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1 Introduction

These notes describe how to fit rational functions to a time series
in the R environment for statistical computing and visualisation
[2, 3] and its dialect of the S language.

For an explanation of the R project, including how to obtain and
install the software and documentation, see Rossiter [4].

The problem context in which this note was developed and the
results are described by Yemefack et al. [7] and in a chapter of
Yemefack’s dissertation [6]. The aim was to characterise the dy-
namic behaviour of soil properties in shifting cultivation systems
in southern Cameroon. Soils were sampled synchronically from
plots representing a chronosequence (from zero to more than 30
years) of these land use systems and also diachronically from the
same plots over seven years. In these systems, previous studies
had shown that the initial cutting and burning of vegetation leads
to rapid changes in soil properties, followed by a gradual return
to initial values (“relaxation”) once plots are abandoned to fallow.
If these changes can be modelled as a continuous function of time,
this function could be used to compute three metrics describing
soil behaviour over time: maximum proportional deviation from
the base state, time to reach this maximum, and relaxation time
towards the original value; these can then be interpreted in the
context of the study.

Five soil properties (soil pH in water, exchangeable Ca, available
P, organic C and bulk density) had been identified in a previous
study as the most sensitive to these land use systems; these were
to be modelled.

2 Rational functions

Rational functions [see for example 1] are ratios of any two poly-
nomials in a single variable, here t because we are modelling a
response over time. They are classified by the degrees of the nu-
merator and denominator. We will restrict ourselves to the lin-
ear/quadratic rational function:

f (t) =
a+bt

1+ ct +dt2 (1)

since with suitable parameters (a ≈ 0, b > 0, c < 0, d > 0) this
shows a reasonable shape to model changing soil properties in
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response to a single event: an initial S-shaped rise from near zero
to a maximum, followed by an inverse-S-shaped decrease towards
zero. Here is a typical curve with realistic parameters for this
study:
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a = 0.01 ; b =  0.05 ; c = −0.4 ; d= 0.1

In our study t is time since the beginning of the land use sequence.
Parameter a is the intercept, i.e. function value at t = 0. This
should be 0 by definition (see §2.2) but may be slightly different
because of experimental error. Parameter b is a linear increase;
parameter c is an inverse linear decrease; parameter d is an in-
verse quadratic decrease which dominates the equation at large
values of t. In particular, if d > 0, f (t) → 0 as t → ∞, that is, the
system approaches its original state.

2.1 Fitting a linear/quadratic rational function

Given a set of ordered pairs (ti,yi) where in general there are re-
peated measurements at each value of t, the parameters of a ratio-
nal function can be fitted by non-linear least-squares estimation,
for example with the nls method in R (§4). One we have the four
parameters, we can compute the value of t at which this is maxi-
mized, by computing the first derivative:

f ′(t) =
b

1+ ct +dt2 −
(a+bt)(c+2dt)
(1+ ct +dt2)2 (2)
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and solving for t where f ′(t) = 0. For reasonable parameter values
the solutions will be real:

tm =
−ad±

√
b2d−abcd +a2d2

bd
(3)

One of the tm gives a maximum (where the second derivative is
positive), the other a minimum (negative). In a typical case of pos-
itive deviation, the function is near zero at time zero, increases,
and then decreases towards zero, so the fitted maximum will be
positive, somewhere between t = 0 and the maximum time tm. The
tm corresponding to this maximum can be substituted into Equa-
tion 1 to obtain the maximum function value ym:

ym =
a+btm

1+ ctm +dtm2 (4)

2.2 Forcing a zero deviation at time zero

In the study which motivated this note, the rational function was
used to fit proportional changes from an initial condition in re-
sponse to land use. In this case the intercept (the deviation at
time zero) should be 0, since by definition there is no change at
time zero. Then a = 0 and the function (Equation 1) is reduced to:

f (t) =
bt

1+ ct +dt2 (5)

The derivative (Equation 2) is reduced to:

f ′(t) =
b

1+ ct +dt2 −
(bt)(c+2dt)
(1+ ct +dt2)2 (6)

and finally the solution (Equation 3) is reduced to a very simple
form:

tm =± 1√
d

(7)

For positive deviations the function maximum will be at the posi-
tive value, and will be:

ym =
btm

1+ ctm +dtm2 (8)

which can be combined with Equation 7 to express the solution
directly in terms of the parameters:

ym =
b/
√

d
2+ c/

√
d

(9)
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2.3 Interpretation

The fitted coefficients of the rational equation can be used to de-
rive two metrics with which to compare the behaviour of different
soil properties:

• The value of tm, which is the time to reach a maximum pro-
portional deviation, i.e. how long the property takes to re-
spond; and

• The value of ym, which is the maximum proportional devia-
tion, i.e. how much the property changes.

A third metric is the time tp at which the curve reaches some pre-
defined proportion of the maximum; this is termed the relaxation
time to that proportion. To find this value, we first define a pro-
portion p ∈ [0..1] of the maximum we want to reach, for example
p = 0.2 to reach one-fifth of the maximum. We label this propor-
tion of ym as yp = p · ym, which then becomes the left-hand side of
Equation 1:

yp =
a+bt

1+ ct +dt2 (10)

This is a quadratic with positive solution

tp =
1

2d · yp

{
b− c · yp +

√
b2 +2(2ad−bc) · yp +(c2−4d) · yp2

}
(11)

3 The example data set

The dataset has been prepared in the comma-separated values
(CSV) file MDS_PD_12.csv. Here are the first few lines of this
file:

Field_ID,SOIL,Blocks,LULC,SampSeq,Depth,Time,pHw,OC,Pav,Ca,Bd

Biyem-oca,A,4,FV,10,10,0,-0.040139616,-0.235294118,0.071428571,-0.46964018,0.103710752

Bokali-ff,A,4,FV,10,10,0,-0.040139616,0.441176471,0.428571429,-0.032983508,-0.096098953

...

The first line gives the field name for the data frame. The fields
are:

Field_ID : Name of field (usually the farmer)

SOIL : WRB soil name: A = Acrisolsl, F = Ferralsols

Blocks : Study sub-area, a village; arbitrary codes 1 . . . 4.
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LULC : Land use / Land cover code

SampSeq : Sequence of sampling, from 0 (just before field is cleared) to
6 (the sixth and last sampling date); this is an ordered factor.
For the time-series analysis this has been converted to years
in the time field, see below.

Depth : Sampling depth; code 10 is 0–10 cm (“topsoil”), code 20 is
20–50 cm (“subsoil”).

Time : Years since start of sequence

pHw : Proportional deviation of soil pH in 1:5 water from its mean

OC : Proportional deviation of soil organic carbon

Pav : Proportional deviation of available phosphorous

Ca : Proportional deviation of exchangeable calcium

Bd : Proportional deviation of soil bulk density

Since this study was to model changes, not absolute values, each
response variable was converted to a proportional deviation (PD)
from the reference sites (primary forest, LULC code FV) as fol-
lows: If Pi is the value of a soil property from treatment i and P0

the (non-zero) value of the same property from the corresponding
FV on the same soil type, PDi was computed as:

PDi =
Pi−P0

P0
(12)

Since sites are compared only with those on the same soil, vari-
ability due to soil type “should” be removed.

R code:
pd <- read.csv("MDS_PD_12.csv")

pd$Blocks <- as.factor(pd$Blocks)

pd$Depth <- as.ordered(pd$Depth)

pd$SampSeq <- as.ordered(pd$SampSeq)

str(pd); attach(pd)

unique(Time)

table(LULC, as.factor(Time))
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R console output:
‘data.frame’: 347 obs. of 12 variables:

$ Field_ID: Factor w/ 96 levels "Adjap-yca","Afana",..: 17 19 40 52 60 72 74 77 81 83 ...

$ SOIL : Factor w/ 2 levels "A","F": 1 1 1 1 1 1 1 1 1 1 ...

$ Blocks : Factor w/ 4 levels "1","2","3","4": 4 4 4 4 4 4 4 4 4 4 ...

$ LULC : Factor w/ 12 levels "2CF","2CL1","2CL2",..: 10 10 10 10 10 10 10 10 10 10 ...

$ SampSeq : Ord.factor w/ 6 levels "0"<"1"<"2"<"3"<..: 6 6 6 6 6 6 6 6 6 6 ...

$ Depth : Ord.factor w/ 2 levels "10"<"20": 1 1 1 1 1 1 1 1 1 1 ...

$ Time : num 0 0 0 0 0 0 0 0 0 0 ...

$ pHw : num -0.0401 -0.0401 0.1169 0.1169 -0.0576 ...

$ OC : num -0.235 0.441 -0.206 -0.235 0.529 ...

$ Pav : num 0.0714 0.4286 -0.2857 -0.2857 -0.2857 ...

$ Ca : num -0.4696 -0.0330 0.3362 0.3381 0.0139 ...

$ Bd : num 0.1037 -0.0961 -0.0676 -0.0771 0.0276 ...

[1] 0.0 0.3 1.5 3.0 7.0 12.0 20.0 30.0

LULC 0 0.3 1.5 3 7 12 20 30

2CF 0 0 0 0 6 0 0 0

2CL1 0 0 4 0 0 0 0 0

2CL2 0 0 0 4 0 0 0 0

BF 0 0 0 0 0 30 0 0

CF 0 0 0 0 28 0 0 0

CL1 0 0 58 0 0 0 0 0

CL2 0 0 0 50 0 0 0 0

FCF1 0 20 0 0 0 0 0 0

FF 0 0 0 0 0 0 20 0

FV 75 0 0 0 0 0 0 0

MCA 0 0 0 0 0 26 0 0

OCA 0 0 0 0 0 0 0 26

The table shows the correspondence between land cover class and
time; this is a one-to-one relation. The longest-term plots are ma-
ture and old cocoa trees (codes MCA and OCA, respectively). The
time of these is not certain, and they may have other dynam-
ics than the shifting cultivation cropping sequence, so we make
a data frame without the cocoa, and then further limit it to the
topsoil, where the most change is expected:

R code:
pda <- pd[(pd$LULC!="OCA") & (pd$LULC!="MCA"),]

pda.d1 <- split(pda,Depth)[[1]]

We will fit functions for bulk density, so let’s take a closer look at
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it now.

R code:
histogram(~ Bd | as.factor(Time) * SOIL)

4 Implementation in R

The curve fitting, the subsequent computation of three metrics,
and a graphical presentation can be implemented in R. The key is
the nls method for non-linear regression; this is well-explained
in Venables and Ripley [5, § 8.2].

First, the rational function:

R code:
rat12 <- function(t, a, b, c, d) {

(a + b*t)/(1 + c*t + d*t^2)

}

and the version where a = 0 by definition:

R code:
rat12a <- function(t, b, c, d) {

(b*t)/(1 + c*t + d*t^2)

}

These can be used to examine the shape of the curve, as in the
plot above, which was produced by:

R code:
a <- 0.01; b <- 0.05; c <- -0.4; d <- 0.1;

plot(t, rat12(t, 0.01, 0.05, -0.4, 0.1), type="l",

ylab="proportional deviation",

xlim=c(0,30), ylim=c(0, 0.25), xaxs="i", yaxs="i",

main="Linear/quadratric rational function")

grid(col="gray", lty=1)

text(20, .2, paste("a =", a, "; b = ", b, "; c =", c, "; d=", d))

Second, a function to fit the parameters the rational function; this
also computes and prints the goodness-of-fit as expressed by the
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AIC and r2; it also plots the data points and fitted curve. Fi-
nally, it computes the relaxation time to a specified proportion,
here by default p = 0.2. This function must be called with an at-
tached dataframe attached (attach() method) which has a nu-
meric Time field.
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R code:
fit2 <- function (var, var.name="",

n2.start=list(a=.01, b=0.05, c=-0.4, d=0.1)), p=0.2) {

# x at maximum

maxim <- function(coeff) {

a <- coeff[1]; b <- coeff[2]; c <- coeff[3]; d <- coeff[4]

det <- sqrt(b^2*d - a*b*c*d + a^2*d^2)

-(a*d-det)/(b*d)

}

# find x where rat12(x) = y0

solve12 <-function(y0, coeff) {

a <- coeff[1]; b <- coeff[2]; c <- coeff[3]; d <- coeff[4]

det <- (b^2 + (4*a*d - 2*b*c)*y0 + (c^2 - 4*d)*y0^2)

(b - c*y0 + sqrt(det)) / (2*d*y0)

}

# fit

n2 <- nls(var ~ rat12(Time, a, b, c, d), start=n2.start, trace=F)

print(coefficients(n2))

print(paste("AIC: ", AIC(n2)))

# goodness of fit

r2 <- round(1-(sum(residuals(n2)^2) / sum((var-mean(var))^2)), 4)

print(paste("R^2 =", r2))

# maximum x and y

maxim <- maxim(coefficients(n2))

mpd <- rat12(maxim, coefficients(n2)[1], coefficients(n2)[2],

coefficients(n2)[3], coefficients(n2)[4])

relax <- solve12(mpd*p, coefficients(n2))

# print diagnostics

print(paste("x at maximum:", round(maxim, 2)))

print(paste("maximum proportional deviation:", round(mpd, 3)))

print(paste("relaxation time to p=", p, ": ", round(relax,2)))

# plot it

s <- seq(0, 20, by=.1)

plot(s,rat12(s, coef(n2)[1], coef(n2)[2], coef(n2)[3], coef(n2)[4]),

ylim=range(var),

type="l", lwd=2.5, col="red", xlab="Years", ylab="Proportional deviation",

main=paste("Linear/quadratic rational function,", var.name, "0-10 cm")

)

points(Time, var, pch=20, col=as.numeric(SOIL)+2);

abline(h=0); abline(h=mpd, lty=2);

abline(v=maxim, lty=2); abline(v=relax, lty=2);

text(maxim+0.8, min(var), round(maxim, 2));

text(relax+0.8, min(var), round(relax, 2));

text(max(Time)-1, mpd, round(mpd, 3), pos=3)

}

The curve fitting may require some more explanation. The nls

method requires two arguments: the model to fit and starting
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parameters, for example:

R code:
n2.start=list(a=.01, b=0.05, c=-0.4, d=0.1))

n2 <- nls(var ~ rat12(Time, a, b, c, d), start=n2.start)

It is convenient to give the starting parameters as a named list.

This function may be called for various soil properties with an
optional graph title, e.g.

R code:
fit2(pHw, "pH (water)")

The non-linear solver nls is an iterative procedure and so re-
quires starting values. The data we are fitting have approxi-
mately the same shape, so the default set of starting values in the
above function seems to work for most of them. There are patho-
logical cases that have no real solution, because the input data
does not follow even approximately the expected curve shape. In
this case it’s best not to try a fit.

The goodness-of-fit is a measure of how well the data follow an
expected curve. If these values are too poor, it means the model
is not appropriate, i.e. the soil property does not respond to land
use as we expect.

This code can be simplified for the case where a is forced to 0:
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R code:
fit2a <- function (var, var.name="",

n2a.start=list(b=0.05, c=-0.4, d=0.1), p=0.2) {

solve12a <- function(y0, coeff) {

b <- coeff[1]; c <- coeff[2]; d <- coeff[3]

det <- ( (c*y0 - b)^2 - (4 * d*y0^2))

( -(c*y0 - b) + sqrt(det) ) / (2 * y0*d)

}

# fit

n2a <- nls(var ~ rat12a(Time, b, c, d), start=n2a.start)

print(coefficients(n2a))

print(paste("AIC: ", AIC(n2a)))

# goodness of fit

r2 <- round(1-(sum(residuals(n2a)^2) / sum((var-mean(var))^2)), 4)

print(paste("R^2 =", r2))

# maximum x and y

maxim <- 1/sqrt(coefficients(n2a)[3])

mpd=rat12a(maxim,

coefficients(n2a)[1], coefficients(n2a)[2], coefficients(n2a)[3])

relax <- solve12a(mpd*p, coefficients(n2a))

print(paste("x at maximum:", round(maxim, 2)))

print(paste("maximum proportional deviation:", round(mpd, 3)))

print(paste("relaxation time to p=", p, ": ", round(relax, 2)))

# plot it

s <- seq(0, 20, by=.1)

plot(s,rat12a(s, coef(n2a)[1], coef(n2a)[2], coef(n2a)[3]),

ylim=range(var), ylab="Proportional deviation",

type="l", lwd=2.5, col="red", xlab="Years",

main=paste("Linear/quadratic rational function, a=0,", var.name, "0-10 cm")

)

points(Time, var, pch=20, col=as.numeric(SOIL)+2)

abline(h=0); abline(h=mpd, lty=2); abline(v=maxim, lty=2)

text(maxim+0.8, min(var), round(maxim, 4))

text(max(Time)-1, mpd, round(mpd, 4), pos=3)

text(relax+0.8, min(var), round(relax, 2))

}
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R code:
pda.d1 <- split(pda,Depth)[[1]]

> attach(pda.d1)

> fit2(Bd, "Bulk Density")

a b c d

0.009728 0.027575 -0.400075 0.067853

[1] "AIC: -280.385335081555"

[1] "R^2 = 0.4279"

[1] "x at maximum: 3.76"

[1] "maximum proportional deviation: 0.249"

[1] "relaxation time to p= 0.2 : 13.15"

> fit2a(Bd, "Bulk Density")

b c d

0.034622 -0.404815 0.075024

[1] "AIC: -281.848188578333"

[1] "R^2 = 0.4258"

[1] "x at maximum: 3.65"

[1] "maximum proportional deviation: 0.242"

[1] "relaxation time to p= 0.2 : 13.97"

> detach(pda.d1)

In this case the restriction to a = 0 did not appreciably change the
parameters or diagnostics. Here are the corresponding graphs:
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5 Advanced R

In this section we explore some of the more esoteric aspects of
non-linear solving.

Derivatives The non-linear solver can in principle be speeded
up if it knows the first derivative of the function to be minimised.
R has a deriv method which, given a function, produces another
function to evaluate its derivative.

R code:
> (d <- deriv(y ~ (b*x)/(1 + c*x + d*x^2), c("b", "c", "d")))

expression(

.expr1 <- b * x

.expr4 <- x^2

.expr6 <- 1 + c * x + d * .expr4

.expr10 <- .expr6^2

.value <- .expr1/.expr6

.grad <- array(0, c(length(.value), 3), list(NULL, c("b",

"c", "d")))

.grad[, "b"] <- x/.expr6

.grad[, "c"] <- -(.expr1 * x/.expr10)

.grad[, "d"] <- -(.expr1 * .expr4/.expr10)

attr(.value, "gradient") <- .grad

.value

)

6 Results

Here are the metrics for four-paramter curves, 0-10 cm, combined
soils, land uses not including perennial plantations:

Variable tm ym y0.2 r2 AIC
pHw 2.50 0.232 10.48 0.4832 -283.1
Bd 3.76 0.249 13.15 0.4279 -280.4
Ca 0.97 3.637 14.56 0.4335 552.6
Pav 0.65 2.432 3.40 0.4498 294.4

The computation for OC does produce a fit, but it does not have
the expected shape (it shows a great deal of spread and no clear
trend) and no real roots. This variable can not be used as an indi-
cator of land use change. The r2 for the other propereties are fairly
consistent, between 43–48%, indicating a large spread of the val-
ues at each time. There are clear differences between the proper-
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ties: Ca and Pav have large, very quick reactions (within the first
year and to at least 2.5 times the original value), whereas pHw
and Bd have much less pronounced reactions (2.5 to 3.5 years and
an increase of only about 0.25). Relaxation time for Pav is very
quick (about 3.5 years); the others are on the order of 11 to 15
years.

7 Working with other subsets

The same procedure can be applied to the second layer:

R code:
> pda.d2 <- split(pda,Depth)[[2]]

> attach(pda.d2)

...

> detach(pda.d2)

and we can analyze each soil separately, in this example for the
first layer. However, there are only 40 observations for the Acrisols;
there are 110 for Ferralsols.

R code:
> pda.d1a <- split(pda.d1,SOIL)[[1]]

> attach(pda.d1a)

... # acrisols

> detach(pda.d1a)

> pda.d1f <- split(pda.d1,SOIL)[[2]]

> attach(pda.d1f)

... # ferralsols

> detach(pda.d1f)
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