Lecture Notes: “Land Evaluation”
by
David G. Rossiter
Cornell University
College of Agriculture & Life Sciences

Department of Soil, Crop, & Atmospheric Sciences

August 1994

Part 5 : Uncertainty

Disclaimer: These notes were developed for the Cornell University course Soil,
Crop & Atmospheric Sciences 494 ‘Special Topics in Soil, Crop & Atmospheric
Sciences: Land evaluation, with emphasis on computer applications’, Spring
Semester 1994, and were subsequently expanded and formatted for
publication. They are not to be considered as a definitive text on land
evaluation.

Copyright I David G. Rossiter 1994. Complete or partial reproduction of
these notes is permitted if and only if this note is included. Sale of these notes
or any copy is strictly prohibited.




Contents for Part 5 : “Uncertainty”

L. UNCertaiNtY oo e
1.1 Data uncertainty: measurement and sampling errors .2
1.2 Representing the data values of a map unit................ 3
1.3 Data uncertainty: correlated variables........................ 5
1.4 Rule uncertainty .......oooiiiiiii e 5
1.5 Error propagation ......co.eoeeeiieie i 6
1.6 Monte Carlo simulation............cooiiiiiiiiiii e, 12

2. Fuzzy logic & continuous classification........................
2.1 Why use continuous classification in land evaluation?15
2.2 A fuzzy set and its membership function.................. 15
2.3 Computing with fuzzy SetS.......coooviiiiiiiiiiiiiens 17

3. Spatial variability ...
3.1 Why natural resources vary in SpPace .........ccocevevuennens 18
3.2 Key point: spatial dependence .........ccccviiiiiiiiiieinnns 19

3.3 Dealing with spatial variability in land evaluation....19

N S =Y 1<) =] 4 (o1 T



The world is full of uncertainty, much of which has a direct effect on the kinds of
predictions we want to make in land evaluation. No serious land evaluation
should be without some estimate of uncertainty in its results, even if in
descriptive form. In this unit, we discuss various aspects of uncertainty,
including the concepts of data and rule uncertainty, spatial variability of land
characteristics, and ‘fuzzy’ logic. The emphasis is on how to describe and
evaluate uncertainty, and how to determine and express the uncertainty,
especially over space, of our predictions in land evaluation.
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1. Uncertainty

‘Uncertainty’ refers to our imperfect and inexact knowledge of the world. We
can distinguish two classes of uncertainty: data and rule (Eastman et al., 1993).
Data uncertainty has to do with our observations of nature or society: we are
unsure of what exactly we observe or measure. Rule uncertainty has to do with
how we reason with these observations: we are unsure of the conclusions we
can draw from (even perfect) data.

No serious land evaluation should be without some estimate of uncertainty in its
results, even if in descriptive form. This can be from a sensitivity analysis (as we
discussed in dynamic simulation modeling and economic optimization), from
confidence limits (as we discussed in statistical modeling) or from direct
estimates of errors in the data as propagated through the model (as we will
discuss in this lecture).

Note: the use of the term error to refer to uncertainty is technically correct but
has a negative connotation. It should not be confused with ‘error’ meaning
‘blunder’ or ‘mistake’.

1.1 Data uncertainty: measurement and sampling
errors

The true value of a parameter or datum is unknown (unknowable?). Two
source of uncertainty are measurement and sampling. A good introduction to
data uncertainty in the context of GIS is (Goodchild & Gopal, 1989).

1.1.1 Measurement uncertainty

Measurement ‘error’: there is always some uncertainty in any measurement,
because of limited precision of the measuring device. This can usually be
determined from the characteristics of the device and by repeated sampling and
statistical characterization. These errors are usually (correctly) considered to
be independent, normally distributed, and more-or-less exactly characterizable.
In a land evaluation context, they are rarely significant, when compared with
sampling errors (next section).

Example of pure measurement error: diameter at breast height (DBH) of a

single tree, with a tape measure (for the diameter) and ruler (for the standard
breast height).

1.1.2 Sampling uncertainty

Almost always we are only be able to measure a small part of the object of
interest; this causes sampling error. These errors are more difficult to
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characterize and correct for than measurement errors. We must make
(sometimes unjustified or un-testable) assumptions about our sampling
strategy. The type and magnitude of these errors can be determined by
repeated sub-sampling or by more exhaustive sampling.

Example of sampling error: we can only measure the DBH of a small proportion
of the trees in the forest.

For both types of data errors, there is extensive statistical theory. In the usual
case in natural resources or economic survey, we obtain an expected value
(usually given by the mean) and a variance of a normal or Student’s
distribution, which can be used to express the uncertainty of the expected
value. If the distribution of errors is known to have a non-normal form, we can
estimate the parameters of a different distribution.

1.2 Representing the data values of a map unit

In land evaluation we are always describing and evaluating areas not points, so that the
sampling problem is unavoidable. How should be characterize the data values for a map
unit, and combine them with other (uncertain) values?

This discussion is most relevant to polygonal map units of variable size and shape
(including polygons of a vector GIS), but can also be applied to cells in a grid GIS. It has
great practical importance when applying statistical or dynamic simulation models to land
areas: these require a set of specific numeric inputs, which must be determined from the
available data.

1.2.1 Representing the map unit: (1) a single ‘representative’
value

Basic idea: Describe the datum by a ‘representative’ or ‘typical’ value.

Example: the attributes of a soil map unit is synthesized from many actual
observations, from the surveyor’s judgment, or from a single real profile which
is considered to be ‘typical’.

Advantage: in the absence of sufficient data to characterize the actual
variability, a well-chosen single value usually gives a reasonable estimate of
the expected value.

Disadvantage: no information about variability within the map unit.

Disadvantage: any information on how good is the estimate is lost when only
one data point is used.

Land Evaluation Course Notes Part 5: Uncertainty 3



1.2.2 Representing the map unit: (2) a range of values
(classes)

Basic idea: Instead of one representative value, describe the datum by two
numbers, presumably spanning ‘most’ of the variability. We make no statement
about most-probable values within the range.

Example: Slope class ‘A’ is defined as 0-3% slopes, Depth class ‘moderately
deep’ is defined as 50-100cm depth.

This approach is usually employed in applications of the FAO method,
including most ALES models.

Advantage: explicit statement of the ‘entire’ or at least the relevant portion of
the range of the variable, useful for sensitivity analysis

Disadvantage: no single expected value, no information on distribution of
values within the class

1.2.3 Representing the map unit: (3) a statistical distribution

Basic idea: Describe the datum by several parameters which depends on the distribution
which the variable is assumed to have. We must also say which distribution. See
(Morgan & Henrion, 1990) Chapter 5 for some common distributions. (Law & Kelton, 1991)
is more comprehensive.

Advantage: completely describes the data values and their probability of being
encountered.

Disadvantage: rarely is this theoretically and observationally justified.

Established by sampling from the map unit. (Forbes, Rossiter & Van Wambeke, 1982) Ch.
4 provide examples in the context of judging the adequacy of soil surveys.

Example: normal distribution with two parameters: mean and variance, can reportas + 1
(etc.) sample standard deviations from the sample mean, or +z scores to achieve a given
probability level.

Example: exponential distribution with one parameter: decay constant.

Example: uniform distribution with two parameters: the extremes.

Example: triangular distribution with three parameters: the extremes and the most
probable value.

1.2.4 Representing the map unit: (4) a non-parametric
distribution

Basic idea: Describe the datum by observed frequencies from some sample, without
assuming any parametric distribution
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Established by sampling from the map unit, but without assuming any underlying
distribution of the data.

Advantage: completely describes the data values and their probability of being
encountered

Advantage: no assumptions about the distribution, there may in fact be no
single distribution in the map unit (e.g., if it is heterogeneous so that there
really isn't a single ‘population’ to be parameterized)

Disadvantage: less statistical power and harder to combine with other values
than a variable with known distribution.

Example: sample interquartile range, middle 8 deciles etc.

Example: fences of Box plot (-1.5 to +1.5 sample inter-quartile range from the
sample median)

1.3 Data uncertainty: correlated variables

If several variables are correlated (i.e., not independent), it is not sufficient to describe
their univariate distribution. Instead, we must determine their multivariate distribution,
which in general involves the computation of a variance-covariance matrix. This is much
more difficult to establish than univariate distributions.

The covariance structure is important because if we compute a function of several
variables, the uncertainty of the result depends not only on the individual variances of the
variables, but also on their covariances. We will see why in the section ‘Error
Propagation’, just below.

1.4 Rule uncertainty

Even if all data values were known without error, the combination of variables
to a result may be ‘uncertain’ in various senses:

(1) The true form of a function is unknown (e.g., logarithmic vs. polynomial yield
response);

(2) In expert judgment, the result is uncertain (all facts being ‘perfectly’
provided, the expert still can't give an unambiguous answer).
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1.5 Error propagation

If data values are described by probability distributions, and the combination of
these into e.g. land suitability is by a continuous function, the classical theory of
error propagation as developed by Gauss can be applied to determine the error
(uncertainty) in the result. Thus we can give precise confidence limits in the
results of a land evaluation, in the case where land characteristics are
combined by continuous functions.

An example is a land evaluation based on predicted yields of an indicator crop,
this yield being predicted by a multiple regression equation from a set of land
characteristic values, where each land characteristic has a probability
distribution.

References: A good introduction to error analysis in the context of
measurements in physical sciences is: (Taylor, 1982). (Bevington & Robinson,
1992) is a more advanced presentation, with computer programs. Chapter 8 in
(Morgan & Henrion, 1990) (written by Mitchell Small) is a more theoretical but
well-illustrated introduction. (Burrough, 1986) Ch. 6 is a truly humbling recital
of all the sources of error and how they can propagate in a GIS; we adapt some
of this discussion later in this lecture. (Eastman, 1993) has a section on error
propagation in the context of IDRISI. Heuvelink and collaborators (1993, 1993,
1989) have developed a theoretical and practical approach to this in the context
of GIS; (Veregin, 1989) deals with error propagation in map overlay, in the
context of uncertainty in spatial databases (Goodchild & Gopal, 1989).

GIS Software: IDRISI V4.1 module MCE (Clark University); ADAM (University of
Utrecht)

1.5.1 Basic relation of error propagation
(For a detailed exposition, see (Taylor, 1982))

Suppose that various quantities (the so-called independent variables)
X, X,,++ X, are measured with ‘small’ uncertainty 0xj and that the uncertainties

are independent of each other and random. These quantities are then used to
calculate a result (so-called dependent variable) z by some function

z= f(X, %, -, %). If the variables are uncorrelated, the uncertainty &z of the
result is:

0z 0z 0z
oz= \/(de1)2 +(£5X2)2+”'+(Kn5xn)2 )

1

In words, the partial derivatives with respect to each variable are multiplied by
the uncertainties, and the final uncertainty is the sum by quadrature of all
these. This formula can be applied to all totally-differentiable functions. The
disadvantage is that we must determine all the partial derivatives, although
symbolic mathematics programs help derive these. Also, in practice, the partial
derivatives are only approximated, usually by Taylor series expansions.
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Warning! The requirements of independent and random errors
are very important to this analysis.

We can avoid having to take the sum by quadrature, and assuming
independent and random errors, if all we want is an upper bound on the error:

oz
oz< ox, + OX,+: -+ A X, (2)

2] |92
0%, 28
This is the ordinary sum of the error magnitudes, which is in general quite a bit

larger than the sum by quadrature, so if we can assume independent and
random errors, we should do so.

1.5.2 The basic relation for correlated variables

If some variables are correlated, the error may be more (positive correlation, i.e.,
the errors tend to reinforce each other) or less (negative correlation, i.e., the
errors tend to cancel each other out) than is calculated by equation (1), because
we must also compute the covariance and the partial derivatives in two
dimensions:

\/z (—6x zz——éxéx (3)

In most practical problems, within a small neighborhood the covariances are
small compared with the variances, and so are generally ignored. Note this
formulation still assumes independent and random errors, even though the
variables are correlated.

1.5.3 Error propagation for simple functions (uncorrelated
variables)

In practice we often combine variables by simple functions such as addition,
subtraction, multiplication and division. The basic relation (2) for uncorrelated
variables simplifies for these functions.

k
Addition and subtraction: z= f(X, X"+, %)= z X — Z X
1=1 i=

In this case, all the partial derivatives equal 1, so that the error by sum of
quadrature is:

= J(6%)% +(3%) 2 +-+(3%) )

Or, the upper bound on the error (without assuming independent and random
errors) is:

0z < 0X + 0%+ +0X (5)
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In words, the absolute error of the results is the sum of the absolute errors of
the individual variables. We can easily get a feel for the beneficial effect of
assuming independent and random errors; suppose we have ten variables each

with uncertainty dx = 1; formula (4) gives a final error = V10 = 3.16, whereas
formula (5) gives a final error < 10.

=

n
Multiplication and division: z= f(X, %,"+, X )= X+ |_| X

In this case, all the partial derivatives equal z2/x, so that the error by sum of
quadrature is:

OX OX OX
= G2+ P2 ©
20 % *n

Or, the upper bound on the error (without assuming independent and random
errors) is:

(7)

In words, the relative error of the result is the sum of the relative errors of the
independent variables. Again, we can see the benefit of independent and

random errors: suppose we have ten variables each with relative uncertainty |&
x/x] = 0.1 (i.e., 10% relative error); formula (6) gives a final relative error = V0.1
= 0.316 (i.e., 31.6%), whereas formula (7) gives a final relative error< 1 (i.e.,

100%).
1.5.4 How do we measure the uncertainty to be propagated?

The ‘small uncertainty’ dx etc. in the preceding formulas can be estimated in
various ways. A very common method is to use the sample standard deviation,
also referred to as the root-mean square or RMS error:

1o
S, :\/m;(xi -x)°

where X is the sample mean and n is the sample size, as usual. Then we can
rewrite (4) and (6) as:

S =8+ i+ § (@)

S, =/S¢2 [ % O E-0) 4+ 52 [ X0 }3-0,)° ©)

this latter derived from the general relation (1) because of the fact that:
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In the simple two-variable case (e.g., a single IDRISI OVERLAY), (4') and (6’)

reduce to:
s, =4s°+s°, §=48° ¥+ 3 X (4", 67)

where the two input variables are x and y, and the output variable is z. Some
formulas are even simpler. For example, multiplication by a constant k with no
error (e.g., T) results in the error |k| (&, , and addition of a constant k with no
error does not affect the error.

1.5.5 Error propagation for simple functions (correlated
variables)

Recall that equation (3) must be used instead of equation (1) when the variables
to be combined are correlated. The term dx;dx; of this equation corresponds to
the covariance Oxy between the two variables. This is what can make the error
larger or smaller than for the uncorrelated case. In practice, Oxy is estimated
from the sample with the sample covariance sy, . The derivations based on
equation (1) must be modified by also computing the partial cross-derivatives
which must be established for each case, i.e., we can’t just compute a single
relation for addition or multiplication, it depends on how the particular
variables being added or multiplied co-vary.

1.5.6 Application to GIS

References: IDRISI: (Eastman, 1993); ADAM: (Heuvelink, 1993, Heuvelink &
Burrough, 1993, Heuvelink, Burrough & Stein, 1989); general reference on map
overlay: (Veregin, 1989); multiple sources of error as well as error propagation:
(Burrough, 1986) Ch. 6.

The basic idea is to compute errors at the same time that we compute results
when combining maps. The IDRISI command OVERLAY allows us to add,
subtract, multiply, or divide maps; the error propagation can be determined by
the formulas of the previous section.

The uncertainty for a map can be uniform for the entire map or, more
realistically, it may be different for each cell. So in general we have two maps
for each coverage: (1) the expected value and (2) its uncertainty. All the
uncertainties must be expressed in the same relative terms, e.g. one standard
deviation for normal variates.

Software: IDRISI modules MCE and SURFACE will automatically propagate
RMS errors; ADAM (Heuvelink, 1993) (University of Utrecht) can handle more
complicated functions.
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Problem 1: propagation is strongly affected by correlations between variables.
This is not accounted for in IDRISI; in ADAM the form and degree of the
covariance must be known, and this is difficult to determine.

Problem 2: Strong positive covariance between errors of different variables can
lead to exaggerated errors in the result (i.e., the result is less certain than it
seems by applying the error propagation formulas), whereas strong negative
covariance between errors can lead to cancellation of errors and a more certain
result. The conservative position, if we can’'t assume independent and random
errors, is to use equation (2) and its derivatives, i.e., ordinary sum instead of
sum by quadrature. This leads to very loose error bounds.

Problem 3: some GIS operations do not have closed-form error propagation
formulas. We would have to use (1) directly, and compute the numeric partial
derivatives.

Problem 4: we have assumed spatial independence, i.e., only the values of land
characteristics at each point are used to compute the result at that point. This
ignores useful information from other nearby sampling points, if there is any
spatial dependence in the land characteristic, as is often the case. We will
consider this further in a subsequent lecture.

1.5.7 Example of error propagation: estimating soil loss with
the USLE

(Burrough, 1986) p. 130-131 has a sobering example, which we present here
with slightly different numerics. The exercise is to predict soil erosion in the
Kisii district of Kenya using the ‘Universal’ Soil Loss Equation (USLE), a
multiplicative index with the general form:

A=Rx Kx Lx Sx Cx P

where A is the predicted annual soil loss in T ha™ . Burrough explains how
each independent variable is estimated, along with its uncertainty, from the
best available local information. He obtains the following values and
uncertainties:
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Variabl | Factor Estimate | Estimate | How estimated Reliability
e name d d
value Standard
Deviatio
n
R rainfall 297 cm 72 FAO formula, from | Low, due to
intensity average annual sparse climate
precipitation, data for the area
maximum-day in
2yrs precip,
maximum 1-
shower precip in
2yrs.
K soil 0.1 0.05 measurements on Low; assume CV
erodability soils outside the of 50% for
study area relevant
properties (e.g.
silt and fine
sand content)
for soil map unit
L slope 2.13 0.045 regression from Good; 100+20m
length slope length field size
factor
S slope 1.169 0.122 parabolic Good:; 10+2%
gradient regression from slope
factor slope gradient
C cropping 0.63 0.15 from tables of Moderate; part
practices similar crop cover of observed
in erosion range of results
experiments
P erosion 0.5 0.1 from tables of Moderate; part
control similar practices in | of range of
practices erosion observed results
experiments

Using (5), i.e., assuming independent and random errors, the predicted soil loss
is computed as:

A=23.0+148Thatyr’

which corresponds to lowering the soil surface by 7.8 £ 5.0 cm in 40 years (see
calculation below). Since the uncertainty is a standard deviation, we can
compute confidence limits. For example, 95% of the grid cells (in a grid GIS)
having the combination of soils, rainfall, slope, and management practices
specified here will have a lowering of the soil surface between Ocm
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(insignificant) and 16.1cm (substantial, probably will expose the subsoil to the
surface) after 40 years. This is a serious practical difference for a planner.

(Calculatlon supposng a bulk denS|ty of 1.175 g cm for the surface soil: 1T
ha™ y 1><1O4ha m x 10° kgT x 10° g kg ><(10 ) m%cm™ ><(1175)

cm® g =0. 85 . >< 10% cm yr = 0.34 cm 40yr L. ; multiply this factor by the 23
+148Tha’ yr ! to obtain 7.82 + 5.03 cm 40yr -, 1 then round these to two
significant figures: 7.8 £ 5.0 cm 40yr L Note that we have not accounted for the
variability in the bulk density for a soil map unit or the uncertainty in its
measurement!).

(Calculation: 7.8 £+ (5[1.65) = 7.8 + 8.3; results less than 0 are unphysical, so we
get the range 0-16.1cm. The factor ‘1.65’ comes from the normal distribution; it
is the value of Z above which only 5% of the deviates are expected to occur;
since this is two-tailed the total deviates accounted for are 90%.)

Lessons from this example: (1) multiplicative indices are to be avoided if
possible; (2) the number of factors in a predictive equation should be as small
as possible; (3) identify the largest errors and try to control them. In this case
since we are multiplying, the relative errors are what we compare; the R and K
values were the least certain. We could improve R with better rainfall records,
although even with perfect records there is great uncertainty in future rainfall.
We could improve K with more homogeneous map units (narrower range of
relevant soil properties), however, some map units are inherently
heterogeneous at any scale.

Questions: are there any physical or logistical (sampling) reasons to suppose
that the errors for any of these six variables are positively or negatively
correlated? How about the variables themselves? How would these
correlations affect the uncertainty of the result?

1.6 Monte Carlo simulation

In many situations, we can not fully analyze errors. Reasons: (1) the functional
form is unknown; (2) the function’s parameters are not known; (3) the function
has no total differential or is too difficult to differentiate; (4) there is known to
be covariance but we want a tighter error bound than given by the ordinary
sum of errors (i.e., this may be too pessimistic).

In these cases we can determine the amount and distribution of errors by
simulation (yet another use of the word). The basic idea is to set up the model
(function), then randomly vary the input variables according to their probability
distribution (note: if there are known joint distributions we can sample from
these, thereby accounting for covariance), compute the model and record the
result. If we do this enough times we get a frequency distribution of the result,
from which we can compute its expected value and various statistics that
guantify its error.

This is a very powerful and flexible technique. It is applicable to variables with
and without known probability distributions (i.e., frequency distributions are
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acceptable). Without modern computers it would be impossible. Example
software: @RISK. Tricky points: establishing the distributions of the input
variables, designing a sampling strategy that will give reliable results in a
reasonable number of simulations (typically on the order of 1,000), making sure
we have examined enough simulations, quantifying the true distribution of the
output errors.

In a grid GIS such as IDRISI, we can undertake a Monte Carlo simulation by
introducing errors (calculated with the RANDOM module) into the data layers,
then computing the model (e.g., a sequence of OVERLAY, SCALAR, and
TRANSFORM), then examining the frequency distribution of the result.

1.6.1 Example of Monte Carlo simulation in IDRISI

Suppose we want to generate a slope map from a Digital Elevation Model (DEM)
with a RMS error of 3 meters (this would be established by random sampling of
the real landscape, or a very accurate map of it, vs. the DEM, and tabulating
the errors). What is the RMS error of a slope map computed by IDRISI's
SURFACE module?

It is not convenient to calculate the RMS error of the slope map (taken as a
whole) directly, because the algorithm for computing slope depends on the
neighborhood of each cell. However, we can simulate the RMS error:

(0) Generate an ‘expected value’ slope map from the ‘expected value’ DEM, with
SURFACE.

Repeat steps (1) - (4) a large number of times (this can be automated with a
batch file):

(1) Generate a map of the simulation errors using RANDOM with parameters Om
mean (i.e., no bias) and 3m RMS error. Each cell will have a different error,
sampled from the normal distribution with parameters (0, 9).

(2) Add the simulated error to the expected-value DEM using OVERLAY
(addition); this creates a modified DEM which could be the true DEM.

(3) Compute the slope map from the modified DEM with SURFACE

(4) Subtract the modified slope map from the expected-value slope map, with
OVERLAY (subtraction). This is a single estimate of the error in the slope
map; save it.

Now we analyze the slope-error maps as a group to establish the overall error:

(4) Compute the mean and standard deviation (RMS error) of all the slope-error
maps, cell by cell. For example, the mean can be computed by repeated
additions (OVERLAY) followed by a single division (by N, the number of
simulations). This produces two maps: the expected error (bias) and RMS
error, per-cell. These maps can be used to identify locations on the map
where the uncertainty in the DEM had a large effect on the uncertainty in
the slope; we could improve our efforts to make a good DEM in these
regions.
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(5) Compute the expected (mean) value of the by-cell means and RMS errors,
using HISTO. The mean value of the means is the bias; if it is significantly
different from zero, the SURFACE module has a systematic bias. The mean
value of the RMS errors is the overall RMS error of the slope map.

Problem with this procedure: it assumes that there is no spatial correlation
between errors in the DEM. In fact, we might expect positive correlation
between the errors nearby cells, depending on how the DEM was constructed
(e.g., if a contour line was mis-drawn in a certain area of the map, the
elevations of all cells near the contour line will be similarly affected).
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2. Fuzzy logic & continuous classification

Bibliography: A good general introduction to fuzzy logic is (Zimmerman, 1991),
a bit more mathematical is (Klir & Folger, 1988), quite mathematical but with
many interesting applications is (Kandel, 1986). (Burrough, 1989, 1992) give
preliminary applications to soil survey and land evaluation.

2.1 Why use continuous classification in land
evaluation?

When the concept being classified is not precisely defined (especially in the case
of linguistic uncertainty), the techniques of fuzzy logic may be applicable. This
allows us to compute and express land evaluation results when the land
characteristics are not precisely measured, but instead are expressed by well-
understood linguistic terms that can be quantified in a manner presently to be
discussed. Fuzzy logic is an attempt to quantify ordinary expert discourse.

For example, it does not make sense to talk about the ‘probability’ that a
particular year in the past was ‘very wet’, because we have the actual climate
data for the year in question, and can determine exactly how wet was the year.
What remains ‘fuzzy’ is what we mean by the term ‘very wet’; so, instead of
talking in terms of probability, we use the language of possibility, e.g., that the
year in question can be considered ‘very wet'.

Burrough uses the term continuous classification in preference to ‘fuzzy sets’. As
we will see, the techniques of fuzzy logic allow us to classify according to a
continuous scale of membership. For example, a given year isn't either ‘very
wet’ or ‘not very wet’; instead it is to some degree ‘very wet’, this degree varying
from none to completely.

(There is great controversy about whether fuzzy logic is simply a restatement of
subjective probabilities. It seems to have practical application as it stands, so
we will use its terminology.)

2.2 A fuzzy set and its membership function

A fuzzy set A over a universe of possible members X consists of members, a
generic member being labeled as x, along with a membership grade for each
member X, defined either by enumeration or by a function:

A={(x u(AI X0 R
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where the membership function 0< 1, (x) < 1. Intuitively, 1 = totally in the

set, O = totally not in the set. Traditional crisp sets only allow values of O or 1,
corresponding to false/true, out/in, wrong/right etc.

A good example is the concept of ‘steep’ slopes. We decide that 25% slopes or steeper are
definitely ‘steep’ (fuzzy membership 1), and that 10% slopes or less are definitely not
‘steep’ (fuzzy membership 0). We must now decide how to qualify slopes between 10%
and 25%; a typical (and arbitrary) choice is the sigmoidal membership function, which is
defined by the relation Y = cos2d, where W is the membership grade. We determine o from
two points: the lower and upper limits of our concept:

m_(x—-1)
a=— , X<
2 (I,-1y) ?
Ifx 21y, then u=1.

Note that we put the term ‘steep’ in quotes to show that we have a mental model of this
term, but that it must be defined by a fuzzy function.

Membership functions are at the discretion of the analyst. The idea is to quantify the
linguistic uncertainty. Here are two examples of membership functions for monotonic
concepts, e.g. ‘steep’.

B: point below which B: point below which
membership = 1 membership = 1

[
o
[
o

Linear
Membership
Function

Sigmoidal
Membership
Function

Possibilty
Possibilty

o
o
o
o

N\ N\

A: point below which A: point below which
membership = 0 membership = 0

The sigmoidal function is intuitively appealing, but the linear function may
provide a reasonable approximation, and makes fewer assumptions about how
our concept of membership changes in the range where the possibility is in the
interval (0,1).

Other functional forms are used when the concept has a maximum
membership at some value and less membership at both a higher and lower
value. For example ‘moderately deep’ soils could be considered to have
membership 1.0 between 60 and 80cm, tapering off to O at 40 and 100cm.

So using expert opinion and the wide variety of functional forms available, we
can quantify any linguistic term.
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2.3 Computing with fuzzy sets

The difficult point is in combining fuzzy sets in a way that is (1) mathematically
consistent and (2) corresponds with the way we combine the linguistic
concepts. For example, in rigid (Boolean) classification, we might say that a
land area is ‘very suitable’ if it combines ‘gentle’ slopes and ‘deep’ soils. We
would have to define these sets with crisp limits: e.g. ‘deep’ = 1m, so ‘not deep’
< 1m; ‘gentle’ slopes < 8%, so ‘not gentle’ slopes > 8%. Now in fuzzy
classification, each site is not just ‘deep’ or ‘not deep’ etc., but some grade of
‘deep’, given by the membership function. How can we obtain a grade of
‘suitable’ from grades of ‘deep’ soil and ‘gentle’ slopes? The linguistic statement
is ‘A land area is very suitable for use X if it has both gentle slopes and deep
soils’. There are many possible combinations with different desirable
properties; see (Klir & Folger, 1988) and (Kandel, 1986) Ch. 6 for a theoretical
treatment. In general the following combinations are used:

AND: the minimum of the two membership grades:

Hpns(X) =min[ 1 ,(x), tg(X)]

OR: the maximum of the two membership grades:

Hans (X) = max[pt , (x), 4 g (X)]

NOT: the complement of the membership grade on [0,1]:
H (9 =1 11,(X)

CONcentration: the square of the membership grade. Corresponds to
the linguistic modifier ‘very'.

DlLation: the square root of the membership grade. Corresponds to the
linguistic modifier ‘somewhat’.

INTensification: increases the contrast among members of a set: If a<0.5
- 2a2?, otherwise (1-2((1-a)?)), i.e. the middle (near 0.5) is
eliminated, and membership grade is made more extreme. This is
useful for eliminating middle ground.

NORMalization: ensure that at least some members of the set can be
fully in it (i.e., membership value = 1). This operation is necessary
if a derived fuzzy set should have at least one ‘full member’
(membership grade = 1), because the AND and other operations
may leave the set without any full members.

(All these can be implemented by IDRISI operators such as TRANSFOR,
SCALAR, and OVERLAY.)

The big problem with the practical application of fuzzy sets is that there is no
single theoretical basis for the functional forms of the original variables nor for
their logical combination, nor for their concentration, dilation and
intensification with respect to our linguistic concepts. Normalization is a
problem, and the final result may not be convex (i.e., may have peaks and
valleys) even when it should not; other ad hoc techniques are used here.
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3. Spatial variability

A fundamental fact is that land resources vary over space. In fact it is this
pattern that makes land evaluation important. Furthermore, the variation is
not random over space, but very often exhibits spatial dependence, i.e., knowing
the value of a land characteristic at a certain point already provides information
about non-sampled points nearby. In this lecture we discuss how to describe
and deal with spatial variability in land evaluation.

References: (Oliver & Webster, 1991) is a nice introduction to spatial statistics
for the soil scientist. (Isaaks & Srivastava, 1989) is an excellent practical
introduction to the theory and practice of geostatistics and estimation.
(Burrough, 1986) Ch. 8 discusses this from a GIS perspective. (Burrough,
1993) is an exhaustive review of the literature of soil spatial variability. (Vieira
et al., 1982) give a fascinating review of historical field experiments from the
early 1900's, using geostatistical methods to expose the underlying spatial
structure and draw new conclusions from old experiments. (Cressie, 1991) is a
theoretical treatment which emphasizes the underlying similarity of a variety of
spatial statistics.

3.1 Why natural resources vary in space

The causes of natural phenomena vary in space, therefore, so do the natural
resources themselves. For example, considering the classic ‘equation’ of soil
formation due to Jenny (see (Buol, Hole & McCracken, 1989)):

Soil = f(parent material, climate, organisms, topography, time)

we can imagine how these factors (other than time) vary over space: (1) a parent
rock formation has differences in its grain size, chemical composition, fractures
etc.; (2) the climate evidently varies over space (it doesn’t rain everywhere on the
earth at once); (3) organisms colonize certain areas preferentially; (4) the
landscape does not have uniform topography. So it is only natural that the soil
varies in space.

Climate also varies in space, because of the differential heating of the earth
(tilted towards the sun) and its rotation, causing the general circulation of
winds. Land masses also affect the general circulation (e.g., orographic effects),
and there are local and micro variations in landforms, water bodies, vegetation
etc. that cause climate to vary.
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3.2 Key point: spatial dependence

The variability that we observe over space is usually not completely random, but
has a definite pattern. In particular, we can often observe (or infer from our
knowledge of the phenomena) that nearby locations will be more similar than
widely separated locations. If | know it is raining at my home in Fall Creek, |
can infer with some high degree of confidence that it is raining at Bradfield Hall
about 1.5km distant. | have less confidence about the weather at Caldwell
Field (3 km distant), even less about Dryden (15km distant) and almost none
about the weather in Albany (about 200km distant). (Of course, my knowledge
of the frontal patterns etc. might help me strengthen my inferences).

If knowledge about a variable at a sampling location allows us to predict with
more-than-random accuracy the value at a ‘nearby’ location, we say that the
variable exhibits spatial structure and that there is spatial dependence among
the observations.

Note that knowledge of the underlying phenomenon may provide as much or
more information than the relative location in space. For example, snow on
South Hill will usually mean snow on East Hill but there may well be no snow
in the Ithaca flats which is between; this because of the higher elevation and
exposure to Lake Ontario. Here a classification of land areas based on those
factors that we know to be related to climate (here, elevation and exposure) will
give better predictions than just the location in space.

3.3 Dealing with spatial variability in land evaluation

There are various ways to account for spatial variability, as usual, each has its
advantages and drawbacks. The fundamental problem is to estimate the value
of a land characteristic at a non-sampled location, based on a set of existing
samples. A related problem is to design an efficient sampling scheme to
determine land characteristics over the entire study area with a prescribed
accuracy.

3.3.1 Knowledge of the distribution of natural resources

We may know something about how the natural resource was caused. For
example, orographic rain is caused by tradewinds being forced up mountains;
the combination of elevation and aspect can be used to predict the rainfall,
without nearby observation but from similar areas. The distance between the
points is not so important as their similar environment. Another example is
soil survey: if we can reliably map parent material and geomorphology, we can
sample in representative areas of each map unit thus defined, and use those
values for other delineations of the same map unit. Indeed this is the whole
idea of soil survey: divide the soil cover up into more homogeneous areas.

Advantage: uses our knowledge about the causes of spatial variability in the
natural resource
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Disadvantage: no information on the distribution of values within each
delineation.

3.3.2 Using a single nearby value

In the absence of information on the spatial dependence of a variable, and with
no knowledge of any underlying causes, the most reasonable choice is to use
the nearest measured value. A GIS can divide space up into Theissen polygons,
also called Voroni or Dirichlet cells (can’t they agree who invented it?), whereby
each location in an area is associated with its closest observation point. (IDRISI
module THIESSEN).

Advantage: uses actual data, does not make any assumptions about spatial
structure

Disadvantage: abrupt change in values at the boundary between Theissen
polygons, the tesselation depends on the sample points, polygons can have
strange shapes, assumes no error within polygons.

3.3.3 Interpolating from nearby values

If we have reason to believe that the variable varies more-or-less continuously
across space, it makes sense to interpolate at each point for which we want a
value of the variable, from several ‘nearby’ points. The simplest case considers
the three closest points, which define a response plane: z = f(E,N) where E and
N are the east and north coordinates (other systems could be used). Another
reasonable choice is a distance-weighted average of any number of ‘nearby’
points; the advantage here is that closer points receive higher weight.

Advantage: uses more observational data

Disadvantage: assumes continuous behavior of variable, doesn’t account for
redundant observations, no way to determine the error of the estimate at an
interpolated point.

3.3.4 Optimal interpolation or ‘Kriging’

The problem with simple interpolation methods is that they can not account for
clustered observations. Intuitively, if we have closely-spaced observations, they
should not both be used in the distance-weighted formula, because their
information is to some degree redundant. This concept can be formalized and
solved by the use of Best Linear Unbiased Estimator (‘BLUE’) methods, more
commonly known as Kriging, after the South African mining engineer who
developed them. These methods provide optimal estimates for each point, and
even better, the error of the estimate.

So, Kriging produces two maps for each variable: the estimated variable and its
variance. These can be used directly in error-propagation GISs.

The mathematics of Kriging are beyond the scope of this course. See (Oliver &
Webster, 1991) for motivation and a bit of the math, (Davis, 1986) pp. 383-405
for a good introduction with worked examples.
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Advantages: mathematically optimal, provides an error estimate

Disadvantage: computationally intensive, problem of the ‘support’ (spatial area
over which sample is taken vs. for which predictions are desired), assumes
continuous variables; makes strong assumptions about the spatial structure,
which must be inferred for each case.

Key issue with Kriging: A variogram must be estimated from sample data for
each map to be produced by Kriging. There is no theoretical basis for a ‘best’
variogram, so its construction depends greatly on the analyst's skKills.
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