesma, E. J., & Wesseling, C. G. (1998). Gstat: a program for geostatistical modelling,
prediction and simulation. Computers & Geosciences, 24(1), 17-31.
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Answers

Q1 : What is a major advantage of an external quality assessment? •

A1 : The data on which the quality assessment is based is independent of the data used to construct the

model. Return to Q1 •

Q2 : What is a major disadvantage of an external quality assessment? •

A2 : The expense of collecting another dataset; or, the loss of precision in calibration by holding out a

portion for evaluation. Return to Q2 •
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Answers

Q3 : What are the largest over- and under-estimates? Does the distribution of residuals appear to be

normal, as expected by theory? •

A3 : Largest over-estimate (negative residual): 5.646 mg kg-1 more Co predicted than found; largest

under-estimate (positive resdidual): 8.973 mg kg-1 more found than predicted.

Except for the one very large positive residual the distribution is symmetric; with a small sample size it’s

difficult to judge normality. Return to Q3 •
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Answers

Q4 : Why, in the RMSE, are the differences between predicted and actual values squared? •

A4 : Because both positive and negative deviations are equally wrong. Return to Q4 •

Q5 : Why then is the square root of the sum taken? •

A5 : To express the results in the original, not squared, units. Return to Q5 •
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Answers

Q6 : What would be the kriging prediction at a sample point, if it were included in the prediction dataset? •

A6 : Kriging is an exact predictor at known points, so would predict the value itself, if that point were

included. So the “cross-validation” would appear perfect. Return to Q6 •
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Answers

Q7 : In what respect do the conditional simulations resemble each other? In what respect do they not? In

both cases, why? •

A7 : The simulations all have similar degree of spatial continuity, as in unconditional simulation.

In addition, all have a similar pattern with respect to the sample (e.g. hot spots are the same in all

realizations). This is the difference with unconditional simulation, where there are no observations to respect.

Return to Q7 •

Q8 : What is the principal difference between the conditional simulations and the OK prediction? •

A8 : The simulations are (realistically)“grainy”; the OK prediction is (unrealistically) smooth. Return to Q8

•
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Answers

Q9 : In what respect do the unconditional simulations resemble each other? In what respect do they not? In

both cases, why? •

A9 : The “patchiness” and “graininess” of all realizations is similar. This is because they all use the same

model of spatial dependence.

The overall pattern of high and low patches is the same. This is because they use the same observation

points for conditioning.

The detailed local pattern is quite different, especially away from clusters of sample points. This is because

the simulation has freedom to choose values as long as the covariance structure and sample values are

respected. Return to Q9 •
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