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This unit presents some approaches to fully-quantified land evaluation.  Van
Diepen (1991) and others (Beek, Burrough & McCormack, 1987, Bouma &
Bregt, 1989) consider that land evaluation must be as quantified as possible in
order to meet the demands of land-use planning.  The biggest obstacle, as we
will see, is lack of quantified knowledge, and secondarily, lack of quantified
data.

The FAO Framework is fundamentally a classification system, working with
classified land data, inferring classified land qualities, and resulting in
suitability classes.  Historically, this made sense because data was collected
over map units.  Nowadays, with the advent of computers and more-or-less
continuous sampling methods (e.g., remote sensors), it is possible to collect,
store and process large quantities of more-or-less point data in space and time
(actually, the sample unit is some small area, but for convenience is usually
called a sampling ‘point’).  This level of detail allows us to model the response of
the land to various land uses, thus fulfilling the fundamental definition of land
evaluation: “the process of assessment of land performance when [the land is]
used for specified purposes” (Food and Agriculture Organization of the United
Nations, 1985).

There are two principal modeling approaches: empirical (also called statistical)
and dynamic simulation.  As we will see, there is much empirical content in
dynamic models as well.

A major use of modeling for land evaluation purposes is to predict yields (either
average yields or time sequences).  The ‘value’ of the land is directly reflected
by its productivity.  The modeled yield, along with a price for the product, gives
the gross return, i.e., the ‘return’ or ‘input to the producer’ side of the cost-
return equation.  Since yields vary with management level (e.g., type and level
of inputs, timeliness of operations), modeling yield requires a careful
specification of the input levels of the farming system.

Modeling can also be used to predict some land qualities that are important
components of yield, e.g., moisture supply, nutrient supply, radiation balance,
as well as land qualities important for the land use but not directly affecting
yield, e.g. trafficability and workability.

In this unit, we will first consider statistical characterization of the land-yield
relationship, paying special attention to the problem of yield prediction.  We will
consider univariate and then multivariate methods.  Then we will consider the
problem of modeling the dynamics of the production system.  Finally, we will
consider the problem of how to obtain model parameters from field
observations.
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1. Statistical modeling for land evaluation

Basic idea: quantify observed relations and use these to predict future
situations.  It will not work unless there is sufficient data on which to base the
statistical inferences, so is not appropriate for new land uses or areas with
insufficient samples.  For land evaluations of established land uses with
sufficient historical or experimental data it can be quite useful, in fact often the
preferred method.

Example of a reasonable application of this method: to predict yield of maize
grain under typical management conditions in NY State, as a function of
climate and soil characteristics.  There is a complete, detailed soil map of the
state, a huge number of reliable laboratory analyses of soil fertility levels,
detailed long-term climate records in a dense network, accurate records on
management practices and yield levels by field, detailed and accurate market
price records (both inputs and outputs).  Maize grain is widely grown.  For
purposes of tax equalization and assessment, a statistical prediction of the
time-series distribution of likely yield levels of a commonly-grown field crop
such as maize would be a reasonable approach to a an equitable tax system.

Definition of statistics (Steel & Torrie, 1980) p. 2: “Statistics is the science, pure
and applied, of creating, developing, and applying techniques such that the
uncertainty of inductive inferences may be evaluated.”  Note the emphasis on
inductive inference: we have made some observations and now wish to
generalize them.  Also the uncertainty (or, degree of confidence in the inference,
and by extension, of predictions based on the inference) must be assessed.

The most common application of statistical modeling in land evaluation is yield
prediction, so we will look at various statistical tools in this context.  Keep in
mind that the same tools can be used to model individual land qualities.

There are many excellent textbooks on statistics; especially recommended is
(Steel & Torrie, 1980) for agricultural experiments and (Davis, 1986) for general
descriptive statistics and a very accessible introduction to regression and
multivariate methods.  A comprehensive, practical approach to regression is
(Draper & Smith, 1981).

1.1 Yield estimation

Yields evidently vary, and so do many production factors, both natural
resources (e.g. soil characteristics) and management options (e.g. amount of
fertilizer), and there are good reasons (both observational and theoretical) to
believe that the variation in yields has at least some of its underlying cause in
the production factors.  Statistical methods have been used since the
beginning of land evaluation (e.g. (Simonson, 1938)) to quantify these relations
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and to determine how much of the observed variability can be explained by the
production factors (and how much remains to ‘chance’, i.e. unexplained).

The ‘production factors’ mentioned above are roughly equivalent to land
characteristics as we have defined them.

The dependent or effect variable (‘y’) is predicted by one or more independent or
causal variables (‘x’).  So the basic idea has been: observe the effects (e.g.
yields), record the supposed causes (e.g. amount of fertilizer applied, amount of
a chemical element in the soil), and infer the causal relation between these by
statistical inference.

There are two kinds of datasets:

1. controlled (usually from field experiments): the experimenter controls the
levels of the independent variable

2. observed (usually from surveys): the levels of the independent variables are
not controlled, only observed.

Controlled data is a more reliable way to understand cause and effect.
Observed data is a cheap way to acquire data with a wide (numerical) range of
each causal factor.  However, nature may not provide us with the full range of
effects that we could impose in an experiment (e.g. can only observe soil N from
40 to 120 kg ha-1; but if we impose fertilizer treatments we could extend the
upper end of the range to 300 kg ha-1).

In land evaluation, controlled experiments can be used to choose diagnostic
LCs and their relation to levels of LQs, although this is usually the job of
applied agricultural researchers.  Observed data is typically used directly in
land evaluation, in an attempt to predict yield from observed LCs.

Strictly speaking we observe correlations, e.g., more fertilizer is correlated with
greater yields in a certain range.  We can turn this into a causal relation in two
ways: (1) if the fertilizer is applied under the control of an experimenter, and we
observe the yield at some later time, we have a temporal sequence, so that the
yield could not have caused the level of fertilizer, any causal relation must be
from fertilizer to yield.  Still, to establish that the fertilizer actually affected
yield, we need (2) some knowledge of the role of mineral elements in plant
nutrition to establish a plausible mechanism.

Advantages of statistical methods of land evaluation:

1. They use actual observations either random or imposed (‘the past is the key
to the future’);

2. More observations should lead to more reliable predictions, in a predictable
and quantifiable manner;

3. The predictions are on a continuous scale and allow for fine distinctions
with enough data;

4. We can consider input levels as well as natural resources as predictor
variables;
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5. There is a rich set of analytical methods; and

6. Each prediction comes with an estimate of its reliability.

Disadvantages:

1. The form of the statistical relation is not obvious a priori and several forms
may give similar results in terms of goodness-of-fit;

2. They make assumptions about the distribution of the predictor and
response variables that may be impossible to verify and in fact may be
obviously a convenient fiction.  Problems of unusual observations (outliers
or a valid member of the sample?);

3 Extrapolation to values of the independent variable outside the domain of
calibration is not justified;

4 It is not obvious how to define the sample space, and errors here invalidate
the inferences;

5 It is not obvious which independent variables should be included in the
relation; and

6 The precision of the statistical relation may not useful enough for
meaningful predictions (especially with observational data).

1.2 What is the sample population?

The population is all possible values of a variable.  ‘Possible’ is to be understood
as limiting the universe or sample space.  In land evaluation we definitely must
specify the geographical area about which we want to make a statistical
statement.

We may also choose to divide the area according to some factor that greatly
affects the degree or form of response.

Basic rule: if the difference in response across an area is one of degree, don’t
divide the area (the regression equation will account for the factor); if the
difference in response is one of kind, divide the area into sub-populations and
analyze each one separately (or use ‘dummy’ variables if the form or response is
the same but the degree differs).

(See example of rainfall vs. yield, below).
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1.3 Simple linear regression

The simplest approach to statistical modeling is to assume a linear relation,
within a certain range, between a single independent predictor (hence a ‘simple’
regression) and the dependent variable ‘yield’.  Examples of predictors: fertilizer
level, moisture supply.  This makes sense in the ‘usual’ response range: it is
statistically impossible to distinguish the ‘flat’ part of an exponential or a
higher-order polynomial from a straight line.  Also, a single predictor may be
enough to explain most of the observed response.

The methods of linear regression are very well-understood (Draper & Smith,
1981, Webster & Oliver, 1990), (Steel & Torrie, 1980, ch. 10).  Assumptions and
pitfalls are numerous.  See especially (Webster, 1989).

Basic relation: y b b x= +0 1 , with two parameters: bo is the intercept (e.g., yield
level with no input) and b1 is the slope or gradient of the linear relation.  Can
also be written in terms of the mean: y y b x x= + −1( ) .

(Note: the intercept must logically be zero or positive, since we never have
negative yield, but in fact the statistically-best regression may have a negative
intercept; this relation is not to be used in this range!)

The parameters are determined uniquely from the data once a goodness-of-fit
criterion is established; this is almost always to minimize the sums of squares of
the deviations between the observed and predicted (by the regression equation)
values of the dependent variable (although there are many other possible
estimators).  The easiest way to compute, and the most illuminating, is from
the sample covariance between the dependent and independent variables:

s
x x y y

nxy =
− −

−
∑ ( )( )

1

Then the slope is computed as b s sxy x1
2= .  The important thing to notice here

is that the slope increases with increasing covariance, i.e., when large
deviations from the mean in the dependent variable y are matched with large
deviations from the mean in the independent variable x.  If the deviations are
in the same direction numerically, the covariance and slope are positive,
otherwise they are negative.

The degree of association (goodness-of-fit) is best estimated by the correlation
coefficient:

r
s

s s
xy

x y

=

This ranges from -1 (perfect negative relation) to +1 (perfect positive relation).
The square, r², is called the coefficient of determination, ranging from 0 (no
explanation) to 1 (perfect explanation).  The statistical significance of the
regression depends on r² and the sample size, because the following statistic is
distributed as Student’s t with (n-2) degrees of freedom.
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r
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−
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Note that a high r² leads to a small denominator and large numerator, hence a
large value of t, hence high significance.  Also, this is a signed statistic, so the
t-test is two-tailed.  Also notice that the significance increases as the square
root of the sample size, so that, roughly speaking, to double the significance we
would have to quadruple the sample size.

Caution! a large slope b1 does not necessarily indicate a strong causal relation;
the statistical significance of the coefficient of determination r² is what matters.

We can also estimate the confidence limits for the population mean, for the
slope of the regression, and for any prediction, using any risk level that we
wish.  These all require that we calculate the standard error of the estimate:

s y y ny x⋅ = − −∑( �)2 2

where �y is the predicted (estimated) value (on the regression line).  Note that
the closer is the actual to predicted value, the smaller will be the standard
error of the estimate.  This must be multiplied by the appropriate t to obtain a
confidence limit for a given prediction.  This is an advantage of linear
regression: it provides a confidence in any prediction.  Again, the relation of
sample size to significance is as the square root.

1.4 Calibration vs. validation (postdiction vs.
prediction)

The process of fitting a regression equation to observed data is calibration, i.e.,
we are calibrating the general linear regression model with specific values of
the parameters.  This yields a goodness-of-fit measure such as r².  This
measures how well we were able to calibrate from the available data.

Another name for calibration is postdiction (as opposed to prediction, see
below), from the Latin ‘post’ (after) and ‘dicere’ (to say).  We have made a
statement about the past, i.e., what we observed in our original experiment or
data set.  We have made statistically-significant statements about its mean,
variance, and degree to which the observed variance was explained by the
calibrated regression.

If the sample was truly representative of the desired sample space, we would
expect to obtain the same parameters, within experimental and observational
error, in similar repeated studies..  However, we can’t be sure that the sample
with which we calibrated is representative of the situation we want to predict.
In other words, the r² we obtained by calibration may not apply to the situation
we had in mind for prediction.
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A better measure of the predictive success of a regression is a validation.  Here
we use the equation to predict results for a second set of observational data,
and compare the observed vs. predicted.  The regression of the validation data
vs. predictions should lie along a 45° (diagonal) line, within error limits.  If not,
the original model is not valid.  If so, we can get an estimate of the predictive
power from the r² of the validation regression (not the r² of the calibration
regression).

Another name for validation is prediction (as opposed to postdiction, see
above), from the Latin ‘prae’ (before) and ‘dicere’ (to say).  We have made a
statement about the future, i.e., what we expect to observe in later
experiments or data sets.  We have made statistically-significant statements
about the amount of variance in a future data set that we expect to be able to
explain by the calibrated regression.

One method of validation is to regress the predicted on actual variables, and
test to see if we can detect an intercept b0≠ 0 or a slope b1≠1.  If either of these
can be proven, the original regression is not a valid predictor.

1.5 Problems with linear regression

1. Completely unjustified to extrapolate.  For example, suppose that a
regression of yield on rainfall was determined in a zone where the crop is
adapted.  If we go to a more arid zone, there is no assurance that the
relation will hold, so that yields will gradually decrease with decreasing
rainfall.  In fact could be that the yield will immediately drop to zero
(threshold effect).  If we go to a more humid zone, there is no assurance
that the yield will continue increase at the same rate.  It could be that the
yield will increase at a decreasing rate (see Mitscherlich’s equation, below)
or even decrease.

2. We may be attempting to model various causes with one equation, even
when restricted to one predictor variable.  The moisture example is good: if
we have data from a large range of moisture regimes, we may be seeing
multiples effects: plants need water to grow, but excess favors plant
diseases (or at the best is wasted).  In this case it would be best to divide
the universe into subpopulations: high-, medium-, and low-rainfall regions,
and develop linear regressions for each of these separately: a piecewise
function.  (Another solution is to perform a multiple regression with dummy
variables to differentiate the subpopulations.)

3. The underlying relation may not be linear even in the zone of calibration,
yet a linear fit may be statistically significant.  Of course, a transformed fit
would fit better, see next section.  This is not much of a problem for
prediction as long as we don’t extrapolate beyond the zone of calibration.

4. There are many cautions regarding outliers and especially observations with
a large influence on the results.  Observations with high leverage on the
equation can easily cause meaningless results, both in the equation itself
and the computed level of significance.
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1.6 Nonlinear regression

Often there are experimental results and/or theoretical considerations which
suggest that the response is nonlinear, for example, an observed diminishing
returns at high levels of a predictor, or increasing returns at low levels.

Many nonlinear effects can be linearized: new variables can be created from the
original variables, and the resulting regression on the new variables is linear.
Examples are polynomial regression and one-variable transformations (see next
two sections).  In this case we say that the regression is intrinsically linear
even though it is non-linear in the original variables.

Some effects can not be linearized, in particular, interactions (such as cross-
products) between two variables; these are intrinsically non-linear.  These
effects are rare in land evaluation (as opposed to agricultural experiments),
because the datasets are usually too noisy to detect significant interaction
effects.

1.6.1 Nonlinear regression: polynomials

Many kinds of nonlinear effects can be accounted for by the use of higher powers (than
the first) of the predictor variable.

Here, the basic relation becomes: y b b xk= +0 1 , which has the same
parameters as simple linear regression but which is linear in some power ‘k’ of
the predictor.  Most commonly k=2 (quadratic) to account for parabolic curve
(e.g. concave upwards or downwards) or k=3 (cubic) for curves with an
inflection point (zero slope)  in the range of interest.

Most commonly, higher powers are used as part of a multiple regression, see below.

1.6.2 Nonlinear regression: transformed variables

Another way (other than with powers) of dealing with suspected or measured
nonlinear responses is by assuming that the underlying relation between
predictor and result is linear if one or both of the variables is transformed to
another scale.  The analyst may try any number of transformations in an
attempt to linearize the relation.  Ideally these should correspond to some
theoretical basis.  If the transformation succeeds, the predictor is said to be
intrinsically linear because we can now fit a linear equation (in the parameters)
to the transformed data.

Why transform?  Let me count the reasons…

(1) For significance testing in regression, it is required that experimental
(observational) errors be independently and normally distributed with a
common variance.  Often we can see that this is not the case; certain
transformations will restore these conditions.

(2) There may be some physical or experimental reason to expect a non-linear
relation.  A good example is hydrogen ion concentration in soil solution vs.
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plant growth: generally the logarithm of the concentration (pH) shows a
linear relation.

(3) A plot of the residuals (fitted vs. observed values of the dependent variable)
show a pattern when plotted against the predictor.  For example, increasing
residual with predictor implies a quadratic relation.

(The engineer’s golden rule: “Every relation looks linear when graphed on log-
log paper”.)

Some common transformations:

Logarithmic transformation: When standard deviations are proportional to mean,
this transformation equalizes the variances.

Square root transformation: When enumeration (small integer) data follow a
Poisson distribution where the mean and variance are equal; taking the
square root of the response variable restores normality.  This is equivalent
to squaring the predictor variable.

Angular (inverse sine) transformation: Transforms percentile data to normal.

1.6.3 An example of nonlinear regression: Mitscherlich’s
equation

(see (van Diepen et al., 1991) p. 141, (Wild, 1988) (p. 59-60), original work is
(Mitscherlich, 1909))

This (optional) section shows how nonlinear response may be expected from
theory and measurement, and how a transformation can linearize it.

In 1909, Mitscherlich formulated a general non-linear equation to describe
yield response, based on theoretical considerations and careful measurements:

y A e cx= ⋅ − −( )1

where: y is the predicted yield (dependent variable), A is the maximum
obtainable yield under perfect non-limiting conditions, x is the amount of the
‘growth factor’ (independent variable), c is a proportionality factor (parameter)
which controls the steepness of the relation.

(From this equation we see that zero input predicts zero output; this
assumption can be relaxed by adding another factor, ‘+b’, which is the zero-
input yield.  In a sand or hydroponic culture the assumption of zero output if
an essential element is completely missing is justified by experiment.)

Derivation of Mitscherlich’s equation:

This is an integral form of the differential equation:

dy

dx
A y c= − ⋅( )
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which relates the rate of response dy/dx of the yield with respect to the factor
to the difference between the maximum obtainable yield A and the actual yield
y.  The incremental increase in yield is proportional (with coefficient c) to the
decrement from the maximum, i.e. the closer to the maximum yield, the less
will be the increment in yield from an incremental amount of the factor.  In
other words, the ‘law of diminishing returns’.

Linearlization of Mitscherlich’s equation:

Transform by the logarithm and rearrange:

y A e cx= ⋅ − −( )1
y A e cx/ = − −1

( / )y A e cx− = − −1
1− = −( / )y A e cx

ln( ( / ))1− = −y A cx

which is simply a linear equation: y’=c’x, where y’ is the transformed
dependent variable normalized by the achievable yield A, and c’ is the
steepness parameter -c.

So, to calibrate (i.e., to determine the parameter c), we need a dataset of (x, y)
pairs and an estimate of A, then we can use linear regression on the linearized
form (logarithmic transform).
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2. Multivariate statistical methods for land
evaluation

The previous section explained simple regression on single predictor variables.
It is rare that a single predictor variable by itself is very successful for yield
prediction.  In this section we consider the usual multivariate case when yield
is predicted from several factors.

2.1 Multiple linear regression

Other than in a controlled environment or a very special situation in which
only one factor is limiting, several factors usually limit plant growth and yield.

Many attempts have been made to quantify this relation, usually using multiple
regression.  At its worst this exercise results in a meaningless monster
equation (exacerbated by easy availability of user-friendly computer programs
for multivariate analysis and cheap computers), at its best it integrates the
most important single factors and their interactions in a single predictive
equation.  General form:

Y b b xi i
i

n

= + ⋅
=
∑0

1

where the xi are the predictor variables.  The parameters bi are estimated by
least-squares.

Very often polynomials are considered in multiple regression, either in the
single-predictor case where several powers of the same variable are used to
predict:

Y b b xk
k

k

m

= + ⋅
=

∑0 1
1

or in the more general case where each of several predictors can have powers:

Y b b x
j

n

jk
k

k

m

= + ⋅
= =
∑ ∑0

1 1

In both these formulas, some of the b*k can be zero, if that power of the
predictor doesn’t enter in the equation.  For example:

Y b b x b x b x= + ⋅ + ⋅ + ⋅0 11 1 13 1
3

22 2
2



Land Evaluation Course Notes Part 3: Modeling 12

Here, x1 is a predictor in both its first and third powers, and x2 is a predictor
only in its second power.

A good example of this approach for land evaluation is (De la Rosa, Cardona &
Paneque, 1981), which was later incorporated into an automated land
evaluation system for Mediterranean countries (De la Rosa et al., 1992).

Another typical example, this from the great State of New York, is (Olson &
Olson, 1986).  They conceive of corn yield as being determined by a production
function: Y = f(rainfall, temperature, management, site, topography, chemical
characteristics, physical characteristics, mineralogy, biological organisms,
time), which seems to cover most of the possibilities.  They fixed the
management level, essentially the level of fertilization, liming, pesticide use
and tillage (in land evaluation terminology, this corresponds to evaluating for a
specific Land Utilization Type) and approximated the other factors by measured
variables (in land evaluation terminology, land characteristics).  For example:
the ‘rainfall’ conceptual variables was approximated by the actual measured
variable ‘total yearly rainfall’, ‘temperature’ by ‘growing degree days’, and ‘site’
by ‘drainage class (depth to mottles)’.

Note: there is plenty of discretion in the choice of variables.  For example,
why not ‘growing season rainfall’ instead of ‘total rainfall’?  For growing
degree days, there are several definitions; which to use?  For a soil variable
such as exchangeable bases, to what depth? or should values for each
horizon be included as separate variables?  One answer is to try lots of
different variables and see which are better predictors.  Another approach is
to use principal components on all these variables (see below).  Better still is
to have some theoretical basis for your decision.

(Olson & Olson, 1986) measured yields and land characteristics for five sites in
New York, for periods from 2 to 19 years, and attempted to fit the best multiple
regression in the non-transformed variables.  The best-fit equation was:

Y rainstor temp bases ocarb= − + ⋅ + ⋅ + ⋅ + ⋅3156 116 485 9 45

where Y is the yield in kg grain ha-1, rainstor is an available-rainfall index in
cm computed by another multiple regression (Olson & Olson, 1985), temp is
the growing degree days (sum of °F greater than 50°F), bases is the sum of
basic cations in meq m³, and ocarb is the amount of organic carbon in g m³.

The coefficients depend on the units of measure of the predictors and by
themselves don’t show how important is each factor; this is revealed in the
stepwise regression (below).  I.e., a large coefficient, by itself, is not necessarily
more important numerically to the final result.

Note the negative intercept!  This implies that corn yield would be negative,
(i.e., we’d have to plow over 3T of corn grain into a fallow field to satisfy the
equation!) which is absurd; however in the range of calibration of the equation
the inclusion of this parameter gives a superior fit to a model with no intercept.
The authors don’t seem to notice this nor explicitly state the range of
calibration (for which, presumably, yields would always be non-negative).

There are various ways to determine such an equation:
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1. Try every possible combination of variables (‘all possible multiple
regressions’) and pick the one with the best fit.  Problems: (1) a lot of work,
(2) several equations may be equally good, (3) the best equation may not be
very understandable because it has too many predictor variables.

2. Use the best single predictor (linear regression), then keep adding
predictors one at a time, always adding the one that most improves the fit,
in order until the fit does not significantly improve (i.e. the improvement in
r² is below a certain threshold) (‘forward multiple regression’).  Advantages:
uses the minimum number of predictors, computation is easy, uses the
least number of variables necessary to explain the result.

3. Do (1) then eliminate the least-important variables one at a time until the
fit becomes significantly worse (‘backward multiple regression’).

4. Like (2) but re-examine all variables at each step, so that one may go into
and then out of the equation (’stepwise multiple regression’).  Generally the
best compromise.

The problems with methods (1), (2), and (3) all stem from the correlation of
predictor variables (see below).

The important point to remember is that very rarely is one multiple regression
clearly ‘best’.  There is usually judgment and even arbitrariness in the process
of selecting variables.

In the example of (Olson & Olson, 1986), a single regression on rainstor had
an r² of 0.35, adding temp increased this to 0.60, adding bases to 0.64, and
adding ocarb to 0.66.  This is about as good as these sorts of equations get.
This does not mean than ocarb used as a single predictor in linear regression
would have an r² of 0.02!  If it were used first, it would probably have a higher
r².

The average prediction may be better than the r² would seem to indicate.  I.e.,
from the average values of the predictor variable to the average yield.  Thus in
long-term land evaluation (strategic planning) these methods may be
acceptable even if they are not acceptable for year-to-year or near real-time
tactical planning.

In the example, the average difference in predicted and actual yields for a plot
with 19 years of data was -194 kg ha-1 for a relative error of only 3%, even
though the r² of the predicted-vs.-actual regression was only 0.52.

2.2 Problems of multiple linear regression

1. Physical significance of predictors, i.e., does the equation have any
explanatory power?  Some of these are fairly clear: for example, we know
that warm temperatures favor higher biological activity, so there may be a
fairly direct effect of growing degree days on maize yield, and its presence in
an equation may be a realistic reflection of its biological effect.  Others are
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much less clear, for example, the effect of soil organic matter on yield.
Even if this is shown statistically to affect yield, how does this occur?
There are many possibilities: (1) improved soil structure leading to easier
root growth, better aeration, faster infiltration, (2) higher water-holding
capacity, (3) direct supply of plant nutrients, (4) faster soil warming in
spring due to black color... (the benefits of soil organic matter are many).
Some or all of these may be affecting yield, even synergistically.  It is very
unlikely that there is a simple relation between soil organic matter and
yield, so its presence in an equation is not too helpful to our
understanding.

2. Correlation of predictors, hence almost arbitrary choice of predictors.
Example: minimum temperature, maximum temperature for a month.  Both
may be good predictors, and usually they are highly correlated.  Once one
enters the equation the other one will not.  Which to use?  One may be the
correct physical predictor due to its effect on plant growth, the other may
not really affect the plant but is highly correlated with the true predictor.
The idea is to have a meaningful equation, not just a statistically-significant
relation.  Why?  (1) aesthetics, (2) science, (3) probable predictive power.

2.3 Multiple nonlinear regression: accounting for
interactions

To complicate matters, production factors will often interact either positively
(synergistically) or negatively (compensatory).  These interactions must be
determined for each case.  Linear regression can not account for these.  The
resulting equations are intrinsically nonlinear.

Example of synergism: High levels of one nutrient have little effect until other
nutrients are at comparable levels.

Example of compensation: high nutrient levels lead to more efficient water use,
so that the effect of added water at high nutrient levels is less than that at low
nutrient levels.

General form of the equation, only considering two-factor interactions:

Y b b x b x xi i
i

n

ij i j
i j

i n j n

= + ⋅ + ⋅ ⋅
= = =

= =

∑ ∑0
1 1 1,

,

Note the interaction term, this is where the non-linearity occurs.  These
coefficients are related to the covariance between predictor variables.

In an analysis of variance (ANOVA), there would be one or more significant
interaction terms.  So one way to determine if there are interactions is to first do
an ANOVA on the same data set.  If there are no significant interactions,
proceed with the multiple regression.  If so, determine which interaction terms
to compute for possible inclusion in the regression.
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2.4 Principal components

(See (Webster & Oliver, 1990) for a good introduction in the context of soil
science, (Davis, 1986) for a very accessible explanation of theory and
computation in the context of geology.)

Principal component analysis is a method for transforming a multidimensional
space to another one of the same dimensions (i.e., same number of axes or
variables) but with two very interesting and important properties:

1. The first component (or synthetic variable) explains the highest proportion of
the total variance, the second variable the second-highest proportion, etc.
Therefore, the less significant variables (dimensions) can usually be
discarded as insignificant noise, thereby reducing the effective
dimensionality of the problem.

2. The axes are orthogonal (mutually perpendicular) in multi-dimensional
Euclidean space, so that the principal components are completely
uncorrelated.

Mathematically this is accomplished by finding the eigenvectors (synthetic
variables) and eigenvalues (their variances, i.e. importance) of the variance-
covariance matrix of the predictor variables.  (These are sometimes called
characteristic values and vectors, instead of using the German root ‘eigen’.)  The
transformed matrix has zero covariances, i.e. it is diagonal with the eigenvalues
on the diagonal in descending order.  Major-league magic!

This is a theoretically-satisfactory way to handle the problem of correlated
predictors.  The first few components should be sufficient for a stepwise
regression.  Also, in a stepwise regression, additional synthetic predictor
variables do not change the coefficients of variables already in the equation,
because the predictors are uncorrelated.

Caution: the first component is not necessarily the best single predictor of
yield, it only explains the most variance among the predictor variables.  Other
components may be better single yield predictors.  Also, it may well be the case
that some of the original variables are better single predictors than any of the
principal components.

Problem: sometimes the new axes are not interpretable in terms of the original
predictors, even though they are mathematically the best combination.  The
best situation is when the predictor variables naturally fall into highly-
correlated interpretable groups, e.g. all the temperature-related variables in
one group.

2.5 Use of principal components in yield prediction

1. In the calibration step, the original dataset is used to transform from original
variables (land characteristics) to synthetic variables.  In the process, we
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obtain the principal component coefficients (i.e., the linear transformation
from original variables to each of the synthetic variables).

2. Also in the calibration step, we establish a satisfactory regression from the
first few synthetic variables (principal components) to the yield.

3. Now in the validation or use step, we observe values of the original land
characteristics at a new set of data points.

4. Using the principal component coefficients from step (1)., we transform each
observation from the original LC’s to values of the synthetic variables.

5. We substitute the values of the synthetic variables into the regression from
step (2), and calculate the predicted yield.

If the second data set is a validation data set, i.e., if we measure yield as well as
the predictor LCs, we can determine the predictive power of the regression
established in (2).
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3. Dynamic simulation modeling for land
evaluation

References: Overview: (van Diepen et al., 1991) p. 184-188

Introduction to dynamic simulation as such: (Ferrari, 1982)

Principles of modeling: (Penning de Vries & van Laar, 1982)

The WOFOST approach to crop modeling: (van Diepen et al., 1989, van Keulen
& Wolf, 1986)

Other crop models: (de Wit & van Keulen, 1987, Dumanski & Onofrei, 1989,
Jones & Kiniry, 1986, Wilkerson et al., 1983), a cautionary note in (Varcoe,
1990)

Modeling land qualities: (Hanks & Ritchie, 1991); (Hutson & Wagenet, 1992) for
risk of pesticide leaching

3.1 Why use dynamic models in land evaluation?

Statistical modeling attempts to describe the static relation between land
characteristics and either yields or land qualities.  In many situations, this may
not give satisfactory results because of the dynamic (time-dependent) nature of
either the land quality (e.g., available days for planting) or the land
characteristics on which the evaluation is based (e.g., weather).  If the land
evaluation problem is fundamentally dynamic, the techniques of dynamic
simulation modeling are appropriate.

Dynamic simulation can be used to model individual land qualities, e.g. water
stress.  This is appropriate if the timing of the quality is important.  Water
stress is a good example: the yearly moisture deficit often isn’t as important as
the deficit in specific parts of the crop growth cycle.

As with statistical methods, one of the main uses of dynamic simulation in land
evaluation is to model crop yield, since this integrates most of the agro-
ecological land qualities and is an important part of economic suitability.
Dynamic models are used in preference to static models when they give better
results, presumably because they better capture transient events like moisture
stress.

(Dynamic simulation of yield levels under different stresses can provide insight
into ALES ‘S1 Yields’ and proportional yield decision procedures such as
decision trees, and limiting and multiplicative yield factors.)
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Note that dynamic models have many uses in tactical planning (e.g., irrigation
or pest management) where the time factor or transient phenomena are
important.  Perhaps their best use is to gain insight into the presumed
workings of the system which they are modeling; i.e., make the ‘black box’ of
the system more transparent.

3.2 Definitions: Systems, models, and simulation

See (de Wit, 1982, Ferrari, 1982)

System: a limited part of reality, with the connections between its elements and
with the outside world (non-system) well-specified.

Model: a simplified representation of the system, usually in mathematical or
computable form (as opposed to iconic or analog models).

Simulation: the art of building mathematical or computer models of a system
and using these models to study the properties of the system.

Man-made (engineered) systems are easier to model than natural systems
because of a drastically-reduced complexity.  Agricultural systems are
intermediate in complexity: greatly simplified from nature (fewer species, subtle
effects often overwhelmed by management) but still biological not mechanical,
electrical etc.

3.3 Definitions: Types of models

Dynamic models include time as an explicit element of the model, otherwise the
model is static.  In dynamic models, the state of the system at one time, plus
the driving forces, follow definite transformation relations to reach the next
state, and so on till the end of the simulation.  This is sometimes called the
state-variable approach.

Explanatory models attempt to explain how a system works, from some first
principles.  For example, crop growth based on photosynthetic reactions as
influenced by temperature, light, vapor pressure etc.

Descriptive models simply attempt to characterize a system for predictive
purposes, without pretending to explain.  Statistical models are a subclass
of these.

It would seem that the best explanation would give the best description, in
practice the purposes of the models are quite different.  In land evaluation we
generally are presented with descriptive models with pretensions to
explanation.
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Don’t be deceived by claims that a model is derived from ‘first principles’.
There is always another level of physical reality underlying the supposed
physical laws (at least until we get to quantum mechanics).  The question is
whether these underlying phenomena have been correctly aggregated at the
level we are studying.  For example, the theory of chemical equilibrium hides
the dynamics of the actual reactions, but if the time scale is long enough (e.g.,
milliseconds to millennia, depending on the reaction being modeled) these
don’t matter, ‘it all averages out’.  This must be established for each ‘law’.

All realistic models contain large doses of subjectivity, judgment, and empirical
parameters.  Although it would seem that a dynamic simulation model, being
more mechanistic and explanatory than a statistical model, would be better
able to extrapolate, this is not always so, and must be established by validation
over the expected range of inputs, just like a statistical model.  There is no
assurance, except accumulated evidence, that the physical basis of the model
is correct.

3.4 Definitions: Model parameters vs. data

In common language these both might be considered ‘data’, but they have very
different roles in dynamic simulation modeling.

Model parameters are constants during the execution of the model, but may be
variable between executions.  Describe the static context in which the
model is being run.  Analogous to the parameters of a regression equation.
They parameterize the equations of the model, i.e., supply specific values
that control their numerical behavior (n.b. the form of the equations are
fixed).  Example: number of heat units that must be accumulated before a
plant will flower; this will vary among species and varieties.  Example:
exponent in a decay function.

Data are the time series of input variables, which cause state changes in the
model.  They drive the behavior of the model in a particular execution.
Example: rainfall over time.
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4. Dynamic simulation of crop yield: the
WOFOST approach

Many dynamic simulation models have been developed to predict crop yield.
For didactic purposes we follow the approach of the Center for World Food
Studies (CABO) in Wageningen, the Netherlands.  They developed a flexible
model based on basic plant physiology, to predict yields in several production
levels, which more-or-less correspond to Land Utilization Types.

The WOFOST approach (van Diepen et al., 1989, van Keulen & Wolf, 1986)
considers three (here expanded to five) levels of increasingly more realistic
limitations.  This approach allows us to understand the production system in
increasing detail.  You will appreciate as you read this list how much harder it
is to model increasingly-realistic production systems than to model simple,
controlled systems.

First we will define the production levels are, then we will study production
level 1 in some detail.

4.1 Production levels

4.1.1 Production level 1: Radiation and temperature limited

Growth occurs in conditions with ample plant nutrients, water, and oxygen (if
necessary) all the time.  The growth rate of vegetation is determined by weather
conditions and the response of the plant to these.  This can be approached in
practice with very intensively managed irrigated crops.  The model is basically
one of photosynthesis, partition of carbohydrate, and physiological growth
stages (e.g., flowering, senescence).  The only inputs to the model are
temperature and radiation (perhaps inferred from cloudiness).

4.1.2 Production level 2: Water limited

Growth is limited by water shortage at least part of the time, but when
sufficient water is available the growth rate increases up to the maximum rate
set by the weather.  This can be approached in practice by intensively managed
dryland crops.  The model must determine water stress (so, needs to model soil
water, the plant root system, and plant transpiration) and its effect on the
photosynthetic and growth processes.  Another input to the model is
precipitation, and the soil profile must be modeled at least for the water
balance.
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4.1.3 Production level 3: Nitrogen limited

Growth is limited, at least part of the time, by shortage of nitrogen (N) and
water or weather at other times.  This is usually more limiting than other
nutrients because N transformations in the soil are much more rapid than for
other nutrients.  This is common in dryland crops even if ‘well-fertilized’ and is
especially relevant in systems which use animal or green manures.  The model
must determine soil N dynamics, plant uptake, N use in the plant, and effects
of N stress on photosynthesis, partition and growth.  Soil temperature can have
a large effect on microbial populations, so this must usually be modeled.  Soil
organic matter cycling must be modeled.

4.1.4 Production level 4: Nutrient limited (other than N)

Growth is limited, at least part of the time, by shortage of mineral elements
other than nitrogen, e.g. phosphorus (P) or potassium (K), or by other soil
chemical conditions, e.g., soil reaction (pH), and by N, water or weather at
other times.  This is the usual situation in ‘improved traditional’ agricultural
systems which use tillage and pesticides.  Same model requirements as level 3
but for all the elements (although the soil dynamics are easier for elements
other than N).

4.1.5 Production level 5: Weeds, pests & diseases

Growth is limited, at least part of the time, by competition from weeds and
attack by pests or diseases.  This is the usual situation in ‘traditional’
agriculture where fertilizer use is low or none and there is no use of
agrochemicals.  The model must incorporate the ecology of pests and diseases
and multi-species competition.

4.2 Governing equations at production level 1

Let’s go through the governing equations for the simplest case, to see the
general form of the model, the kind of information that is needed to run the
model, and where the feedback (dynamics) comes in.

(1) The underlying plant-physiological processes are photosynthesis and
respiration.  A single healthy leaf has a maximum CO2 assimilation rate Fg
that depends on the efficiency of the photosynthetic process as a
photochemical reaction, and subsequent steps on the photosynthetic
pathway.  For C3-type plants (e.g., temperate grasses, like wheat), this is on
the order of 40 kg ha-1 (leaf) h-1.  For C4-type plants (e.g., tropical grasses,
like maize), this is on the order of 70 kg ha-1 (leaf) h-1.

These rates have to be established by experiment, and depend on
temperature.  In the simplest case we would have a simple linear regression
from temperature to maximum assimilation rate, with two parameters: the
constant and the linear terms (established by experiment):
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F Tg = + ⋅β β0 1

Data need: temperature (dynamic)

Parameter need: parameters in regression of assimilation on temperature

(2) We must integrate (sum) the hourly rates over the hours of daylight
(depends on latitude and date) to obtain Fcl, the gross assimilation rate (kg
ha-1 d-1).

Data need: latitude (static), day of year

(1b, 2b) The same analysis holds for overcast days, using assimilation
rates for diffuse radiation, which are typically about 38% of the assimilation
rates for clear days.

Parameter need: gross diffuse-lit assimilation rates as a function of
temperature, or as a function of gross sunlit assimilation rate (can be a
constant function).

(3) The gross canopy assimilation rate of CO2, Fgc, (kg ha-1 d-1) can then be
calculated as a weighted sum of the direct and diffuse assimilation rates:

F f F f Fgc o ov o cl= ⋅ + − ⋅( )1

where fo is the fraction of the day when the sky is overcast, and Fov and Fcl
are the gross assimilation rates (kg ha-1 d-1) on completely overcast (diffuse
radiation) and clear days (direct radiation).]

Data need: fraction of the day overcast and clear.  Can sometimes be estimated
from rainfall occurrence and amount.

(4) If the canopy is not completely closed (e.g. at the beginning of the crop
cycle), some of the light is wasted, i.e. is not intercepted by a leaf.  We must
reduce Fgc accordingly by a factor fh:

f eh
k LAIe= − − ⋅( )1

where LAI is the Leaf Area Index (m² leaf m-2 ground) and ke is an extinction
coefficient which measures how deeply light penetrates in the canopy. This
can vary from 0.5 to 0.8 depending on crop geometry.

Parameter need: extinction coefficient

(Interesting point: this empirical relation is derived and calibrated by regression
analysis, i.e. the supposed ‘physically-based’ model contains this (and many
other) empirical equations.  It is too complicated to derive from the geometry of
the plant canopy.  Another possibility would be to simulate the light and its
interception by individual leaves in the canopy, as well as the geometry of each
leaf over time.  Major supercomputer power required! and unclear whether we
know enough to do this.)
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Simulated state variable:  LAI

Note how the high uncertainty in ke can greatly affect the results.  For a LAI of
2 (fairly early in crop development), fh varies from 0.63 to 0.80; for a LAI of 5
(full leaf), fh varies from 0.76 to 0.98.  These then multiply the predicted gross
assimilation rate:

F F fg gc h= ⋅

(5) The gross assimilation must be reduced by the maintenance respiration, i.e.,
the amount of carbohydrate that must be burned to maintain the plant at
the same state, without any growth (this because enzymes and proteins
break down with time, and cells must be repaired).  This depends on
temperature, having a Q10 of about 2 (i.e., doubles with a 10°C increase in
temperature).  This is the relative maintenance respiration rate Rm (kg CH2O
kg-1 dry weight d-1).

Parameter need: relative maintenance respiration rate as a function of
temperature

Data need: air temperature

(6) Not all the carbohydrate that is not used for maintenance respiration
actually becomes structural carbohydrate (i.e., increase in dry weight).  This
efficiency factor Eg must be determined experimentally.  So at last we have
an equation for ∆W, the rate of increase in structural dry weight in kg ha-1

d-1:

∆W E F R Wg g m= ⋅ − ⋅( )

where W is the current dry weight of the live parts of the crop (kg ha-1), i.e., the
part that needs to be maintained with the maintenance respiration.  This
equation is valid at every (daily) time step.

Parameter need: efficiency factor of conversion of carbohydrate to structural
dry weight.

Simulated state variable:  Structural dry weight.  Complication: above- vs.
below-ground, very hard to measure the latter.

(7) Then we can derive the difference equation: the rate of growth depends on
the actual size of the crop, which in turn is increased by the new growth:

W W Wt t t+ = +1 ∆

Boundary (initial) condition need: W0, original dry weight of seeds or
transplants.

(8) There is also a feedback: notice that we used the LAI to adjust the gross
assimilation rate for incomplete light interception.  So, we must express LAI
as a function of dry weight:
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LAI W sla ha mt t+ +
− −= ⋅ ⋅1 1
4 210( )

where sla is the specific leaf area (m2 kg-1), which converts from leaf weight to
leaf area.

Parameter need: specific leaf area.

So now we can run a simulation with two state variables: W and LAI.

This model contains an implicit limit to plant growth: as plant weight W
grows, so does maintenance respiration.  After a certain point, which depends
on the extinction coefficient, extra LAI does not improve radiation interception,
so that photosynthesis is at a maximum.  When photosynthesis equals
maintenance respiration, growth stops.

Note that we haven’t attempted to deal with growth stages, partitioning, grain
or other economic product formation, etc.

Simple program in a procedural language (Pascal-like pseudocode):

{ data arrays: temp[first_day..last_day],
hrs_overcast[first_day..last_day] }

{ parameters r_m_fact, ov_fact, f_cl_fact, k_e }
{ not shown: real function daylight_hrs(day: integer) }
{ initial conditions w_0 and lai_0 }
w := w_0; lai = lai_0
for day = first_day to last_day by 1 do begin

f_cl := (f_cl_fact_1 + { sunlit assimilation rate }
f_cl_fact_2 * temp[day]) * daylight_hrs(day}

f_ov := f_cl * ov_fact { shade assimilation rate }
f_gc := hrs_overcast[day] * f_ov + (daylight_hrs(day) -

hrs_overcast[day])* f_cl { gross canopy assimilation }
f_h := (1-exp(- k_e * lai) { light reduction factor }
f_g := f_gc * f_h { actual gross assimilation }
r_m := r_m_fact * temp[day] * w { maintenance respiration }
w_new := e_g * (f_g − r_m) { compute new growth }
w := w + w_new { update dry weight }
lai := w * sla * 10**-4 { update LAI }
end { for day }

print “The final weight is ”,w, “The final LAI is ”,lai

4.3 Model assumptions

The production levels each incorporate a set of assumptions.  For example, in
all levels except 5, weeds, pests and diseases are not important to yield.  Any
such assumption must be explicit, and the model user (e.g., the land evaluator)
must determine whether the assumptions are likely to be true before using the
model.

Example: The GAPS soil-water model: does not account for snowfall
(precipitation that can be stored at the surface); the GAPS wheat growth and
yield model does not account for vernalization.  For both these reasons, this
model should not be used to model winter wheat production in Kansas.
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Another problem is the range of calibration of the model.  It is usually unclear
how far the model can extrapolate.  Example: application of today’s crop growth
models for global climate change studies.  Many models assume constant CO2
concentration in the atmosphere, as this changes too slowly (40 years to see
appreciable changes) to affect the success of the model for today’s yield
predictions, yet clearly the model should include CO2 effects if we’re modeling
the year 2100.  Major problem: very hard to get realistic parameters in today’s
atmosphere.
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5. Key issues in dynamic simulation
modeling

After the previous section, you may think that models are impossibly complex.
In many cases, however, they give good results.  There is no a priori way to
know this; each model in each location must be calibrated and validated to see
if the model assumptions are satisfied.  In this lecture we examine some of the
key issues which result in more or less successful models.

5.1 The time step

In the state-variable approach, the differential equations of growth are solved
by numerical integration, in effect, computing the growth in one step from the
state in the previous state and the amounts of some inputs (e.g., temperature,
precipitation) in the current step.

The time step controls the temporal resolution of the integration and its
accuracy.  Exactly the same problem as numerical integration by quadrature:
the finer the quadrature, the more accurate the result.  Depending on the rate
of change of the growth function, a longer or shorter time step is needed to
reach a given accuracy.

For example, the maximum carbohydrate assimilation rate can be calculated
every hour, ten minutes, minute, 30 seconds, second... using the average
temperature for that time step (in practice, usually the temperature at the mid-
point of the time step), then summed over the day.

After a certain number of divisions, further refinement in the time step is
insignificant (e.g., when the temperature doesn’t change significantly between
time steps).

In practice, the time step is also controlled by the temporal resolution of the
data.  For example, if rainfall is only available on a daily or hourly basis, this
would seem to limit the resolution (the time step couldn’t be any finer than the
data).  There exist some methods for decomposing a single amount into shorter
time steps:

1. Instantaneous air temperature can be inferred from daily Min/Max by
fitting a sine wave with period of 24 hours and assuming that the Max
occurs at 1500 and the Min at 0300; then the temperature in any discrete
time step can be obtained by integrating that portion of the sine wave and
dividing by its duration to obtain an average.  This works fairly well except
when frontal air masses pass through, or if there are local diurnal air
movement (e.g. sea or mountain breezes) which are not modeled by the sine
wave.
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2 Precipitation in a sub-daily time step can be inferred from daily
precipitation by dividing the 24-hour precipitation by the number of hours
in the time step.  If the precipitation has a known temporal pattern (e.g.
almost always afternoon thundershowers in the southeastern USA in
summer) an approximate rule based on this prior knowledge can be used
instead.

3. Daily precipitation can be inferred from monthly precipitation by fitting
historical data to a statistical distribution and then sampling from it.  E.g.,
Poisson or Weibull distributions.  This is a good approach for simulated
future climates e.g., for climate-change studies.

Any such data generators should be viewed with caution and verified both
theoretically and practically before use.

5.2 Data sources

As you can appreciate from the discussion of model levels and time step,
detailed and frequent data is required for dynamic simulation.

An example is the ‘minimum data set’ for the CERES and GRO series of
models.

(1) Soil properties as a function of depth: horizon thickness, upper and lower
limits of volumetric water, volumetric water at saturation, bulk density, pH,
organic carbon, total nitrogen

(2) Daily weather data: radiation, precipitation, max/min temperatures

(3) Crop parameters: maturity type, photoperiod response, yield
components

(4) Initial conditions: water content by depth, nitrates and ammonium by
depth

(5) Management conditions: sowing date, plant population, irrigation
amounts and dates, fertilizer amounts and dates, residue management,
plowing depth

(What do we do when we don’t have the required data?  See the section on
parameter estimation, below.)

GAPS is somewhat adaptable: there are various ways to model the same
phenomenon, differing in their data requirements (and assumptions).

Example: potential evapotranspiration (ET) by: Priestly-Taylor, Penman, pan,
and Linacre.  The more complicated model doesn’t always give the best results!

Penman-Monteith (model vapor diffusion and energy budget): parameters:
height above canopy of wind speed measurement; shortwave absorptivity of
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leaves, resistance of canopy when stomates open, aerodynamic resistance
of the canopy, latitude; data: wind speed, min/max air temperature, solar
radiation, relative humidity, saturated vapor density (can be estimated from
air temperature if not available); simulated variables: height of canopy

Priestly-Taylor (simpler version of Penman-Monteith, does not simulate
aerodynamic resistance to vapor transport): parameters: alpha, shortwave
absorptivity of the soil surface, latitude ; data: min/max air temperature,
solar radiation; data or simulated variables: cloudiness

Pan (based on direct measurements of evaporation): parameters: pan and crop
coefficients; data: daily measured pan evaporation

Linacre (simple empirical formula based on easily-obtainable data): parameters:
elevation above sea level, latitude; data: min/max air temperature, dew-
point temperature (optional, min. air temperature can approximate this)

5.3 Calibration of model parameters

As you can appreciate from the discussion of model levels, dynamic simulation
models have from 10s to 1,000s of parameters (‘magic numbers’), similar to a
regression equation’s parameters.  Each of these must be established by
calibration or from ‘first’ principles.  The big problem is that very rarely does an
experiment give information on only one parameter, and most of the possible
interactions are unknown.  Also, many adjustments of parameters can lead to
the same final results.  What is needed is insight into the physical system, and
again many of the interactions are poorly-understood.

Example: calibration of the CERES and GRO series of models for the IBSNAT
project: very large, detailed experiments for years, even then it is unclear how
to adjust the model.

Again, GAPS is somewhat adaptable: there are various ways to model the same
phenomenon, differing in their parameters to be calibrated.  Example: soil
water balance by Richards’ Equation (requires saturated hydraulic conductivity
and moisture release curves for each layer) vs. the ‘tipping bucket ‘ (only
requires saturated water content, field capacity water content, and wilting
point water content; except for the last these are very easy to measure).

5.4 Sensitivity analysis

A major issue with simulation modeling is the large number of model
parameters (calibration values) and input data that are required.  The question
naturally arises: what happens if we get some of these wrong?  The correct
question is: how sensitive is the model to variations in parameters or data?
Especially since parameter calibration is largely a black art, sensitivity analysis
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allows us to see where we should concentrate our calibration and modeling
efforts, i.e., where the model is most sensitive.

Definitions

Sensitivity: rate of change in output variable per unit change in input variable or
parameter.

Absolute sensitivity: in terms of units, e.g. ‘kilograms of yield’ per ‘mm of
precipitation’.

Relative sensitivity: both factors standardized to zero mean and unit standard
deviation.

Example of sensitivity to data: In a global climate change study in midwestern
USA, Rossiter & Riha determined that large uncertainty in rainfall events did
not substantially affect simulated yields (using the GAPS model) in soils with
high water-holding capacity (i.e. the soil buffered the rainfall inputs); in sandy
shallow soils there was a correspondingly large effect.  So the fact that the
actual climate change is uncertain didn’t have much effect on our results in
the first kind of soils.

Basic method for sensitivity analysis

Vary the parameter in some predictable way, run the model, and record the
output.  Plot the output vs. the parameter value, and perform a regression
analysis to quantify the effect of the parameter on the results.  The absolute
sensitivity is the slope of the regression line.  The relative sensitivity is the slope
of the regression line if both the independent and dependent variables are
standardized; this is the correlation coefficient.

How to vary the parameter?

Method 1: random sample from a known or assumed probability distribution.
This gives an unbiased estimate of the sensitivity to the parameter, if the
underlying distribution is known.

Method 2: random sample from a known or assumed empirical distribution
(e.g. historical time series)

Method 3: non-random sample from a known or assumed probability
distribution, selecting e.g. ±1, ±2 standard deviations.  This is an efficient
way to get at the sensitivity to extreme values of the parameter.

Method 4: stratified random sample from either a probability or empirical
distribution; the sampling scheme has certain desirable theoretical
properties that allow an estimate of sensitivity with a smaller sample size,
because the sample is more evenly spread out over all possible values.
Example: Latin hyper-cube sampling (LHS) (Morgan & Henrion, 1990 pp.
204-205)
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6. Transfer functions and parameter
estimation

(Bouma, 1989, 1986, Hutson & Wagenet, 1992, Ritchie & Crum, 1989)

A major problem with applying simulation models to land areas (as opposed to single
sites) is that the required model parameters are not usually available over wide
geographical areas.  There is a mismatch between model and resource inventory.

Supposing the required parameters are not available from routine survey.  The modeller
has two choices:

1. Make ‘reasonable’ guesses, then tune these parameters by some calibration
trials.  The parameter is never measured.

This matching is strictly trial-and-error and has no physical basis.  It may be
justified if the model is not sensitive to the parameter and we have sufficient
confidence that the estimated parameter is within a defined range.

2. Derive the required parameters from other, easier- (or cheaper-) to-measure
parameters.  The derivation is known as a transfer function.  In the case of
soil-survey data transformed to model parameters, it is known as a
pedotransfer function (this term introduced by (Bouma & van Lanen, 1986)).

The derivation should have a physical basis, or at least, even if just a
regression, the calibration of the transfer function should be independent of
the calibration of the model as a whole.

6.1 Key questions for evaluating transfer functions

(1) How good is the relation?  This is often measured by the coefficient of
determination (r²) of the original calibration regression, however it should
really be measured by the coefficient of determination (r²) of the regression
of predicted vs. measured for a set of calibration data (very rarely done this
way).  This is the same issue as the postdiction vs. prediction discussed
under statistical yield modeling.

(2) Is the relation good enough?  Even if the relation is not particularly good, it
may be good enough for modeling, depending on the sensitivity of the model
to this parameter, which can be determined by sensitivity analysis as
explained in the previous section.

(3) Over what population is the relation valid?  For example, if no
organic/volcanic/vertic etc. soils are included the relation should not be
assumed to hold!  P.M. Driessen, pp. 217-221 in (van Keulen & Wolf, 1986)



Land Evaluation Course Notes Part 3: Modeling 31

is a good example of the many cautions to be observed when estimating
water relations in ‘unusual’ soils.

(4) Does the relation seem to have a physical basis?  We should have more
confidence if the relation seems at least plausible.

6.2 Example: modeling the soil-water regime

The classic example of pedotransfer functions (e.g. (Bouma, 1989)) is modeling the soil
water regime, because this is the critical dynamic land characteristic needed to evaluate
land qualities such as ‘moisture availability’, ‘trafficability’, and ‘oxygen availability to
roots’.

Soil water is often modeled on the basis of the energy of water and the forces acting on it
in the soil profile.  The following sorts of parameters are required:

√ saturated hydraulic conductivity { Ksat }
√ air-entry potential (water potential at which air enters the pores) { K(θ) }
√ hydraulic conductivity as a function of water content { K(θ) } or slope of the

moisture release curve on a log-log scale { b }

This set of parameters (to model by water potentials) is only measured on a few profiles in
routine survey, and often is not measured at all.  Its experimental determination is
difficult, expensive, and error-prone.

A simpler way of modeling soil water is on a capacity basis (volumetric water content, e.g.,
the so-called ‘tipping bucket’ approach) as opposed to a water-potential basis.  In this
case, we need to know things like:

√ field-capacity water content or ‘drained upper limit’, % of volume
√ wilting-point water content or ‘lower limit’, % of volume
√ saturated water content, % of volume

This set of parameters (to model water content) is a much easier set of measurements
than those for water potentials, but still is only measured on a set of profiles in routine
survey.

But, there is a lot of simple geographically-based soils data collected by soil survey
organizations.  Nowadays much is available in databases and/or GIS format.  So if we can
somehow determine the parameters we need from the data we have, we can apply the
model across the entire geographic range of interest.

In both cases, to apply the model across the entire range of soils found in a survey area,
we must infer the required parameters by pedotransfer functions.
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6.3 Estimating parameters for a capacity model

The simpler case is the capacity model.  (Ritchie & Crum, 1989) is typical of many efforts
that have been made to derive critical volumetric water contents from soil survey data.
The pedotransfer functions are usually simple equations from available land
characteristics to the required parameters.  These equations are obtained by regression
analysis on a large number of samples where both field and laboratory values are
measured.

6.3.1 A simple relation: saturated water content

We assume that the saturated water content θsat  is 0.85% of the total porosity, which is
completely determined by the bulk density Df , assuming the bulk density of the mineral
particles to be 2.65 (valid for quartz and aluminosilicate-dominated soils):

θsat fD= −( . ) * .1 2 65 0 85

This is an example of a physically-based related which only requires some particular
values.  Here, the physical basis is that saturated water almost fills up the pores.

6.3.2 A more complicated case: extractable water

(Ritchie & Crum, 1989) base much of their presentation on the study by (Cassel, Ratliff &
Ritchie, 1983) on estimating potential plant-extractable water for a wide variety of soils in
the USA.  (Cassel, Ratliff & Ritchie, 1983) considered a large number of samples with the
following dependent variables:

(1) DUL (drained upper limit, i.e., ‘field capacity’), volume %;
(2) LOL (lower limit, i.e., ‘wilting point’), volume %;
(3) PLEXW (extractable (by plants) soil water) ≡ DUL − LOL, volume %

They considered the following 22 independent (predictor) variables:

Group 1: routine physical measurements (particle-size distribution)
(1) % Sand (50-2000 µm), % Silt (2-50 µm), % Clay (<2µm)
(2) % very fine, fine, medium, coarse, and very coarse sand
(3) % through #200 sieve (= % silt + % clay + 1/2 % very fine sand)
(4) % coarse fragments (>2000 µm) by weight

Group 2: routine chemical measurements
(4) % organic carbon
(5) CaCO3 (weight)
(6) Cation Exchange Capacity (CEC) by NH4OAc
(7) pH in 1:1: soil:water (weight)

Group 3: non-routine physical measurements
(8) Weight % water at -0.06, -0.10, -0.33, -2, and -15 bars (PW-15)
(9) bulk density at -0.33 bar (considered to be at DUL water content)

All measurements were made at the same laboratory (USDA/SCS Lincoln)
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They developed single regression equations to fit all the soils in the sample, but found
that the universe of all soils was best divided according to major textural class in order to
obtain reasonably-significant regressions.  The three classes were (1) s, ls; (2) sl, l, scl, sil,
si; (3) sicl, sic, cl c.

They provided four levels of multiple regressions: using two, four, ten and nine measured
soil properties, respectively.  This allowed for situations with only a few variables as well
as better predictions where more variables were measured.  The final choice of variables
was:

Database level
Variable 1 2 3 4

% clay √ √ √ √
% sand √ √ √

% silt √ √ √
% fine silt √ √

% very fine sand √ √
% fine sand √ √

% medium sand √ √
PW-15 √ √ √

CEC √
% through #200 sieve √ √ √

Their best results for level one, for all soils, were:

DUL = 8.682 922 + 1.447 671 ∗ (% clay) − 0.018 783 ∗ (% clay)² − 0.003 282 ∗
(#200 sieve)² + 0.000 033 ∗ (#200 sieve)³, r² = 0.76

LOL = 1.659 522 + 0.930 216 ∗ (% clay) − 0.000 197 ∗ (% clay)³ − 0.003 849 ∗
(#200 sieve)² + 0.000 036 ∗ (#200 sieve)³, r² = 0.70

Note the arbitrariness of these equations.  Why use a squared-clay term for
DUL but a cubed-clay term for LOL?

The most sophisticated method, i.e., dividing the soils into three groups and
using up to ten predictor variables, resulted in better results for sandy soils (r²
of 0.91 and 0.90), results comparable to the all-soils approach for medium-
textured soils (r² of 0.77 and 0.71), and poorer results for clayey soils (r² of 0.62
and 0.69).

To validate their results, they regressed the calculated extractable water
CALPLEXW = DUL−LOL on the measured extractable water PLEXW.  Obviously,
this line should be 1:1.  In fact, the following results (values of r²) were
obtained:

Number of groups
Number of predictors 1 3

2 0.34 0.39
4 0.36 0.46

10 0.56 0.74
9 0.43 0.64
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Evidently, the only satisfactory prediction was from the 10-variable predictors
on the three textural groups taken separately.  The simple predictor from %
clay and % passing the #200 sieve, for all soils, only explains 34% of the
observed variance in extractable water.

The standard error of the estimate depended on the estimate itself, i.e., the
error increased with water content.  This is not so bad, since an error in
calculating available water is more critical in soils with low water-holding
capacity.  Unfortunately the authors only show standard errors for the
relations with 10-variable predictors.  In the best case (10 variables, 3 groups
of soils), the errors are on the order of ±3% available water, i.e. in 1m deep soil
profile, ±30mm of available water, equivalent to a 5-day supply at a
transpiration rate of 6mm day-1.  So the practical uncertainty is about ±5 days
without rain!  This seems like a lot in sub-humid conditions.

Cautionary notes: These relations are probably ‘as good as it can get’.  They
were calibrated with field and laboratory data with the best possible methods.
They emphatically do not apply to soils with ‘unusual’ laboratory of field
behavior, for example, those with coarse fragment >10% by weight, organic
carbon > 4%, soils with significant partially-decomposed organic matter, soil
material that is difficult to disperse in the laboratory (silica-enriched soils),
soils where clay increases with energy level in the determination (highly-micro-
aggregated Oxisols), and soils dominated by amorphous clay minerals
(Andisols), .  They must be adjusted for root behavior for poorly-drained soils,
soils with root-limiting layers, soils with toxicities or high salt contents (> 2 dS
m-1).  They do not apply in soils with groundwater influence.

Seems like we’ve excluded many soils...

(One possible conclusion: we are measuring the wrong things in the
laboratory.)

6.4 Estimating parameters for a water-potential
model

(This follows (van Genuchten et al., 1989), see also (Vereecken et al., 1989).)

The water potential model of soil water is more complicated both theoretically and in the
parameters that it requires.  The basic ‘continuity’ equation is:

d h

dh

h

t z
K h

h

z

θ ∂
∂

∂
∂

∂
∂

( )
( )[ ]⋅ = −1

where h is the water pressure head (soil water potential), θ(h) is the volumetric water
content as a function of pressure  head, K(h) is the (unsaturated) hydraulic conductivity of
the soil as a function of pressure head, z is depth below datum (usually the soil surface), t
is time.  In words, this equation says that the rate of change of water potential with time
times the slope of the water release curve equals the rate of change with depth of the
unsaturated hydraulic conductivity, as water flows down under the influence of gravity.
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The key factors in this equation are the functions θ(h) and  K(h) and the slope of the water
release curve dθ(h)/dh.  Since entire functions must be determined, rather than just
single parameters, the estimation problem is much greater.  Ideally these are derived by
field or soil-column experiments.

However they must often be estimated from simpler soil properties.  For example,
(Vereecken et al., 1989) estimated the moisture release curve θ(h) with transfer functions
for eight parameters (see their p. 123 for graph and equations), with the adjusted r² for
the parameters varying from 56% to 93%.
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