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1 Introduction

This tutorial introduces the R environment for statistical computing and
visualisation [25, 43] and its dialect of the S language. It is organized as
a systematic analysis of a simple dataset: the Mercer & Hall wheat yield
uniformity trial (Appendix A). After completing the tutorial you should:

� know the basics of the R environment;

� be able to use R at a beginning to intermediate level;

� follow a systematic approach to analyze a simple dataset.

The tutorial is organized as a set of tasks followed by questions to check
your understanding; answers are at the end of each section. If you are am-
bitious, there are also some challenges: tasks and questions with no solution
provided, that require the integration of skills learned in the section.

Not every section is of equal importance; you should pick and choose those of
interest to you. Sections marked with an asterisk ‘*’ are interesting“detours”
or perhaps “scenic byways” developed to satisfy the author’s curiosity or to
answer a reader’s question.

R is an open-source environment for data manipulation, statistical analysis,
and visualization. There are versions for MS-Windows, Mac OS/X, and
various flavours of Unix. It is most convenient to run R within an integrated
development environment (IDE), e.g., RStudio1; this environment runs on
Microsoft Windows, OS/X and Linux.

Note: For an explanation of the R project, including how to obtain and
install the software and documentation, see Rossiter [45]. This also contains
an extensive discussion of the S language, R graphics, and many statistical
methods, as well as a bibliography of texts and references that use R.

2 R basics

Before entering into the sample data analysis (§3), we first explain how to
interact with R, and the basics of the S language. The simplest way to
interact with the R environment is by typing commands at the “R console”
command line; this is one of the windows in the RStudio IDE.

Task 1 : Start R, preferably within an IDE such as RStudio. •

If you use RStudio, the screen will something like Figure 1.

After starting R, you will be looking at a console (or, within the IDE, a
console window) where you interact with R: giving commands and seeing
numerical results; graphs are displayed in their own windows. You perform
most actions in R by typing commands in response to a command prompt,
which usually looks like this:

1 http://www.rstudio.org; there is a complete list of code editors and IDE’s at http:

//www.sciviews.org/_rgui/projects/Editors.html
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Figure 1: RStudio screen with some commands entered into the console (left window)

>

The > is a prompt symbol displayed by R, not typed by you. This is R’s
way of telling you it’s waiting for you to enter a command.

Type your command2 and press the Enter or Return keys; R will execute
(carry out) your command.

Sometimes the command will result in numerical output listed on the console,
other times in a graph displayed in a separate window, other times R will
just do what you requested without any feedback.

If your entry is not a complete R command, R will prompt you to complete
it with the continuation prompt symbol:

+

R will accept the command once it is syntactically complete; in particu-
lar any parentheses must balance. Once the command is complete, R will
execute it.

Several commands can be given on the same line, separated by ;. A com-
mand may be interrupted by pressing the Esc key.

2 or cut-and-paste from a document such as this one
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To illustrate this interaction, we draw a sample of random numbers from the
uniform probability distribution; this is a simple example of R’s simulation
repertoire.

Note: The code in these exercises was tested with Sweave [31, 32] on R
version 4.0.0 (2020-04-24), sp package Version: 1.4-2, gstat package Version:
2.0-6, and lattice package Version: 0.20-41 running on Mac OS X 10.7.5.
The text and graphical output you see here was automatically generated
and incorporated into LATEX by running R source code through R and its
packages. Then the LATEX document was compiled into the PDF version you
are now reading. Your output may be slightly different on different versions
and on different platforms.

Task 2 : Draw 12 random numbers uniformly distributed from -1 to 1,
rounded to two decimal places, and sort them from smallest to largest. •

In this tutorial we show the R code like this, with the prompt > and then
then command:

> sort(round(runif(12, -1, 1), 2))

Note that the prompt > is not part of the command typed by the user; it is
presented by the R console.

We show the output printed by R like this:

[1] -0.87 -0.65 -0.57 -0.49 -0.30 -0.25 -0.22 -0.19 0.13 0.17 0.28

[12] 0.81

The numbers in brackets, like [1], refer to the position in the output vector.
In the example above, the 12th element is 0.81.

This first example already illustrates several features of R:

1. It includes a large number of functions (here, runif to generate random
numbers from the uniform distribution; round to round them to a
specified precision; and sort to sort them);

2. These functions have arguments that specify the exact behaviour of
the function. For example, round has two arguments: the first is the
object to be rounded (here, the vector returned by the runif function)
and the second is the number of decimal places (here, 2);

3. Many functions are vectorized: they can work on vectors (and usually
matrices) as well as scalars. Here the round function is modifying the
results of the runif function, which is a 12-element vector;

4. Values returned by a function can be immediately used as an argument
to another function. Here the results of runif is the vector to be
rounded by the round function; and these are then used by the sort

function. To understand a complex expression, read it from the inside
out.

5. R has a rich set of functions for simulation of random processes.

3



Q1 : Your results will be different from the ones printed in this note; why?
Jump to A1 •

To see how this works, we can do the same operation step-by-step.

1. Draw the random sample, and save it in a local variable in the workspace
using the <- (assignment) operator; we also list it on the console with
the print function:

> sample <- runif(12, -1, 1)

> print(sample)

[1] -0.23788 0.55716 -0.12537 0.72694 0.35164 0.65457 0.21232

[8] -0.44716 -0.88077 -0.51907 0.52440 0.27547

2. Round it to two decimal places, storing it in the same variable (i.e.
replacing the original sample):

> sample <- round(sample, 2)

> sample

[1] -0.24 0.56 -0.13 0.73 0.35 0.65 0.21 -0.45 -0.88 -0.52 0.52

[12] 0.28

3. Sort it and print the results:

> (sample <- sort(sample))

[1] -0.88 -0.52 -0.45 -0.24 -0.13 0.21 0.28 0.35 0.52 0.56 0.65

[12] 0.73

This example also shows three ways of printing R output on the console:

� By using the print function with the object name as argument;

� By simply typing the object name; this calls the print function;

� By enclosing any expression in parenthesis ( ... ); this forces another
evaluation, which prints its results.

R has an immense repertoire of statistical methods; let’s see two of the most
basic.

Task 3 : Compute the theoretical and empirical mean and variance of a
sample of 20 observations from a uniformly-distributed random variable in
the range (0 . . .10), and compare them. •

The theoretical mean and variance of a uniformly-distributed random vari-
able are [6, §3.3]:

µ = (b + a)/2
σ2 = (b − a)2/12

where a and b are the lower and upper endpoints, respectively, of the uniform
interval.

4



First the theoretical values for the mean and variance. Although we could
compute these by hand, it’s instructive to see how R can be used as an
interactive calculator with the usual operators such as +, -, *, /, and ^ (for
exponentiation):

> (10 + 0)/2

[1] 5

> (10 - 0)^2/12

[1] 8.3333

Now draw a 20-element sample and compute the sample mean and variance,
using the mean and var functions:

> sample <- runif(20, min = 0, max = 10)

> mean(sample)

[1] 4.0038

> var(sample)

[1] 5.7069

Q2 : How close did your sample come to the theoretical value? Jump to
A2 •

We are done with the local variable sample, so we remove it from the
workspace with the rm (“remove”) function; we can check the contents of
the workspace with the ls (“list”) function:

> ls()

[1] "sample"

> rm(sample)

> ls()

character(0)

On-line help If you know a function or function’s name, you can get help
on it with the help function:

> help(round)

This can also be written more simply as ?round.

Q3 : Use the help function to find out the three arguments to the runif

function. What are these? Are they all required? Does the order matter?
Jump to A3 •
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Arguments to functions We can experiment a bit to see the effect of chang-
ing the arguments:

> runif(1)

[1] 0.97122

> sort(runif(12))

[1] 0.010921 0.029087 0.271902 0.386514 0.445989 0.488449 0.545997

[8] 0.608435 0.623220 0.812783 0.913163 0.933241

> sort(runif(12, 0, 5))

[1] 0.0076711 1.2950837 1.3011089 1.8228338 2.6486421 2.6846867

[7] 3.1710273 3.4733172 3.5582554 4.4260637 4.5454039 4.7759463

> sort(runif(12, min = 0, max = 5))

[1] 0.58528 0.90822 1.01568 1.54166 1.72135 2.17623 2.77336 3.01532

[9] 3.32922 3.42995 3.72546 3.74448

> sort(runif(max = 5, n = 12, min = 0))

[1] 0.37374 1.01689 1.63837 1.82035 2.14452 2.45999 3.16733 3.55636

[9] 3.99895 4.02988 4.48936 4.59695

Searching for a function If you don’t know a function name, but you know
what you want to accomplish, you can search for an appropriate function
with the help.search function:

> help.search("principal component")

This will show packages and functions relevant to the topic:

stats::biplot.princomp Biplot for Principal Components

stats::prcomp Principal Components Analysis

stats::princomp Principal Components Analysis

stats::summary.princomp Summary method for Principal Components Analysis

Then you can ask for more information on one of these, e.g.:

> help(prcomp)

prcomp package:stats R Documentation

Principal Components Analysis

Description:

Performs a principal components analysis on the given data matrix

and returns the results as an object of class 'prcomp'.

Usage: ...

6



2.1 Leaving R

At this point you should leave R and re-start it, to see how that’s done.

Before leaving R, you may want to save your console log as a text file to
document what you did, and the results, or for later re-use. You can edit
this file in any plain-text editor, or include in a report,

To leave R, use the q (“quit”) function; if you are running R with a GUI,
you can use a menu command, or a “close” icon as in any GUI program.

> q()

You will be asked if you want to save your workspace in the current directory;
generally you will want to do this3. The next time you start R in the same
directory, the saved workspace will be automatically loaded.

In this case we haven’t created anything useful for data analysis, so you
should quit without saving the workspace.

2.2 Answers

A1 : Random number generation gives a different result each time.4. Return to
Q1 •

A2 : This depends on your sample; see the results in the text for an example.
Return to Q2 •

A3 : There are three possible arguments: the number of samples n, the minimum
value min and the maximum max. The last two are not required and default to 0
and 1, respectively. If arguments are named directly, they can be put in any order.
If not, they have to follow the default order. Return to Q3 •

3 Loading and examining a data set

The remainder of this tutorial uses the Mercer & Hall wheat yield data set,
which is described in Appendix A. Please read this now.

There are many ways to get data into R [45, §6]; one of the simplest is to
create a comma-separated values (“CSV”) file in a text editor5. For this
example we have prepared file mhw.csv which is supplied with this tutorial.

Task 4 : From the operating system, open the text file mhw.csv with a
plain-text editor such as WordPad and examine its structure.

Do not examine it in Excel; this automatically splits the file into spreadsheet
columns, obscuring its structure as a text file. •
3 By default this file is named .RData
4 To start a simulation at the same point (e.g. for testing) use the set.seed function
5 A CSV file can also be prepared as a spreadsheet and exported to CSV format.
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The first four lines of the file should look like this:

"r","c","grain","straw"

1,1,3.63,6.37

2,1,4.07,6.24

3,1,4.51,7.05

Q4 : What does the first line represent? What do the other lines represent,
and what is their structure? Jump to A4 •

3.1 Reading a CSV file into an R object

Now we read the dataset into R.

Task 5 : Start R. •

Task 6 : If necessary, make sure R is pointed to the same working directory
where you have stored mhw.csv. You can use the getwd function to check
this, and setwd to change it, or a menu command in your favourite IDE. •

> getwd()

Once the directory is changed, the contents of the file can be displayed with
the file.show function:

> file.show("mhw.csv")

"r","c","grain","straw"

1,1,3.63,6.37

2,1,4.07,6.24

3,1,4.51,7.05

4,1,3.9,6.91

...

A CSV file can be read into R with the read.csv function and assigned to
an object in the workspace using the <- operator (which can also be written
as =):

> mhw <- read.csv("mhw.csv")

Q5 : Why is nothing printed after this command? Jump to A5 •

3.2 Examining a dataset

The first thing to do with any dataset is to examine its structure with the
str function.

> str(mhw)

8



'data.frame': 500 obs. of 4 variables:

$ r : int 1 2 3 4 5 6 7 8 9 10 ...

$ c : int 1 1 1 1 1 1 1 1 1 1 ...

$ grain: num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...

$ straw: num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...

Q6 : How many observations (cases) are there in this frame? How many
fields (variables)? What are the field names? Jump to A6 •

We can extract the names for each field (matrix column) with the names

function; this is equivalent to colnames:

> names(mhw)

[1] "r" "c" "grain" "straw"

> colnames(mhw)

[1] "r" "c" "grain" "straw"

Every object in R belongs to a class, which R uses to decide how to carry
out commands.

Q7 : What is the class of this object? Jump to A7 •

We can examine the class with the class function:

> class(mhw)

[1] "data.frame"

A data frame is used to hold most data sets. The matrix rows are the
observations or cases; the matrix columns are the named fields or variables.
Both matrix rows and columns have names.

Fields in the data frame are commonly referred to by their matrix column
name, using the syntax frame$variable, which can be read as “extract the
field named variable from the data frame named frame.

Task 7 : Summarize the grain and straw yields. •

> summary(mhw$grain)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

> summary(mhw$straw)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.10 5.88 6.36 6.51 7.17 8.85

9



A data frame is also a matrix; we can see this by examining its dimensions
with the dim function and extracting elements.

The two dimensions are the numbers of matrix rows and columns:

> dim(mhw)

[1] 500 4

Q8 : Which matrix dimension corresponds to the observations and which
to the fields? Jump to A8 •

Matrix rows, columns, and individual cells in the matrix can be extracted
with the [] operator; this is just like standard matrix notation in mathe-
matics:

> mhw[1, ]

r c grain straw

1 1 1 3.63 6.37

> length(mhw[, 3])

[1] 500

> summary(mhw[, 3])

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

> mhw[1, 3]

[1] 3.63

Matrix rows and columns can also be accessed by their names; here is the
grain yield of the first plot:

> mhw[1, "grain"]

[1] 3.63

Q9 : What is the grain yield of plot 64? Where is this located in the
(experimental) field? Jump to A9 •

> mhw[64, "grain"]

[1] 4.04

> mhw[64, c("r", "c")]

r c

64 4 4
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Note the use of the c (“catenate”, Latin for ‘build a chain’) function to build
a list of two names.

Several adjacent rows or columns can be specified with the : “sequence”
operator. For example, to show the row and column in the wheat field for
the first three records:

> mhw[1:3, 1:2]

r c

1 1 1

2 2 1

3 3 1

Rows or columns can be omitted with the - “minus” operator; this is short-
hand for “leave these out, show the rest”. For example to summarize the
grain yields for all except the first field column6:

> summary(mhw[-(1:20), "grain"])

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

> summary(mhw$grain[-(1:20)])

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

An entire field (variable) can be accessed either by matrix column number or
name (considering the object to be a matrix) or variable name (considering
the object to be a data frame); the output can be limited to the first and last
lines only by using the head and tail functions. By default they show the
six first or last values; this can be over-ridden with the optional n argument.

> head(mhw[, 3])

[1] 3.63 4.07 4.51 3.90 3.63 3.16

> tail(mhw[, "grain"], n = 10)

[1] 3.29 3.83 4.33 3.93 3.38 3.63 4.06 3.67 4.19 3.36

> head(mhw$grain)

[1] 3.63 4.07 4.51 3.90 3.63 3.16

The order function is somewhat like the sort function shown above, but
rather than return the actual values, it returns their position in the array.
This position can then be used to extract other information from the data
frame.

Task 8 : Display the information for the plots with the five lowest straw
yields. •
6 recall, the dataset is presented in field column-major order, and there are 20 field rows

per field column
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To restrict the results to only five, we again use the head function.

> head(sort(mhw$straw), n = 5)

[1] 4.10 4.28 4.53 4.56 4.57

> head(order(mhw$straw), n = 5)

[1] 470 467 441 447 427

> head(mhw[order(mhw$straw), ], n = 5)

r c grain straw

470 10 24 2.84 4.10

467 7 24 2.78 4.28

441 1 23 2.97 4.53

447 7 23 3.44 4.56

427 7 22 3.05 4.57

Q10 : What are the values shown in the first command, using sort? In the
second, using order? Why must we use the results of order to extract the
records in the data frame? Jump to A10 •

Task 9 : Display the information for the plots with the highest straw yields.
•

One way is to use the rev command to reverse the results of the sort or
order function:

> head(rev(sort(mhw$straw)), n = 5)

[1] 8.85 8.85 8.78 8.75 8.74

Another way is to use the optional decreasing argument to sort or order;
by default this has the value FALSE (so the sort is ascending); by setting it
to TRUE the sort will be descending:

> head(sort(mhw$straw, decreasing = T), n = 5)

[1] 8.85 8.85 8.78 8.75 8.74

And a final way is to display the end of the ascending order vector, instead of
the beginning, with the tail function; however, this shows the last records
but still in ascending order:

> tail(sort(mhw$straw), n = 5)

[1] 8.74 8.75 8.78 8.85 8.85

Records can also be selected with logical criteria, for example with numeric
comparison operators.

12



Task 10 : Identify the plots with the highest and lowest grain yields and
show their location in the field and both yields. •

There are two ways to do this. First, apply the max and min functions to the
grain yield field, and use their values (i.e., the highest and lowest yields) as
a row selector, along with the == “numerical equality” comparison operator.

We save the returned value (i.e., the row number where the maximum or
minimum is found), and then use this as the row subscript selector:

> (ix <- which(mhw$grain == max(mhw$grain)))

[1] 79

> mhw[ix, ]

r c grain straw

79 19 4 5.16 8.78

> (ix <- which(mhw$grain == min(mhw$grain)))

[1] 338

> mhw[ix, ]

r c grain straw

338 18 17 2.73 4.77

The easier way, in the case of the minimum or maximum, is to use the
which.max (index of the maximum value in a vector) and which.min (index
of the minimum value in a vector) function

> (ix <- which.max(mhw$grain))

[1] 79

> mhw[ix, ]

r c grain straw

79 19 4 5.16 8.78

> (ix <- which.min(mhw$grain))

[1] 338

> mhw[ix, ]

r c grain straw

338 18 17 2.73 4.77

Q11 : Why is there nothing between the comma ‘,’ and right bracket ‘]’
in the expressions mhw[ix, ] above? Jump to A11 •

The advantage of the first method is that == or other numeric comparison
operators can be used to select; operators include != (not equal), <, >, <=
(≤), and >= (≥). For example:

13



Task 11 : Display the records for the plots with straw yield > 8.8 lb. per
plot. •

> mhw[which(mhw$straw > 8.8), ]

r c grain straw

15 15 1 3.46 8.85

98 18 5 4.84 8.85

Challenge: Extract all the grain yields from the most easterly (highest-
numbered) column of field plots, along with the straw yields and field plot
row number. Sort them from highest to lowest yields, also displaying the
row numbers and straw yields. Does there seem to be any trend by field plot
row? How closely are the decreasing grain yields matched by straw yields?

3.3 Saving a dataset in R format

Once a dataset has been read into R and possibly modified (for example, by
assigning field names, changing the class of some fields, or computing new
fields) it can be saved in R’s internal format, using the save function. The
dataset can then be read into the workspace in a future session with the
load function.

Task 12 : Save the mhw object in R format. •

It is conventional to give files with R objects the .RData extension.

> save(mhw, file = "mhw.RData")

3.4 Answers

A4 : The first line is a header with the variable names, in this case r, c, grain
and straw. The following lines each represent one plot; there are four variables
recorded for each plot, i.e. its row and column number in the field, and its grain
and straw yield. Return to Q4 •

A5 : Commands that store their results in an object (using the = or <- operators) do
their work silently; if you want to see the results enclose the command in parentheses
( ... ) or just type the object name at the command prompt. Return to Q5 •

A6 : There are 500 observations (cases), and for each 4 variables: r, c, grain and
straw. Return to Q6 •

A7 : It is in class data.frame. Return to Q7 •
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A8 : Matrix rows are observations, matrix columns are fields. Return to Q8 •

A9 : Grain yield 4.04; this is located at field row 4, field column 4 Return to Q9
•

A10 : The sort function shows the actual values of straw yield; order shows in
which records in the data frame these are found. The record numbers are the key
into the data frame. Return to Q10 •

A11 : So that all fields (matrix columns) are selected. Return to Q11 •

4 Exploratory graphics

Before beginning a data analysis, it is helpful to visualise the dataset. This
is generally the first phase of exploratory data analysis (EDA) [50].

R is an excellent environment for visualisation; it can produce simple plots
but also plots of great sophistication, information and beauty. We look first
at single variables and then at the relation between two variables.

4.1 Univariate exploratory graphics

Task 13 : Visualise the frequency distribution of grain yield with a stem
plot. •

A stem-and-leaf plot, displayed by the stem function, shows the numerical
values themselves, to some precision:

> stem(mhw$grain)

The decimal point is 1 digit(s) to the left of the |

27 | 38

28 | 45

29 | 279

30 | 144555557899

31 | 4446678999

32 | 2345589999

33 | 002455666677789999

34 | 00112233444444566777777888999

35 | 01112334444555666677789999

36 | 0001111133333444445666666777778889999

37 | 00011111122222233344444555556666667777899999

38 | 0011222223334444455566667777999999

39 | 0111111112222233333444444555666666777777777999

40 | 011122333344555666666677777778888899999999

41 | 0001111122333445555777779999

42 | 00001111111222333344444466677777788999999

43 | 0111223333566666777778888999999

44 | 0011111222234445566667777899
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45 | 0112222234445667888899

46 | 1344446678899

47 | 3356677

48 | 466

49 | 12349

50 | 279

51 | 3336

Q12 : According to the stem-and-leaf plot, what are the approximate values
of the minimum and maximum grain yields? Jump to A12 •

Q13 : What is the advantage of the stem plot over the histogram? Jump
to A13 •

Task 14 : Visualise the frequency distribution of grain yield with a frequency
histogram. •

A histogram, displayed by the hist function, shows the distribution:

> hist(mhw$grain)

Histogram of mhw$grain

mhw$grain
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You can save the graphics window to any common graphics format.Saving graphic
output

� In RStudio, click on the “Export” button in the “Plots” tab.

� In the Windows GUI, bring the graphics window to the front (e.g.,
click on its title bar), select menu command File | Save as ... and
then one of the formats.
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Q14 : What are the two axes of the default histogram? Jump to A14 •

Q15 : By examining the histogram, how many observations had grain yield
below 3 lb. per plot? Jump to A15 •

4.1.1 Enhancing the histogram*

R graphics, including histograms, can be enhanced from their quite plain
default appearance. Here we change the break points with the breaks argu-
ment, the colour of the bars with the col graphics argument, the colour of
the border with the border graphics argument, and supply a title with the
main graphics argument.

We then use the rug function to add a “rug” plot along the x-axis to show
the actual observations. This is an example of a graphics function that adds
to an existing plot; whereas hist creates a new plot. Which does which?
Consult the help.

> hist(mhw$grain, breaks = seq(2.6, 5.2, by = 0.1), col = "lightblue",

+ border = "red", main = "Mercer-Hall uniformity trial",

+ xlab = "Grain yield, lb. per plot")

> rug(mhw$grain)

Mercer−Hall uniformity trial

Grain yield, lb. per plot
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Note the use of the seq (“sequence”) function to make a list of break points:

> seq(2.6, 5.2, by = 0.1)

[1] 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1

[17] 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2

In this example, the colours are from a list of known names. For more
information on these names, and other ways to specify colours, see Appendix
B.
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4.1.2 Kernel density*

A kernel density, computed with density function, fits an empirical curve
to a sample supposed to be drawn from a univariate probability distribution
[52, §5.6]. It can be used to give a visual impression of the distribution or
to smooth an empirical distribution.

In the context of EDA, the kernel density can suggest:

� whether the empirical distribution is unimodal or multimodal;

� in the case of a unimodal distribution, the theoretical probability den-
sity function from which it may have been drawn.

The kernel density is controlled by the kernel and adjust optional argu-
ments to the density function; see ?density for details. The default values
of "gaussian" and 1 select a smoothing bandwidth based on the number of
observations and a theoretical normal density.

A special case of the density is a histogram expressed as densities rather than
frequencies; this is selected with the optional freq (“frequency”) argument
to the hist function set to FALSE. The total area under the histogram is
then by definition 1.

The lines function can be used to add the empirical density computed by
density to a density histogram plotted with hist. Another interesting view
is the kernel density with a rug plot to show the actual values of the sample.

Task 15 : Display a histogram of the grain yields as a density (proportion
of the total), with the default kernel density superimposed, along with a
double and half bandwidth kernel density. •

> hist(mhw$grain, breaks = seq(2.6, 5.2, by = 0.1), col = "lavender",

+ border = "darkblue", main = "Mercer-Hall uniformity trial",

+ freq = F, xlab = "Grain yield, lb. per plot")

> lines(density(mhw$grain), lwd = 1.5)

> lines(density(mhw$grain, adj = 2), lwd = 1.5, col = "brown")

> lines(density(mhw$grain, adj = 0.5), lwd = 1.5, col = "red")

> text(2.5, 0.95, "Default bandwidth", col = "darkblue",

+ pos = 4)

> text(2.5, 0.9, "Double bandwidth", col = "brown", pos = 4)

> text(2.5, 0.85, "Half bandwidth", col = "red", pos = 4)

18



Mercer−Hall uniformity trial
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Task 16 : Repeat, but show just the kernel density with a rug plot (i.e. no
histogram). •

Here the first plot must be of the density, because rug only adds to an
existing plot.

> plot(density(mhw$grain) ,xlab="Grain yield, lb.\ per plot",

+ lwd=1.5, ylim=c(0,1), col="darkblue",

+ main="Mercer-Hall uniformity trial")

> rug(mhw$grain)

> lines(density(mhw$grain, adj=2), lwd=1.5, col="brown")

> lines(density(mhw$grain, adj=.5), lwd=1.5, col="red")

> text(2.5,0.85,"Default bandwidth", col="darkblue", pos=4)

> text(2.5,0.80,"Double bandwidth", col="brown", pos=4)

> text(2.5,0.75,"Half bandwidth", col="red", pos=4)
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Q16 : Which bandwidths give rougher or smoother curves? What does the
curve for the default bandwidth suggest about the underlying distribution?

Jump to A16 •

4.1.3 Another histogram enhancement: colour-coding relative frequency*

Task 17 : Display a histogram of the grain yield with break points every
0.2 lb., with the count in each histogram bin printed on the appropriate bar.
Shade the bars according to their count, in a colour ramp with low counts
whiter and high counts redder. •

The solution to this task depends on the fact that the hist function not
only plots a histogram graph, it can also return an object which can be
assigned to an object in the workspace; we can then examine the object to
find the counts, breakpoints etc. We first compute the histogram but don’t
plot it (plot=F argument), then draw it with the plot command, specifying
a colour ramp, which uses the computed counts, and a title. Then the text

command adds text to the plot at (x, y) positions computed from the class
mid-points and counts; the pos=3 argument puts the text on top of the bar.

> h <- hist(mhw$grain, breaks = seq(2.6, 5.2, by=.2), plot=F)

> str(h)

List of 6

$ breaks : num [1:14] 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 ...

$ counts : int [1:13] 2 5 22 30 56 80 79 73 70 48 ...

$ density : num [1:13] 0.02 0.05 0.22 0.3 0.56 ...

$ mids : num [1:13] 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 ...

$ xname : chr "mhw$grain"
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$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

> plot(h, col = heat.colors(length(h$mids))[length(h$count)-

+ rank(h$count)+1],

+ ylim = c(0, max(h$count)+5),

+ main="Frequency histogram, Mercer & Hall grain yield",

+ sub="Counts shown above bar, actual values shown with rug plot",

+ xlab="Grain yield, lb. per plot")

> rug(mhw$grain)

> text(h$mids, h$count, h$count, pos=3)

> rm(h)

Frequency histogram, Mercer & Hall grain yield

Counts shown above bar, actual values shown with rug plot
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4.2 Bivariate exploratory graphics

When several variables have been collected, it is natural to compare them.

Task 18 : Display a scatterplot of straw vs. grain yield. •

We again use plot, but in this case there are two variables, so a scatterplot
is produced. That is, plot is an example of a generic function: its behaviour
changes according to the class of object it is asked to work on.

> plot(mhw$grain, mhw$straw)
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Q17 : What is the relation between grain and straw yield? Jump to A17 •

This plot can be enhanced with much more information. For example:

� We add a grid at the axis ticks with the grid function;

� We specify the plotting character with the pch graphics argument,

� its colours with the col (outline) and bg (fill) graphics arguments,

� its size with the cex “character expansion” graphics argument,

� the axis labels with the xlab and ylab graphics arguments;

� We add a title with the title function, and

� mark the centroid (centre of gravity) with two calls to abline, one
specifying a vertical line (argument v=) and one horizontal (argument
vh=) at the means of the two variables, computed with the mean func-
tion;

� The two lines are dashed, using the lty “line type” graphics argument,

� and coloured red using col;

� The centroid is shown as large diamond, using the points function
and the cex graphics argument;

� Finally, the actual mean yields are displayed with the text function,
using the pos and adj graphic argument to position the text with
respect to the plotting position.

> plot(mhw$grain, mhw$straw, cex=0.8, pch=21, col="blue",

+ bg="red", xlab="Grain yield, lb.\ plot-1",

+ ylab="Straw yield, lb.\ per plot-1")

> grid()
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> title(main="Mercer-Hall wheat uniformity trial")

> abline(v=mean(mhw$grain), lty=2, col="blue")

> abline(h=mean(mhw$straw), lty=2, col="blue")

> points(mean(mhw$grain), mean(mhw$straw), pch=23, col="black",

+ bg="brown", cex=2)

> text(mean(mhw$grain), min(mhw$straw),

+ paste("Mean:",round(mean(mhw$grain),2)), pos=4)

> text(min(mhw$grain), mean(mhw$straw),

+ paste("Mean:",round(mean(mhw$straw),2)), adj=c(0,-1))
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Mercer−Hall wheat uniformity trial

Mean: 3.95

Mean: 6.51

The advantage of this programmed enhancement is that we can store the
commands as a script and reproduce the graph by running the script.

Some R graphics allow interaction.

Task 19 : Identify the plots which do not fit the general pattern. (In any
analysis these can be the most interesting cases, requiring explanation.) •

For this we use the identify function, specifying the same plot coördinates
as the previous plot command (i.e. from the plot that is currently displayed):

> plot(mhw$grain, mhw$straw)

> pts <- identify(mhw$grain, mhw$straw)

After identify is called, switch to the graphics window, left-click with the
mouse on points to identify them, and right-click to exit. The plot should
now show the row names of the selected points:
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Q18 : Which observations have grain yield that is much lower than expected
(considering the straw) and which higher? Jump to A18 •

> tmp <- mhw[pts, ]

> tmp[order(tmp$grain), ]

r c grain straw

337 17 17 3.05 7.64

15 15 1 3.46 8.85

295 15 15 3.73 8.58

311 11 16 3.74 8.63

284 4 15 3.75 4.62

35 15 2 4.42 5.20

184 4 10 4.59 5.41

292 12 15 4.86 6.39

> rm(pts, tmp)

4.3 Answers

A12 : 2.73 and 5.16 lb. per plot, respectively. Note the placement of the decimal
point, as explained in the plot header. Here it is one digit to the left of the |, so
the entry 27 | 38 is to be read as 2.73,2.78. Return to Q12 •

A13 : The stem plot shows the actual values (to some number of significant digits).
This allows us to see if there is any pattern to the digits. Return to Q13 •

A14 : The horizontal axis is the value of the variable being summarized (in this
case, grain yield). It is divided into sections (“histogram bins”) whose limits are
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shown by the vertical vars. The vertical axis is the count (frequency) of observations
in each bin. Return to Q14 •

A15 : The two left-most histogram bins represent the values below 3 lb. per plot
(horizontal axis); these appear to have 2 and 5 observations, respectively, for a
total of 7; although it’s difficult to estimate exactly. The stem plot, which shows
the values to some precision, can show this exactly. Return to Q15 •

A16 : The higher value of the adj argument to the density function gives a
smoother curve. In this case with adj=2 the curve is indistinguishable from a uni-
variate normal distribution. The default curve is quite similar but with a slight
asymmetry (peak is a bit towards the smaller values) and shorter tails. But, con-
sidering the sample size, it still strongly suggests a normal distribution. Return
to Q16 •

A17 : They are positively associated: higher grain yields are generally associated
with higher straw yields. The relation appears to be linear across the entire range
of the two measured variables. But the relation is diffuse and there are some clear
exceptions. Return to Q17 •

A18 : Plots 15, 337, 311 and 295 have grain yields that are lower than the general
pattern; plots 308, 292, 184 and 35 the opposite. Return to Q18 •

5 Descriptive statistics

After visualizing the dataset, the next step is to compute some numerical
summaries, also known as descriptive statistics. We can summarize all the
variables in the dataset at the same time or individually with the summary

function:

> summary(mhw)

r c grain straw

Min. : 1.00 Min. : 1 Min. :2.73 Min. :4.10

1st Qu.: 5.75 1st Qu.: 7 1st Qu.:3.64 1st Qu.:5.88

Median :10.50 Median :13 Median :3.94 Median :6.36

Mean :10.50 Mean :13 Mean :3.95 Mean :6.51

3rd Qu.:15.25 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:7.17

Max. :20.00 Max. :25 Max. :5.16 Max. :8.85

> summary(mhw$grain)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

Q19 : What are the summary statistics for grain yield? Jump to A19 •

25



5.1 Other descriptive statistics*

The descriptive statistics in the summary all have their individual functions:
max, median, mean, max, and quantile. This latter has a second argument,
probs, with a single value or list (formed with the c function) of the proba-
bilities for which the quantile is requested:

> max(mhw$grain)

[1] 5.16

> min(mhw$grain)

[1] 2.73

> median(mhw$grain)

[1] 3.94

> mean(mhw$grain)

[1] 3.9486

> quantile(mhw$grain, probs = c(0.25, 0.75))

25% 75%

3.6375 4.2700

Other statistics that are often reported are the variance, standard deviation
(square root of the variance) and inter-quartile range (IQR).

Task 20 : Compute these for grain yield. •

The var, sd and IQR functions compute these.

> var(mhw$grain)

[1] 0.21002

> sd(mhw$grain)

[1] 0.45828

> IQR(mhw$grain)

[1] 0.6325

Other measures applied to distributions are the skewness (deviation from
symmetry; symmetric distributions have no skewness) and kurtosis (con-
centration around central value; a normal distribution has kurtosis of 3).
Functions for these are not part of base R but are provided as the skewness

and kurtosis functions of the curiously-named e1071 package from the De-
partment of Statistics, Technical University of Vienna7.

7 This may have been the Department’s administrative code.
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Task 21 : Load the e1071 package and compute the skewness and kurtosis.
If e1071 is not already installed on your system, you have to install it first.

•

Optional packages are best loaded with the require function; this ensures
that the package is not already loaded before loading it (to avoid duplica-
tion).

Note: Since this is the only use we make of this package, we can unload it
with the detach function. This is generally not necessary.

> require(e1071)

> skewness(mhw$grain)

[1] 0.035363

> kurtosis(mhw$grain)

[1] -0.27461

> detach(package:e1071)

The kurtosis function as implemented in e1071 computes the so-called
“excess” kurtosis, i.e., the difference from the normal distribution’s value
(3). So a normally-distributed variable would have no excess kurtosis.

Q20 : How do the skew and kurtosis of this distribution compare to the
expected values for a normally-distributed variable, i.e., 0 (skew) and 0 (ex-
cess kurtosis)? Jump to A20
•

5.2 A closer look at the distribution

Q21 : What is the range in grain yields? What proportion of the median
yield is this? Does this seem high or low, considering that all plots were
treated the same? Jump to A21 •

To answer this we can use the diff (“difference”) and median functions:

> diff(range(mhw$grain))

[1] 2.43

> diff(range(mhw$grain))/median(mhw$grain)

[1] 0.61675

Q22 : Which is the lowest-yielding plot? Does it also have low straw yield?
Jump to A22 •
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To answer this, use the which.min function to identify the record number
with the lowest yield:

> ix <- which.min(mhw$grain)

> mhw[ix, "straw"]

[1] 4.77

We can select cases based on logical criteria, for example, to find the lowest-
yielding plots.

Task 22 : Find all observations with grain yield less than 3 lb. per plot, and
also those with grain yield in the lowest (first) percentile. •

We can use either the subset function or direct matrix selection. The
quantile function returns a list with quantiles; here we illustrate the de-
fault, the case where we use the seq function to ask for the ten deciles, and
finally just the 1% quantile:

> row.names(subset(mhw, mhw$grain < 3))

[1] "149" "336" "338" "339" "441" "467" "470"

> quantile(mhw$grain)

0% 25% 50% 75% 100%

2.7300 3.6375 3.9400 4.2700 5.1600

> quantile(mhw$grain, seq(0, 1, 0.1))

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

2.730 3.370 3.558 3.700 3.820 3.940 4.070 4.210 4.362 4.520 5.160

> mhw[mhw$grain < quantile(mhw$grain, 0.01), ]

r c grain straw

336 16 17 2.92 4.95

338 18 17 2.73 4.77

339 19 17 2.85 4.96

467 7 24 2.78 4.28

470 10 24 2.84 4.10

Q23 : Which plots have grain yield less than 3 lb.? Which are the lowest-
yielding 1%? Are those close to each other? Jump to A23
•

5.3 Answers

A19 : Minimum 2.73, maximum 5.16, arithmetic mean 3.95, first quartile 3.64,
third quartile 4.27, median 3.94. Return to Q19 •

28



A20 : Both skew and excess kurtosis are quite close to the expected values (0).
This strengthens the evidence of a normal distribution. Return to Q20 •

A21 : The range in grain yields is 2.43, which is about 62% of the median. This
seems quite high considering the “equal” treatment. Return to Q21 •

A22 : The lowest-yielding plot is 338, with a grain yield of 4.77 lb. Return to
Q22 •

A23 : Plots with yield less than 3 lb. are 149, 336, 338, 339, 441, 467, and 470.
The lowest percent are plots 336, 338, 339, 467, and 470. The first three are all in
field column 17 and almost adjacent field rows (16, 18, 19); this seems definitely to
be a ‘low-yield “hot spot” in the experimental field. The last two are both in field
column 24 but a few rows apart (7 and 10). Return to Q23 •

6 Editing a data frame

If you need to fix up a few data entry errors, the data frame can be edited
interactively with the fix function:

> fix(mhw)

In this case there is nothing to change, so just close the editor.

New variables are calculated in the local variable space. For example, the
grain-to-straw ratio is an important indicator of how well the wheat plant
has formed grain, relative to its size.

Task 23 : Compute the grain/straw ratio and summarize it. •

Arithmetic operations are performed on entire vectors; therefore these are
called vectorized operations. Here the division (symbolized of course by /)
divides each grain yield by the straw yield.

> gsr <- mhw$grain/mhw$straw

> summary(gsr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.391 0.574 0.604 0.611 0.642 0.850

Q24 : What is the range in grain/straw ratio? Is it relatively larger or
smaller than the range in grain? Jump to A24 •

> range(gsr)

[1] 0.39096 0.85000

> diff(range(gsr))/median(gsr)

[1] 0.75944
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> diff(range(mhw$grain))/median(mhw$grain)

[1] 0.61675

For further analysis we would like to include this in the data frame itself, as
an additional variable.

Task 24 : Add grain-straw ratio to the mhw data frame and remove it from
the local workspace. •

For this we use the cbind (“column bind”) function to add a new matrix
column (data frame field):

> mhw <- cbind(mhw, gsr)

> str(mhw)

'data.frame': 500 obs. of 5 variables:

$ r : int 1 2 3 4 5 6 7 8 9 10 ...

$ c : int 1 1 1 1 1 1 1 1 1 1 ...

$ grain: num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...

$ straw: num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...

$ gsr : num 0.57 0.652 0.64 0.564 0.612 ...

By default, the new matrix column is automatically given the name from
the local variable.

Now we remove the local variable gsr so that we do not confuse it with the
gsr field of the mhw data frame:

> ls()

[1] "gsr" "ix" "mhw"

> rm(gsr)

> ls()

[1] "ix" "mhw"

Task 25 : Save the updated mhw object in R format. •

We use a different file name to distinguish this from the original file, without
the added column.

> save(mhw, file = "mhw2.RData")

6.1 Answers

A24 : The range is from 0.39 to 0.85, i.e. the ratio of grain to straw doubles. This
is about 76% of the median ratio, which is considerably higher than the comparable
figure for grain yield (about 62%). Return to Q24 •
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7 Univariate modelling

After descriptive statistics and visualisation comes the attempt to build sta-
tistical models of the underlying processes. These are empirical mathemat-
ical relations that describe one variable in terms of some hypothetical un-
derlying distribution of which it is a realisation, or describe several variables
either as equals (“correlation”) or where one is described in terms of others
(“regression”). We explore these, from simple to complex.

The simplest kind of model is about the distribution of a single variable, i.e,
univariate modelling.

We suppose that the observed sample distribution is from an underlying
probability distribution. This raises two questions: (1) what is the form of
that distribution, and (2) what are its parameters?

To decide what theoretical distribution might fit, we first visualise the em-
pirical distribution. This continues the ideas from §4.1.2.

Task 26 : Visualise an empirical continuous frequency distribution on the
rug plot. •

We again use the density function, with default arguments:

> plot(density(mhw$grain), col="darkblue",

+ main="Grain yield, lb. per plot", lwd=1.5)

> rug(mhw$grain, col="darkgreen")

> grid()
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We can also view the distribution as a cumulative rather than density dis-
tribution.
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Task 27 : Visualise the empirical cumulative distribution of grain yield. •

We use the ecdf (“empirical cumulative distribution function”) function to
compute the distribution, then plot it with the plot function. Vertical lines
are added to the plot with the abline (“add a straight line”) function, at
the median, extremes, and specified quantiles.

> plot(ecdf(mhw$grain), pch=1,

+ xlab="Mercer & Hall, Grain yield, lb. per plot",

+ ylab="Cumulative proportion of plots",

+ main="Empirical CDF",

+ sub="Quantiles shown with vertical lines")

> q <- quantile(mhw$grain, c(.05, .1, .25, .75, .9, .95))

> abline(v=q, lty=2)

> abline(v=median(mhw$grain), col="blue")

> abline(v=max(mhw$grain), col="green")

> abline(v=min(mhw$grain), col="green")

> text(q, 0.5, names(q))

> rm(q)
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Q25 : From the histogram, stem-and-leaf plot, empirical cumulative distri-
bution, and theory, what probability distribution is indicated for the grain
yield? Jump to A25 •

We can also visualise the distribution against the theoretical normal distri-
bution computed with the sample mean and variance. There are (at least)
two useful ways to visualise this.

First, compare the actual and theoretical normal distribution is with the
qqnorm function to plot these against each other and then superimpose the
theoretical line with the qqline function:

> qqnorm(mhw$grain, main = "Normal probability plot, grain yields (lb. plot-1)")
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> qqline(mhw$grain)

> grid()
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Q26 : Does this change your opinion of normality? Jump to A26 •

The second way to visually compare an empirical and theoretical distribution
is to display the empirical density plot, superimposing the normal distribu-
tion that would be expected with the sample mean and standard deviation.

Task 28 : Fit a normal probability distribution to the empirical distribution
of grain yield. •

Q27 : What are the best estimates of the parameters of a normal distribu-
tion for the grain yield? Jump to A27
•

These are computed with the mean and sd functions:

> mean(mhw$grain)

[1] 3.9486

> sd(mhw$grain)

[1] 0.45828

With these in hand, we can plot the theoretical distribution against the
empirical distribution:

Task 29 : Graphically compare the theoretical and empirical distributions.
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•

> res <- 0.1

> hist(mhw$grain, breaks=seq(round(min(mhw$grain),1)-res,

+ round(max(mhw$grain),1)+res, by=res),

+ col="lightblue", border="red", freq=F,

+ xlab="Wheat grain yield, lb. per plot",

+ main="Mercer & Hall uniformity trial",

+ sub="Theoretical distribution (solid), empirical density (dashed)")

> grid()

> rug(mhw$grain)

> x <- seq(min(mhw$grain)-res, max(mhw$grain)+res, by=.01)

> lines(x, dnorm(x, mean(mhw$grain), sd(mhw$grain)), col="blue", lty=1, lwd=1.8)

> lines(density(mhw$grain), lty=2, lwd=1.8, col="black")

> rm(res, x)
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We can also see this on the empirical density. This version also uses the
curve method to draw the theoretical curve.

> plot(density(mhw$grain), col="darkblue",

+ main="Grain yield, lb. per plot", lwd=1.5, ylim=c(0,1),

+ xlab=paste("Sample mean:",round(mean(mhw$grain), 3),

+ "; s.d:", round(sd(mhw$grain),3)))

> grid()

> rug(mhw$grain)

> curve(dnorm(x, mean(mhw$grain), sd(mhw$grain)), 2.5, 6, add=T,

+ col="darkred", lwd=1.5)

> text(2.5, 0.85, "Empirical", col="darkblue", pos=4)

> text(2.5, 0.8, "Theoretical normal", col="darkred", pos=4)
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There are several tests of normality; here we use the Shapiro-Wilk test,
implemented by the shapiro.test function. This compares the empirical
distribution (from the sample) with the theoretical distribution, and com-
putes a statistic (“W”) for which is known the probability that it could occur
by change, assuming the sample is really from a normally-distributed popu-
lation. The reported probability value is the chance that rejecting the null
hypothesis H0 that the sample is from a normal population is an incorrect
decision (i.e. the probability of committing a Type I error).

> shapiro.test(mhw$grain)

Shapiro-Wilk normality test

data: mhw$grain

W = 0.997, p-value = 0.49

Q28 : According to the Shapiro-Wilk test, what is the probability if we
reject the null hypothesis that this empirical distribution is a realisation
of a normal distribution with the sample mean and standard deviation as
parameters, we would be wrong (i.e. commit a Type I error)? So, should we
reject the null hypothesis of normality? Should we consider grain yield to
be a normally-distributed variable? Jump to A28 •

Once we’ve established that the yields can be reasonably modelled by a
normal distribution, we can compute confidence limits on the mean yield.
Mercer and Hall used the 50% confidence level, which they called the prob-
able error: there is equal chance for the true yield to be inside as outside
this interval.

Task 30 : Compute the probable error for grain yield in a 1/500 acre plot.
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•

Although we’ve fitted a normal distribution, both the mean and standard
deviation were estimated from the sample. So, we should use Student’s t-
distribution (although with so many plots the difference with the normal
z-distribution will be very small).

The probable error is computed from the limits of the interquartile range
of the distribution; we get the quantiles of the t distribution with the qt

function, specifying the degrees of freedom:

> (t.q13 <- qt(c(0.25, 0.75), length(mhw$grain) - 1))

[1] -0.67498 0.67498

This is for µ = 0, σ = 1. We then scale this to the data:

> (pe <- mean(mhw$grain) + t.q13 * sd(mhw$grain))

[1] 3.6393 4.2580

And we can express it as a relative error; conventionally this is expressed as
error ± relative to the mean:

> rel.error <- (diff(pe)/2)/mean(mhw$grain)

> round(100 * rel.error, 2)

[1] 7.83

Q29 : If the true yield over the entire field is the observed mean yield, what
yields can be expected in any one 1/500 acre plot, with 50% confidence that
the mean is in this range? Jump to A29 •

Q30 : What is the probable error expressed as a percentage of mean yield?
Jump to A30 •

To put this in practical terms, since this was Mercer and Hall’s main concern,
we calculate the probable error in absolute kg ha-1.

We saw above that the mean grain yield in this experiment was 3.95 lb. plot-1.
Scaling this up to a hectare basis (which is how yields are normally ex-
pressed):

> (yield.ha <- mean(mhw$grain) * 500/(0.40469)/(2.2046226))

[1] 2212.9

The two constants in this formula are 0.40469 ha acre-1 and 2.2046226

lb. kg-1, and there are 500 plots per acre.

Q31 : If we try to estimate the yield in kg ha-1 from a single 1/500 acre
plot in a variety trial, how much error (in absolute terms) can we expect,
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with 50% probability? What are the practical implications of this? Jump
to A31 •

> round(yield.ha * rel.error, 2)

[1] 173.35

Clean up:

> rm(t.q13, pe, rel.error, yield.ha)

7.1 Answers

A25 : The Normal distribution. From theory: the addition of multiple indepen-
dent sources of noise. From the plots: visual fit to simulated normal distributions.

Return to Q25 •

A26 : The distribution still looks normal, except at both tails: the highest yields
are not as high, and the lowest not as low, as expected if the yields were normally
distributed. Return to Q26 •

A27 : Parameters µ = 3.95, σ = 0.458. Return to Q27 •

A28 : According to the Shapiro-Wilk test of normality, the probability that re-
jecting the null hypothesis of normality would be an incorrect decision (i.e. a
Type I error is 0.49; this is quite high, so we do not reject the null hypothesis.
So, we consider the grain yield to be a realisation of a normal distribution. Return
to Q28 •

A29 : From 3.64 to 4.36 lb. plot-1; the observed mean yield is 3.95 lb. plot-1.
Return to Q29 •

A30 : ± 7.83%. Return to Q30 •

A31 : From a true yield (estimated here from our mean) of 2213 kg wheat grain, the
probable error is 173 kg, a substantial amount. There is a 50% chance of observing
this much deviation if we estimate the per-hectare yield from any single 1/500 acre
plot. Clearly, this is where the idea of replicated plots originated. Return to
Q31 •

8 Bivariate modelling: two continuous variables

After modelling the distribution of a single variable, we now model the joint
distribution of two variables, i.e., bivariate modelling.

In §4.2 we displayed a scatterplot of straw vs. grain yield, repeated here with
some additional graphical elements:
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> plot(mhw$straw ~ mhw$grain,

+ xlab="Grain yield (lb. plot-1)",

+ ylab="Straw yield (lb. plot-1)",

+ pch=20, col="darkblue", cex=1.2,

+ sub="Medians shown with red dashed lines")

> title(main="Straw vs. grain yields, Mercer-Hall experiment")

> grid()

> abline(v=median(mhw$grain), lty=2, col="red")

> abline(h=median(mhw$straw), lty=2, col="red")
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Straw vs. grain yields, Mercer−Hall experiment

The ~ formula operator is used to indicate statistical dependence, here of
straw on grain; we will explore this further just below. The centroid is shown
by intersecting horizontal and vertical lines, added with the abline function.

Q32 : From the scatterplot of straw vs. grain yield, what functional relation
is suggested? Jump to A32 •

For a bivariate linear relation, as hypothesised here, we can view this four
ways:

1. A bivariate linear correlation between the two variables (straw and
grain yields) (§8.1);

2. A univariate linear regression of straw (dependent) on grain (indepen-
dent) yield (§8.2);

3. A univariate linear regression of grain (dependent) on straw (indepen-
dent) yield (§8.3).

4. A linear structural relation between the two yields (§8.3).

These will each be explored below.

Bivariate correlation, bivariate structural relations and univariate regression
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all compare two variables that refer to the same observations, that is, they
are paired. This is the natural order in a data frame: each row represents
one observation on which several variables were measured; in the present
case, the row and column numbers of the plots, and the grain and straw
yields.

Correlation and various kinds of regression are often misused. There are
several good journal articles that explain the situation, with examples from
earth science applications [35, 53]. A particularly understandable introduc-
tion to the proper use of regression is by Webster [54].

Note that in this case there is no evidence to suggest a non-linear or piecewise
relation; but in many cases these are possibilities that must be compared
with a linear model.

8.1 Correlation

Correlation measures the strength of the association between two variables
measured on the same object, from−1 (perfect negative correlation), through
0 (no correlation), to +1 (perfect positive correlation). The two variables
have logically equal status, so there is no concept of causation; in addition,
there is no functional relation, so there is no way to predict.

There are several numerical measures of correlation; we will see two:

1. Parametric: Pearson’s product moment correlation coefficient (PMCC)
r (§8.1.1);

2. Non-parametric: Spearman’s ρ (§11.3).

8.1.1 Parametric correlation

The PMCC should only be used if the two variables are distributed approx-
imately bivariate normally. This is two normal distributions, but with some
degree of correlation. So we first check whether the relation between grain
and straw yield has this distribution.

Task 31 : Visualise a bivariate normal distribution with the parameters
of the grain and straw yields; visually compare with the actual bivariate
distribution. •

R has a rnorm function to simulate a random sample of a given size from
the normal distribution, by analogy to the runif function presented above.
However, to simulate a correlated sample of several variables, we turn to the
mvrnorm function in the MASS (“Modern Applied Statistics with S”) package
which corresponds to the very useful advanced text of Venables and Ripley
[52]. This function uses a vector of the variable means, along with the
variance-covariance matrix of two or more variables.

The variable means are computed with the vectorized colMeans function,
which finds the by-column mean all or some of the columns in a data frame:
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> colMeans(mhw[, c("grain", "straw")])

grain straw

3.9486 6.5148

The variance-covariance matrix is computed with the vectorized var func-
tion:

> var(mhw[, c("grain", "straw")])

grain straw

grain 0.21002 0.30043

straw 0.30043 0.80696

Q33 : What do the diagonals and off-diagonals of this matrix represent?
What are their units of measure? Jump to A33 •

From these the mvrnorm can draw a simulated random sample. We first load
the optional MASS package with the require function; the mvrnorm function
is then available.

> require(MASS)

> sim.sample <- mvrnorm(length(mhw$grain), mu = colMeans(mhw[,

+ c("grain", "straw")]), Sigma = var(mhw[, c("grain",

+ "straw")]))

> head(sim.sample)

grain straw

[1,] 4.3223 7.2845

[2,] 4.3062 6.9896

[3,] 4.4907 6.8022

[4,] 4.2501 6.5344

[5,] 3.7645 6.3472

[6,] 3.1857 5.4073

> summary(sim.sample)

grain straw

Min. :2.79 Min. :4.35

1st Qu.:3.64 1st Qu.:5.95

Median :3.99 Median :6.53

Mean :3.98 Mean :6.58

3rd Qu.:4.32 3rd Qu.:7.18

Max. :5.62 Max. :9.71

> summary(mhw[, c("grain", "straw")])

grain straw

Min. :2.73 Min. :4.10

1st Qu.:3.64 1st Qu.:5.88

Median :3.94 Median :6.36

Mean :3.95 Mean :6.51

3rd Qu.:4.27 3rd Qu.:7.17

Max. :5.16 Max. :8.85
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We can also visualise these distributions with histograms. To ensure that the
visualisation is comparable, we compute the overall minimum and maximum
of both variables and use these to explicitly set the axis limits.

> par(mfrow = c(2, 2))

> grain.lim = c(min(sim.sample[, "grain"], mhw$grain),

+ max(sim.sample[, "grain"], mhw$grain))

> straw.lim = c(min(sim.sample[, "straw"], mhw$straw),

+ max(sim.sample[, "straw"], mhw$straw))

> hist(mhw$grain, xlim = grain.lim, main = "Grain (actual)",

+ col = "lightyellow", breaks = seq(grain.lim[1], grain.lim[2],

+ length = 17))

> hist(sim.sample[, "grain"], xlim = grain.lim, main = "Grain (simulated)",

+ col = "cornsilk", breaks = seq(grain.lim[1], grain.lim[2],

+ length = 17))

> hist(mhw$straw, xlim = straw.lim, main = "Straw (actual)",

+ col = "lightblue", breaks = seq(straw.lim[1], straw.lim[2],

+ length = 17))

> hist(sim.sample[, "straw"], xlim = straw.lim, main = "Straw (simulated)",

+ col = "lavender", breaks = seq(straw.lim[1], straw.lim[2],

+ length = 17))

> par(mfrow = c(1, 1))
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Q34 : How well do the two univariate simulations match the actual data?
Jump to A34 •

So we can simulate a sample with the same mean and standard deviation as
the grain and straw yields, and plot them against each other in a scatterplot.
We display this side-by-side with the actual scatterplot.

> par(mfrow = c(1, 2))

> plot(sim.sample, main = "Simulated straw vs. grain yields",

+ xlab = "Grain (lb. plot-1)", ylab = "Straw (lb. plot-1)",

+ xlim = grain.lim, ylim = straw.lim, pch = 20, col = "blue")

> abline(v = median(sim.sample[, 1]), lty = 2, col = "red")

> abline(h = median(sim.sample[, 2]), lty = 2, col = "red")

> plot(mhw$grain, mhw$straw, main = "Actual straw vs. grain yields",

+ xlab = "Grain (lb. plot-1)", ylab = "Straw (lb. plot-1)",

+ xlim = grain.lim, ylim = straw.lim, pch = 20, col = "black")

> abline(v = median(mhw$grain), lty = 2, col = "red")

> abline(h = median(mhw$straw), lty = 2, col = "red")

> par(mfrow = c(1, 1))
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Q35 : Do the two relations (simulated vs. actual) look similar? Do they
support the hypothesis of a bivariate linear relation? Jump to A35 •

We delete the temporary variables used in this visualisation:

> rm(sim.sample, grain.lim, straw.lim)

Challenge: The single simulation is only one realisation of the hypothetical
process. Repeat the simulation several times and compare (1) the simula-
tions with each other; (2) the simulations with the actual data.

With this evidence of bivariate normality, we are justified in computing the
parametric correlation.
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Task 32 : Compute the PMCC between grain and straw yield, and its 95%
confidence limit. •

The cor function computes the correlation; the cor.test function also com-
putes the confidence interval:

> cor(mhw$grain, mhw$straw)

[1] 0.72978

> cor.test(mhw$grain, mhw$straw)

Pearson's product-moment correlation

data: mhw$grain and mhw$straw

t = 23.8, df = 498, p-value <2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.68599 0.76830

sample estimates:

cor

0.72978

Q36 : What are the lowest possible, most probable, and highest possible
values of the correlation coefficient r , with 95% confidence? Do you con-
sider this a very strong, strong, moderately strong, weak, or no correlation?
Positive or negative? Jump to A36 •

8.2 Univariate linear regression

Univariate linear regression differs from bivariate correlation in that one of
the two variables is considered mathematically dependent on the other.

An important distinction is made between predictors which are known with-
out error, whether fixed by the experimenter or measured, and those that
are not.

Fixed effects model Webster [54] calls the first type a“Gauss linear model”8

because only the predictand has Gaussian or “normal” error, whereas the
predictor is known without error. The regression goes in one direction only,
from the mathematical predictor to the random response, and is modelled
by a linear model with error in the response:

yi = BXi + εi (8.1)

of which the simplest case is a line with intercept:

yi = β0 + β1xi + εi (8.2)

8 referring to the developer of least-squares regression
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In this model there is no error associated with the predictors xi, only with
the predictand yi. The predictors are known without error, or at least the
error is quite small in comparison to the error in the model. An example
is a designed agricultural experiment where the quantity of fertiliser added
(the predictor) is specified by the design and the crop yield is measured (the
predictand); there is random error εi in this response.

Further, the errors εi are considered to be identically and independently
distributed (IID):

� no relation between the magnitude of the error and that of the predictor
(homoscedascity);

� no serial correlation between errors (e.g., small errors systematically
followed by another small errors) in the sequence of predictors.

These assumptions can be verified after the regression parameters are esti-
mated, using feature-space regression diagnostics (§8.2.4) and spatial anal-
ysis (§18). In the present case we will see (§18) that the residuals are not
independent and a more sophisticated model is needed to get a proper re-
gression equation.

Random effects model In the present example both variables (grain and
straw yields) were measured with error; they were not imposed by the exper-
imenter. Both variables should have Gaussian error, with some correlation.
This is modelled as a bivariate normal distribution of two random variables,
X and Y with (unknown) population means µX and µY , (unknown) pop-
ulation variances σX and σY , and an (unknown) correlation ρXY which is
computed as the standardised (unknown) covariance Cov(X, Y):

X ∼ N (µX , σX)
Y ∼ N (µY , σY )

ρXY = Cov(X, Y)/σXσY

This is exactly what was modelled in the previous section.

Note: In practice, the distinction between the two models is not always clear.
The predictor, even if specified by the experimenter, can also have some
measurement error. In the fertiliser experiment, even though we specify the
amount per plot, there is error in measuring, transporting, and spreading it.
In that sense it can be considered a random variable. But, since we have some
control over it, the experimental error can be limited by careful procedures.
We can not limit the error in the response by the same techniques.

8.2.1 Fitting a regression line – 1

When we decide to consider one of the variables as as a response and the
other as a predictor, we attempt to fit a line that best describes this relation.
There are three types of lines we can fit, usually in this order:

1. Exploratory, non-parametric

2. Parametric
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3. Robust

The first kind just gives a “smooth” impression of the relation. The second
fits according to some optimality criterion; the classic least-squares estimate
is in this class. The third is also parametric but optimises some criterion
that protects against a few unusual data values in favour of the majority of
the data.

In the present case, our analysis above provides evidence that the relation is
indeed well-modelled by a bivariate normal distribution, so that a parametric
approach can be taken. We will then examine regression diagnostics to see
if a robust regression is needed; these methods are discussed below in §11.

Q37 : Is there any reason to choose grain or straw as the dependent variable
(predictand), and other as the independent (predictor)? Jump to A37 •

The simplest way to model a parametric linear regression is by ordinary least-
squares (OLS). The next section explains the mathematical justification; the
computation continues in §8.2.3.

8.2.2 Ordinary least-squares*

Note: This explanation is adapted from Lark and Cullis [28, Appendix] and
Draper and Smith [11, §2.6].

In the general linear model, with any number of predictors, there is a n×p
design matrix of predictor values usually written as X, with one row per
observation (data point), i.e., n rows, and one column per predictor, i.e., p
columns. In the single-predictor with intercept case, it is a n × 2 matrix
with two columns: (1) a column of 1 representing the intercept, and (2)
a column of predictor values xi. The predictand (response variable) is a
n× 1 column vector y, one row per observation. The coefficient vector β is
a p × 1 column vector, i.e., one row per predictor (here, 2). This multiplies
the design matrix to produce the response:9

y = Xβ+ ε (8.3)

where ε is a n × 1 column vector of residuals, also called errors, i.e., the
lack of fit. We know the values in the predictor matrix X and the response
vector y from our observations, so the task is to find the optimum values of
the coefficients vector β.

To solve this we need an optimization criterion. The obvious criterion is to
minimize the total error (lack of fit) as some function of ε = y − Xβ; the
goodness-of-fit is then measured by the size of this error. A common way
to measure the total error is by the sum of vector norms; in the simplest
case the Euclidean distance from the expected value, which we take to be 0
in order to have an unbiased estimate. If we decide that both positive and
negative residuals are equally important, and that larger errors are more

9 The dimensions of the matrix multiplication are n× 1 = (n× p)(p × 1)
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serious than smaller, the vector norm is expressed as the sum of squared
errors, which in matrix algebra can be written as:

S = (y− Xβ)T (y− Xβ) (8.4)

which expands to

S = yTy− βTXTy− yTXβ+ βTXTXβ
S = yTy− 2βTXTy+ βTXTXβ (8.5)

Note: yTXβ is a 1 × 1 matrix, i.e., a scalar10, so it is equivalent to its
transpose: yTXβ = [yTXβ]T = βTXTy. So we can collected the two identical
1× 1 matrices (scalars) into one term.

This is minimized by finding the partial derivative with respect the the
unknown coefficients β, setting this equal to 0, and solving:

∂
∂βT

S = −2XTy+ 2XTXβ

0 = −XTy+ XTXβ
(XTX)β = XTy

(XTX)−1(XTX)β = (XTX)−1XTy

β̂OLS = (XTX)−1XTy (8.6)

which is the usual OLS solution.

The above solution depends on an important assumption: the errors must
be identically and independently distributed (abbreviated i.i.d.). We did
not consider the direction of the error, i.e., with which yi a particular εi is
associated; all errors are considered to be drawn from the same population.
This assumption may not be tenable; we will return to this in §18.

8.2.3 Fitting a regression line – 2

Task 33 : Fit a least-squares prediction line of straw as predicted by grain;
display the model summary. •

Q38 : What is the purpose of fitting this relation? Jump to A38 •

For this we use the linear models function lm; this is the workhorse of mod-
elling in R. The generic summary function now produces a model summary;
the coefficients access function extracts the regression line coefficients
from the model object.

> model.straw.grain <- lm(straw ~ grain, data = mhw)

> summary(model.straw.grain)

10 The dimensions of the matrix multiplication are (1×n)(n× p)(p × 1)
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Call:

lm(formula = straw ~ grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.0223 -0.3529 0.0104 0.3734 3.0342

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8663 0.2387 3.63 0.00031

grain 1.4305 0.0601 23.82 < 2e-16

Residual standard error: 0.615 on 498 degrees of freedom

Multiple R-squared: 0.533, Adjusted R-squared: 0.532

F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

> coefficients(model.straw.grain)

(Intercept) grain

0.86628 1.43050

This example illustrates the simplest S model formula, here straw ~ grain,
which is signalled by the ~ operator, which can be read “is modelled by”.
So here the formula straw ~ grain can be read “straw yield is modelled
by grain yield”. The optional data argument to the lm function informs
the function where to look for the variables named in the model formula.
The formula could also have named the fields within the object directly:
lm(mhw$straw ~ mhw$grain). It’s usually more convenient to use the data

argument.

Q39 : What is the linear least-squares relation between straw and grain
yields? Jump to A39 •

Q40 : How much straw yield is expected if there is no grain yield? Does
this seem realistic? Jump to A40 •

Q41 : How much does the straw yield increase for each extra lb. of grain
yield? Jump to A41 •

Q42 : How much of the variability in straw yield is explained by this
relation? Jump to A42 •

Task 34 : Display the scatterplot with the best-fit line superimposed. •

> plot(straw ~ grain, data=mhw)

> title("Straw yield predicted by grain yield")

> abline(model.straw.grain)
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> grid()

> text(4.5, 4.5, paste("slope:",

+ round(coefficients(model.straw.grain)[2], 2)))
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slope: 1.43

Again we use the optional data argument to plot to avoid naming the data
frame before each field, i.e., plot(mhw$straw ~ mhw$grain).

The abline function is used to add a line to the plot. The text function
places text on the plot, and the title function adds a title. The plot

function can also interpret the model formula syntax, e.g., straw ~ grain;
This is to be read “straw depends on grain”, which in graphics terms is
interpreted as a scatterplot with the dependent variable (here straw) on the
y-axis and the independent variable (here grain) on the x-axis.

8.2.4 Regression diagnostics

Of course, we have to treat any model with suspicion; for linear models
there are some standard diagnostics. In particular, the hypothesis for the
linear model is that the response is some deterministic linear function of the
predictor, plus a normally-distributed random error:

y = β0 + β1x + ε

We will investigate whether the model we have just fit satisfies this criterion.

Task 35 : Display a histogram and quantile-quantile plot of the regression
residuals; summarise these numerically. •

> hist(residuals(model.straw.grain),

+ main="Residuals from straw vs.\ grain linear model")
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> qqnorm(residuals(model.straw.grain),

+ main="Residuals from straw vs.\ grain linear model")

> qqline(residuals(model.straw.grain))

> summary(residuals(model.straw.grain))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.0223 -0.3529 0.0104 0.0000 0.3734 3.0342
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Q43 : Do the residuals appear to be normally-distributed? Are they at
least symmetrically-distributed? Jump to A43 •

We can test the normality of the residuals with a Shapiro-Wilks test:
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> shapiro.test(residuals(model.straw.grain))

Shapiro-Wilk normality test

data: residuals(model.straw.grain)

W = 0.977, p-value = 3.6e-07

Q44 : According to the Shapiro-Wilk test, should we reject the null hy-
pothesis of normality for the residuals? Jump to A44
•

Task 36 : Compare the fitted to actual values along a 1:1 line; highlight
those that are more than 1 lb. plot-1in error. •

To colour points we use the col optional argument to the plot function,
and the ifelse function to select a colour based on a logical condition:

> lim <- c(min(fitted(model.straw.grain), mhw$straw),

+ max(fitted(model.straw.grain), mhw$straw))

> plot(fitted(model.straw.grain), mhw$straw,

+ xlab="Modelled", ylab="Actual", asp=1,

+ xlim=lim, ylim=lim, pch=20,

+ col=ifelse(

+ (abs(fitted(model.straw.grain) - mhw$straw) < 1),

+ "gray",

+ ifelse(fitted(model.straw.grain) < mhw$straw, "blue","red")),

+ cex=ifelse(

+ (abs(fitted(model.straw.grain) - mhw$straw) < 1),1,1.3)

+ )

> title("Actual vs. modelled straw yields")

> grid()

> abline(0,1)

> rm(lim)
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Task 37 : Some of the plots are poorly-fit by this relation; identify those
with an absolute residual > 1.8 lb. straw and display their records, sorted
by grain/straw ratio. •

This example illustrates the abs (“absolute value”), which (“which record
numbers?”), sort (“sort values”) and order (“order records”) functions.

We first identify the records with the high absolute residuals, and show them:

> which.high.res <- which(abs(residuals(model.straw.grain)) >

+ 1.8)

> sort(residuals(model.straw.grain)[which.high.res])

184 35 295 337 311 15

-2.0223 -1.9891 2.3780 2.4107 2.4137 3.0342

Now we show these records in the data frame:

> high.res <- mhw[which.high.res, ]

> high.res[order(high.res$gsr), ]

r c grain straw gsr

15 15 1 3.46 8.85 0.39096

337 17 17 3.05 7.64 0.39921

311 11 16 3.74 8.63 0.43337

295 15 15 3.73 8.58 0.43473

184 4 10 4.59 5.41 0.84843

35 15 2 4.42 5.20 0.85000

> rm(which.high.res, high.res)

Q45 : Which plots have absolute residuals > 1.8 lb. straw? Which are too
high and which too low, according to the relation? Jump to A45 •
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Challenge: Repeat the analysis, but reversing the variables: model grain
yield as a function of straw yield. Are the slopes inverses of each other?
Why or why not?

Further diagnostics The normality of residuals is one requirement for linear
modelling; however there are other issues.

The generic plot function applied to a model result (i.e. object returned
from a call to lm) gives a standard set of diagnostic plots, selectable with
the which argument.

Plot type 1 is a plot of residuals vs. fitted values; there should be no relation
between these. That is, whether a residual is high or low, positive or negative
should not depend on the value fitted by the model. There should not be
any trend; the smooth curve (fit by the lowess function) gives a visual
impression of this – it should ideally be a horizontal line at 0.

This plot type also helps evaluate whether the variance of the residuals is
constant across the range of the predictor, i.e., are they homoscedastic as
required for fitting simple linear regression by OLS (Equation 8.1): looking
vertically at any fitted value, the spread should be identical.

> plot(model.straw.grain, which = 1)
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Plot type 2 is the Q-Q plot as we studied in the previous section.

Plot type 5 shows the leverage of each observation and its corresponding
residual.

Observations that are far from the centroid of the regression line can have
a large effect on the estimated slope; they are said to have high leverage, by
analogy with a physical lever. They are not necessarily in error, but they
should be identified and verified; in particular, it is instructive to compare the
estimated regression line with and without the high-leverage observations.
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The leverage is measured by the hat value, which measures the overall influ-
ence of a single observation on the predictions. In diagnostic plot type 5 the
abscissa (‘x-axis’) is the hat value. Two things are of interest:

� No extreme leverage, compared to other observations;

� Residuals at high-leverage observations should not be too much smaller
than for other observations. Note that high-leverage observation “pull”
the regression towards better fits, so their residuals are expected to be
somewhat below average.

> plot(model.straw.grain, which = 5)
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Plot type 6 is Cook’s distance vs. leverage. Cook’s distance measures how
much the estimated parameter vector β̂ shifts if a single observation is omit-
ted. A high Cook’s distance means that the observation has a large influence
on the fitted model.

We also specify the number of extreme points to label with the id.n optional
argument.

> plot(model.straw.grain, which = 6, id.n = 10)
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This plot also shows contours of absolute standardised residuals, as labelled
straight lines through the origin.

Q46 : Which observations are flagged by their Cook’s distance as having
the most influence on the fit? Are these high-leverage observations? Jump
to A46 •

We will compare this model to more complex ones in §12, below.

8.2.5 Prediction

Once the regression model is built, it can be used to predict: in this case,
given a grain yield, what is the expected straw yield? And, how large or
small could it be?

The predict generic method specialized to predict.lm for objects of class
lm, such as the model we’ve just built. In addition to the model name, it
requires a dataframe in which predict will look for variables with which to
predict (in this case, a field named grain). In addition, predict.lm can
return the confidence interval of the prediction, either of the fit itself or of
values predicted from the equation.

There are two sources of prediction error:

1. The uncertainty of fitting the best regression line from the available
data;

2. The uncertainty in the prediction, even with a perfect regression line,
because of uncertainty in the process which is revealed by the regres-
sion (i.e. the inherent noise in the process) These correspond to the
confidence interval and the prediction interval, respectively, both at
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some level of risk of a Type I error, i.e., that the true value is not in
the given range. Clearly, the second must be wider than the first.

The interpretation of these two intervals is as follows:

confidence : We are confident, with only a specified probability of being wrong, that
the expected value of the response at the given value of the predictand
is within this interval. In this case, if we sampled many plots with the
same grain yield, this is the interval where the true mean value lies.

prediction : We are confident, with only a specified probability of being wrong, that
any single value of the response at the given value of the predictand
is within this interval. In this case, any one plot with the given grain
yield should have a straw yield in this interval.

The estimation variance depends on (1) the variance of the regression s2
Y .x

and (2) the distance (x0−x̄) of the predictand at value x0 from the centroid
of the regression, x̄. The further from the centroid, the more any error in
estimating the slope of the line will affect the prediction:

s2
Y0

= s2
Y .x

[
1+ 1

n
+ (x0 − x̄)2∑n

i=1(xi − x̄)2
]

(8.7)

This shows that if we try to predict “too far” from the centroid, the uncer-
tainty will be so large that any prediction is meaningless.

Note: The variance of the regression s2
Y .x is computed from the deviations

of actual and estimated values at all the known points:

s2
Y .x = 1

n− 2

n∑
i=1

(yi − ŷi)2 (8.8)

Task 38 : Compute the most likely value, and the 95% confidence and
prediction intervals, of straw yields predicted by a grain yield of the mean,
and the mean ± one and two standard deviations of the predictor. •

We first build a (very) small dataframe with the data.frame function, with
a variable of the same name, and then use it as the newdata argument to
predict.lm; the other arguments are the model name, the type of interval,
and the risk of Type I error.

> t1 <- mean(mhw$grain); t2 <- sd(mhw$grain);

> p.frame <- data.frame(grain=seq(t1-2*t2, t1+2*t2, t2))

> predict(model.straw.grain, newdata=p.frame,

+ interval="confidence", level=0.95)

fit lwr upr

1 5.2037 5.0828 5.3245

2 5.8592 5.7828 5.9357

3 6.5148 6.4608 6.5688

4 7.1704 7.0939 7.2468

5 7.8259 7.7051 7.9468

> predict(model.straw.grain, newdata=p.frame,

+ interval="prediction", level=0.95)
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fit lwr upr

1 5.2037 3.9898 6.4176

2 5.8592 4.6490 7.0695

3 6.5148 5.3057 7.7239

4 7.1704 5.9601 8.3806

5 7.8259 6.6120 9.0398

Q47 : Which interval is wider? What happens to the width of the interval
as the predictand is further from its centroid (mean)? Jump to A47 •

Task 39 : Display the scatterplot of straw vs. grain yields, with the best-fit
line and the two confidence intervals, for grain yields from 2 to 6 lb. acre-1,
at 0.1 lb. resolution. •

The seq function builds the required sequence, and data.frame is again
used to build a prediction frame. The plot function initiates the plot, and
then the title, grid, lines, points, and abline functions add graphic or
text elements.

> p.frame <- data.frame(grain = seq(from = 2, to = 6, by = 0.1))

> pred.c <- predict(model.straw.grain, newdata = p.frame,

+ interval = "confidence", level = 0.95)

> pred.p <- predict(model.straw.grain, newdata = p.frame,

+ interval = "prediction", level = 0.95)

> plot(straw ~ grain, data = mhw, pch = 20)

> title(main = "Straw yield predicted by grain yield",

+ sub = "Prediction (blue) and confidence (red) intervals")

> abline(model.straw.grain)

> grid()

> lines(p.frame$grain, pred.c[, "lwr"], col = 2, lwd = 1.5)

> lines(p.frame$grain, pred.c[, "upr"], col = 2, lwd = 1.5)

> lines(p.frame$grain, pred.p[, "lwr"], col = 4, lwd = 1.5)

> lines(p.frame$grain, pred.p[, "upr"], col = 4, lwd = 1.5)

> points(mean(mhw$grain), mean(mhw$straw), pch = 23, cex = 2,

+ bg = "red")

> abline(h = mean(mhw$straw), lty = 2)

> abline(v = mean(mhw$grain), lty = 2)
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Q48 : Why is the confidence interval so narrow and the prediction interval
so wide, for this relation? Jump to A48 •

Task 40 : Clean up from this subsection. •

> rm(t1, t2, p.frame, pred.c, pred.p)

8.3 Structural Analysis*

In §8.2.1 we modelled one of the two variables as as a response and the other
as a predictor, and fit a line that best describes this relation. If we reverse
the relation, what happens?

Task 41 : Compare the regression of strain yield on grain yield, with the
regression of grain yield on straw yield. •

> model.grain.straw <- lm(grain ~ straw, data = mhw)

> summary(model.grain.straw)

Call:

lm(formula = grain ~ straw, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-1.3580 -0.2011 0.0004 0.1918 1.0527

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.5231 0.1028 14.8 <2e-16

straw 0.3723 0.0156 23.8 <2e-16

Residual standard error: 0.314 on 498 degrees of freedom

Multiple R-squared: 0.533, Adjusted R-squared: 0.532

F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

> summary(model.straw.grain)

Call:

lm(formula = straw ~ grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.0223 -0.3529 0.0104 0.3734 3.0342

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8663 0.2387 3.63 0.00031

grain 1.4305 0.0601 23.82 < 2e-16

Residual standard error: 0.615 on 498 degrees of freedom

Multiple R-squared: 0.533, Adjusted R-squared: 0.532

F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

Q49 : Is the amount of variability explained by the two models the same?
That is, does knowing straw yield give the same amount of information on
grain yield as the reverse? Jump to A49 •

Intuitively it might seem that the slope of grain vs. straw would be the
inverse of the slope of straw vs. grain. Is this the case?

Task 42 : Compute the slope of straw vs. grain as the inverse of the modelled
slope of grain vs. straw, and compare with the modelled slope of straw vs.
grain. •

> coefficients(model.straw.grain)["grain"]

grain

1.4305

> 1/coefficients(model.grain.straw)["straw"]

straw

2.686

We can visualise these on the scatterplot of straw vs. grain. The regression
line of straw on grain can be directly plotted with abline on the model
object; the reverse regression must be inverted from coefficients extracted
from its model object. The slope is just the inverse; the intercept is the
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straw yield corresponding to zero grain yield:

grain = b0 + b1 · straw

0 = grain

⇓
0 = b0 + b1 · straw

⇓
straw = −b0/b1

> plot(straw ~ grain, pch = 1, main = "Mercer-Hall wheat yields",

+ xlab = "grain (lb. plot-1)", ylab = "straw (lb. plot-1)",

+ data = mhw)

> title(sub = "straw vs. grain: solid; grain vs. straw: dashed")

> abline(model.straw.grain)

> beta <- coefficients(model.grain.straw)

> abline(-beta["(Intercept)"]/beta["straw"], 1/beta["straw"],

+ lty = 2)

> grid()

> rm(beta)
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straw vs. grain: solid; grain vs. straw: dashed

Q50 : Do these two models give the same straw vs. grain relation? Why
not? Jump to A50 •

So, the regression of two variables on each other depends on which variables
is considered the predictor and which the predictand. If we are predicting,
this makes sense: we get the best possible prediction. But sometimes we
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are interested not in prediction, but in understanding a relation between
two variables. In the present example, we may ask what is the true relation
between straw and grain in this wheat variety? Here we assume that this
relation has a common cause, i.e. plant growth processes affect the grain and
straw in some systematic way, so that there is a consistent relation between
them. This so-called structural analysis is explained in detail by Sprent [49]
and more briefly by Webster [54] and Davis [9, pp. 218–219].

In structural analysis we are trying to establish the best estimate for a struc-
tural or law-like relation, i.e. where we hypothesise that y = α+βx, where
both x and y are mathematical variables. This is appropriate when there
is no need to predict, but rather to understand. This depends on the prior
assumption of a true linear relation, of which we have a noisy sample.

X = x + ξ (8.9)

Y = y + η (8.10)

That is, we want to observe X and Y , but instead we observe x with random
error ξ and y with random error η. These errors have (unknown) variances
σ2
ξ and σ2

η , respectively; the ratio of these is crucial to the analysis, and is
symbolised as λ:

λ = σ2
η/σ

2
ξ (8.11)

Then the maximum-likelihood estimator of the slope β̂Y .X , taking Y as the
predictand for convention, is:

β̂Y .X = 1
2sXY

{
(s2
Y − λs2

X)+
√
(s2
Y − λs2

X)2 + 4λs2
XY

}
(8.12)

Equation 8.12 is only valid if we can assume that the errors in the two
variables are uncorrelated. In the present example, it means that a large
random deviation for a particular sample of the observed straw yield from
its “true” value does not imply anything about the random deviation of the
observed grain yield from its “true” value.

The problem is that we don’t have any way of knowing the true error vari-
ance ratio λ (Equation 8.11), just as we have no way of knowing the true
population variances, covariance, or parameters of the structural relation.
We estimate the population variances σ2

X , σ2
Y and covariance σXY from the

sample variances s2
x, s2

y and covariance sxy , but there is nothing we’ve mea-
sured from which we can estimate the error variances or their ratio. However,
there are several plausible methods to estimate the ratio:

� If we can assume that the two error variances are equal, λ = 1. This
may be a reasonable assumption if the variables measure the same
property (e.g. both measure clay content in different soil layers), use
the same method for sampling and analysis, and there is an a priori
reason to expect them to have similar variability (heterogeneity among
samples). However in this case there is no reason to expect equal
variances.
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� The two error variances may be estimated by the ratio of the sample
variances: λ ≈ s2

y/s2
z . That is, we assume that the ratio of variability

in the measured variable is also the ratio of variability in their errors.
For example, if the set of straw yields in a sample is twice as variable
as the set of grain yields in the same sample, we would infer that the
error variance of straw yields is also twice as much that for grain yields,
so that λ = 2. But, these are two completely different concepts! One
is a sample variance and the other the variance of the error in some
random process. However, this ratio at least normalizes for different
units of measure and for different process intensities. Using this value
of λ computes the Reduced Major Axis (RMA), which is popular in
biometrics.

� The variance ratio may be known from previous studies.

Task 43 : Compute the variance ratio of straw and grain yields. •

> var(mhw$straw)/var(mhw$grain)

[1] 3.8423

Q51 : Is straw or grain yield more variable across the 500 plots? What is
the ratio? Jump to A51 •

8.3.1 A user-defined function

Task 44 : Write an R function to compute β̂Y .X , given the two structural
variables in the order predictand, predictor and the ratio of the error vari-
ances λ. •

This gives us an opportunity to see how to write a user-defined function in
the S language. A function has:

1. a name, like any R object; this is written at the left of the <- assignment
operator;

2. the command function;

3. a list of named arguments immediately following the function name,
written within matched parentheses ( ); if there are more than one
argument, these are separated by commas (,);

4. the function body between matched braces { and }; this is R code
which can refer to the named arguments and any other object defined
in the workspace at the time the function is called;

5. an optional return command, whose argument is evaluated and re-
turned as the value of the function; if no return command is given the
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value at the end of the function is returned.

The function command creates a function, and we know it must have three
arguments: the two structural variables and the ratio of the error variances.
We can name the arguments as we wish. Here we choose y and x for the
variables, and lambda for the ratio, and refer to these names in the body of
the function. We also have to choose a name for the function object; here
we choose a meaningful name, struct.beta.

> struct.beta <- function(y, x, lambda) {

+ a <- var(y)-lambda*var(x);

+ c <- var(x,y);

+ return((a + sqrt(a^2 + 4 * lambda * c^2))/(2*c))

+ }

This function is now defined in the workspace and available to be called with
the required three arguments.

Task 45 : Apply this function to the straw vs. grain yields:

1. with λ = 1; this is the orthogonal estimate;

2. with λ as the variance ratio of straw and grain yields (assuming the
error variance ratio equals the variables’ variance ratio); this is the
proportional estimate.

Compare with the slopes of the forward and reverse regressions. •

> print(paste("Forward:", round(coefficients(model.straw.grain)["grain"],

+ 4)))

[1] "Forward: 1.4305"

> print(paste("Proportional:", round(struct.beta(mhw$straw,

+ mhw$grain, var(mhw$straw)/var(mhw$grain)), 4)))

[1] "Proportional: 1.9602"

> print(paste("Inverse proportional:", round(1/struct.beta(mhw$grain,

+ mhw$straw, var(mhw$grain)/var(mhw$straw)), 4)))

[1] "Inverse proportional: 1.9602"

> print(paste("Orthogonal:", round(struct.beta(mhw$straw,

+ mhw$grain, 1), 4)))

[1] "Orthogonal: 2.4031"

> print(paste("Inverse orthogonal:", round(1/struct.beta(mhw$grain,

+ mhw$straw, 1), 4)))

[1] "Inverse orthogonal: 2.4031"

> print(paste("Reverse:", round(1/coefficients(model.grain.straw)["straw"],

+ 4)))

[1] "Reverse: 2.686"

62



Note that all the estimates made with the struct.beta function are numer-
ically between the slopes of the forward and inverse regressions, which can
be considered the extremes (where all error is attributed to one or the other
variable).

Task 46 : Plot the forward, reverse, orthogonal and proportional regression
lines on one scatterplot of straw vs. grain yield. •

For the models fit with lm we can extract the coefficients; for the structural
models we compute the slopes with our user-written function struct.beta

and then their intercepts with the relation:

β̂0 = µ̂y − β̂y.xµ̂x (8.13)

> plot(straw ~ grain, main="Mercer-Hall wheat yields",

+ sub="Regression slopes", xlab="grain (lb. plot-1)",

+ ylab="straw (lb. plot-1)", data=mhw)

> abline(model.straw.grain, col="blue")

> beta <- coefficients(model.grain.straw)

> abline(-beta["(Intercept)"]/beta["straw"] , 1/beta["straw"],

+ lty=2, col="green")

> beta <- struct.beta(mhw$straw, mhw$grain, 1)

> abline(mean(mhw$straw)-beta*mean(mhw$grain), beta, lty=3, col="red")

> beta <- struct.beta(mhw$straw, mhw$grain,var(mhw$straw)/var(mhw$grain))

> abline(mean(mhw$straw)-beta*mean(mhw$grain), beta, lty=4, col="brown")

> lines(c(4,4.5),c(5,5), lty=1, col="blue")

> lines(c(4,4.5),c(4.4,4.4), lty=4, col="brown")

> lines(c(4,4.5),c(4.6,4.6), lty=3, col="red")

> lines(c(4,4.5),c(4.8,4.8), lty=2, col="green")

> grid()

> text(4.5,5,paste("Forward:",

+ round(coefficients(model.straw.grain)["grain"],4)),

+ col="blue", pos=4)

> text(4.5,4.4,paste("Proportional:",

+ round(struct.beta(mhw$straw,mhw$grain,var(mhw$straw)/var(mhw$grain)),4)),

+ col="brown", pos=4)

> text(4.5,4.6, paste("Orthogonal:",

+ round(struct.beta(mhw$straw,mhw$grain,1),4)),

+ col="red", pos=4)

> text(4.5,4.8,paste("Reverse:",

+ round(1/coefficients(model.grain.straw)["straw"],4)),

+ col="green", pos=4)
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Forward: 1.4305

Proportional: 1.9602
Orthogonal: 2.4031
Reverse: 2.686

Q52 : What do you conclude is the best numerical expression of the struc-
tural relation between straw and grain yields in this variety of wheat, grown
in this field? Jump to A52 •

Challenge: Modify function struct.beta to return both the intercept and
slope of the structural line11, and use this to simplify the display of lines on
the scatterplot.

8.4 No-intercept model*

In the simple linear regression of §8.2 the model is:

yi = β0 + β1xi + εi (8.14)

This has two parameters: the slope β1 and the intercept (value of the predic-
tand when the predictor is 0) β0. It is also possible to fit the model without
an intercept, i.e., the linear relation is forced through the origin (0,0). The
equation becomes:

yi = βxi + εi (8.15)

There is then only a slope to be estimated, since the intercept is fixed at 0.
These are termed no-intercept models.

Q53 : Why might this have some logic in the case of predicting straw yield
from grain yield? Jump to A53 •
11 Hint: use the c “make a list” function
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There are some mathematical implications of a no-intercept model.

� The mean residual is (in general) not zero;

� The residual sum-of-squares is (in general) larger than for a model with
intercept;

� The usual formula for goodness-of-fit is not appropriate (§8.4.2).

Even if we know from nature that the relation must include (0,0), this takes
away a degree of freedom from the fit, and gives a poorer fit in the range of
observed responses, if this does not include y = 0.

A no-intercept model may be appropriate when:

1. There are physical reasons why the relation must include (0,0); e.g.,
no straw → no grain is possible (but not vice-versa!);

2. If a negative prediction should be avoided; e.g., it is impossible to have
negative straw or grain in a plot12;

3. If the range of the observations covers or approaches (0,0); otherwise
we are assuming a linear form from the origin to the range of our data,
when it may have some other form, e.g., exponential, power . . . ; there
is no evidence for choosing a linear form near the origin;

4. If, after fitting a with-intercept model, the null hypothesis H0 : β0 = 0
in a linear regression with intercept can not be disproven (t-test of the
coefficient), and we want to simplify the relation, we may then choose
to re-fit with a no-intercept model.

8.4.1 Fitting a no-intercept model

In a no-intercept model, the slope β̂Y .x can not be estimated from the sample
covariance sXY and variance of the predictand s2

x, because the (co)variances
are relative to means, which we can not compute; this is because the fixed
intercept removes this degree of freedom.

Instead, the slope is computed by minimizes the RSS, again by orthogonal
projection: b = [x′x]−1[x′y], where the design matrix x here does not have
an initial column of 1’s, just a column of xi. In the univariate case this
reduces to

∑
xiyi/

∑
x2
i .

Task 47 : Fit a no-intercept model of straw yield predicted by grain yield
and summarize it. •

In the R model formulas, absence of the intercept is symbolized by the term
-1 in the formula supplied to the lm function:

> model.straw.grain.0 <- lm(straw ~ grain - 1, data = mhw)

> summary(model.straw.grain.0)

12 But this can also be avoided by setting any negative predictions to zero.
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Call:

lm(formula = straw ~ grain - 1, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.1496 -0.3660 0.0292 0.3657 3.1515

Coefficients:

Estimate Std. Error t value Pr(>|t|)

grain 1.647 0.007 235 <2e-16

Residual standard error: 0.622 on 499 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.991

F-statistic: 5.54e+04 on 1 and 499 DF, p-value: <2e-16

Q54 : What is the slope of the relation? Does this differ from the β1

coefficient of the with-intercept model? Why? Jump to A54 •

Task 48 : Display a scatterplot of the straw vs. grain yields, with the with-
and no-intercept lines superimposed. Show the origin (0,0). Also show the
centroid of the points. •

We take this opportunity to introduce an efficient way to refer to field names
within a data frame, without having to name the frame each time a field isThe

with

function
named. So, instead of writing mhw$grain anywhere in an expression, we
can just write grain. This is the with function, that evaluates its second
argument (an R expression) while exposing any names within the object
named as its first argument. Here writing with(mhw, ... exposes the field
names such as grain to be used in the expression.

As a simple example, the following are equivalent:

> mean(mhw$grain)

[1] 3.9486

> with(mhw, mean(grain))

[1] 3.9486

We use this here to simplify the arguments to the following plot command:

> with(mhw,

+ plot(straw ~ grain, main="Mercer-Hall wheat yields",

+ xlab="grain (lb. plot-1)", ylab="straw (lb. plot-1)",

+ xlim=c(0,ceiling(max(grain))),

+ ylim=c(0, ceiling(max(straw))), cex=0.8))

> abline(model.straw.grain, col="blue")

> abline(model.straw.grain.0, col="red")

> grid()

> text(4.5,4, paste(" With:",

+ round(coefficients(model.straw.grain)["grain"],2)),

+ col="blue", pos=4)
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> text(4.5,3.4,paste("Without:",

+ round(coefficients(model.straw.grain.0)["grain"],2)),

+ col="red", pos=4)

> abline(v=mean(mhw$grain), col="darkgray", lty=2)

> abline(h=mean(mhw$straw), col="darkgray", lty=2)

> points(mean(mhw$grain), mean(mhw$straw), cex=2, pch=23, bg="red")

> abline(h=coefficients(model.straw.grain)["(Intercept)"],

+ col="darkgray", lty=2)

> text(1,1,paste("Intercept:",

+ round(coefficients(model.straw.grain)["(Intercept)"],2)),

+ col="blue", pos=4)
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    With: 1.43

Without: 1.65

Intercept: 0.87

Task 49 : Confirm that the mean residual of the no-intercept model is not
zero, whereas that for the with-intercept model is. •

> mean(residuals(model.straw.grain.0))

[1] 0.011491

> mean(residuals(model.straw.grain))

[1] 1.7643e-16

Q55 : Is the no-intercept model appropriate in this case? Jump to A55 •
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8.4.2 Goodness-of-fit of the no-intercept model

The coefficient of determination R2 for no-intercept model is in general not
a good measure of fit, and is usually massively inflated, for the following
reason.

Since there is no intercept in the design matrix, the total sum of squares
(TSS) must be computed relative to zero: TSS =

∑n
i=1(yi − 0)2, rather

than relative to the sample mean ȳ : TSS =
∑n
i=1(yi − ȳ)2. We still define

R2 as:

R2 = 1− RSS
TSS

But since the TSS is computed relative to zero, it tends to be quite high
(no compensation for the sample mean), so even though the residual sum of
squares (RSS) is larger than if an intercept is included, the R2 tends to be
very high.

Task 50 : Compute the coefficient of determination R2 and the root mean
squared error for the no- and with-intercept models. •

First, we compute R2 directly from the definitions:

> (TSS <- sum((mhw$straw - mean(mhw$straw))^2))

[1] 402.67

> (TSS0 <- sum(mhw$straw^2))

[1] 21624

> (RSS <- sum(residuals(model.straw.grain)^2))

[1] 188.22

> (RSS0 <- sum(residuals(model.straw.grain.0)^2))

[1] 193.19

> (R2 <- 1 - (RSS/TSS))

[1] 0.53258

> (R20 <- 1 - (RSS0/TSS0))

[1] 0.99107

> rm(TSS, TSS0, RSS, RSS0, R2, R20)

Notice how the total sums of squares is much higher for the no-intercept
model, because it is relative to 0 rather than the sample mean. The residual
sum of squares is a bit higher, because the fit through the points is not so
close when an intercept is not allowed; however, in this case (and in general)
the RSS is only a bit higher.
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Second, we show the R2 computed with the model; that this is adjusted for
the number of model parameters and sample size.

> summary(model.straw.grain.0)$adj.r.squared

[1] 0.99105

> summary(model.straw.grain)$adj.r.squared

[1] 0.53164

Q56 : (1) What is the relation between the adjusted and raw R2 for both
models? Compare the amount of adjustment; are they the same? Why not?

(2) What happens to the R2 in this case when the intercept is removed from
the model? Is this a realistic view of the success of the model? Jump to
A56 •

We also compute the root mean squared error (RMSE), i.e., lack of fit, from
the RSS and the number of observations, for both models.

> sqrt(sum(residuals(model.straw.grain)^2)/(length(mhw$straw)))

[1] 0.61354

> sqrt(sum(residuals(model.straw.grain.0)^2)/(length(mhw$straw)))

[1] 0.6216

Q57 : What happens to the RMSE when the model is forced through (0,0)?
Why? Jump to A57 •

8.5 Answers

A32 : Linear. Return to Q32 •

A33 : The diagonals are the variances of the two variables, both in (lb. plot-1)
squared; the off-diagonals are the covariances between the two variables, in this case
also in (lb. -1) squared, because the two variables have the same units of measure.

Return to Q33 •

A34 : The summary statistics are quite similar, for both variables; the simulation
reproduces the statistics of the actual data. Return to Q34 •

A35 : The relations look quite similar; this supports the hypothesis. However,
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the bivariate simulation seems to have a slightly steeper slope than the actual data.
Return to Q35 •

A36 : The most probable value is 0.73 lb. plot-1; the lower and upper confidence
limits are 0.686 and 0.768 lb. plot-1, respectively.

Assessment of the strength is subjective and depends on the application field; the
author would call this a moderate positive correlation. Return to Q36 •

A37 : No; both are caused by the same underlying process (plant growth in
response to the environment), and neither is more under control of the experimenter.
However, see the next question. Return to Q37 •

A38 : It can be used to understand plant physiology: is grain yield a direct
result of straw yield, or at least do large plants (lots of straw) tend to have high
yield (lots of grain)? Practically, we could use this relation to predict straw yield
on other plots where only grain was weighed; it is much easier to collect and weigh
grain than straw. Return to Q38 •

A39 : straw = 0.866+ 1.43 · grain Return to Q39 •

A40 : 0.866 lb.; maybe wheat this small would indeed have no grain, because the
plants would be too weak to form grain. Return to Q40 •

A41 : 1.43 lb. of straw increase for each lb. of grain increase. Return to Q41 •

A42 : 53.2% (the value of the adjusted R2). Return to Q42 •

A43 : It’s clear that the highest residuals are too low and vice-versa; the histogram
is somewhat peaked. The median residual is slightly biased (−0.01). The range is
quite high, from −2 to +3 lb. plot-1. Return to Q43 •

A44 : The p-value (probability that rejecting the null hypothesis would be an
error) is almost zero, so we should reject the null hypothesis: these residuals are
not normally-distributed. This is due to the deviations at both tails. Return to
Q44 •

A45 : Plots 15, 337, 311 and 295 have very low grain/straw ratios, so the linear
relation predicts too much grain; for plots 35 and 184 it’s the reverse. Return to
Q45 •

A46 : Observations 292, 184, 15, and especially 337. Plots 337 and 292 also have
high leverage. In the previous answer we saw that plots 15 and 337 have very low
grain/straw ratios, so the linear relation predicts too much grain; for plot 184 it’s
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the reverse. Plot 292 has high leverage and fairly high Cook’s distance, but its
standardised residual is not so high (< 2). Return to Q46 •

A47 : The prediction intervals are much wider at all values of the predictand.
Intervals further away from the centroid are increasingly wide. Return to Q47 •

A48 : The confidence interval is narrow because the average linear relation is very
consistent across its range (although, see §18 for some exceptions at the extreme
values), so the estimate of the best-fit line is quite good. The prediction interval is
wide because there is poor correlation in the sample set, i.e., a wide spread in straw
yields for any observed grain yield. So this same uncertainty must appear in the
prediction. Return to Q48 •

A49 : The models explain the same proportion of the total variability, 0.532.
Return to Q49 •

A50 : The slopes are very different. The forward model gives a slope of 1.43 of
straw vs. grain, whereas the inverse model gives a slope of 2.686. The reason is that
the two regressions minimise different error sums-of-squares: in the forward model,
residual straw yield, in the inverse model, residual grain yield. Each is the best
predictive relation for its target variable. Return to Q50 •

A51 : The variance ratio is 3.842, that is, straw yields are almost four times as
variable as grain yields. This is partly explained by the higher absolute values of
all the yields: the medians are 6.36 for straw vs. 3.94 for grain. Return to Q51 •

A52 : The best estimate of the error variance ratio is the variable variance ratio,
so the structural relation is 1.96 lb. straw for each lb. grain; or equivalently 0.51 lb.
grain for each lb. straw. This is the best estimate of the plant morphology. Return
to Q52 •

A53 : Physically, if there is no grain, there is no straw. Thus the point (0,0) is
by definition part of the straw vs. grain response relation. Return to Q53 •

A54 : The slope is 1.65, considerably steeper than the slope of the with-intercept
model, 1.43. This compensates for the intercept (here, forced to 0) being smaller
than the fitted intercept of the full model, 0.87, which allows the line to have a
shallower slope while passing through the centroid. Return to Q54 •

A55 : No, for three reasons. (1) The intercept from the full model is highly
unlikely to be zero, so the no-intercept model is not appropriate; (2) the range of
the observations is far from (0,0) so there is no reason to guard from negative
predictions; (3) we have no evidence for the model form near the origin; the closest
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points are around (2.8,4). Return to Q55 •

A56 : (1) For both models the adjusted R2 is lower than the raw R2, because of
the adjustment for the number of parameters used in the model. The difference for
the no-intercept model is less, because only one, rather than two, parameters are
used in the model.

(2) The adjusted R2 increases from 0.53 to 0.99, i.e., almost 1. This is an artefact of
the calculation and does not reflect the success of the no-intercept model. Return
to Q56 •

A57 : The RMSE increases from 0.614 (with-intercept) to 0.622 (no-intercept)
lb. acre-1; this shows that the no-intercept line does not come as close, on average,
to the points in the scatterplot. This is because the slope is not free to float at
both ends (find the optimum intercept); instead it is forced through (0,0) as one
point, and the other point is then the centroid of the point cloud in the scatterplot.

Return to Q57 •

9 Bivariate modelling: continuous response, classified predictor

A continuous variable can also be modelled based on some classified (dis-
crete) predictor. In the present example we will consider the field half (North
& South) to be such a predictor.

It has been suggested [51] that the North and South halves of the field had
been treated differently prior to Mercer & Hall’s experiment. To test this
suggestion, we first have to code each plot according to its location in the
field (N or S half); this is a logical variable (True or False, written in S as
TRUE or FALSE, abbreviated T and F). Then we use this variable to split the
field statistically and compare the yields for each half. Each plot is thus in
one or the other class, in this case field half.

Task 51 : Add a logical field to the data frame to codes whether each plot
falls in the north half or not. •

We first use a logical expression that evaluates to either T or F to create a
logical variable, here named in.north, as a field in the data frame. This
field codes whether teach plot falls in the north half or not.

Recall from the description of the dataset in Appendix A that the rows ran
W to E, with 25 plots in each row, beginning at 1 on the W and running to
25 at the E, and the columns run N to S with 20 plots in each, beginning at
1 on the N and running to to 20 at the S. So the N half of the field consists
of the plots with row numbers from 1 to 10, inclusive.

> mhw <- cbind(mhw, in.north = (mhw$r < 11))

> str(mhw)

'data.frame': 500 obs. of 6 variables:

$ r : int 1 2 3 4 5 6 7 8 9 10 ...

$ c : int 1 1 1 1 1 1 1 1 1 1 ...

72



$ grain : num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...

$ straw : num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...

$ gsr : num 0.57 0.652 0.64 0.564 0.612 ...

$ in.north: logi TRUE TRUE TRUE TRUE TRUE TRUE ...

> summary(mhw$in.north)

Mode FALSE TRUE

logical 250 250

Task 52 : Display a post-plot of grain yields with the plots in the North
half coloured blue, those in the South coloured grey13. •

> with(mhw, plot(c, r, col = ifelse(in.north, "blue", "darkslategrey"),

+ cex = 1.3 * straw/max(straw), pch = 1, xlab = "Column",

+ ylab = "Row", ylim = c(20, 1), sub = "North: blue; South: gray"))

> title(main = "Postplot of straw yields, coded by field half")

> abline(h = 10.5, lty = 2)

5 10 15 20 25

20
15

10
5

North: blue; South: gray
Column

R
ow

Postplot of straw yields, coded by field half

Note: The ylim graphics argument specifies that the labels of the y-axis run
from 20 (lower left corner) to 1 (upper left corner); by default scatterplots
drawn by the plot function assume the lowest-numbered row is the lower left.
This is the usual case for scatterplots, but here we know the lowest-numbered
row is at the N side.

9.1 Exploratory data analysis

We first compare the two halves with exploratory graphics; a suitable graph
is the boxplot, created with the boxplot function.

Task 53 : Compare the two field halves with box plots. •
13 An obvious historical reference.
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To compare these on one graph, we split the graphics frame by specifying the
number of rows and columns with the mfrow argument to the par (“graphics
parameters”) command. These plots look better if they are displayed hori-
zontally, using the optional horizontal argument with the value TRUE. The
optional names argument labels the plots; these are S and N to represent the
internal values FALSE and TRUE of the in.north classifier.

> par(mfrow=c(3,1))

> boxplot(grain ~ in.north, names=c("S", "N"),

+ main="Grain yield", horizontal=T, data=mhw)

> boxplot(straw ~ in.north, names=c("S", "N"),

+ main="Straw yield", horizontal=T, data=mhw)

> boxplot(gsr ~ in.north, names=c("S", "N"),

+ main="Grain/straw ratio", horizontal=T, data=mhw)

> par(mfrow=c(1,1))
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Q58 : Do the two halves appear to have different ranges? medians? spreads?
Comment for all three variables. Jump to A58 •

We then compare the two halves numerically:

Task 54 : Compare the summary statistics of the two halves for all the
variables. Also compare their variances. •

Any function can be applied to subsets of a data frame with the by function.
The first argument is the argument to the function, the second is the subset
classifier, and the third the function to be applied:

> with(mhw, by(grain, in.north, summary))

in.north: FALSE

Min. 1st Qu. Median Mean 3rd Qu. Max.
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2.73 3.59 3.91 3.93 4.29 5.16

----------------------------------------------------

in.north: TRUE

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.78 3.66 3.97 3.96 4.27 5.13

> with(mhw, by(straw, in.north, summary))

in.north: FALSE

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.66 6.11 6.75 6.75 7.32 8.85

----------------------------------------------------

in.north: TRUE

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.10 5.73 6.14 6.28 6.86 8.64

> with(mhw, by(gsr, in.north, summary))

in.north: FALSE

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.391 0.558 0.585 0.586 0.609 0.850

----------------------------------------------------

in.north: TRUE

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.482 0.596 0.635 0.636 0.669 0.848

> with(mhw, by(grain, in.north, var))

in.north: FALSE

[1] 0.22162

----------------------------------------------------

in.north: TRUE

[1] 0.19876

> with(mhw, by(straw, in.north, var))

in.north: FALSE

[1] 0.74777

----------------------------------------------------

in.north: TRUE

[1] 0.75985

> with(mhw, by(gsr, in.north, var))

in.north: FALSE

[1] 0.0026123

----------------------------------------------------

in.north: TRUE

[1] 0.0030585

Q59 : Do the two halves have different summary statistics? Is one half
more variable than the other? Jump to A59 •

From the boxplots, it appears that the straw yield is, on average, higher in
the S half; can we confirm this with a statistical test?
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Task 55 : Test whether the straw yield is higher in the N half. •

There are two approaches that give the same answer for a binomial classified
predictor: a two-sample t-test, and a one-way ANOVA.

9.2 Two-sample t-test

The simplest way to do this is with a two-sample unpaired t test of the
difference between means, with the default null hypothesis that they are
identical. This only works when the classified variable is binary.

> with(mhw, t.test(straw[in.north], straw[!in.north]))

Welch Two Sample t-test

data: straw[in.north] and straw[!in.north]

t = -6.02, df = 498, p-value = 3.5e-09

alternative hypothesis: true difference in means is not equal to 0

95 percent confidence interval:

-0.61969 -0.31455

sample estimates:

mean of x mean of y

6.2812 6.7484

Q60 : Is there a significant difference in the means? What is the probability
that this apparent difference is only by chance (i.e. a Type I error would be
committed if we reject the null hypothesis)? What is the 95% confidence
interval of the difference? Jump to A60 •

9.3 One-way ANOVA

Another way to analyse this is with a one-way Analysis of Variance (ANOVA).
This can also deal with multivalued classified predictors, although in this case
we only have a binary predictor.

Task 56 : Compute a one-way ANOVA for straw yield between field halves.
•

This illustrates another use of the lm function, i.e. modelling a continuous
response variable from a categorical (here, binary) predictor:

> model.straw.ns <- lm(straw ~ in.north, data = mhw)

> summary(model.straw.ns)

Call:

lm(formula = straw ~ in.north, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.181 -0.608 -0.108 0.572 2.359
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7484 0.0549 122.90 < 2e-16

in.northTRUE -0.4671 0.0777 -6.02 3.5e-09

Residual standard error: 0.868 on 498 degrees of freedom

Multiple R-squared: 0.0677, Adjusted R-squared: 0.0659

F-statistic: 36.2 on 1 and 498 DF, p-value: 3.48e-09

Q61 : How much of the total variability in straw yield is explained by field
half? Jump to A61 •

We can also see the results with a traditional ANOVA table:

> anova(model.straw.ns)

Analysis of Variance Table

Response: straw

Df Sum Sq Mean Sq F value Pr(>F)

in.north 1 27 27.28 36.2 3.5e-09

Residuals 498 375 0.75

And of course we must check the regression diagnostics:

> qqnorm(residuals(model.straw.ns),

+ main="Residuals from one-way ANOVA",

+ sub="Straw yield vs. field half")

> qqline(residuals(model.straw.ns))
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Q62 : Are the model residuals normally-distributed? What does this imply
about the process in the field? Jump to A62 •
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We will compare this model to more complex ones in §12, below.

Challenge: Repeat the analysis of this section, but splitting the field into E-
W halves, rather than N-S halves.14 Do you reach similar conclusions about
the differences between the field halves?

9.4 Answers

A58 : Grain yields appear to be almost identically distributed, although the S
half is slightly more variable. Straw yields appear slightly higher in the S. The
grain/straw ratio appears higher in the N. Variability between field halves seems
similar for grain and straw, but the grain/straw ratio in the S half appears to have
more total spread and boxplot outliers. Return to Q58 •

A59 : Grain: Almost identical summary statistics; Straw: The S is somewhat
higher in all summary statistics, but the variability is almost the same; Grain/straw
ratio: the N is higher in all summary statistics except the maximum, which is almost
the same; the N is also somewhat more variable. Return to Q59 •

A60 : Yes, very highly significant; the N has a higher ratio than the S. the
probability of a Type I error is almost 0. The 95% confidence interval is -0.62,
-0.315, i.e. there is only a 2.5% chance that the difference in yields is not at least
0.315. Return to Q60 •

A61 : In the summary, the Adjusted R^2 gives this proportion; here it is 0.066,
a very low proportion. This shows that a model can be highly significant – the
difference between class means is almost surely not zero – but numerically not
important. Return to Q61 •

A62 : For the most part yes, but the tails (highest and lowest ratios) are not
well-modelled: the absolute residuals are too high at both tails, especially the lower
tail. This suggests that the extreme values are caused by some process that is
beyond what is causing most of the “random” variability. This is sometimes called
a “contaminated” process. Return to Q62 •

10 Bootstrapping*

Most of the estimates of population statistics based on sample estimates, as
computed in the previous sections, rely on assumptions that are difficult to
verify.

For example, we saw in §8.1.1 that the parametric correlation coefficient
is only justified for the case of a bivariate normal distribution. Although
in this case the simulation based on the sample variance-covariance matrix
seemed to support this assumption, we did notice several observations well
outside the “envelope” expected if the distribution of the two variables is in

14 Make sure to pick an appropriate colour scheme for the classified postplot.
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fact bivariate normal. Also in the univariate modelling of §7 we could see
that the distribution of grain yield was not completely normal: the highest
yields are not as high, and the lowest not as low, as expected if the yields
were normally distributed.

Further, any confidence intervals for both parametric and non-parametric
statistics rely on a major assumption: that the sample estimate approaches
the true population value asymptotically; that is, as the sample gets larger,
the estimate gets more precise in a smooth manner. All the classical confi-
dence intervals depend on this assumption, which by its nature can not be
proven. Further, the smaller the sample (typical of many studies), the less
the asymptotic assumption is justified.

Another approach has been made possible by the advent of fast computers.
This is bootstrapping, first proposed by Efron in the late 1970’s [14]. Suppose
we could repeat whatever experiment gave rise to the one dataset we have
– in this case, it would be another uniformity trial with the same design
as Mercer and Hall’s original trial and under the same conditions (wheat
variety, weather, soil, cultural practices . . . ). If we repeated the trial a large
number of times, we’d have a direct estimate of the confidence interval: “Out
of 1 024 trials, 95% of the correlation coefficients between grain and straw
were above 0.67.” This is another way of saying that we have 95% confidence
that any future trial would show a correlation that high or higher.

But of course, we can’t repeat most trials many times – either it is too
expensive, would take too long, or is logistically impractical – in the present
example we couldn’t reproduce the same weather as in summer 1910 and
even in the same field the soil properties could have changed due to the
previous trial.

Efron’s idea was to simulate many trials by resampling the existing trial.
This is a subtle idea which at first seems like a trick. But, recall that the
actual sample in hand is in fact the best non-parametric information about
the true distribution in a larger population. In the present case we have 500
valid observations of grain and straw yield.

As a simple example, suppose we want to know the worst-case grain yield of
a small plot (as in the experiment), say the yield with only 1% chance that
a given yield would be smaller. With our current sample we can simply take
the 1% quantile, symbolised as q0.01; in this case with 500 observations, this
is the mean of the 5th and 6th-smallest values:

> quantile(mhw$grain, p = 0.01, type = 5)

1%

2.945

> mean(sort(mhw$grain)[5:6])

[1] 2.945

Note: The type=5 specifies a piecewise linear function through the values;
the default type=7 uses a slightly different computation; see Hyndman and
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Fan [24] for an extensive discussion of different ways to compute quantiles of
a continuous distribution from an empirical distribution.

But of course this is based on a single experiment with 500 observations.
What if we could repeat this experiment many times?

Efron proposed a non-parametric bootstrap which uses the sample in hand
as the population, and simulates a new sample from this “population” by
picking a number of observations with equal probability, with replacement.
That is, a given observation can be picked multiple times15. Then this
simulated sample is used to estimate the statistic of interest. We can do this
100’s or 1000’s of times and then summarise the statistic.

Bootstrapping is nicely introduced, without formulas, by Shalizi [47] and
explained in more detail in the texts of Efron [13] and Davison and Hinkley
[10]. The boot R package provides functions related to bootstrapping.

The basic function of the boot package is also named boot. The default is
for a non-parametric bootstrap, specified with the optional sim argument as
sim="ordinary" (the default).

Setting up the bootstrap can be quite complicated. The user must write a
function that computes the statistic of interest for each bootstrap replicate.
This function has a different form depending on the boot optional arguments;
in this simplest case it has two arguments:

1. the data, typically a data frame;

2. a list of the indices of the rows (observations) selected for the bootstrap.
These may be repeated; the bootstrap samples with replacement.

10.1 Example: 1% quantile of grain yield

We begin with a simple example: the 1% quantile (i.e., estimate of the
lowest grain yield, with 99% being greater). We estimated this from the
single sample as:

> quantile(mhw$grain, p = 0.01, type = 5)

1%

2.945

The bootstrapped estimate will compute this many times, each with a dif-
ferent simulated sample.

Task 57 : Write a function to return the statistic “1% quantile”. •

We already wrote a user-defined function in §8.3.1. Again, we use the
function command to create a function in the workspace. In this case
it must have two arguments: the data frame and the selected indices. We
choose meaningful names data and indices, and refer to these names in the

15 otherwise we’d just get the original sample
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body of the function. We choose a meaningful name for the function object:
boot.q01.

> boot.q01 <- function(data, indices) {

+ obs <- data[indices, ]

+ return(quantile(obs$grain, p = 0.01, type = 5))

+ }

In the function body, the line obs <- data[indices,] makes a data frame
with rows corresponding to the bootstrap sample, with the same structure as
the original frame. So then the function call to quantile refers to field grain

in the resampled dataframe, which has the same structure as the original
frame mhw but a different set of 500 observations from the resampling.

A function typically ends with the return command, which specifies the
value to return to the caller; here it’s the statistic of interest, computed on
the replicate.

Task 58 : Estimate the population statistic “1% quantile” with a non-
parametric bootstrap. •

We call boot with three arguments: the data, the function to compute the
statistic on the replicate (i.e., the function we just wrote), and the number of
replicates (argument R). Before calling boot, we must first load the optional
boot package, by using the require function.

> require(boot)

> b.q01 <- boot(mhw, boot.q01, R = 1024)

> print(b.q01)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mhw, statistic = boot.q01, R = 1024)

Bootstrap Statistics :

original bias std. error

t1* 2.945 -0.0030322 0.071006

The output of boot shows:

original : the statistic (here,the 1% quantile) applied to the original dataset; in
this example, this is the same as the result of the (non-bootstrapped)
R command quantile(mhw$grain, p=0.01, type=5);

bias : the average difference of the bootstrapped estimates from the original
value; this should be zero;

standard error : of the replicated statistic; the lower this is, the more consistent is the
estimate.
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Note that each time that boot is called, a random set of replicates is gener-
ated, so the statistics will vary.

The bootstrapped estimates can be summarised graphically with the plot

method; this recognises the object of class boot and produces two plots: a
histogram of the estimate (with the non-bootstrapped estimate shown as a
dashed vertical line) and its normal Q-Q plot.

> plot(b.q01)
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Q63 : Describe the histogram of the 1 024 bootstrapped estimates of q0.01,
also with respect to the single (non-bootstrapped) estimate. Jump to A63
•

Q64 : Explain the “discontinuous” form of the histogram and Q-Q plot.
Jump to A64 •

Bootstrapped confidence intervals With these in hand we can compute the
confidence intervals of the statistic. This is one of the main applications of
bootstrapping.

There are various ways to compute bootstrapped confidence intervals; the
two most used are the normal approximation and the basic bootstrapped
estimate; see Davison and Hinkley [10, Ch. 5] for a lengthy discussion.

Normal : Assumes that the empirical distribution of the statistic is asymptotic
to a normal distribution, so the bias b and standard error s computed
from the empirical bootstrap estimates can be used to compute a nor-
mal confidence interval for the population statistic t:

t − b − s · z1−α, t + b + s · zα (10.1)

where t is the statistic of interest and α specifies the (1−2α) interval;
e.g., α = 0.025 specifies the 0.95 (95%) interval.
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Basic : When there is evidence that the empirical distribution of the statistic
not asymptotic to normal (e.g., as revealed by the Q-Q normal prob-
ability plot of the estimates t∗1 , t

∗
2 , . . . t∗n), the normal approximation

is not justified. Instead, the value of the quantile is extracted directly
from the empirical distribution of the statistic.

Task 59 : Compute bootstrap estimates of the of the 1% quantile of grain
yield and the bootstrap estimate of the normal approximation and basic 95%
confidence intervals. •

The original estimate of any bootstrap statistic is found in the t0 field of
the object returned by boot; the bootstrap estimates are in field t. So to
get the best estimate we average the bootstrap estimates in field t:

> mean(b.q01$t)

[1] 2.942

> b.q01$t0

1%

2.945

Q65 : How does the average bootstrapped estimate of the 1% quantile
compare to the estimate from the original sample? Jump to A65 •

The boot.ci function computes confidence intervals; the conf argument
gives the probability 2α and the type argument specifies the type of com-
putation.

> (b.q01.ci <- boot.ci(b.q01, conf = 0.95, type = c("norm",

+ "basic")))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1024 bootstrap replicates

CALL :

boot.ci(boot.out = b.q01, conf = 0.95, type = c("norm", "basic"))

Intervals :

Level Normal Basic

95% ( 2.809, 3.087 ) ( 2.840, 3.080 )

Calculations and Intervals on Original Scale

Q66 : What are the bootstrapped estimates of the 95% confidence interval
for the 1% quantile? Jump to A66 •

Q67 : State the basic interval in terms of probability. Jump to A67 •
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10.2 Example: structural relation between grain and straw

In §8.3 we investigated the structural relation between grain and straw; this
should be an inherent property of the wheat variety.

Recall that the function to compute a structural relation is:

> struct.beta <- function(y, x, lambda) {

+ a <- var(y)-lambda*var(x);

+ c <- var(x,y);

+ return((a + sqrt(a^2 + 4 * lambda * c^2))/(2*c))

+ }

where the variance ratio lambda partitions the error between the two vari-
ables. For the reduced major axis (RMA) structural relation, the ratio of
error variances is estimated as the ratio of sample variances; then the struc-
tural relation is estimated as a slope and intercept of:

> beta <- struct.beta(straw, grain, var(straw)/var(grain))

> alpha <- mean(straw) - beta * mean(grain)

Task 60 : Determine the most likely value and 95% confidence interval
for the slope and intercept of the structural relation, with a non-parametric
bootstrap. •

We first use the function function (!) to write a function to compute
the statistics, naming it boot.sr. Since this function calls the function
struct.beta to compute the slope of the structural relation, that function
must be already defined. The newly-defined function returns a list of two
values; the boot function will then record both of these in field t of the boot
object.

> boot.sr <- function (data, indices) {

+ obs <- data[indices,]

+ beta <- struct.beta(obs$straw,obs$grain,

+ var(obs$straw)/var(obs$grain))

+ alpha <- mean(obs$straw)-beta*mean(obs$grain)

+ return(c(beta, alpha))

+ }

Then the bootstrap:

> b.sr <- boot(mhw, boot.sr, R = 1024)

> print(b.sr)

ORDINARY NONPARAMETRIC BOOTSTRAP

Call:

boot(data = mhw, statistic = boot.sr, R = 1024)

Bootstrap Statistics :

original bias std. error
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t1* 1.9602 -0.0009510 0.055025

t2* -1.2252 0.0033055 0.216017

Visualise the bootstrap; first the slope:

> plot(b.sr, index = 1)
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and then the intercept:

> plot(b.sr, index = 2)
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Note the use of the optional index argument to select each of the two pa-
rameters in the boot object created by boot.

Q68 : Do the bootstrap estimates of the two parameters of the structural
relation appear to be normally-distributed? Jump to A68 •

Finally, from this the normal and basic confidence intervals, along with the
mean (best estimate):
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> mean(b.sr$t[, 1])

[1] 1.9592

> (b.sr.ci <- boot.ci(b.sr, conf = 0.95, type = c("norm",

+ "basic"), index = 1))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1024 bootstrap replicates

CALL :

boot.ci(boot.out = b.sr, conf = 0.95, type = c("norm", "basic"),

index = 1)

Intervals :

Level Normal Basic

95% ( 1.853, 2.069 ) ( 1.854, 2.065 )

Calculations and Intervals on Original Scale

> mean(b.sr$t[, 2])

[1] -1.2219

> (b.sr.ci <- boot.ci(b.sr, conf = 0.95, type = c("norm",

+ "basic"), index = 2))

BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS

Based on 1024 bootstrap replicates

CALL :

boot.ci(boot.out = b.sr, conf = 0.95, type = c("norm", "basic"),

index = 2)

Intervals :

Level Normal Basic

95% (-1.652, -0.805 ) (-1.641, -0.793 )

Calculations and Intervals on Original Scale

Q69 : How well do the two types of confidence intervals agree? Jump to
A69 •

Challenge: Use non-parametric bootstrapping to estimate the 95% confi-
dence interval and best estimate of the correlation coefficient between grain
and straw yields for this wheat variety grown in the conditions of Mercer &
Hall’s experiment.

You should obtain the following plot of the bootstrap:
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You should obtain these results for the basic confidence interval and best
estimate of the population correlation coefficient ρ: ρ̂ = 0.7297, ρ ∈
(0.6802,0.7928). Compare this to the parametric (Pearson’s) estimate:
ρ̂ = 0.7298, ρ ∈ (0.686,0.7683). What can you conclude about the ap-
propriateness of the parametric test and its confidence interval computed on
the basis of a theoretical bivariate normal distribution, in this experiment?

10.3 Answers

A63 : The single (non-bootstrapped) estimate is 2.945, shown by the dashed verti-
cal line, is close to the middle of the histogram. The histogram of the bootstrapped
estimates of q0.01 is quite irregular. At low values there is a high frequency of
some values and none of others; at high values a fairly uniform distribution. This
is because of the few low values in the sample. Return to Q63 •

A64 : The resampling only uses the known values; there are only 500 of these and
so are not continuous. Return to Q64 •

A65 : The bootstrapped estimate is 2.942, while the one-sample estimate is 2.945.
They are quite close, although the bootstrap estimate is a bit lower (i.e., more
conservative, predicting a lower value for the 1%-lowest grain yields). Return to
Q65 •

A66 : The normal approximation is 2.809 . . . 3.087; the basic bootstrap estimate
is 2.84 . . . 3.08. In this case the basic estimate is a bit narrower than the normal
approximation, probably because the very low values are not as likely as predicted
by the normal distribution see the Q-Q normal probability plot of §7 where the
lower tail is above the Q-Q line. Return to Q66 •

A67 : There is only a 5% chance that in the population of all possible small
plots grown according to the Mercer & Hall experimental protocol, under the same
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conditions (weather, soil . . . ), the lowest 1% of grain yields would be lower than
2.84 or higher than 3.08. Return to Q67 •

A68 : Yes, the parameters do seem normally-distributed. Thus the basic and
normal confidence intervals should be almost the same. Return to Q68 •

A69 : The two types of confidence intervals agree very closely; this is because the
the bootstrap estimates are almost normally-distributed. Return to Q69 •

We are done with these models, some variables, and the boot package, so
clean up the workspace:

> rm(model.grain.straw)

> rm(boot.q01, b.q01, b.q01.ci, boot.sr, b.sr, b.sr.ci)

> detach(package:boot)

11 Robust methods*

A robust inference is one that is not greatly disturbed by:

� a few unusual observations in the dataset, so-called outliers; or

� a “small” violation of model assumptions.

An example of the first case is a contaminated dataset, where some obser-
vations result from a different process then that which produced the others.
In the present example this could be small areas of the wheat field with
extreme stoniness, where a large amount of animal manure was stored, or
where pests attacked. The issue here is that the observations do not all come
from the same population, i.e., result of a single process. But of course that
is not known prior to the experiment.

The second case (violation of model assumptions) can be the result of the
first case (outliers) but also because an incorrect model form was selected to
represent the underlying process.

Recall that in estimating linear regression parameters by least-squares, the
assumed model is:

yi = BXi + εi
where the errors are identically and independently distributed (IID). If the
regression diagnostic plots suggest that this assumption is violated, robust
methods should be used.

11.1 A contaminated dataset

To illustrate the application of robust methods, we purposely add some
contamination to our dataset. That is, we simulate the case where the
wheat plants in some of the 500 plots were subject to some process other
than “normal” growth as affected by soil, weather, management, and small
attacks by a variety of pests. The contamination is that plots in one corner
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of the field were attacked by deer, who ate most of the grain but did not
affect the straw16.

Q70 : What could be some analysis options for the experimenter who
observes different processes in the field? Jump to A70 •

In the present example, we suppose that we receive the dataset without
having any opportunity to determine a priori whether several processes were
active; we need to deal with the dataset as-is. Recall, the purpose of this
experiment is to investigate the distribution of many replications of grain
and straw yields when grown under identical conditions.

� Can we determine whether the conditions were “identical” except for
identical random “noise”?

� How can we estimate true values for the “typical” situation when there
is unknown contamination from another process?

Task 61 : Make a “contaminated” version of the dataset by setting the
16 northwest-most plots’ grain yields (3.2%) to one-quarter of their actual
yields. •

First, make a copy the “true” dataset:

> mhw.c <- mhw

Second, modify the NW corner. The dataset description (§A) states that the
rows ran W to E, with 25 plots in each row, beginning at 1 on the W and
running to 25 at the E, so that columns run S to N with 20 plots in each,
running from 1 at the N to 20 at the S. We can find the 4 x 4 NW-most
plots by selecting on row and column number:

> ix <- (mhw.c$r < 5) & (mhw.c$c < 5)

> rownames(mhw.c[ix, ])

[1] "1" "2" "3" "4" "21" "22" "23" "24" "41" "42" "43" "44" "61"

[14] "62" "63" "64"

> subset(mhw.c, ix)

r c grain straw gsr in.north

1 1 1 3.63 6.37 0.56986 TRUE

2 2 1 4.07 6.24 0.65224 TRUE

3 3 1 4.51 7.05 0.63972 TRUE

4 4 1 3.90 6.91 0.56440 TRUE

21 1 2 4.15 6.85 0.60584 TRUE

22 2 2 4.21 7.29 0.57750 TRUE

23 3 2 4.29 7.71 0.55642 TRUE

24 4 2 4.64 8.23 0.56379 TRUE

41 1 3 4.06 7.19 0.56467 TRUE

16 This happened to the one of author’s field experiments during his MSc research at the
Pennsylvania State University in the mid 1970’s.
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42 2 3 4.15 7.41 0.56005 TRUE

43 3 3 4.40 7.35 0.59864 TRUE

44 4 3 4.05 7.89 0.51331 TRUE

61 1 4 5.13 7.99 0.64205 TRUE

62 2 4 4.64 7.80 0.59487 TRUE

63 3 4 4.69 7.50 0.62533 TRUE

64 4 4 4.04 6.66 0.60661 TRUE

The logical vector ix is a list of TRUE and FALSE, stating whether a given
case (row, observation) in the dataframe is in the NW corner or not.

Now adjust the grain yields:

> mhw.c[ix, "grain"] <- mhw.c[ix, "grain"]/4

Task 62 : Summarize the effect of the contamination both numerically and
graphically. •

First the numeric summary, also the standard deviation:

> summary(mhw$grain)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16

> sd(mhw$grain)

[1] 0.45828

> summary(mhw.c$grain)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.907 3.590 3.915 3.846 4.260 5.160

> sd(mhw.c$grain)

[1] 0.67636

Second, side-by-side histograms “before” and “after”:

> par(mfrow=c(1,2))

> hist(mhw$grain, xlab="Grain yield, lbs / plot",

+ main="Actual", breaks=seq(0,6, by=.25))

> rug(mhw$grain)

> hist(mhw.c$grain, xlab="Grain yield, lbs / plot",

+ main="Contaminated", breaks=seq(0,6, by=.25))

> rug(mhw.c$grain)

> par(mfrow=c(1,1))
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11.2 Robust univariate modelling

Typical parameters estimated for a single variable are some measure of the
center and spread. For a normally-distributed variable the appropriate mea-
sures are the mean and variance (or standard deviation). But these are not
robust. The robust measures include the median for central tendency and
the inter-quartile range (IQR) for spread.

Task 63 : Compute the mean and standard deviation of the actual and
contaminated grain yields. Also compute the robust measures. For all,
compute the percent change due to contamination. •

The mean, sd, median, and IQR functions compute these:

> mean(mhw$grain)

[1] 3.9486

> mean(mhw.c$grain)

[1] 3.8458

> (mean(mhw.c$grain) - mean(mhw$grain))/mean(mhw$grain) *

+ 100

[1] -2.6044

> sd(mhw$grain)

[1] 0.45828

> sd(mhw.c$grain)

[1] 0.67636

> (sd(mhw.c$grain) - sd(mhw$grain))/sd(mhw$grain) * 100

[1] 47.586
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> median(mhw$grain)

[1] 3.94

> median(mhw.c$grain)

[1] 3.915

> (median(mhw.c$grain) - median(mhw$grain))/median(mhw$grain) *

+ 100

[1] -0.63452

> IQR(mhw$grain)

[1] 0.6325

> IQR(mhw.c$grain)

[1] 0.67

> (IQR(mhw.c$grain) - IQR(mhw$grain))/IQR(mhw$grain) *

+ 100

[1] 5.9289

Q71 : How do the changes in the robust measures compare to those in the
non-robust measures? Jump to A71 •

11.3 Robust bivariate modelling

In §8.1.1 we estimated the correlation between grain and straw yield. Recall
that the parametric correlation (Pearson’s) should only be used if the two
variables are distributed approximately bivariate normally. In the original
dataset this seemed to be a reasonable assumption.

In case the relation can not be assumed to be bivariate normal, methods
must be used that do not depend on this assumption. These are called non-
parametric; for correlation a widely-used metric is Spearman’s ρ, which is
the PPMC between the ranks of the observations.

Task 64 : Compare the ranks of the grain and straw yields for the first eight
plots in the original data frame. •

The rank function returns the ranks of the values in a vector, from low to
high. Ties can be handled in several ways; the default is to average the
ranks. We display the data values and their ranks in a table:

> head(cbind(mhw[, c("grain", "straw")], rank(mhw$grain),

+ rank(mhw$straw)), n = 8)

grain straw rank(mhw$grain) rank(mhw$straw)

1 3.63 6.37 123.0 254.5

2 4.07 6.24 299.0 219.5
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3 4.51 7.05 445.5 356.5

4 3.90 6.91 228.0 329.0

5 3.63 5.93 123.0 136.0

6 3.16 5.59 23.5 70.5

7 3.18 5.32 26.0 36.0

8 3.42 5.52 62.5 59.0

Q72 : What are the data values and ranks of the first plot? Do the ranks
of the two variables generally match? Jump to A72 •

Task 65 : Display a scatterplot of the ranks, alongside a scatterplot of the
values of the original dataset, and below this, the same for the contaminated
dataset •

> par(mfrow = c(2, 2))

> plot(rank(mhw$grain), rank(mhw$straw), xlab = "Grain rank",

+ ylab = "Straw rank", pch = 1, main = "Original")

> plot(mhw$grain, mhw$straw, xlab = "Grain (lbs / plot)",

+ ylab = "Straw (lbs / plot)", pch = 20, main = "Original")

> plot(rank(mhw.c$grain), rank(mhw.c$straw), xlab = "Grain rank",

+ ylab = "Straw rank", pch = 1, main = "Contaminated")

> plot(mhw.c$grain, mhw.c$straw, xlab = "Grain (lbs / plot)",

+ ylab = "Straw (lbs / plot)", pch = 20, main = "Contaminated")

> par(mfrow = c(1, 1))
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Q73 : How similar are the rank and value scatterplots in both cases? Which
scatterplot type (rank or value) is more affected by contamination? Jump
to A73 •

Q74 : Does the scatterplot of values (straw vs. grain yields) of the contam-
inated dataset appear to be bivariate normal? Jump to A74
•

Task 66 : Compute the numerical value of the Spearman’s correlation
between grain and straw yield, and compare it to the PPMC. Do this for
both the original and contaminated datasets. •

The cor and cor.test functions have an optional method argument; this
defaults to pearson but can be set explicitly:

> (c.p <- cor(mhw$grain, mhw.c$straw, method = "pearson"))

[1] 0.72978
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> (cc.p <- cor(mhw.c$grain, mhw.c$straw, method = "pearson"))

[1] 0.35968

> (c.s <- cor(mhw$grain, mhw.c$straw, method = "spearman"))

[1] 0.71962

> (cc.s <- cor(mhw.c$grain, mhw.c$straw, method = "spearman"))

[1] 0.61684

Q75 : Which method is most affected by the contamination? Jump to
A75 •

11.4 Robust regression

In §8.2.1 we computed the linear regression of straw yield as modelled by
grain yield.

Task 67 : Repeat the regression fit for the contaminated dataset, and
compare it with the original estimates of the regression model parameters.

•

> print(model.straw.grain)

Call:

lm(formula = straw ~ grain, data = mhw)

Coefficients:

(Intercept) grain

0.866 1.430

> (model.straw.grain.c <- lm(straw ~ grain, data = mhw.c))

Call:

lm(formula = straw ~ grain, data = mhw.c)

Coefficients:

(Intercept) grain

4.678 0.478

Q76 : How much did the regression parameters change? Jump to A76 •

Task 68 : Display the regression diagnostic plots for the regression fit for
the contaminated dataset. Compare these with the plots from §8.2.4. •

> par(mfrow = c(2, 2))

> plot(model.straw.grain.c)

> par(mfrow = c(1, 1))
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Q77 : Are the assumptions for a least-squares linear fit justified? Which
assumptions are violated? Jump to A77 •

Task 69 : Visualize the poor quality of the linear fit on a scatterplot of
straw vs. grain yield of the contaminated dataset. Also show the linear fit
to the original dataset. •

We use the generic plot method with a formula to specify the scatterplot,
the abline function to add lines extracted from the linear models, and the
legend function to place a legend on the graph. Recall, the with function
specifies an environment for the plot method, so that the field names can
be written just as field names, not as dataframe and field.

> with(mhw.c, plot(straw ~ grain))

> abline(model.straw.grain.c)

> abline(model.straw.grain, lty=2, col="blue")

> legend(1.5, 8.5, legend=c("fit", "fit to uncontaminated"),

+ lty=1:2, col=c("black","blue"))
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Q78 : Looking at this scatterplot and the two lines, explain how the con-
tamination affects the linear model fit. Jump to A78
•

Many of the problems with parametric regression can be avoided by fitting
a so-called “robust” regression line. There are many variants of this, well-
explained by Birkes and Dodge [4] and illustrated with S code by Venables
and Ripley [52]. Fox and Weisberg [19] is a good introduction to the con-
cepts, illustrated by R code.

Here we just explore one method: lqs in the MASS package; this fits a regres-
sion to the “good” points in the dataset (as defined by some criterion), to
produce a regression estimator with a high “breakdown” point. This method
has several tuneable parameters; we will just use the default.

This is the so-called “least trimmed squares” (LTS) estimate of the slope
vector β, by the criterion of minimizing:

q∑
i=1

|yi − xiβ|2(i)

that is, the squared absolute deviations over some subset of the residuals,
indicated by the subscript (i) and the summand q in the above formula.
The smallest q residuals are chosen as some proportion, by default:

q = b(n+ p + 1)/2c

where p is the number of predictors and n the number of observations
(cases). In this case these are 2 and 500, so q = 251. There is no an-
alytical solution, the method iterates: first fitting a regular linear model,
then examining the residuals and selecting the q smallest, then refitting
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(thus obtaining a new set of residuals), selecting the smallest q of these,
refitting, and so on until the fit converges.

Task 70 : Load the MASS package and compute a robust regression of straw
on grain yield. Compare the fitted lines and the coefficient of determination
(R2) of this with those from the least-squares fit. •

> require(MASS)

> (model.straw.grain.c.r <- lqs(straw ~ grain, data = mhw.c))

Call:

lqs.formula(formula = straw ~ grain, data = mhw.c)

Coefficients:

(Intercept) grain

-0.0631 1.6857

Scale estimates 0.548 0.531

> sqrt(mean(residuals(model.straw.grain)^2))

[1] 0.61354

The scale estimates are the scale of the error, similar to the residual mean
square in a least-squares fit (shown above for comparison). There are two
scale estimates, the first is based on the fit and is more conservative (larger).

Task 71 : Visualize the robust fit on a scatterplot of straw vs. grain yield
of the contaminated dataset. Also show the linear fit to the contaminated
and original datasets. •

> with(mhw.c, plot(straw ~ grain))

> abline(model.straw.grain.c.r)

> abline(model.straw.grain.c, lty = 3, col = "red")

> abline(model.straw.grain, lty = 2, col = "blue")

> legend(1.5, 8.5, legend = c("robust fit", "linear fit",

+ "fit to uncontaminated"), lty = c(1, 3, 2), col = c("black",

+ "red", "blue"))
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Q79 : Describe the effect of the robust fit. Jump to A79 •

Challenge: Compute the robust regression for the original (uncontami-
nated) dataset. How much does the fit change? What does this imply about
the “outliers” identified in §4.2? Are they contamination (i.e., from another
process) or just unusual (extreme) observations?

Challenge: Repeat the analysis of this section with a larger contaminated
portion of the observations. At what point do the robust estimates also
become unreliable?

11.5 Answers

A70 : Some possibilities:

(1) Remove the known contamination and analyze the “typical” case; state that the
results only apply to these.

(2) Mark observations as “typical” or “contaminated” and use this factor in mod-
elling. Return to Q70
•

A71 : Since the contaminated observations are smaller than the original, the
central tendency will be lower. The contaminated mean is lower by -2.6% whereas
the contaminated median is hardly affected, only -0.6% lower.

The measure of spread is much more affected by contamination: the standard devia-
tion increases dramatically, by 48%, whereas the IQR only increases by 6%. Return
to Q71 •
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A72 : The first plot has grain and straw yields of 3.63 and 6.37, respectively;
these are ranked 123 and 254.5 in their respective vectors. The grain yield is thus
just under the first quartile (123 out of 500) whereas the straw yield is higher, just
under the median (254 out of 500). For this plot, the straw yield ranks considerably
higher than the grain yield.

Overall, in the eight displayed ranks, there is a clear correspondence, but not very
close. Return to Q72 •

A73 : In both datasets the scatterplot of ranks is more diffuse; this is because
the ranks throw away much information (the actual numeric values). In the case of
bivariate normal distributions, the tails (extreme values) contribute disproportion-
ately to the correlation.

The rank plots are much less affected by contamination than the value plots; thus
we expect a non-parametric correlation (based on ranks) to be less affected. Return
to Q73 •

A74 : The relation of straw and grain yields is definitely not bivariate normal. The
group of observations at low grain yields (around 1 lb plot-1) has very little relation
with straw yield, and also is far from the scatter of the “normal” plots. Return to
Q74 •

A75 : The parametric estimate of correlation (Pearson’s) is greatly affected, by
-51%; whereas the non-parametric estimate (Spearman’s) is only changed by -14%.

Return to Q75 •

A76 : The regression parameters (slope and intercept) both change drastically.
The slope decreased from 1.43 to 0.48, i.e., from well above unity (straw yield
increases more than grain yield) to well below (the reverse). The intercept then
is adjusted to maintain the centroid of the regression; for the original dataset this
is 0.87 lb plot-1 straw, i.e., a grain yield of zero corresponds to a straw yield of a
bit under 1 lb plot-1 straw, but to compensate for the greatly reduced slope in the
model of the contaminated dataset this increases to 4.68 lb plot-1 straw. Return
to Q76 •

A77 : Several assumptions are clearly violated:

(1) The residuals have a clear relation with the fits: low fits have very high positive
residuals (these are the plots where the deer ate most of the grain); to compensate
there is then a linear relation between residuals and fits from about 6 to 7.5 lbs plot-1

straw, i.e, the unaffected plots.

(2) The distribution of the residuals is not normal; this is especially clear at high
residuals where the actual residuals are too high, i.e., large over-predictions (be-
cause the model is fitting mostly the ordinary relation, the low-grain plots are
over-predicted).

(3) The high residuals are also associated with high leverage, i.e., the low-grain
plots disproportionately affect the regression parameters (which is why the slope is
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so low). Return to Q77 •

A78 : This scatterplot clearly shows what we mean by “leverage”: the 16 contam-
inated points “pull” the original line (shown as a dashed line on the plot) towards
them. The further from the original centroid, the more the leverage, exactly as with
a physical lever. Return to Q78 •

A79 : The robust fit models the uncontaminated portion of the dataset and
completely ignores the contaminated observations. Thus it gives a true model of
the dominant process of wheat growth. The robust fit is a bit different from the fit
to the uncontaminated dataset, because it also ignores the outliers in the original
dataset. Return to Q79 •

12 Multivariate modelling

In §8.2 we determined that the regression of straw yield on grain yields, over
the whole field, was significant: i.e. straw yield does vary with grain yield. In
§9 we determined that straw yields of the two field halves differ significantly.
This raises the question whether it is possible and useful to combine these
two findings, i.e. whether straw yield can be modelled as a function of both
field half and grain yield.

There are four possibilities, from simplest to most complex:

1. Straw yields can be modelled by field half only;

2. Straw yields can be modelled by grain yield only;

3. Straw yields can be modelled by field half and grain yield, additively
(i.e. with these as independent predictors);

4. Straw yields must be modelled by field half and grain yield, considering
also the interaction between them (i.e. the relation between straw and
grain yield differs in the two field halves).

These are tested with increasingly-complex linear models:

1. One-way ANOVA (or, two-sample t-test) of straw yield; following the
evidence in the boxplot of §9.1 that seemed to show slightly higher
yields in the north half; this was computed in §9.3 above;

2. Linear model of straw yield predicted by grain yield only, following the
evidence of the scatterplot, ignoring field halves; this was computed in
§8.2 above;

3. Linear model of straw yield predicted by field half (a categorical vari-
able) and grain yield (a continuous variable), with an additive model
(§12.1, below);

4. Linear model of straw yield predicted by field half (a categorical vari-
able) and grain yield (a continuous variable), with an interaction model
(§12.3, below);
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We now compute all of these and compare the proportion of the total vari-
ation in straw yield that each explains.

Task 72 : Display the results of the field-half and bivariate regression
models. •

Straw yield vs. field half was already computed in §9.3 above and saved as
model object model.straw.ns:

> summary(model.straw.ns)

Call:

lm(formula = straw ~ in.north, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.181 -0.608 -0.108 0.572 2.359

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.7484 0.0549 122.90 < 2e-16

in.northTRUE -0.4671 0.0777 -6.02 3.5e-09

Residual standard error: 0.868 on 498 degrees of freedom

Multiple R-squared: 0.0677, Adjusted R-squared: 0.0659

F-statistic: 36.2 on 1 and 498 DF, p-value: 3.48e-09

Q80 : Is there evidence that average straw yield differs in the two field
halves? What proportion of the total variation in straw yield is explained
by field half? Jump to A80 •

Straw yield vs. grain yield was computed in §8.2 above and saved as model
object model.straw.grain:

> summary(model.straw.grain)

Call:

lm(formula = straw ~ grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.0223 -0.3529 0.0104 0.3734 3.0342

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.8663 0.2387 3.63 0.00031

grain 1.4305 0.0601 23.82 < 2e-16

Residual standard error: 0.615 on 498 degrees of freedom

Multiple R-squared: 0.533, Adjusted R-squared: 0.532

F-statistic: 567 on 1 and 498 DF, p-value: <2e-16
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Q81 : Is there evidence that straw yield varies with grain yield? What
proportion of the total variation in straw yield is explained by grain yield?

Jump to A81 •

Since both of these predictors (field half and grain yield) do explain some
of the straw yield, it seems logical that a combination of the two, i.e. a
multivariate model, might explain more than either separately. So, we now
model straw yield vs. grain yield, also accounting for the overall difference
between field halves.

12.1 Additive model: parallel regression

The simplest multivariate model is an additive model, also called parallel re-
gression because it fits one regression line, but with the intercept at different
levels, one for each field half.

Task 73 : Model straw yield as the combined effect of two independent
predictors: field half and grain yield. •

We use the lm function, naming both predictors on the right-hand side of
the model formula, combined with the + “additive effects” formula operator.
This is not an arithmetic + (addition), because it is written in a model
formula.

> model.straw.ns.grain <- lm(straw ~ in.north + grain,

+ data = mhw)

> summary(model.straw.ns.grain)

Call:

lm(formula = straw ~ in.north + grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.2548 -0.3189 -0.0276 0.3042 2.7871

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0461 0.2178 4.8 2.1e-06

in.northTRUE -0.5132 0.0500 -10.3 < 2e-16

grain 1.4499 0.0546 26.5 < 2e-16

Residual standard error: 0.559 on 497 degrees of freedom

Multiple R-squared: 0.614, Adjusted R-squared: 0.613

F-statistic: 396 on 2 and 497 DF, p-value: <2e-16

Q82 : Is there evidence that both field half and grain yield are needed to
predict straw yield? What proportion of the total variation in straw yield is
explained by this model? Jump to A82 •
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Q83 : According to the model summary, what is the difference in overall
yields between the S and N halves? What is the slope of the regression line
for straw vs. grain yield? Is this the same as the slope for the model that
does not include field half? Jump to A83 •

In parallel regression (additive effects of a continuous and discrete predictor)
there is only one regression line, which is displaced up or down for each class
of the discrete predictor. Even though there are two predictors, we can
visualize this in a 2D plot by showing the displaced lines.

> with(mhw, plot(straw ~ grain, col = ifelse(in.north,

+ "blue", "slategray"), pch = 20, xlab = "grain (lbs plot-1)",

+ ylab = "straw (lbs plot-1)"))

> title(main = "Straw vs. grain yield")

> title(sub = "N half: blue, S half: grey; whole-field line: red")

> abline(coefficients(model.straw.ns.grain)["(Intercept)"],

+ coefficients(model.straw.ns.grain)["grain"], col = "slategray")

> abline(coefficients(model.straw.ns.grain)["(Intercept)"] +

+ coefficients(model.straw.ns.grain)["in.northTRUE"],

+ coefficients(model.straw.ns.grain)["grain"], col = "blue")

> abline(model.straw.grain, lty = 2, col = "red")

> grid()
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Straw vs. grain yield

N half: blue, S half: grey; whole−field line: red

In the code for this plot, note the use of the coefficients function to
extract the model coefficients.

12.2 Comparing models

Is a more complex model better than a simpler one? There are several ways
to answer this, among which are:

� Compare the adjusted R2 of the two models: this is the proportion of
the variance explained;
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� Directly compare hierarchical models with an Analysis of Variance.

Task 74 : Compare the adjusted R2 of the three models. •

We’ve already seen these in the model summaries; they can be accessed
directly as field adj.r.squared of the model summary:

> summary(model.straw.ns)$adj.r.squared

[1] 0.065864

> summary(model.straw.grain)$adj.r.squared

[1] 0.53164

> summary(model.straw.ns.grain)$adj.r.squared

[1] 0.61268

Q84 : Which model explains the most variability? Jump to A84 •

Another way to compare two hierarchical models (i.e. where the more com-
plex model has all the predictors of the simpler one) is with an analysis
of variance: comparing variance explained vs. degrees of freedom. This is
a statistical test, so we can determine whether the more complex model is
provably better.

Task 75 : Compare the additive multivariate model to the two univariate
models. •

The anova function can be used to compare the models:

> anova(model.straw.ns.grain, model.straw.ns)

Analysis of Variance Table

Model 1: straw ~ in.north + grain

Model 2: straw ~ in.north

Res.Df RSS Df Sum of Sq F Pr(>F)

1 497 155

2 498 375 -1 -220 704 <2e-16

> anova(model.straw.ns.grain, model.straw.grain)

Analysis of Variance Table

Model 1: straw ~ in.north + grain

Model 2: straw ~ grain

Res.Df RSS Df Sum of Sq F Pr(>F)

1 497 155

2 498 188 -1 -32.9 105 <2e-16
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The anova function compares the residual sum of squares (RSS) of the two
models; this is the amount of variability not explained by the model, so a
lower RSS is better. It then computed the F-ratio between the two vari-
ances, and the probability that this large an F-value, with the degrees of
freedom (d.f.) could occur by chance, if the null hypothesis of no model
improvement is true. The probability of a Type I error (falsely rejecting a
true null hypothesis) is reported as field Pr(>F); lower is better.

Q85 : Is the multivariate additive model provably better than either uni-
variate model? Jump to A85
•

12.3 Interaction model

We saw that the additive model is superior to either single-predictor model.
However, there is also the possibility that both field half and grain yield help
predict straw yield, but that the relation between straw and grain is different
in the two halves; this is known as an interaction. This allows a different
linear regression in each field half, rather than a parallel regression.

Q86 : What is the difference between an additive and interaction model,
with respect to processes in the field? Jump to A86 •

Task 76 : Model straw yield as the combined effect of two interacting
predictors: field half and grain yield. •

We use the lm function, naming both predictors on the right-hand side of the
model formula, combined with the * “interactive effects” formula operator.
This is not an arithmetic * (multiplication).

> model.straw.ns.grain.i <- lm(straw ~ in.north * grain,

+ data = mhw)

> summary(model.straw.ns.grain.i)

Call:

lm(formula = straw ~ in.north * grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.2242 -0.3169 -0.0398 0.3136 2.7574

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2930 0.2979 4.34 1.7e-05

in.northTRUE -1.0375 0.4350 -2.39 0.017

grain 1.3872 0.0752 18.44 < 2e-16

in.northTRUE:grain 0.1328 0.1094 1.21 0.225

Residual standard error: 0.559 on 496 degrees of freedom

106



Multiple R-squared: 0.615, Adjusted R-squared: 0.613

F-statistic: 265 on 3 and 496 DF, p-value: <2e-16

Q87 : What do the four coefficients in the regression equation represent?
Jump to A87 •

Q88 : Are the two slopes (one for each field half) significantly different? Is
an interaction model indicated? What does that imply about the processes
in the field? Jump to A88 •

Even though the slopes are not significantly different, we show them graph-
ically, to visualize how different they are.

Task 77 : Plot the two regressions (one for each field half). •

To do this, we use the optional subset argument to the lm method to select
just some observations, in this case, those in a zone. We plot each regression
line (using the abline function on the model object returned by lm) and
its associated points in different colours, using the col graphics argument.
Dashed lines (using the lty graphics argument) show the parallel regression
for the two field halves.

> with(mhw, plot(straw ~ grain, col = ifelse(in.north,

+ "blue", "slategray"), pch = 20, xlab = "grain (lbs plot-1)",

+ ylab = "straw (lbs plot-1)"))

> title(main = "Straw vs. grain, by field half")

> title(sub = "Interaction: solid lines; additive: dashed lines")

> abline(lm(straw ~ grain, data = mhw, subset = in.north),

+ col = "blue")

> abline(lm(straw ~ grain, data = mhw, subset = !in.north),

+ col = "slategray")

> abline(coefficients(model.straw.ns.grain)["(Intercept)"],

+ coefficients(model.straw.ns.grain)["grain"], col = "slategray",

+ lty = 2)

> abline(coefficients(model.straw.ns.grain)["(Intercept)"] +

+ coefficients(model.straw.ns.grain)["in.northTRUE"],

+ coefficients(model.straw.ns.grain)["grain"], col = "blue",

+ lty = 2)

107



3.0 3.5 4.0 4.5 5.0

4
5

6
7

8
9

grain (lbs plot−1)

st
ra

w
 (

lb
s 

pl
ot

−
1)

Straw vs. grain, by field half

Interaction: solid lines; additive: dashed lines

Is this more complex interaction model significantly better than the additive
model?

Task 78 : Compare the interaction and additive models by their adjusted
R2 and with an analysis of variance. •

> summary(model.straw.ns.grain)$adj.r.squared

[1] 0.61268

> summary(model.straw.ns.grain.i)$adj.r.squared

[1] 0.61305

> anova(model.straw.ns.grain.i, model.straw.ns.grain)

Analysis of Variance Table

Model 1: straw ~ in.north * grain

Model 2: straw ~ in.north + grain

Res.Df RSS Df Sum of Sq F Pr(>F)

1 496 155

2 497 155 -1 -0.46 1.47 0.23

Q89 : Does the more complex model have a higher proportion of variance
explained? Is this statistically significant? Jump to A89 •

12.4 Regression diagnostics

As with univariate regression, multivariate regression models must be exam-
ined to see if they meet modelling assumptions.
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Task 79 : Display the diagnostic plots for the additive model: (1) residuals
vs. fits; (2) normal Q-Q plot of the residuals; (3) residuals vs. leverage; (4)
Cook’s distance vs. leverage. •

These are plot types 1, 2, 5, and 6, respectively, selected with the which

optional argument to the plot function applied to linear model output. We
also specify the number of extreme points to label with the id.n optional
argument.

> par(mfrow = c(2, 2))

> plot(model.straw.ns.grain, which = c(1, 2, 5, 6), id.n = 10)

> par(mfrow = c(1, 1))
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Q90 : Which observations (plots) are marked on the plots as being potential
problems? Jump to A90 •

We can identify these numerically. First, we examine plots that were not
well-modelled. We use the criterion of model residuals more than three
standard deviations from zero; we want to see if there is any pattern to
these.
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We identify the plots with the large residuals, using the rstandard “stan-
dardized residuals” function, and show just these records in the data frame,
using the which function to identify their row (record) numbers:

> (selected <- which(abs(rstandard(model.straw.ns.grain)) >

+ 3))

15 35 184 285 292 295 311 337 362

15 35 184 285 292 295 311 337 362

> rstandard(model.straw.ns.grain)[selected]

15 35 184 285 292 295 311 337

5.0007 -4.0459 -3.1930 3.1776 -3.0646 3.8105 3.8741 3.9068

362

3.4074

Second, build a data frame with all the information for these plots, along
with the residuals, using the cbind function to add a column:

> mhw.hires <- cbind(mhw[selected,],

+ sres = rstandard(model.straw.ns.grain)[selected])

> rm(selected)

> str(mhw.hires)

'data.frame': 9 obs. of 7 variables:

$ r : int 15 15 4 5 12 15 11 17 2

$ c : int 1 2 10 15 15 15 16 17 19

$ grain : num 3.46 4.42 4.59 3.7 4.86 3.73 3.74 3.05 4.26

$ straw : num 8.85 5.2 5.41 7.67 6.39 8.58 8.63 7.64 8.61

$ gsr : num 0.391 0.85 0.848 0.482 0.761 ...

$ in.north: logi FALSE FALSE TRUE TRUE FALSE FALSE ...

$ sres : num 5 -4.05 -3.19 3.18 -3.06 ...

Finally, order the selected plots by the residual, using the order function:

> mhw.hires[order(mhw.hires$sres), ]

r c grain straw gsr in.north sres

35 15 2 4.42 5.20 0.85000 FALSE -4.0459

184 4 10 4.59 5.41 0.84843 TRUE -3.1930

292 12 15 4.86 6.39 0.76056 FALSE -3.0646

285 5 15 3.70 7.67 0.48240 TRUE 3.1776

362 2 19 4.26 8.61 0.49477 TRUE 3.4074

295 15 15 3.73 8.58 0.43473 FALSE 3.8105

311 11 16 3.74 8.63 0.43337 FALSE 3.8741

337 17 17 3.05 7.64 0.39921 FALSE 3.9068

15 15 1 3.46 8.85 0.39096 FALSE 5.0007

We can also visualize the locations of these in the field: high positive resid-
uals green, high negative residuals red, symbol size proportional to the
grain/straw ratio:

> with(mhw, plot(c, r, ylim = c(20, 1), cex = 3 * gsr/max(gsr),

+ pch = 20, col = ifelse(rstandard(model.straw.ns.grain) >

+ 3, "brown", ifelse(rstandard(model.straw.ns.grain) <

+ (-3), "red", ifelse(in.north, "lightblue", "gray"))),
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+ xlab = "column", ylab = "row"))

> abline(h = 10.5)

> title(main = "Large residuals, straw yield vs. field half and grain yield")

> title(sub = "Positive: brown; negative: red")
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Large residuals, straw yield vs. field half and grain yield

Positive: brown; negative: red

Note: The nested ifelse functions to select the four colours; the first TRUE
condition stops the evaluation.

Q91 : Are the high positive or negative residuals concentrated in one part
of the field? Is there anything else unusual about these? Hint: look at the
most negative and positive residuals. Jump to A91 •

The plot of leverage vs. Cook’s distance shows which plots most affect the
fit: high leverage and high distance means that removing that plot would
have a large effect on the fit.

Q92 : Do the two highest-residual plots identified in the previous ques-
tion have high leverage? Which high-residual plots also have high leverage?

Jump to A92 •

We can examine the effect of these on the fit by re-fitting the model, leaving
out one or more of the suspect plots.

Task 80 : Fit the model without the two adjacent plots where we hypothe-
size sloppy field procedures and compare the goodness-of-fit and regression
equations to the original model. •

To exclude some observations, we use the - operator on a list of dataframe
row numbers created with the c function:
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> model.straw.ns.grain.adj <- lm(straw ~ in.north + grain,

+ data = mhw[-c(15, 35), ])

> summary(model.straw.ns.grain.adj)

Call:

lm(formula = straw ~ in.north + grain, data = mhw[-c(15, 35),

])

Residuals:

Min 1Q Median 3Q Max

-1.7926 -0.3106 -0.0274 0.3017 2.1942

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.9528 0.2094 4.55 6.8e-06

in.northTRUE -0.5118 0.0481 -10.64 < 2e-16

grain 1.4731 0.0525 28.04 < 2e-16

Residual standard error: 0.536 on 495 degrees of freedom

Multiple R-squared: 0.64, Adjusted R-squared: 0.638

F-statistic: 440 on 2 and 495 DF, p-value: <2e-16

> summary(model.straw.ns.grain)

Call:

lm(formula = straw ~ in.north + grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.2548 -0.3189 -0.0276 0.3042 2.7871

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0461 0.2178 4.8 2.1e-06

in.northTRUE -0.5132 0.0500 -10.3 < 2e-16

grain 1.4499 0.0546 26.5 < 2e-16

Residual standard error: 0.559 on 497 degrees of freedom

Multiple R-squared: 0.614, Adjusted R-squared: 0.613

F-statistic: 396 on 2 and 497 DF, p-value: <2e-16

Q93 : Does the model without the two plots fit the remaining plots better
than the original model? How different are the model coefficients? Jump
to A93 •

Challenge: Compare the four diagnostic plots for the adjusted additive
regression model (i.e., leaving out the “suspect” points) with the diagnostic
plots for the additive regression model with all points, above (§12.4). Display
the two sets of diagnostic plots together and evaluate them visually. What,
if anything, has improved? Does the model now meet the assumptions of
linear regression?
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12.5 Analysis of covariance: a nested model*

In the parallel-lines model there is only one regression line between the con-
tinuous predictor and predictand, which can be moved up and down accord-
ing to different class means; this is an additive model. In the interaction
model there is both an overall line and deviations from it according to class,
allowing different slopes, as well as differences in class means.

Another way to look at this is to abandon the idea of a single regression
altogether, and fit a separate line for each class. This is a nested model:
the continuous predictor is measured only within each level of the classified
predictor. There is no interest in the whole-field relation between straw and
grain, only the overall difference between classes (here, the field halves), and
then the best fit of the straw vs. grain relation in each half separately.

A nested model is specified with the / formula operator (this is not mathe-
matical division). This is to be read as “fit the relation after the / separately
for the two values of the classified variable”.

> model.straw.ns.grain.nest <- lm(straw ~ in.north/grain,

+ data = mhw)

> summary(model.straw.ns.grain.nest)

Call:

lm(formula = straw ~ in.north/grain, data = mhw)

Residuals:

Min 1Q Median 3Q Max

-2.2242 -0.3169 -0.0398 0.3136 2.7574

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.2930 0.2979 4.34 1.7e-05

in.northTRUE -1.0375 0.4350 -2.39 0.017

in.northFALSE:grain 1.3872 0.0752 18.44 < 2e-16

in.northTRUE:grain 1.5199 0.0794 19.14 < 2e-16

Residual standard error: 0.559 on 496 degrees of freedom

Multiple R-squared: 0.615, Adjusted R-squared: 0.613

F-statistic: 265 on 3 and 496 DF, p-value: <2e-16

> plot(straw ~ grain, data = mhw, col = ifelse(mhw$in.north,

+ "blue", "slategray"), pch = 20, xlim = c(2.5, 5.5),

+ ylim = c(4, 9.5))

> coef <- coef(model.straw.ns.grain.nest)

> abline(coef[1], coef[3], col = "slategray")

> abline(coef[1] + coef[2], coef[4], col = "blue")
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The nested model does not compute an overall slope of straw vs. grain;
instead each half has its own regression line (intercept and slope). The
coefficient in.northTRUE gives the difference between the intercept of the
N-half regression line from the intercept of the S-half regression line. The
two coefficients in.northFALSE:grain and in.northTRUE:grain give the
computed slopes of the two regression lines of straw yield vs. grain yield.

Q94 : What are the two slopes of straw vs. grain? Are they different?
Do they differ from the single slope found in the parallel regression model?

Jump to A94 •

Q95 : This model has the same adjusted R-squared as the interaction
model. Why? Jump to A95 •

Challenge: Compare the regression lines of this nested model with the
regression lines implied by the interaction model. Are they the same? Why
or why not?

12.6 Answers

A80 : Yes, straw yield most likely (p ≈ 0) is higher in the South half; but this
explains very little (0.066) of the total variance. Return to Q80 •

A81 : Yes, straw yield almost surely (p ≈ 0) varies with grain yield; this explains
about half (0.532) of the total variance. Return to Q81 •

A82 : Both coefficients are highly significant (probability that they are really
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zero almost nil). Coefficient in.northTRUE represents the difference between field
halves, and grain the regression between straw and grain.

This explains over 60% (0.613) of the total variance. Return to Q82 •

A83 : Coefficient in.northTRUE represents the difference between field halves; the
fitted value is -0.5132 lb. plot-1. Coefficient grain is the regression between straw
and grain; the fitted value is 1.4499 lb. straw increase per plot for each lb grain
increase per plot. This is not the same as the best-fit univariate line (ignoring field
half), which is 1.4305 Return to Q83 •

A84 : The multivariate additive model is clearly best; it explains about two-thirds
(66%) of the variability, whereas the whole-field straw vs. grain model only explains
just more than half (53%) and the field-half model very little (6%). Return to
Q84 •

A85 : Yes, in both cases the probability that we’d be wrong by rejecting the null
hypothesis of no difference is practically zero. The RSS decreases from 375.4 for the
field-half model, and 188.2 for the whole-field straw vs. grain model, to 155.3 for the
combined model. That is, much less variability in straw yield remains unexplained
after the combined model. Return to Q85 •

A86 : The parallel regression models the case where one half of the field is more
productive, on average, than the other, but the relation between grain and straw is
the same in both cases (i.e. the grain/straw ratio is the same in both field halves).
There is no difference in plant morphology, just overall size.

By contrast, the interaction model allows that the two field halves may also differ
in the grain/straw ratio, i.e. the relation between grain and straw yield – different
plant morphology. Return to Q86 •

A87 : The coefficients are:

1. (Intercept): estimated straw yield at zero grain yield and in the S field
half;

2. in.northTRUE: difference in average yield in the N vs. the S;

3. grain: increase in straw yield for each unit increase in grain yield, in the S
field half;

4. in.northTRUE:grain: difference in slope (increase in straw yield for each
unit increase in grain yield) in the N vs. the S.

Return to Q87 •

A88 : The coefficient in.northTRUE:grain is not significant; the probability of
falsely rejecting the null hypothesis is quite high, 0.2255, so we should accept the
hypothesis that this difference is really 0.
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According to this test, the interaction is not significant. Plants grow with the same
morphology in the two field halves. Return to Q88 •

A89 : The interaction model has slightly higher adjusted R2: 0.61305 vs. 0.61268.
However, the ANOVA table shows that this increase has a p=0.225 probability of
occurring by chance, so we conclude the interaction model is not justified. This is
the same conclusion we reached from the model summary, where the interaction
term (coefficient) was not significant. Return to Q89 •

A90 : Plots labelled on the diagnostic graphs are 15, 337, 311, 295, 362, 285
(positive residuals) and 35, 184, 292, 457 (negative residuals). These have residuals
more extreme than expected by theory (normal Q-Q plot of residuals). Plots 292,
337, 264, 184 and 309 are large residuals with high leverage. Return to Q90 •

A91 : The highest four positive residuals are all in the S half, but otherwise do
not seem clustered. The most negative residual is from plot 35 (r=15, c=2) and the
most positive from the immediately adjacent plot 15 (r=15, c=1). Could some of
the grain from plot 15 have been accidentally measured as part of the yield of plot
35? If these two are combined, the grain/straw ratio is 0.56085, close to the mean
grain/straw ratio of the whole field, 0.61054. Return to Q91 •

A92 : Plots 15 and 35 do not have high leverage, i.e. their removal would not change
the equation very much. The high-leverage plots that also have high residuals are
292 and 184 (negative residuals) and 337, 264 and 309 (positive residuals). Return
to Q92 •

A93 : The fit is considerably better without these badly-modelled plots: 0.63841
without the two plots vs. 0.61268 with them. Another 2.5% of the variation is
explained.

The coefficient for field half hardly changes, but the regression line changes substan-
tially: higher intercept: (0.9528 vs. 1.0461) and shallower slope (1.4731 vs. 1.4499
. As predicted by the high leverage, removing these points changes the functional
relation. Return to Q93 •

A94 : The slope in the S half is 1.3872, in the N half 1.5199. These differ
considerably from each other, and from the parallel regression slope: 1.4499. The
slope in the S half is less steep, in the N half steeper, than the parallel regression
slope. Return to Q94 •

A95 : Both models have four parameters to fit the same dataset. Both model
difference between levels (either means or intercepts) and slopes. Return to Q95 •

We are done with these models and some other variables, so clean up the
workspace:

> rm(model.straw.ns, model.straw.grain, model.straw.ns.grain,

+ model.straw.ns.grain.adj, model.straw.ns.grain.i,
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+ model.straw.ns.grain.nest)

> rm(struct.beta, beta, mhw.hires)

13 Principal Components Analysis

In §8.1.1 and §11.3 we computed the correlation between the grain and straw
yields from each plot, i.e., the strength of their association. This showed that
they are highly-correlated. Thus there is redundancy: the two variables are
not fully independent.

Principal components analysis (PCA) is a data reduction technique. It finds
a new set of variables, equal in number to the original set, where these so-
called synthetic variables are uncorrelated. In addition, the first synthetic
variable represents as much of the common variation of the original variables
as possible, the second variable represents as much of the residual variation
as possible, and so forth. This technique thus reveals the structure of the
data. The transformation itself and the synthetic variables produced by it
can be interpreted by the analyst to understand the underlying processes.

In the present example, Mercer & Hall measured two variables: grain and
straw yield. However, these measured quantities are the outcomes of pro-
cesses which we can not directly observe: (1) plant growth; (2) partition of
plant growth between grain and straw. PCA can be used to gain insight into
these.

PCA is often used for data reduction in datasets with many variables; good
examples are image processing or spectroscopy with many bands, and geo-
chemical datasets with many measured elements. It is explained by many
textbooks on remote sensing [e.g. 1, 34]

Note: In terms of mathematics, the vector space made up of the original
variables is projected onto another space such that the projected variables are
orthogonal, with descending variances. The mathematics are well-explained
in many texts, e.g., [9, 30].

PCA can be standardized or not. If so, the variables are centred to zero
mean and then scaled to unit variance, thus giving them equal importance
mathematically. In the second, the original units are used after centring;
thus variables with more variance are more important. In the present case,
although the two variables are computed in the same units of measure (lb.
plot-1), they are of intrinsically different magnitude (there is much more
straw than grain). To reveal the relation between the variables they should
be standardised before computing the principal components.

Task 81 : Compute the standardized PCA of grain and straw yields. •

The prcomp function computes the PCA; with the optional scale argument
the variables are first scaled, resulting in standardized PCA. The output is
an object of class prcomp.

> pc <- prcomp(mhw[, c("grain", "straw")], scale = T)

> summary(pc)
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Importance of components:

PC1 PC2

Standard deviation 1.315 0.520

Proportion of Variance 0.865 0.135

Cumulative Proportion 0.865 1.000

The standard deviations shown here are of the synthetic variables (princi-
pal components); these re-apportion the standard deviations of the original
variables according to the redundancy.

Q96 : How much of the variance is explained by each component? How
much data redundancy is in the original two variables? Jump to A96 •

Sometimes PCA is used just for data reduction, but here our interest is in
the interpretation. One way to interpret is to examine the loadings: these
show how the synthetic variables are created from the original ones.

Note: Mathematically, these are the eigenvectors (in the columns) which
multiply the original (scaled and centred) variables to produce the synthetic
variables (principal components).

Task 82 : Examine the loadings of the two PC’s. •

These are in the rotation field of the PCA object.

> pc$rotation

PC1 PC2

grain 0.70711 -0.70711

straw 0.70711 0.70711

These can be visualized on a so-called biplot, which shows the loadings as
vectors in the space spanned by two PC’s. It also shows the location of
the 500 observations in this space, i.e., the values of the synthetic variables
(called the principal component “scores”).

Task 83 : Display the biplot. •

This is displayed with the biplot method, which when presented with an
object of class prcomp specializes to the biplot.prcomp function. We specify
the pc.biplot argument to be TRUE, to produce the biplot as proposed by
Gabriel [20], which scales the scores of the observations and rotations by the
components’ standard deviations (eigenvalues).

> biplot(pc, pc.biplot = T)

> abline(h = 0, lty = 2)

> abline(v = 0, lty = 2)

> grid()
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The biplot can be interpreted in several ways:

1. The orientation (direction) of the vector, with respect to the PC space.
The more a vector, which represents an original variable, is parallel to
a PC axis, the more it contributes to that PC.

2. The length in the space defined by the displayed PCs; the longer the
vector, the more variability of this variable is represented by the two
displayed PCs.

3. The angles between vectors of different variables show their correlation
in the space spanned by the two displayed PC’s: small angles repre-
sent high positive correlation, right angles represent lack of correlation,
opposite angles represent high negative correlation.

The scaled values of the eigenvectors are shown as the top (PC1) and
right (PC2) axes.

Because of the scaling applied, the inner (vector) product between two
variables approximates their covariance (if standardized, their correla-
tion). Thus two vectors that are almost parallel will have a very high
covariance, and two orthogonal vectors will have no covariance.

4. The location of observations in the biplot space, defined by their scores
scaled by the standard deviation of each PC, i.e., its eigenvalue: this
shows the relation of observations to each other and which observations
are unusual. These values are shown on the bottom (PC1) and left
(PC2) axes.

Because of the scaling applied, the distances between observations plot-
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ted in this space approximate the Mahalanobis distance between them;
this is a common multivariate measure of similarity between observa-
tions.

Q97 : Considering the biplot and loadings matrix, what does the first PC
represent? Jump to A97 •

To help answer this question, we can examine the field plots with the highest
and lowest scores of PC1. The scores (synthetic variables) are returned in
the x field of the prcomp object; this is a matrix whose columns are the PC
scores.

The which.max and which.min functions find the positions of the maximum
and minimum values in a vector. We then extract the record from the
dataframe, and also show the PC scores:

> summary(pc$x)

PC1 PC2

Min. :-3.6114 Min. :-1.8592

1st Qu.:-0.9321 1st Qu.:-0.3474

Median :-0.0996 Median : 0.0119

Mean : 0.0000 Mean : 0.0000

3rd Qu.: 0.9220 3rd Qu.: 0.3028

Max. : 3.6521 Max. : 2.5921

> mhw[ix.max <- which.max(pc$x[, "PC1"]), ]

r c grain straw gsr in.north

79 19 4 5.16 8.78 0.5877 FALSE

> pc$x[ix.max, ]

PC1 PC2

3.652143 -0.086016

> mhw[ix.min <- which.min(pc$x[, "PC1"]), ]

r c grain straw gsr in.north

470 10 24 2.84 4.1 0.69268 TRUE

> pc$x[ix.min, ]

PC1 PC2

-3.61141 -0.19024

Q98 : Which are the plots with the largest positive and negative scores for
PC1? How is this explained? Jump to A98 •

If you have looked closely at the biplot, you have surely noticed that the lower
and left axes, which are related to the PC scores, do not correspond exactly
to the scores (read the values for PC1 off the graph for the highest/lowest
scores discovered just above). This is because the default biplot is scaled
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by the standard deviation of each PC, i.e., its eigenvalue. If we reverse the
scaling, we see the value on the plot:

> pc$sdev

[1] 1.31521 0.51983

> pc$x[ix.max, ]/pc$sdev

PC1 PC2

2.77685 -0.16547

> pc$x[ix.min, ]/pc$sdev

PC1 PC2

-2.74588 -0.36596

Now you can properly locate the PC scores for field plots 79 and 470 on the
biplot.

Q99 : What is the interpretation of the second PC? Jump to A99 •

To help answer this question we can again look at high– and low–scoring
observations, but this time for PC2.

> mhw[ix.max <- which.max(pc$x[, "PC2"]), ]

r c grain straw gsr in.north

15 15 1 3.46 8.85 0.39096 FALSE

> pc$x[ix.max, ]/pc$sdev

PC1 PC2

0.82436 4.98651

> mhw[ix.min <- which.min(pc$x[, "PC2"]), ]

r c grain straw gsr in.north

184 4 10 4.59 5.41 0.84843 TRUE

> pc$x[ix.min, ]/pc$sdev

PC1 PC2

0.091197 -3.576666

Q100 : Interpret the two PCs and the proportion of variance explained by
each in terms of this experiment. Jump to A100 •

So far we have only looked at the observations in PC space, shown by the
bottom (PC1) and left (PC2) axes. There is another set of axes on the
graph, and vector arrows (drawn in red). The top (PC1) and right (PC2)
axes show the eigenvector components (“rotations”, “loadings”) for the origi-
nal variables, multiplied by the standard deviation (eigenvalue) of the corre-
sponding component. The vector arrows, beginning at the origin and ending
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in labels, show the eigenvectors for the two original variables, scaled as just
explained. The value is at the centre of the label.

> pc$rotation[, 1] * pc$sdev[1]

grain straw

0.93 0.93

> pc$rotation[, 2] * pc$sdev[2]

grain straw

-0.36757 0.36757

The cosine of the angle between the vectors is proportional to their correla-
tion.

Q101 : What does the biplot reveal about the correlation between grain
and straw yield? Jump to A101 •

Challenge: Repeat the analysis with unstandardized principal components.
Explain the differences with standardized PCA for the proportion of variance
explained per component, the rotations, the biplot, and the interpretation
of the two PC’s.

13.1 Answers

A96 : PC1 explains 86.5% and PC2 13.5% of the total variance. That is, about
85% of the information is in the first component; this is a measure of the redundancy.

Return to Q96 •

A97 : The first PC is made up of large contributions from the standardized
variables representing grain yield and straw yield. This is interpreted as general
plant size: high yielding-plants score higher on PC1. Return to Q97 •

A98 : The maximum score is from plot 79, the minimum from plot 470. The
first has both very high grain and straw yield, the second both very low. The
interpretation that PC1 represents overall yield is confirmed. Return to Q98 •

A99 : The second PC represents a contrast between grain and straw yield, inde-
pendent of the overall yield level. Positive values have higher-than-average straw
yields, at a given level of grain yield. In other words, the grain-to-straw ratio (GSR)
is low. The highest– and lowest– scoring plots for PC2 confirm this: plot 15 has a
very low GSR: 0.391, whereas plot 184 has a very high GSR: 0.848. Return to
Q99 •

A100 : In summary, the first PC, accounting for about 85% of the variance in
both grain and straw yield, represents the overall yield level, whereas the second
PC, accounting for about 15% of the variance, represents the grain/straw ratio, i.e.,
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plant morphology independent of yield. The great majority of the overall variability
in this field is due to variable yield. However, there is still a fair amount of variation
in plant morphology that does not depend on overall plant size. Since this is one
variety of wheat (i.e., no genetic variation) and one management, we conclude that
local environmental factors affect not only yield but also plant morphology. Return
to Q100 •

A101 : The angle between the vectors representing the two yields is small, showing
that the yields are highly-correlated. Return to Q101 •

14 Model evaluation

In §8, §9 and §12 models were evaluated by the goodness-of-fit (coefficient
of determination, expressed as the adjusted R2) and compared by ANOVA.
These are internal measures of model quality: the data used to evaluate the
model is also used to build it.

Of course, the main use of a model is to predict; and what we really would
like is some measure of the predictive success of a model, i.e., an external
measures of model quality, using independent data to evaluate the model,
not the data that was used to build it. The modelling steps so far were
designed to best calibrate the model; now we want to evaluate it.

Note: What we call evaluation is often termed validation; we prefer the first
term because we can never know if the model is valid, we can only evaluate
how well it matches reality.

A common approach is to split the dataset into a calibration and an evalu-
ation (often called a validation) set.

1. The model is developed using only the observations in the calibration
set;

2. This model is used to predict at the the observations in the evaluation
set, using the actual (measured) values of the predictor (independent)
variable(s);

3. These predicted values are compared to the actual (measured) values
of the response (dependent) variable in the evaluation set.

14.1 Splitting the dataset

Splitting the dataset has two constraints:

1. The calibration set must be large enough reliable modelling;

2. The evaluation set must be large enough for reliable evaluation statis-
tics.

A common split in a medium-size dataset such as this one is 3 to 1, i.e., 3/4
for calibration and 1/4 for evaluation.

The next issue is how to select observations for each set. This can be:
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� random: select at random (without replacement); this requires no as-
sumptions about the sequence of items in the dataset;

� systematic: select in sequence; this requires absence of serial correla-
tion, i.e., that observations listed in sequence be independent;

� stratified: first divide the observations by some factor and then apply
either a random or systematic sampling within each stratum, generally
proportional to stratum size.

To decide which strategy to use, we need to know how the dataset is ordered,
and if there are any useful stratifying factors.

The sequence of observations is given by the row.names function; to see
just the first few we use the head function with the optional n argument to
specify the number of items to view:

> head(row.names(mhw), n = 10)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

The observations correspond to these are:

> head(mhw, n = 10)

r c grain straw gsr in.north

1 1 1 3.63 6.37 0.56986 TRUE

2 2 1 4.07 6.24 0.65224 TRUE

3 3 1 4.51 7.05 0.63972 TRUE

4 4 1 3.90 6.91 0.56440 TRUE

5 5 1 3.63 5.93 0.61214 TRUE

6 6 1 3.16 5.59 0.56530 TRUE

7 7 1 3.18 5.32 0.59774 TRUE

8 8 1 3.42 5.52 0.61957 TRUE

9 9 1 3.97 6.03 0.65837 TRUE

10 10 1 3.40 5.66 0.60071 TRUE

Q102 : What is the sequence of observations? Could there be serial corre-
lation? Jump to A102
•

Q103 : What are possible stratifying factors? Jump to A103 •

Q104 : Which of these strategies is best to apply to the Mercer-Hall dataset,
and why? Jump to A104 •

Task 84 : Select a random sample of 3/4 of the 500 observations as the
calibration set, and the rest as the evaluation set. •
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The sample function selects a random sample from a vector (here, the row
numbers of the dataframe); the size argument gives the size of the sample
and the replace argument is logical: should sampling be with replacement?

Although we know there are 500 observations, it’s more elegant to extract
the number programatically with the dim “dimensions of a matrix” function.

Finally, we use set.seed so your results will be the same as ours; in practice
you would not use this, instead accept the random seed. The results will be
similar but different with each random sample.

Note: The argument 123 to set.seed is arbitrary, it has no meaning. Any
number can be used, the only purpose is to get the same “random” result in
the subsequent call to sample.

> dim(mhw)

[1] 500 6

> (n <- dim(mhw)[1])

[1] 500

> set.seed(123)

> head(index.calib <- sort(sample(1:n, size = floor(n *

+ 3/4), replace = F)), n = 12)

[1] 1 2 3 4 5 6 7 11 12 13 14 15

> length(index.calib)

[1] 375

Task 85 : Assign the remaining observations to the evaluation set. •

The very useful setdiff function selects the subset of a set that is not in
another subset:

> head(index.valid <- setdiff(1:n, index.calib), n = 12)

[1] 8 9 10 18 20 25 29 30 32 33 37 40

> length(index.valid)

[1] 125

Check that the two subsets together equal the original set; this gives a chance
to introduce the union function and the setequal “are the sets equal?”
logical function.

> setequal(union(index.calib, index.valid), 1:n)

[1] TRUE
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14.2 Developing the model

From §12.2 we know that the multivariate additive model (straw yield ex-
plained by the additive effect of grain yield and field half) is clearly best in
this particular experiment. However, in any other situation the field would
be different and so would any effect of field half. We’d like a measure of how
good is a model to predict straw yield from grain yield in general. So we
work with the single-predictor model.

Task 86 : Re-fit this model on the calibration set. •

> cal.straw.grain <- lm(straw ~ grain, data = mhw, subset = index.calib)

> summary(cal.straw.grain)

Call:

lm(formula = straw ~ grain, data = mhw, subset = index.calib)

Residuals:

Min 1Q Median 3Q Max

-1.9642 -0.3478 0.0102 0.4028 3.0278

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.0699 0.2688 3.98 8.3e-05

grain 1.3735 0.0674 20.39 < 2e-16

Residual standard error: 0.609 on 373 degrees of freedom

Multiple R-squared: 0.527, Adjusted R-squared: 0.526

F-statistic: 416 on 1 and 373 DF, p-value: <2e-16

Q105 : How well do the model coefficients agree with the model based on
all observations? Jump to A105 •

To answer this, fit the model based on all observations, then compare the
absolute and relative differences of the coefficients, extracted from the model
with the coef (or, coefficients function:

> model.straw.grain <- lm(straw ~ grain, data=mhw)

> (coef(cal.straw.grain) - coef(model.straw.grain))

(Intercept) grain

0.203574 -0.056992

> ((coef(cal.straw.grain) - coef(model.straw.grain))

+ /coef(model.straw.grain))*100

(Intercept) grain

23.4998 -3.9841

14.3 Predicting at the evaluation observations

Now we have a model, it can be used to predict at the observations held out
from calibration, i.e., the evaluation set.
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Task 87 : Predict the straw yield for the observation set. •

The predict.lm function, which can also be called as predict, uses an
object returned by lm to predict from a dataframe specified by the newdata

argument. Here the data should be the rows (cases) of the mhw dataframe
that are part of the evaluation set; these row numbers are in the index.valid
vector.

> pred <- predict.lm(cal.straw.grain, newdata = mhw[index.valid,

+ ])

Task 88 : Compare them with the actual yields in this set, both numerically
and graphically. •

For convenience, we first extract the vector of actual yields from the evalu-
ation data frame:

> actual <- mhw[index.valid, "straw"]

We now compare the numeric summaries and side-by-side histograms, using
a common scales for correct visualization.

> summary(pred); summary(actual)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.82 6.03 6.33 6.43 6.84 8.12

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.10 5.95 6.33 6.52 7.08 8.85

> par(mfrow=c(1,2))

> hist(pred, main="", xlab="Predicted straw yields, lb / plot",

+ breaks=seq(4,9.2,by=0.4), freq=F, ylim=c(0,.8))

> hist(actual, main="", xlab="Actual straw yields, lb / plot",

+ breaks=seq(4,9.2,by=0.4), freq=F, ylim=c(0,.8))

> par(mfrow=c(1,1))
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Q106 : What are the major differences in the distributions of the modelled
and actual evaluation observations? Jump to A106 •

14.4 Measures of model quality*

A systematic approach to model quality was presented by Gauch Jr. et al.
[21]. This is based on a comparison of the model-based predictions and the
measured values. This should be a 1:1 relation: each model prediction should
equal the true value. Of course this will rarely be the case; the decomposition
proposed by Gauch Jr. et al. [21] shows the source of the disagreement and
allows interpretation.

Note: Another commonly-used approach was proposed by Kobayashi and
Salam [27], who also wrote a letter contrasting their approach to Gauch’s
[26]; a comprehensive review of model evaluation, citing many applications
and interpretations, is presented by Bellocchi et al. [3].

Gauch Jr. et al. [21] distinguish:

MSD : Mean Squared Deviation. This shows how close, on average the predic-
tion is to reality. Its square root is called the Root Mean Squared Error
of Prediction (RMSEP), expressed in the same units as the modelled
variable.

SB : Squared bias. This shows if the predictions are systematically higher
or lower than reality.

NU : Non-unity slope. This shows if the relation between predicted and
actual is proportional 1:1 throughout the range of values; if not, there
is either an under-prediction at low values and corresponding over-
prediction at high variables (slope > 1), or vice-versa (slope < 1).

LC : Lack of correlation. This shows how scattered are the predictions about
the 1:1 line.

It is quite common to report the RMSEP; this indeed is the single number
that tells how closely, on average, the model predicted the evaluation points;
however the decomposition shows the reason(s) for lack of agreement.

Some notation:

– there are n total evaluation observations;

– yi is the true (measured) value of evaluation observation i;

– ŷi is the predicted value of evaluation observation i;

– the overbar y indicates the arithmetic mean of the yi, etc.
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Then MSD, SB, NU, and LC are computed as:

MSD = 1
n

n∑
i=1

(
yi − ŷi

)2
(14.1)

SB =
(
ŷ −y

)2
(14.2)

NU = (1− b2)
1
n

n∑
i=i

(
ŷi − ŷ

)2
(14.3)

LC = (1− r2)
1
n

n∑
i=i

(
yi −y

)2
(14.4)

where:

– b is the slope of the least-squares regression of actual values on the
predicted values, i.e.,

∑
yiŷi/

∑
ŷ2
i ; this is also called the gain.

– r2 is the square of the correlation coefficient r1:1 between actual and

predicted, i.e.,
(∑
yiŷi

)2/
(∑
yi
)2(∑ ŷi)2

.

Thus NU is the non-unity slope in the regression of actual on predicted,
scaled by the sums of squares of the predicted values of the evaluation ob-
servations, and LC is the lack of correlation in the regression of actual on
predicted, scaled by the sums of squares of the actual values of the evaluation
observations.

These have the relation:

MSD = SB+NU+ LC (14.5)

That is, the total evaluation error consists of bias, gain, and lack of correla-
tion. These are distinct aspects of model quality and can be interpreted as
translation (SB), rotation (NU), and scatter (LC), respectively:

Translation : The model systematically over- or under-predicts;

Rotation : The relation between actual and predicted value is non-linear, that is,
not a constant relation throughout the range of values;

Scatter : The model is not precise.

If there is significant translation or rotation, this indicates the model form is
not correct; we show an example of this below in §14.5. If there is significant
scatter, this indicates that the model does not well-describe the system;
perhaps there are missing factors (predictors) or perhaps the system has a lot
of noise that can not be modelled. Thus by examining the model evaluation
decomposition the analyst can decide on how to improve the model.

We begin by visualizing the predictive success of the model on a 1:1 plot.
Note that by convention this plot has the actual (measured) value on the
y-axis (dependent) and the predicted (modelled) value on the x-axis (inde-
pendent). That is, it shows how the prediction predicts the actual.

129



Task 89 : Plot the actual vs. predicted grain yields of the evaluation set,
with a 1:1 line. •

The plot:

> plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

+ main="Mercer-Hall trial, straw yield, lbs/plot",

+ xlim=c(4.5,9), ylim=c(4.5,9));

> abline(0,1); grid()
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Q107 : How well does the calibrated model predict the evaluation observa-
tions? Jump to A107
•

14.4.1 MSD

Task 90 : Compute the MSD and RMSEP. •

> (valid.msd <- sum((actual - pred)^2)/length(index.valid))

[1] 0.40341

> (valid.msd <- mean((actual - pred)^2))

[1] 0.40341

> (valid.rmsep <- sqrt(valid.msd))

[1] 0.63514
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Q108 : How does the RMSEP compare to the RMSE (root mean squared
error) in the calibration linear model? What is the practical interpretation
of the RMSE? Jump to A108 •

The RMSE of the linear model is the mean of the squared residuals, extracted
from the linear model with the residuals function:

> (rmse <- sqrt(mean(residuals(cal.straw.grain)^2)))

[1] 0.60742

14.4.2 SB

Task 91 : Compute the bias and its square (SB). •

> (valid.bias <- (mean(pred) - mean(actual)))

[1] -0.085874

> (valid.sb <- valid.bias^2)

[1] 0.0073743

> valid.sb/valid.msd * 100

[1] 1.828

Q109 : What is the bias? Is it positive or negative? What does this imply
about the model? What proportion of the MSD is attributed to the SB?

Jump to A109 •

14.4.3 NU

The next component of the error the non-unity slope (NU) factor. To com-
pute this we first need to compute b, the slope of the least-squares regression
of actual values on the predicted values. This is an interesting number in
its own right, the gain, which we hope will be 1. The gain can be directly
with the least-squares formula

∑
yiŷi/

∑
ŷ2
i , but in practice it’s easier to

use the lm function to fit the slope and then extract that coefficient with the
coef function:

Task 92 : Compute the regression of actual straw yield on predicted grain
yield in the evaluation set, and display, along with the 1:1 line, on a scatter-
plot of actual vs. predicted. •

As usual, we fit the model with the lm function, summarize it with the
summary function (to see the coefficients and scatter), and produce the scat-
terplot with plot. We add text to the plot with text, and (this is new)
produce a legend with legend, also specifying the legend symbols (here,
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lines using the lty “line type” argument) and colours (here, matching the
line colours, both specified with the col “colour” argument):

Now compute, summarize and plot the regression:

> regr.actual.pred <- lm(actual ~ pred)

> summary(regr.actual.pred)

Call:

lm(formula = actual ~ pred)

Residuals:

Min 1Q Median 3Q Max

-1.6928 -0.3468 -0.0084 0.3260 2.3841

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.239 0.614 -2.02 0.046

pred 1.206 0.095 12.69 <2e-16

Residual standard error: 0.623 on 123 degrees of freedom

Multiple R-squared: 0.567, Adjusted R-squared: 0.564

F-statistic: 161 on 1 and 123 DF, p-value: <2e-16

> plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

+ main="Mercer-Hall trial, straw yield, lbs/plot",

+ xlim=c(4.5,9), ylim=c(4.5,9));

> abline(regr.actual.pred, col="red")

> abline(0,1); grid()

> text(4.5, 8.5, paste("Gain:", round(coef(regr.actual.pred)[2], 2)),

+ pos=4, col="red")

> legend(7.5, 5, c("1:1","regression"), lty=1, col=c("black","red"))
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Q110 : What is the gain? Is it greater than or less than 1? What does this
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say about the model? Jump to A110 •

The model summary shows that the gain is significantly different from zero,
which is no surprise. To assess it against a null hypothesis of β = 1, one
method is to remove the 1:1 line from the regression and then compare the
regression slope to zero. The 1:1 line is simply the line where actual yield
equals predicted yield, so first we subtract the predicted from the actual;
this would reduce an exact 1:1 slope to 0. Then we re-fit and summarize the
model. We also visualize the hypothesized 0 slope and the actual negative
gain.

> regr.actual.pred.0 <- lm(I(actual - pred) ~ pred)

> summary(regr.actual.pred.0)

Call:

lm(formula = I(actual - pred) ~ pred)

Residuals:

Min 1Q Median 3Q Max

-1.6928 -0.3468 -0.0084 0.3260 2.3841

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.239 0.614 -2.02 0.046

pred 0.206 0.095 2.17 0.032

Residual standard error: 0.623 on 123 degrees of freedom

Multiple R-squared: 0.0368, Adjusted R-squared: 0.0289

F-statistic: 4.7 on 1 and 123 DF, p-value: 0.0322

> plot(I(actual - pred) ~ pred, ylab="Actual - Predicted",

+ xlab="Predicted",

+ main="Mercer-Hall trial, straw yield, lbs/plot")

> grid(); abline(regr.actual.pred.0, col="red"); abline(h=0)

> text(5, 1.6, paste("Slope:",

+ round(coef(regr.actual.pred.0)[2], 2)),

+ pos=4, col="red")

> legend(5, -1, c("1:1","regression"), lty=1, col=c("black","red"))
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The I“as-is”function is used here to specify that the expression (actual-pred)

is an arithmetic operation, not a model formula. This is necessary because
- is a formula operator, meaning to remove a term from a model. However
here we want the - operator to have its usual (arithmetic) meaning.

The slope coefficient here is exactly 1 less than the slope coefficient from the
original regression of actual vs. predicted, as expected:

> coef(regr.actual.pred)[2] - coef(regr.actual.pred.0)[2]

pred

1

Q111 : Is the gain of the regression of actual vs. predicted significantly
different from 1? Jump to A111 •

Task 93 : Compute the non-unity slope (NU) factor. •

First, extract the slope from the fitted linear model:

> b <- coef(regr.actual.pred)[2]

> names(b) <- NULL

> print(b)

[1] 1.2059

Note: The names function retrieves the name attribute; here it was assigned
the coefficient name pred (from the independent variable’s name) by the lm

function. We don’t need the name, so we assign it NULL.

Then we use equation (14.3). The factor 1/n ·
∑n
i=i(xi − x)2 is the mean

squared deviation of the predicted values from their mean:
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> (valid.msd.pred <- mean((pred - mean(pred))^2))

[1] 0.34355

and this is multiplied by the squared deviation of the slope of the regression
of actual on predicted from 1:1:

> (valid.nu <- (1 - b)^2 * valid.msd.pred)

[1] 0.014564

> valid.nu/valid.msd * 100

[1] 3.6101

Q112 : What is the magnitude of the non-unity factor NU? What proportion
of the MSD is attributed to the NU? Jump to A112 •

14.4.4 LC

The final aspect of model quality is the lack of correlation, LC.

Task 94 : Compute LC. •

We use equation (14.4). The factor 1/n·
∑n
i=i(yi−y)2 is the mean squared

deviation of the measured values from their mean:

> (valid.msd.actual <- mean((actual - mean(actual))^2))

[1] 0.88105

and then this is multiplied by the lack of fit in the regression of actual on
predicted, (1− r2). The fit is a field in the model summary; it can also be
computed directly with cor function for this bivariate model:

> (r2 <- summary(regr.actual.pred)$r.squared)

[1] 0.56703

> (r2 <- cor(actual, pred)^2)

[1] 0.56703

> (valid.lc <- (1 - r2) * valid.msd.actual)

[1] 0.38147

> valid.lc/valid.msd * 100

[1] 94.562

Q113 : What proportion of the MSD is attributed to LC? Jump to A113 •

Check that the three components add up to the MSD:
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> print(valid.msd - (valid.sb + valid.nu + valid.lc))

[1] 3.3307e-16

Yes, within rounding error.

Q114 : What is the weak point of the model? Is the linear form justified?
Jump to A114 •

Challenge: Repeat the above analysis for several more random selections
(splits 3/4 – 1/4) of subsets (see §14.1). Collect the statistics for MSD and
its components and summarize them (minimum, maximum, IQR, range,
mean). How much do MSD and its components change? How reliable then
is information from a single split of this size?

Challenge: Repeat the above analysis for another (or several more) split
sizes, e.g., 1/20, 1/10, 1/5, 1/3, 1/2 evaluation sets. Again, take several
selections at each split, and summarize them as in the previous challenge.
Also summarize the calibrations (model coefficients and their standard er-
rors). At what splits are the calibration and evaluation results (considered
separately) least variable? For this dataset what is the best balance?

14.5 An inappropriate model form*

The main use of the evaluation analysis is to discover an inappropriate model
form. We can see how this works by fitting such a model. The example we
choose is a linear model without an intercept. That is, we force a zero grain
yield to also have a zero straw yield. This was discussed above in §8.4,
where its deficiencies in this case were revealed; here we analyze these with
the model evaluation components of the previous section.

Q115 : Would a plot with no grain yield necessarily have no straw yield?
Jump to A115 •

Task 95 : Fit a linear model of straw predicted by grain, without an
intercept, to the evaluation subset, and summarize it. •

By default models fit with lm include an intercept; to remove it use the -

formula operator to remove the intercept, symbolized by the term 1.

> cal.straw.grain.00 <- lm(straw ~ grain - 1, data = mhw,

+ subset = index.calib)

> summary(cal.straw.grain.00)

Call:

lm(formula = straw ~ grain - 1, data = mhw, subset = index.calib)

Residuals:

Min 1Q Median 3Q Max
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-2.117 -0.362 0.045 0.380 3.176

Coefficients:

Estimate Std. Error t value Pr(>|t|)

grain 1.63977 0.00804 204 <2e-16

Residual standard error: 0.621 on 374 degrees of freedom

Multiple R-squared: 0.991, Adjusted R-squared: 0.991

F-statistic: 4.16e+04 on 1 and 374 DF, p-value: <2e-16

Task 96 : Plot the straw vs. grain yield of the evaluation set, with the with-
intercept and no-intercept models shown as lines; include the (0,0) point.

•

The graphing limits are specified with the xlim and ylim arguments to plot:

> plot(straw ~ grain, data = mhw, subset = index.calib,

+ xlim = c(0, 6), ylim = c(0, 9))

> title("Mercer-Hall trial, calibration dataset")

> abline(cal.straw.grain, lty = 2)

> abline(cal.straw.grain.00, col = "red")

> grid()

> legend(4, 1, c("with intercept", "no intercept"), lty = c(2,

+ 1), col = c("black", "red"))

> text(0, 2.5, paste("Slope:", round(coef(cal.straw.grain)[2],

+ 2)), pos = 4)

> text(1, 0.5, paste("Slope:", round(coef(cal.straw.grain.00)[1],

+ 2)), col = "red")
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Slope: 1.37
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Q116 : What is the effect of forcing the regression through (0,0)? Can you
determine by eye which one fits better the observations? Jump to A116 •
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Task 97 : Compute the predicted values for the evaluation observations,
using the no-intercept model. •

> pred <- predict.lm(cal.straw.grain.00, newdata = mhw[index.valid,

+ ])

> summary(pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.48 5.92 6.28 6.40 6.89 8.41

Task 98 : Plot the actual vs. predicted on a 1:1 graph, along with the 1:1
line and a regression of actual vs. predicted. •

> regr.actual.pred.00 <- lm(actual ~ pred)

> plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

+ main="Mercer-Hall trial, straw yield, lbs/plot",

+ xlim=c(4.5,9), ylim=c(4.5,9));

> abline(regr.actual.pred.00, col="red")

> abline(0,1); grid()

> text(4.5, 8.5, paste("Gain:",

+ round(coef(regr.actual.pred.00)[2], 2)),

+ pos=4, col="red")

> legend(7.5, 5, c("1:1","regression"), lty=1,

+ col=c("black","red"))
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Task 99 : Compute the evaluation statistics. •

> (msd.00 <- mean((actual - pred)^2))

[1] 0.39495

> (rmsep.00 <- sqrt(msd.00))
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[1] 0.62845

> (sb.00 <- (mean(pred) - mean(actual))^2)

[1] 0.013428

> (nu.00 <- (1 - coef(regr.actual.pred.00)[2])^2 * mean((pred -

+ mean(pred))^2))

pred

4.9761e-05

> (lc.00 <- (1 - cor(actual, pred)^2) * mean((actual -

+ mean(actual))^2))

[1] 0.38147

Task 100 : Compute the relative contribution of the model evaluation
elements to the overall quality. •

> sb.00/msd.00 * 100

[1] 3.4

> nu.00/msd.00 * 100

pred

0.012599

> lc.00/msd.00 * 100

[1] 96.587

> msd.00 - (sb.00 + nu.00 + lc.00)

pred

5.5511e-17

Q117 : How do these statistics compare with those for the with-intercept
model? Interpret them geometrically – what could be wrong with this
model? Jump to A117 •

14.6 Answers

A102 : By row, within each column in the field. Adjacent plots, i.e., adjacent
observations in the data frame, may not be independent. Thus there could be serial
correlation. Return to Q102 •

A103 : Possible stratifying factors are field half (in.north), row, and column.
But we saw in §9.3 that field half only explains a small amount of the variance, well
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under 10%; below in §17 we will see the same result for row and column. Return
to Q103 •

A104 : A random sampling is indicated: (1) there is no useful stratifying factor;
(2) there may be serial autocorrelation. Return to Q104 •

A105 : The coefficients agree fairly well; the percentage change from the full
model to the calibration model is 23.5% for the intercept, -6.6% for the grain yield,

Return to Q105 •

A106 : The actual yields are spread over a wider range, especially the maximum,
and less concentrated at the central value (about 6.5 lbs plot-1). Return to Q106 •

A107 : For the most part fairly well (points are bunched around the 1:1 line)
but several points are very badly predicted. There does not appear to be any gain.

Return to Q107 •

A108 : The RMSEP of evaluation is 0.635 lbs plot-1; the residual mean square
error of the model is 0.607 lbs plot-1. These are similar but in this evaluation the
RMSEP is a somewhat higher. The RMSEP is the mean prediction error of straw
yield that we expect for the “same” experimental structure where we measure grain
yield and use it to predict straw yield. Return to Q108 •

A109 : There is a small bias: -0.0859. This negative bias shows that the actual is
a bit greater than the predicted, i.e., on average the model slightly under-predicts.
But the squared bias SB is a very small proportion of the total error, 1.828%. This
is not a weak point of the model. Return to Q109 •

A110 : The gain is greater than 1: 1.21. So, high straw yields are somehwat under-
predicted, and lowstraw yields are somewhat over-predicted – the model fits well in
the middle of the range, but smooths out the extreme highs and lows, predicting
towards the mean.A Thus part of the model imprecision is due to rotation: there is

Return to Q110 •

A111 : Yes, the probability that it would be a Type I error to reject the null
hypothesis that the coefficient of the 1:1 model is in fact 1 (i.e., the coefficient
of the 0:1 model is in fact 0) is 0.03, so we can safely reject the null hypothesis.

Return to Q111 •

A112 : The non-unity factor NU is 0.01456352. This is a fairly small part of the
MSD, namely 3.61%. This is not the weakest point of the model, although it is
significant. Return to Q112 •

A113 : The lack of correlation LC is 0.3815; this is most of the MSD, namely
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94.562% of it. Return to Q113 •

A114 : The major problem with the model is lack of correlation (LC), i.e., the
prediction precision. There is almost no bias and little gain. Thus the linear model
form is well-justified. Return to Q114 •

A115 : No, a plant could grow vegetatively but never flower or produce grain.
Return to Q115 •

A116 : The line through (0,0) has a steeper slope to reach the “cloud” of points,
whereas the line with intercept has a positive intercept and so can have a gentler
slope. It seems difficult to tell by eye which better fits the point cloud. Return to
Q116 •

A117 : The no-intercept model has higher overall error: its RMSEP is 0.628
compared to 0.635 for the full model. But, this is not due to lack of correlation
(LC): these are 0.381 and 0.381 respectively, i.e., identical! This shows nicely the
value of the decomposition – the problem with the no-intercept model is not its lack
of precision, this is exactly the same as for the with-intercept model.

Both squared biases (SB): are quite small: 0.013428 (no-intercept) and 0.007374
(intercept). Thus neither systematically over- or under-predicts.

This means the problem with the no-intercept model is in the non-unity slope
(NU): 4.976e-05 (no-intercept) vs. 0.01456352. In the no-intercept model this is
now a recognizable proportion (0.013%) of the total error. This is interpreted as a
rotation; this is in fact what happens when we forced the regression through the
origin. Return to Q117 •

We are done with these models and some other variables, except for the main
model of straw yield and its RMSEP (see §15), so clean up the workspace:

> rm(n, index.valid, index.calib, actual)

> rm(cal.straw.grain, pred)

> rm(valid.msd, rmse)

> rm(regr.actual.pred, regr.actual.pred.0, valid.bias,

+ valid.sb, valid.lc, b, valid.nu, valid.msd.pred,

+ valid.msd.actual, r2)

> rm(cal.straw.grain.00, regr.actual.pred.00, msd.00, rmsep.00,

+ sb.00, nu.00, lc.00)

15 Cross-validation*

In §14 the predictive success of a model was evaluated by evaluation against
an independent dataset. Since we only had one dataset (the 500 plots),
we were forced to create this set by a random split into calibration and
evaluation sets. There are several problems here:

1. We lose precision in the model, because it’s based on fewer observa-
tions;
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2. The split is random, so that a different split (with the same propor-
tions) would give different results.

An approach to evaluation that uses the insight of point (2) but retains
precision is leave-one-out cross validation, abbreviated LOOCV. This is also
known as leave-one-out jackknifing [12, 14], where our main interest is in the
accuracy of the prediction.

Note: The term “cross-validation” is used consistently in texts, papers and
computer programs, so we use the term; however we consider it a form of
evaluation, as explained in the previous §14.

The concept is simple:

1. For each observation:

(a) remove it from the dataset, i.e., “leave one out”;

(b) compute the model parameters (e.g., slope and intercept of a sim-
ple linear regression);

(c) use this model to predict at the left-out point;

(d) calculate the prediction error for this one point.

2. Compute the evaluation statistics for the set of prediction errors (one
for each observation), as in §14.4.

These evaluation statistics are assumed to apply to the single equation (pa-
rameterization) computed from all observations.

Task 101 : Write a function to compute the LOOCV fits for the linear
model of straw yield predicted by grain yield. This function should take as
arguments: (1) a model to cross-validate and (2) the dataset on which to
cross-validate it. It should return (1) the LOOCV predictions and (2) the
coefficients for each LOOCV model fit. •

We use the function command to define a function; this was explained in
§8.3.1. We define two arguments: (1) the model form to be cross-validated,
named model within the function; (2) the dataset where the model should
be applied, named dset.

This is the most complex function we’ve defined; here are some points of
interest:

� The function is defined with the function command and stored in a
workspace object with a name of our choosing; this name is then used
to call the function;

� At the end of the function we use the return function to return a
list, build with the list function, of (1) the LOOCV predictions as
a vector named pred, (2) the coefficients of each of the models built
omitting one observation as a matrix with one column per model co-
efficient, named coef. The former is used for the cross-validation, the
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latter to evaluate the robustness of the model to any unusual single
observations.

� Both of the returned variables must be initialized before the for loop,
which will fill in the rows one-by-one as each observation is omitted.

� The colnames function is used to assign names to the columns of
the coefficients vector, using the paste function to create a list of
coefficient names of the correct length, depending on the number of
model parameters.

� The type conversion function as.character convert as sequence of
numbers into a character vector, suitable to be used in paste.

� The for flow control structure defines a for-loop: the first expres-
sion after the for is the list of indices which are used inside the loop.
Here we specify the sequence 1: nrow(dset); this uses the : opera-
tor, shorthand for a continuous integer sequence which could also be
specified with the seq command, i.e., seq(1, nrow(dset), by=1).

� The value from this sequence is assigned to variable which we name
i. This is only defined in the loop, and is used to specify observation
numbers, both for omitting a row from the dataframe, i.e., [-i,], and
selecting just the one row, i.e., [i,]; both use the [] matrix selection
operator.

� The results of each model fit (prediction and coefficients) are stored in
the initialized vectors, at the correct slot, again using the loop index
i.

Here is the function:

> Xval <- function(model, dset) {

+ pred <- rep(0, nrow(dset))

+ n <- length(coefficients(model))

+ coef <- matrix(0, nrow = nrow(dset), ncol = n)

+ colnames(coef) <- paste("b", as.character(0:(n -

+ 1)), sep = "")

+ for (i in 1:nrow(dset)) {

+ m <- lm(formula(model), data = dset[-i, ])

+ pred[i] <- predict(m, newdata = dset[i, ])

+ coef[i, ] <- coefficients(m)

+ }

+ return(list(pred = pred, coef = coef))

+ }

Task 102 : Apply this function to the model of straw yield predicted by
grain yield, and display the structure of the returned object. •

> xval.fit <- Xval(model.straw.grain, mhw)

> str(xval.fit)

List of 2

$ pred: num [1:500] 6.06 6.69 7.32 6.44 6.06 ...
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$ coef: num [1:500, 1:2] 0.862 0.865 0.861 0.864 0.868 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : NULL

.. ..$ : chr [1:2] "b0" "b1"

Task 103 : Display the actual observations of straw yield against the
LOOCV fits, on a 1:1 line. •

> lim <- range(xval.fit$pred, mhw$straw)

> plot(mhw$straw ~ xval.fit$pred, asp = 1, xlim = lim,

+ ylim = lim, xlab = "LOOCV prediction", ylab = "Actual")

> abline(0, 1)

> grid()
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Task 104 : Compute the cross-validation residuals, i.e., the actual straw
yields less the LOOCV fits; summarize them and display as a histogram. •

> xval.res <- xval.fit$pred - mhw$straw

> summary(xval.res)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.04724 -0.37483 -0.01042 -0.00009 0.35523 2.03432

> hist(xval.res, main = "LOOCV residuals")
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Recall, the RMSEP is the square root of the sum of squared residuals divided
by the number of observations.

Q118 : What is the LOOCV RMSEP? How does this compare to the RMSE
of the fit (the internal measure) and the independent evaluation RMSE?

Jump to A118 •

Recall, the single estimate of independent evaluation RMSE was computed
in §14.4.

Here are (1) RMSEP from cross-validation; (2) RMSE from the internal fit;
(3) RMSEP from the single evaluation:

> sqrt(sum(xval.res^2)/nrow(mhw))

[1] 0.61597

> sqrt(sum(residuals(model.straw.grain)^2)/(model.straw.grain$df.residual))

[1] 0.61477

> print(valid.rmsep)

[1] 0.63514

Challenge: Compute and interpret the measures of model quality developed
in §14.4, i.e., the RMSEP broken down into bias, gain and scatter.

The function also returned the LOOCV model coefficients.

Task 105 : Summarize the LOOCV model coefficients, and compare with
the best-fit coefficients (using all observations). •
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> summary(xval.fit$coef, digits = 5)

b0 b1

Min. :0.77899 Min. :1.4214

1st Qu.:0.86293 1st Qu.:1.4296

Median :0.86674 Median :1.4304

Mean :0.86628 Mean :1.4305

3rd Qu.:0.87003 3rd Qu.:1.4313

Max. :0.90307 Max. :1.4514

> coefficients(model.straw.grain)

(Intercept) grain

0.86628 1.43050

The optional digits argument to summary is used here to show more than
the default three significant digits.

Q119 : How consistent are the LOOCV coefficients? Which one varied
more? Why? Jump to A119 •

15.1 Answers

A118 : The LOOCV RMSEP is 0.616 lb. plot-1. The single-estimate evaluation
RMSEP is 0.6351 lb. plot-1. The internal RMSE of the fit is 0.6148 lb. plot-1.

The single evaluation RMSEP is the most conservative; this is because the evalua-
tion is based on a large number of observations and a single model. Adjusting the
model for each omitted observation (LOOCV) reduces the RMSEP to just a bit
greater than the internal estimate.

There is only one LOOCV estimate and only one internal fit estimate, whereas the
single evaluation by splitting the dataset could be done many times, each with a
different random split. This is similar to K-fold cross-validation, where K is the
proportion of the observations omitted each time. Return to Q118 •

A119 : The slopes are very consistent; that is, leaving out any one observation
hardly changes it: the total range is 0.03 compared to the single “best” value 1.4305.
The intercepts are less consistent: the total range is 0.1241 compared to the single
“best” value 0.8663. This shows that leaving out one very high or very low straw
yield can move the line up or down. Return to Q119 •

16 Spatial analysis

To this point we have only considered the wheat yields in feature space (also
known as attribute or property space). For example, the grain and straw
yields form a two-dimensional ‘space’. But we have ignored an additional
piece of information: the relative location of the plots in the field. Mercer
& Hall clearly stated that there could be hot spots or geographic trends,
meaning that the plots are not necessarily spatially independent. We now
investigate this.
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16.1 Geographic visualisation

We begin by visualisaing the agricultural field:

Task 106 : Make a correctly-scaled map of the plot locations in the field,
showing the plot numbers. •

The plots are rectangular (longer N-S than wide E-W), so that by plotting
the 25 columns and 20 rows in a square (the shape of the field, and the
default for a bivariate plot), we get a geometrically-correct map. However,
the default plotting function is from low to high indices, so that row 1 would
be plotted at the bottom, when in fact it is at the top. We can specify the
axis with the ylim argument, reversing the row order:

> with(mhw, plot(c, r, type = "n", xlab = "column", ylab = "row",

+ ylim = c(20, 1), main = "Layout of the Mercer-Hall uniformity trial"))

> abline(v = 1:25, lty = 1, col = "darkgray")

> abline(h = 1:20, lty = 1, col = "darkgray")

> with(mhw, text(c, r, rownames(mhw), cex = 0.5))
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The xlab and ylab graphics parameters are used to specify the axis names.
Also, the type of plot is specified with the type graphics argument, here set
to "n", meaning “no plot” (yet) – this just sets up the plot area and axes.
The actual plotting is then done with the text function, using the rownames
function to extract the plot number from the dataframe.

Task 107 : Make a post-plot of the grain yield, i.e. a map of the plot
locations with symbol size proportional to the data value. •

> with(mhw,

+ plot(c, r, pch=21, col="black", bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row",
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+ main="Mercer-Hall uniformity trial",

+ sub="Area of circles proportional to grain yield",

+ cex=2*grain/max(grain)))
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We can visualise this better by displaying each point in a colour ramp. First
we classify the observations into octiles (eight groups) with the cut function,
using the quantile function to compute the octiles.

> (q8 <- quantile(mhw$grain, seq(0, 1, length = 9)))

0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%

2.7300 3.4238 3.6375 3.7812 3.9400 4.0900 4.2700 4.4700 5.1600

> grain.c <- cut(mhw$grain, q8, include.lowest = T, labels = F)

> sort(unique(grain.c))

[1] 1 2 3 4 5 6 7 8

So the 500 yields have been grouped into eight classes.

A colour ramp is a list of colours in some visually-meaningful sequence. One
example is produced by the terrain.colors function; the colours are given
as hexidecimal numbers from 00 (absence of colour) to FF (saturation with
the colour), for the three primary colours Red, Green and Blue:

> terrain.colors(8)

[1] "#00A600" "#3EBB00" "#8BD000" "#E6E600" "#E9BD3A" "#ECB176"

[7] "#EFC2B3" "#F2F2F2"

For example, the final colour in this ramp is #F2F2F2, which is a dark gray:
equal saturations of the three primaries, and each of these has #F2/#FF, i.e.
95% saturation:

> 0xf2/0xff
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[1] 0.94902

This example shows that hexidecimal numbers may be used in R; they are
indicated with the prefix 0x.

Now we use this colour ramp, selecting the appropriate colour for each quan-
tile: dark green is lowest, white is highest.

> with(mhw,

+ plot(c, r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row",

+ main="Mercer-Hall uniformity trial",

+ sub="Colour of circles from low yield (green) to high (gray)",

+ col=terrain.colors(8)[grain.c]))
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Another way to visualize the field is with a 3D plot using the wireframe

graphics function of the lattice package. The optional aspect argument
controls ratio between the horizontal axes, as well as the vertical exaggera-
tion; the optional screen argument controls the viewing angle; this is a list
of rotation from looking across the rows, and the rotation from vertical view-
ing. We use a different colour ramp, obtained by a call to the bpy.colors

function of the sp package, which we load with require:

> require(sp)

> plot(wireframe(grain ~ r + c, data=mhw, drape=T,

+ aspect=c(1,.2), col.regions=bpy.colors(128),

+ main="Grain yield, lb. per plot",

+ screen= c(z=30, x=-60),

+ xlab="N to S", ylab="W to E",

+ sub="Looking SE from NW corner of field"))
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Q120 : Does there appear to be local spatial dependence, i.e. similar
values near each other? Does this appear to vary over the field? Jump to
A120 •

We view this from another perspective: from the S (so, W to the left, E
to the right), from somewhat a lower viewing angle, and with less vertical
exaggeration; this corresponds to figure 1 of McBratney and Webster [36]:

> plot(wireframe(grain ~ r + c, data=mhw, drape=T,

+ aspect=c(1,.08), col.regions=bpy.colors(128),

+ main="Grain yield, lb. per plot",

+ screen= c(z=270, x=-75), zlab="",

+ xlab="N to S", ylab="W to E",

+ sub="Looking N from S end of field"))
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16.2 Setting up a coördinate system

Analysis of the spatial structure requires metric coördinates, rather than
row and column numbers, since the plots are not square.

Task 108 : Determine the field size and the plot dimensions. •

The original experiment was in English units, but we will use metres. So,
we start with some conversions to get the dimensions of each plot:

First, some conversion factors; note that 1 ha = 10 000 m2:

> ha2ac <- 2.471054

> ft2m <- 0.3048

> (field.area <- 10000/ha2ac)

[1] 4046.9

Then we divide the side of the 1-acre field evenly into 20 rows and 25 columns
to obtain the dimensions in meters and the area in m2:

> (plot.area <- field.area/500)
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[1] 8.0937

> (plot.len <- sqrt(field.area)/20)

[1] 3.1807

> (plot.wid <- sqrt(field.area)/25)

[1] 2.5446

> rm(ha2ac, ft2m, field.area)

Task 109 : Compute the total length and width in metres, confirm they are
equal (because the field is a square, and confirm that they multiply to 1 ha
(4 045.9 m2). •

> (tot.len <- plot.len * 20)

[1] 63.615

> (tot.wid <- plot.wid * 25)

[1] 63.615

> tot.len * tot.wid

[1] 4046.9

> rm(tot.len, tot.wid)

Task 110 : Compute coördinates for the centre of each plot. •

Coördinates are assigned from an arbitrary origin of (0,0) at the SW corner
of the field, so that the coördinates of the centre of plot [1,1] are half the
plot size in both directions:

> plot.wid/2

[1] 1.2723

> plot.len/2

[1] 1.5904

Now we build a data frame of coordinates; first with the seq function to
make vectors of the midpoints of the E and N directions, respectively; and
then with the expand.grid function to make a dataframe with one row per
combination:

> nrow <- length(unique(mhw$r))

> ncol <- length(unique(mhw$c))

> sx <- seq(plot.wid/2, plot.wid/2 + (ncol - 1) * plot.wid,

+ length = ncol)

> sy <- seq(plot.len/2 + (nrow - 1) * plot.len, plot.len/2,

+ length = nrow)
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> xy <- expand.grid(x = sx, y = sy)

> rm(nrow, ncol, sx, sy)

The sequence for the y-axis starts with the highest coordinate for row 1
(which is at the top of the plot).

We keep plot.wid, plot.len, and plot.area to be used later.

16.3 Loading add-in packages

For most of the spatial analysis we will use two add-in packages; these are
representative of the hundreds which have been implemented by practising
statisticians. Here we will use sp package [40], which is a foundation for
spatially-explicit analysis in R, and the gstat package [39], which is an R
implementation of the gstat geostatistics program [41]. Both of these are
extensively discussion and illustrated in the textbook “Applied Spatial Data
Analysis with R” by Bivand et al. [5].

When R starts, a number of basic packages are loaded; we can see these with
the search function. Additional packages may be loaded with the library

or require functions; both of these ensures that the package isn’t already
loaded.

Task 111 : Load the sp and gstat packages, and also the lattice graphics
package. •

> require(sp); require(gstat); require(lattice)

16.4 Creating a spatially-explicit object

The sp package adds a number of spatial data types, i.e. new object classes.

Task 112 : Copy the mhw dataframe to a new object and convert the copy
to class SpatialPointsDataFrame. •

By making a copy we have the data in two forms, spatial and non-spatial,
so we don’t have to keep converting between them.

We do this by adding the computed coordinates to the data frame with the
coordinates function; this automatically converts to the spatial data type
defined by the sp package:

> mhw.sp <- mhw

> coordinates(mhw.sp) <- xy

> summary(mhw.sp)

Object of class SpatialPointsDataFrame

Coordinates:

min max

x 1.2723 62.343

y 1.5904 62.025

Is projected: NA
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proj4string : [NA]

Number of points: 500

Data attributes:

r c grain straw

Min. : 1.00 Min. : 1 Min. :2.73 Min. :4.10

1st Qu.: 5.75 1st Qu.: 7 1st Qu.:3.64 1st Qu.:5.88

Median :10.50 Median :13 Median :3.94 Median :6.36

Mean :10.50 Mean :13 Mean :3.95 Mean :6.51

3rd Qu.:15.25 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:7.17

Max. :20.00 Max. :25 Max. :5.16 Max. :8.85

gsr in.north

Min. :0.391 Mode :logical

1st Qu.:0.574 FALSE:250

Median :0.604 TRUE :250

Mean :0.611

3rd Qu.:0.642

Max. :0.850

Q121 : What is the data type of the mhw.sp object? What is the bounding
box, i.e. limits of the the coördinates? Jump to A121 •

Now that we’ve built the spatial object, we can save it for later use in another
session:

> save(mhw.sp, file = "mhw_spatial.RData")

16.5 More geographic visualisation

Once an object is in a spatial class, the spplot function can be used to make
a nicely-coloured post plot:

Task 113 : Plot the grain, straw, and their ratio, coloured by their octile. •

We take this chance to illustrate some more colour ramps, produced by the
bpy.colors and heat.colors functions, as well as the terrain.colors

function we saw before. To put several plots on the same page, we create
each plots with spplot and save it in a local variable; we then use the generic
print function, with the optional more argument. Further, to give the im-
pression of plots rather than points, we use the as generic method to convert
the mhw.sp object to a spatial object of class SpatialPixelsDataFrame.

> mhw.sp.pix <- as(mhw.sp,"SpatialPixelsDataFrame")

> f1 <- spplot(mhw.sp.pix, zcol="grain", cuts=8,

+ col.regions=bpy.colors(64),

+ main="Grain yield, lb. per plot", key.space="right")

> f2 <- spplot(mhw.sp.pix, zcol="straw", cuts=8,

+ col.regions=heat.colors(64),

+ main="Straw yield, lb. per plot", key.space="right")

> f3 <- spplot(mhw.sp.pix, zcol="gsr", cuts=8,

+ col.regions=terrain.colors(64),

+ main="Grain/Straw ratio", key.space="right")
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> print(f1, split=c(1,1,2,2), more=T)

> print(f2, split=c(2,1,2,2), more=T)

> print(f3, split=c(1,2,2,2), more=F)

> rm(f1, f2, f3)
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And we can make a postplot with both colour and size, although its value
for visualization is questionable:

> print(spplot(mhw.sp, zcol="grain", pch=15,

+ cex=1.6*mhw$grain/max(mhw$grain), cuts=12,

+ col.regions=bpy.colors(64),

+ main="Grain yield, lb. per plot",

+ sub="Symbol size proportional to yield",

+ key.space="right"))
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Grain yield, lb. per plot

Symbol size proportional to yield

[2.73,2.933]
(2.933,3.135]
(3.135,3.337]
(3.337,3.54]
(3.54,3.743]
(3.743,3.945]
(3.945,4.147]
(4.147,4.35]
(4.35,4.553]
(4.553,4.755]
(4.755,4.957]
(4.957,5.16]

Challenge: Display grain and straw yields on adjacent plots, using a gray-
scale colour ramp. (Hint: see §B). What are the advantages and disadvan-
tages, for visualization, of using the gray scale vs. colour ramps?

16.6 Answers

A120 : There are clear clusters of similar values, e.g. the patch of low values
centred near (16, 18). Clusters seem more obvious in the north than the south.

Return to Q120 •

A121 : SpatialPointsDataFrame; the bounding box is 1.2723 to 62.3426 (W-E)
and 1.5904 to 62.0245 (S-N) Return to Q121 •

17 Spatial structure

Now that we have a spatially-explicit object, we can examine it for its spatial
structure. This can be of two kinds: a trend across the entire area or a local
structure that does not depend on absolute location.

17.1 Spatial structure: trend

One possibility for spatial structure is a trend across the field.

Task 114 : Explore whether there is any trend in grain yield by row or
column. •
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One way to do this is to compute the row and column mean yields, and then
sort them from lowest to highest with the sort function:

> with(mhw, sort(by(grain, r, mean), decreasing = FALSE))

r

15 16 7 8 20 17 10 4 18 14

3.7072 3.7432 3.8708 3.8796 3.8816 3.9012 3.9136 3.9144 3.9164 3.9352

6 11 1 12 2 5 3 9 13 19

3.9536 3.9540 3.9576 3.9848 4.0072 4.0276 4.0420 4.0788 4.1160 4.1880

> with(mhw, sort(by(grain, c, mean), d = F))

c

17 15 24 14 18 22 23 5 21 16

3.5280 3.6075 3.6565 3.7390 3.7545 3.7585 3.7925 3.8150 3.8165 3.8635

19 12 13 1 9 25 8 2 20 6

3.8740 3.8955 3.8970 3.9165 3.9420 3.9450 3.9635 3.9650 4.0025 4.0570

11 3 7 10 4

4.1125 4.2820 4.4630 4.5280 4.5410

Q122 : Does there appear to be any trend or pattern in the sequence of
row or column numbers? Jump to A122 •

We can see both the means and variability with a grouped boxplot, first
by row and then by column.The xlim argument is used to display the row
boxplots in correct geographical order.

> boxplot(grain ~ r, horizontal = T, data = mhw, xlim = c(20,

+ 1), ylab = "Row number", xlab = "Grain yield, lb. per plot")
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> boxplot(grain ~ c, data = mhw, xlab = "Column number",

+ ylab = "Grain yield, lb. per plot")
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Q123 : Does there appear to be any pattern by row or column, either in
the median yield or the variability with each row or column? Jump to
A123 •

Although only the columns show a slight trend, there could be a trend not
oriented with these.

Task 115 : Compute a first-order trend surface of grain yield. •

> ts1 <- lm(mhw.sp$grain ~ coordinates(mhw.sp))

> summary(ts1)

Call:

lm(formula = mhw.sp$grain ~ coordinates(mhw.sp))

Residuals:

Min 1Q Median 3Q Max

-1.1352 -0.2936 0.0069 0.3140 1.1711

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.731260 0.051850 71.96 < 2e-16

coordinates(mhw.sp)x -0.000664 0.001067 -0.62 0.53

coordinates(mhw.sp)y 0.007498 0.001068 7.02 7.2e-12

Residual standard error: 0.438 on 497 degrees of freedom

Multiple R-squared: 0.0909, Adjusted R-squared: 0.0873

F-statistic: 24.9 on 2 and 497 DF, p-value: 5.14e-11

Q124 : Is there a significant trend? How much of the variance is explained?
Jump to A124 •
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This is not a promising approach, so we remove the trend surface object
from the workspace:

> rm(ts1)

17.2 Spatial structure: local

There is only a very weak trend in grain yield; but are there hotspots?

Task 116 : Compute and display the variogram of the grain yield. •

We use the variogram function of the gstat package to analyze the local
spatial structure. We also specify the optional plot.numbers = T argument
to print the number of point-pairs next to the variogram values; the optional
width argument to specify the bin size (here, the plot width), and the op-
tional cutoff argument (by default it is 1/3 of the largest distance between
point pairs); here it is 10 plot widths.

> v <- variogram(grain ~ 1, mhw.sp,

+ cutoff=plot.wid*10, width=plot.wid)

> print(plot(v, plot.numbers=T))
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Q125 : Describe the shape of the variogram. Is there evidence of local
spatial structure? What is the approximate range of local spatial depen-
dence, i.e. the separation at which the experimental variogram reaches its
sill (maximum)? Jump to A125 •

Q126 : Across how many adjacent plots is there expected to be some spatial
dependence? Jump to A126 •

We now try to fit a theoretical variogram model to this empirical variogram.
There appear to be two structures:
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1. a short-range to about 5 m with rapid increase in semivariance with
separation; this section is difficult to model because of the few point-
pairs in the closest bin;

2. a gradual increase to a sill at about 18 m.

The total sill appears to be about 0.20, of which the nugget is about 0.02,
the first partial sill about 0.15 and the second about 0.03. We initialize the
variogram with these parameters. We use the the vgm (specify a variogram)
function twice, with the add.to argument the second time to combine vari-
ogram models.

> (vm <- vgm(0.15, "Sph", 5, 0.02))

model psill range

1 Nug 0.02 0

2 Sph 0.15 5

> (vm <- vgm(0.03, "Sph", 20, add.to = vm))

model psill range

1 Nug 0.02 0

2 Sph 0.15 5

3 Sph 0.03 20

> print(plot(v, model = vm, main = "Estimated variogram model"))
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We then adjust the variogram with the fit.variogram function:

> (vmf <- fit.variogram(v, vm))

model psill range

1 Nug 0.000000 0.0000

2 Sph 0.166884 4.9488

3 Sph 0.039522 20.8112

> print(plot(v, model = vmf, main = "Fitted variogram model"))
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Fitted variogram model
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The fit has reduced the nugget to zero; so at each point (inside a plot) there
should be, as theory predicts, no spatial dependence. The nested structure
clearly suggests that most of the spatial variability is within the first 5 m,
so grouping a few plots should greatly reduce the between-plot variability of
an experiment (Mercer & Hall’s objective).

Q127 : The zero nugget also implies no measurement error. Is that a valid
assumption in this case? Why or why not? What should be the minimum
nugget variance? Jump to A127 •

17.3 Absence of spatial structure*

In this section we show that spatial data does not necessarily have spa-
tial structure. This also is a chance to investigate some of R’s facilities for
simulation. We can see how this field might look if there were no spatial
dependence, i.e. if the variation in yields analyzed in §7 were randomly dis-
tributed across the field. We do this by applying the sample function to
the vector of yields, to take a sample of the size as the original vector (ex-
tracted with the length function) without replacement. This ensures that
each recorded yield appears once in the new vector.

Task 117 : Permute the vector of grain yields into a random order, compare
to the original vector. •

We do this several times to see the effect of randomization. The head func-
tion displays the first few elements of a vector; the sort method sorts them.
The set.seed function ensures that your results match those presented here;
of course you can experiment with other randomizations. We show the first
few records of the samples, both unsorted and sorted, with the head function.

> set.seed(4502)

> head(mhw$grain)
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[1] 3.63 4.07 4.51 3.90 3.63 3.16

> head(s1 <- sample(mhw$grain, length(mhw$grain), replace = FALSE))

[1] 4.06 2.97 4.47 4.06 4.20 4.29

> head(s2 <- sample(mhw$grain, length(mhw$grain), replace = FALSE))

[1] 3.05 4.27 3.92 4.46 3.55 4.49

> head(s3 <- sample(mhw$grain, length(mhw$grain), replace = FALSE))

[1] 3.42 3.46 5.07 3.67 4.10 4.46

> head(s1)

[1] 4.06 2.97 4.47 4.06 4.20 4.29

> head(s2)

[1] 3.05 4.27 3.92 4.46 3.55 4.49

> head(s3)

[1] 3.42 3.46 5.07 3.67 4.10 4.46

Q128 : Do the permutations have the same elements as the original vector?
What is different? Jump to A128 •

Task 118 : Display the spatial pattern of the randomized yields. •

> par(mfrow=c(2,2))

> plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row", main="Randomization 1",

+ col=terrain.colors(8)[cut(s1, q8, include.lowest=T, labels=F)])

> plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row", main="Randomization 2",

+ col=terrain.colors(8)[cut(s2, q8, include.lowest=T, labels=F)])

> plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row", main="Randomization 3",

+ col=terrain.colors(8)[cut(s3, q8, include.lowest=T, labels=F)])

> plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

+ xlab="column", ylab="row", main="Actual spatial distribution",

+ col=terrain.colors(8)[grain.c])

> par(mfrow=c(1,1))
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Q129 : How do the randomizations differ from each other and the original
spatial pattern? Jump to A129 •

It may be difficult to see that the randomizations have no spatial struc-
ture. So, we examine this with variograms, as in §17.2, after converting the
simulated objects to spatial object.

> s1 <- data.frame(s1); coordinates(s1) <- xy

> s2 <- data.frame(s2); coordinates(s2) <- xy

> s3 <- data.frame(s3); coordinates(s3) <- xy

> pv <- plot(variogram(grain ~ 1, mhw.sp, cutoff=plot.wid*10,

+ width=plot.wid), main="Real")

> p1 <- plot(variogram(s1 ~ 1, s1, cutoff=plot.wid*10,

+ width=plot.wid), main="Simulation 1")

> p2 <- plot(variogram(s2 ~ 1, s2, cutoff=plot.wid*10,

+ width=plot.wid), main="Simulation 2")

> p3 <- plot(variogram(s3 ~ 1, s3, cutoff=plot.wid*10,

+ width=plot.wid), main="Simulation 3")

> print(p1, split = c(1, 1, 2, 2), more = T)

> print(p2, split = c(2, 1, 2, 2), more = T)
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> print(p3, split = c(1, 2, 2, 2), more = T)

> print(pv, split = c(2, 2, 2, 2), more = F)
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Q130 : Are the variograms of simulated fields similar to each other? To the
variogram of the actual spatial arrangement of plots? What is the evidence
that the simulated fields (actual yields randomly assigned to plots) has no
spatial dependence? Jump to A130 •

The conclusion from this section must be that spatial dependence is not
always present! It must be verified by variogram analysis or similar (e.g.
spatial autocorrelograms) or trend surface analysis.

Remove the temporary variables from the simulation displays:

> rm(xy, q8, grain.c, s1, s2, s3, pv, p1, p2, p3)

17.4 Spatial structure of field halves*

In §9 we computed an indicator variable to show which half of the field each
plot is in. In a spatial analysis we may now ask whether these two halves
have different spatial structures.

Task 119 : Separate the dataset into two halves, one for each field half. •

To get a suitable data structure we use the split function to create one
object with a list of two data frames, one for each half. We then assign their
coordinates.
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> mhw.sp.ns <- split(as.data.frame(mhw.sp), mhw.sp$in.north)

> coordinates(mhw.sp.ns$T) <- ~x + y

> coordinates(mhw.sp.ns$F) <- ~x + y

> summary(mhw.sp.ns)

Length Class Mode

FALSE 8 data.frame list

TRUE 8 data.frame list

T 250 SpatialPointsDataFrame S4

F 250 SpatialPointsDataFrame S4

> summary(mhw.sp.ns$T)

Object of class SpatialPointsDataFrame

Coordinates:

min max

x 1.2723 62.343

y 1.5904 62.025

Is projected: NA

proj4string : [NA]

Number of points: 250

Data attributes:

r c grain straw

Min. : 1.0 Min. : 1 Min. :2.78 Min. :4.10

1st Qu.: 3.0 1st Qu.: 7 1st Qu.:3.66 1st Qu.:5.73

Median : 5.5 Median :13 Median :3.97 Median :6.14

Mean : 5.5 Mean :13 Mean :3.96 Mean :6.28

3rd Qu.: 8.0 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:6.86

Max. :10.0 Max. :25 Max. :5.13 Max. :8.64

gsr in.north

Min. :0.482 Mode:logical

1st Qu.:0.596 TRUE:250

Median :0.635

Mean :0.636

3rd Qu.:0.669

Max. :0.848

Task 120 : Compute the variograms for each half, and plot these along with
the combined variogram. •

We first compute the variograms for the two field halves; we already have
the variogram for the entire field.

> v.n <- variogram(grain ~ 1, mhw.sp.ns$T, cutoff = 30)

> v.s <- variogram(grain ~ 1, mhw.sp.ns$F, cutoff = 30)

We now compute the figures, but do not print them right away; instead we
store them as plotting objects:

> g.max = max(v$gamma, v.n$gamma, v.s$gamma)*1.2

> plot.vgm.all <- plot(v, plot.numbers=T,

+ main="All", ylim=c(0,g.max))

> plot.vgm.N <- plot(v.n, plot.numbers=T,

+ main="N half", ylim=c(0,g.max))
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> plot.vgm.S <- plot(v.s, plot.numbers=T,

+ main="S half", ylim=c(0,g.max))

We compute a common vertical axis from the maximum value of all three
variograms, so we can compare them side-by-side.

Now we print these on one screen, specifying their positions in the plot:

> print(plot.vgm.all, split = c(1, 1, 3, 1), more = T)

> print(plot.vgm.N, split = c(2, 1, 3, 1), more = T)

> print(plot.vgm.S, split = c(3, 1, 3, 1), more = F)
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We now try to model the half-field variograms, as we did for the whole field
in the previous section. The half-field variograms do not seem to show the
nested structure of the whole-field variogram.

> (vmS <- vgm(0.14, "Sph", 20, 0.09))

model psill range

1 Nug 0.09 0

2 Sph 0.14 20

> (vmN <- vgm(0.08, "Sph", 13, 0.11))

model psill range

1 Nug 0.11 0

2 Sph 0.08 13

> (vmSf <- fit.variogram(v.s, vmN))

model psill range

1 Nug 0.076024 0.000

2 Sph 0.141284 13.787

> (vmNf <- fit.variogram(v.n, vmS))

model psill range

1 Nug 0.112956 0.000

2 Sph 0.081287 14.747
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> plot.vgm.all <- plot(v, plot.numbers = T, main = "All",

+ model = vmf, ylim = c(0, g.max))

> plot.vgm.N <- plot(v.n, plot.numbers = T, main = "N half",

+ model = vmNf, ylim = c(0, g.max))

> plot.vgm.S <- plot(v.s, plot.numbers = T, main = "S half",

+ model = vmSf, ylim = c(0, g.max))

> print(plot.vgm.all, split = c(1, 1, 3, 1), more = T)

> print(plot.vgm.N, split = c(2, 1, 3, 1), more = T)

> print(plot.vgm.S, split = c(3, 1, 3, 1), more = F)
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Remove the plotting objects and scale:

> rm(g.max, plot.vgm.all, plot.vgm.N, plot.vgm.S)

Q131 : Do the two halves appear to have different local spatial structure?
Jump to A131 •

Remove the variograms and models from the workspace:

> rm(v, v.n, v.s, vm, vmf, vmN, vmNf, vmS, vmSf)

We are also done with the field halves:

> rm(mhw.sp.ns)

Challenge: Repeat the analysis of this section with E-W field halves, instead
of N-S field halves. Do you reach similar conclusions about the differences
between the spatial structure of the field halves?

17.5 Answers

A122 : The row and column numbers don’t seem to show any pattern or trend.
Return to Q122 •
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A123 : Although there are differences among rows and columns, there does not
appear to be a trend. The higher-numbered columns (East half of the field) appear
to be slightly lower (as a group) than the lower-numbered columns. There appears
to be some short-range periodicity at a one-plot range (high followed by low) in
both dimensions, although this is not regular. Return to Q123 •

A124 : Only about 9% of the variance is explained; only the x-coördinate (E-W,
across the columns from low- to high-numbered) is significant; it shows a slight
trend towards the East; this agrees with the by-column boxplot. This trend was
also noted by Patankar [38]. Return to Q124 •

A125 : There is evidence of spatial structure: the semivariance increases up to
about 13 m separation; the semivariance then fluctuates around a total sill of about
γ = 0.21lb2 There appears to be a “nugget” effect (semivariance at zero separation)

of about γ = 0.05lb2. Return to Q125 •

A126 : Plot size is (3.18 m long x 2.55 m wide) (§A), so the range of about
13 m corresponds to about four adjacent plots column-wise and five adjacent plots
row-wise. Return to Q126 •

A127 : Strictly speaking, this is not a valid assumption: we know from the
description of the experimental protocol that the measurement precision was 0.01 lb
(§A), so the minimum nugget should be 0.0001 lb2. However, this is very close to
zero, in relation to the total sill of about 0.20 lb2. This reported precision assumes
that all other operations were carried out perfectly: the plot was exactly delineated,
all grain and straw in the plot was harvested, the air-drying brought all samples to
the same moisture level, and the hand-threshing did not lose any grain. The zero
fitted nugget suggests that the experimental protocol was very carefully carried out.

Return to Q127 •

A128 : The elements of the permuted and original vectors are the same, all that
changes is their sequence. Return to Q128 •

A129 : The randomizations have a similar pattern but different locations of high
and low values; there is no apparent spatial pattern. The actual spatial distribution
shows clear concentrations of high and low values (“hot” and “cold” spots) with a
spatial dependence of about 4 plots. Return to Q129 •

A130 : The three simulations have very similar variograms: they all fluctuate
around the sill (representing the total variability in the field), which is the same as
for the variogram of actual data. This latter is quite different from the simulations,
and shows clear spatial structure up to 15 m.

The lack of spatial dependence in the “random assignment” fields is proven by the
variograms: a pure nugget effect, where the nugget variance is the same as the sill.

Return to Q130 •
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A131 : There is a big difference between the structures in the two halves. The S
half is more variable overall (higher total sill, about γ = 0.22lb22), with a longer

range around 20 m; the N half reaches a lower total sill (about γ = 0.19lb2) at a

shorter range, about 12 m. Both have a nugget effect, about γ = 0.075lb2 in the S
and γ = 0.011lb2 in the N. Return to Q131 •

18 Generalized least squares regression*

In §8.2 we computed a relation of straw yield modelled from grain yield,
which could then be applied to predict the straw yield of any plot, under
similar conditions, with a measured grain yield:

> coef(model.straw.grain <- lm(straw ~ grain, data = mhw.sp))

(Intercept) grain

0.86628 1.43050

Clearly, however, this relation is not the same at each plot: that’s why
there are non-zero residuals from the linear regression. But is there a spa-
tial relation here? That is, are the residuals from the regression spatially
correlated? If they are, they violate one of the assumptions of ordinary
least-squares (OLS) linear regression, namely, the independence of and iden-
tical distribution (i.i.d) of the residuals. In that case, the solution by OLS
presented in §8.2.2 is not valid and must be modified.

So, we now determine whether there is any evidence of non-independence
of the residuals due to spatial correlation. The first step is visualization;
afterwards we will model the suspected spatial correlation.

Task 121 : Add the OLS model residuals to the spatial points data frame
and show as a post-plot. •

Again, as in §16.5, we also make a pixel version for easier visualization.

> mhw.sp$msg.res <- residuals(model.straw.grain)

> mhw.sp.pix <- as(mhw.sp,"SpatialPixelsDataFrame")

> spplot(mhw.sp.pix, zcol="msg.res", col.regions=bpy.colors(64),

+ main="Linear model residuals",

+ sub="straw ~ grain, lb. per plot")
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Q132 : Does there appear to be spatial correlation among the residuals?
At what scale? Jump to A132 •

The post-plot suggests that the residuals are spatially-correlated. In §17.2
we saw how to reveal spatial structure of a variable with a variogram; here
we apply that method to the residuals, to see if they are spatially-correlated.

Task 122 : Compute and display their empirical variogram. •

As in §17.2 we compute the variogram to a radius of 10 plot widths, with
bins of plot width size:

> vr <- variogram(msg.res ~ 1, loc = mhw.sp, cutoff = plot.wid *

+ 10, width = plot.wid)

> plot(vr, pl = T, pch = 20, cex = 1.5)
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Q133 :

(1) How does the empirical variogram support the inference from the post-
plot that there is spatial correlation among the residuals?

(2) Approximately how much of the residual variance is spatially-correlated
at the shortest separation?

(3) What is the approximate range of spatial correlation? Jump to A133 •

Task 123 : Model the variogram. •

> (vgmr <- fit.variogram(vr, model = vgm(0.15, "Sph", 20,

+ 0.05)))

model psill range

1 Nug 0.16901 0.0000

2 Sph 0.19183 7.4714

> plot(vr, model = vgmr, pch = 20, cex = 1.5)
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Q134 : Describe the spatial structure of the model residuals. Is this evidence
of spatial correlation? Jump to A134 •

We conclude that the model residuals are not independent – they are spa-
tially correlated. Although the regression coefficients computed in §8.2 are
unbiased, the standard errors are too small and so the significance is over-
estimated, since there are effectively fewer degrees of freedom (plots partially
duplicate each other’s information). Further, the coefficients may not be op-
timal.

The key difference here is that in the linear model, the residuals ε are inde-
pendently and identically distributed with the same variance σ2:

y = Xβ+ ε, ε ∼N (0, σ2I) (18.1)

Whereas, now the residuals are considered themselves a random variable η
that has a covariance structure:

y = Xβ+ η, η ∼N (0,V) (18.2)

where V is a positive-definite variance-covariance matrix of the model resid-
uals.

Continuing with the derivation from §8.2.2, Lark and Cullis [28, Appendix]
point out that the issue here is that the error vectors can now not be assumed
to be spherically distributed around the 0 expected value, but rather that
error vectors in some directions are longer than in others. So, the measure of
distance (the vector norm) is now a so-called “generalized” distance17, taking
into account the covariance between error vectors:

S = (y− Xβ)TV−1(y− Xβ) (18.3)

Comparing this to the OLS equivalent (Equation 8.4), we see here the
variance-covariance matrix of the residuals V = σ2C, where σ2 is the vari-
ance of the residuals and C is the correlation matrix. This reduces to the
OLS formulation of Equation 8.4 if there is no covariance, i.e., V = I.

17 This is closely related to the Mahalanobis distance
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Expanding Equation 18.3, taking the partial derivative with respect to the
parameters, setting equal to zero and solving we obtain:

∂
∂β
S = −2XTV−1y+ 2XTV−1Xβ

0 = −XTV−1y+ XTV−1Xβ
β̂GLS = (XTV−1X)−1XTV−1y (18.4)

This reduces to the OLS estimate β̂OLS of Equation 8.6 if there is no covari-
ance, i.e., V = I.

In the case of spatial correlation, we ensure positive-definiteness (i.e., always
a real-valued solution) by using an authorized covariance function C and
assuming that the entries are completely determined by the vector distance
between points xi − xj :

Ci,j = C(xi − xj) (18.5)

In this formulation C has a three-parameter vector θ, as does the correspond-
ing variogram model: the range a, the total sill σ2, and the proportion of
total sill due to pure error, not spatial correlation s18.

In modelling terminology, the coefficients β are called fixed effects, because
their effect on the response variable is fixed once the parameters are known.
By contrast the covariance parameters η are called random effects, because
their effect on the response variable is stochastic, depending on a random
variable with these parameters.

Models with the form of Equation 18.2 are called mixed models: some effects
are fixed (here, the relation between the straw and grain yields) and others
are random (here, the error variances) but follow a known structure; these
models have many applications and are extensively discussed in Pinheiro and
Bates [42]. Here the random effect η represents both the spatial structure
of the residuals from the fixed-effects model, and the unexplainable (short-
range) noise. This latter corresponds to the noise σ2 of the linear model of
Equation 18.1.

Q135 : If s = 1, what does this imply? Jump to A135 •

To solve Equation 18.4 we first need to compute V, i.e., estimate the variance
parameters θ = [σ2, s, a], use these to compute C with equation 18.5 and
from this V, after which we can use equation 18.4 to estimate the fixed effects
β. But θ is estimated from the residuals of the fixed-effects regression, which
has not yet been computed. How can this “chicken-and-egg”19 computation
be solved?

The answer is to use residual (sometimes called “restricted”) maximum like-
lihood (REML) to maximize the likelihood of the random effects θ indepen-
dently of the fixed effects β. We continue with this in §18.2 below.

18 In variogram terms, this is the nugget variance c0 as a proportion of the total sill
(c0 + c1).

19 from the question “which came first,the chicken or the egg?”
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18.1 A detour into Maximum Likelihood*

To understand REML, we first explain the basics of ML, the Maximum
Likelihood estimation, which is the derivation of the most “likely” values of
model parameters, consistent with a set of observations.

There are three steps:

1. Specify a model with parameters.

For example, the linear model with i.i.d. residuals of Equation 18.1:
y = Xβ+ε, ε ∼N (0, σ2I). In the single-predictor case the parameter
vector is β = (β0, β1), the intercept and slope of the linear model.

All model forms are assumptions: we fit parameters given observations,
but the model form is set by us. For this linear model, we are assuming
that the observed values are the result of a linear deterministic process
with coefficients β, with stochastic errors with zero mean and a given
variance, uncorrelated with each other. If this assumption is not valid,
the rest of the analysis is invalid.

Note: We can specify several models, fit their parameters, and compare
their likelihoods.

We can rewrite the single-predictor linear model as the residuals ex-
pressed as the fits ε = y − Xβ. That is, for any chosen regression
parameters β, these are the errors ε ∼ N (0, σ2I). Clearly, the we
want to minimize the errors; we express this as the squared error
(y − Xβ)T (y − Xβ) to give equal weight to the positive and negative
residuals.

Now, the probability of observing a specific response yi from the ran-
dom variable Y , once β is fixed, is given by the normal probability of
the associated residual, which we assume is normally-distributed with
mean 0 and standard deviation σ :

Pr(Y = yi|β,σ2) = 1√
2πσ2

e−
1

2σ2 (yi−Xiβ)T (yi−Xiβ) (18.6)

This probability depends on the residual εi = (yi − Xiβ), which can
be directly calculated from the chosen regression parameters β, but
also on the standard deviation of the errors σ , which must also be
estimated from the observations.

The matrix product in the final term can be written as the squared
residual:

(yi − Xiβ)T (yi − Xiβ) = (yi − β0 − β1xi)2 = ε2
i (18.7)

so Equation 18.6 can be written as:

Pr(Y = yi|β,σ2) = 1√
2πσ2

e−
1

2σ2 ε
2
i (18.8)
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This probability can be computed with the dnorm function; here the
mean residual is 0.

Task 124 : For a fixed (assumed) value of the standard deviation, say
the default 1, compute some probabilities of observed residuals. •

> dnorm(x = c(-1.96, -1, -0.5, 0, 0.5, 1, 1.96), mean = 0,

+ sd = 1)

[1] 0.058441 0.241971 0.352065 0.398942 0.352065 0.241971 0.058441

Task 125 : For a fixed (assumed) observed residual, say 1, compute
the probability of observing that value, for several assumed values of
the population standard deviation σ . •

> s <- seq(0.4, 2, by = 0.2)

> data.frame(sd = s, p = dnorm(x = 1, mean = 0, sd = s))

sd p

1 0.4 0.043821

2 0.6 0.165795

3 0.8 0.228311

4 1.0 0.241971

5 1.2 0.234927

6 1.4 0.220797

7 1.6 0.205101

8 1.8 0.189940

9 2.0 0.176033

The probability of observing this fixed value of the residual (i.e., devia-
tion from zero) increases until standard deviation 1 and then decreases,
as the normal “bell-shaped” curve becomes flatter.

Task 126 : Visualize the normal curves for the different standard de-
viations, and show the probability of the selected residual for each.

•

We can visualize this by applying the curve plotting function to values
calculated with dnorm, with different standard deviations:

> tmp <- rainbow(length(s))

> curve(dnorm(x, mean=0, s[1]), -3, 3, col=tmp[1],

+ main="Normal probability density",

+ sub="Varying the standard deviation",

+ ylab="density",xlab="residual")

> for (i in 2:length(s))

+ curve(dnorm(x, mean=0, sd=s[i]), -3, 3,

+ col=tmp[i], add=T)

> grid()

> abline(v=1, lty=2)

> legend(-3, 1, s, lty=1, col=tmp)
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2. Write an equation to compute the likelihood of observing the known
values, given specific values of the parameters. This is the same condi-
tional probability, but this time considering the observations y as fixed
and the β as unknowns, to be solved for.

In the case where the observations are independent, the likelihood of
the set of observations y, given fixed β, is defined as the product
of their individual probabilities from Equation 18.6. This is because
independent observations implies independent residual errors, so the
joint probability of observing the actual vector y is the product of the
probability of observing each one:

L(β,σ2|y) =
n∏
i=1

1√
2πσ2

e−
ε2i

2σ2

= 1
(2πσ2)n/2

n∏
i=1

e−
ε2i

2σ2 (18.9)

This is now a function of the model parameters; as we vary these, the
regression residuals ε change, so the the likelihood changes; when it
is a maximum, these are the most probable values of the parameters.
The variance σ2 also can vary, and also affects the likelihood.

The likelihood function is usually written as a logarithm to allow easy
differentiation; recall that log(ab) = log(a) + log(b) and log(ac) =
c log(a), so that the product becomes a sum and an exponentiation
becomes a product.

Note: The choice of parameters that maximizes the log-likelihood
also maximizes the likelihood, because the logarithm is a monotonically
increasing function.
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Taking logarithms of both sides of Equation 18.9 we obtain:

`(β,σ2|y) = log
(

1
(2πσ2)n/2

)
−

n∑
i=1

ε2
i

2σ2
(18.10)

= −n
2

log(2π)− n
2

log(σ2)− 1
2σ2

n∑
i=1

ε2
i

The first term depends only on the sample size; the second term de-
pends on the sample size and the population variance; and the third
term depends on the population variance and the regression coefficients
(because they are used to compute εi).

3. Solve for the maximum value of the log-likelihood, either analytically
or numerically.

Since this is an optimization problem, the obvious way to solve analyt-
ically is to differentiate Equation 18.10 with respect to each parameter
and set to zero; then check if this is a maximum by the second deriva-
tive.

Note: Many likelihood functions can not be solved analytically, in
which case numerical optimization methods must be used, systemati-
cally varying the parameters, computing the likelihood, and looking for
a maximum.

Here we have three partial derivatives, with respect to each of the three
parameters to be estimated:

∂`
∂β0

= 1
σ2

∑
i
(yi − β0 − β1xi) (18.11)

∂`
∂β1

= xi
σ2

∑
i
xi(yi − β0 − β1xi) (18.12)

∂`
∂σ2

= − 1
σ2
+ 1
n

∑
i
(yi − β0 − β1xi)2 (18.13)

Setting these equal to zero and simplifying:

∑
i
(yi − β0 − β1xi) = 0 (18.14)

∑
i
xi(yi − β0 − β1xi) = 0 (18.15)

∑
i
(yi − β0 − β1xi)2 = nσ2 (18.16)

Solving these three equations, we obtain the familiar least-squares es-
timators for the slope β1 and the intercept β0:
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β̂1,ML =
∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
= SXY
SXX

(18.17)

β̂0,ML = ȳ − β̂1,MLx̄ (18.18)

The most likely variance of the residuals is:

σ̂2
ML =

1
n

∑
i
e2
i =

1
n

∑
i
(yi − β0 − β1xi)2 (18.19)

18.1.1 Numerical solution

In this case the solution can be found analytically; in general a numerical
solution is required. For illustration we show a brute-force approach, try-
ing various values of the three parameters and then finding the maximum
log-likelihood. In practical computations, gradient methods are used, e.g., a
multivariate version of Newton-Raphson root finding. In complicated prob-
lems the likelihood surface may not be convex and there is a danger of finding
only a local maximum.

Task 127 : Write a function to compute log-likelihood for simple linear re-
gression according to Equation 18.10; its arguments should be the parameter
values and the observations (both predictor and predictand). •

> like <- function(beta0, beta1, sigma, x, y) {

+ s2 <- sigma^2

+ n <- length(y)

+ pred <- beta0 + beta1 * x

+ loglike <- -(n/2) * (log(2 * pi)) - (n/2) * (log(s2)) -

+ (1/(2 * s2)) * (sum((y - pred)^2))

+ return(loglike)

+ }

Task 128 : Set up arrays of possible parameter values to be tested for their
likelihood. •

These should be based on guesses from the scatterplot or previous infor-
mation; here we use the results of the linear model fit and vary them by
±10%:

> coefficients(lm(straw ~ grain, data = mhw))

(Intercept) grain

0.86628 1.43050

> summary(lm(straw ~ grain, data = mhw))$sigma

[1] 0.61477
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We create the three vectors and then all possible combinations, using the
expand.grid function, and add a placeholder column for the computed log-
likelihood:

> coef <- round(coefficients(lm(straw ~ grain, data = mhw)),

+ 5)

> (beta0 <- coef[1] * seq(0.9, 1.1, by = 0.02))

[1] 0.77965 0.79698 0.81430 0.83163 0.84895 0.86628 0.88361 0.90093

[9] 0.91826 0.93558 0.95291

> (beta1 <- coef[2] * seq(0.9, 1.1, by = 0.02))

[1] 1.2875 1.3161 1.3447 1.3733 1.4019 1.4305 1.4591 1.4877 1.5163

[10] 1.5449 1.5736

> (sigma <- round(summary(lm(straw ~ grain, data = mhw))$sigma,

+ 5) * seq(0.9, 1.1, by = 0.02))

[1] 0.55329 0.56559 0.57788 0.59018 0.60247 0.61477 0.62707 0.63936

[9] 0.65166 0.66395 0.67625

> beta <- expand.grid(beta0 = beta0, beta1 = beta1, sigma = sigma)

> beta$loglik <- 0

> dim(beta)

[1] 1331 4

> rm(coef, beta0, beta1, sigma)

Task 129 : Compute the log-likelihood for each combination of parameters,
given the observed wheat yield data, and find the maximum. •

This is a “brute-force” computation of all combinations, using a for loop
and then finding the maximum with the which.max function:

> for (i in 1:length(beta$loglik)) beta$loglik[i] <- like(beta[i,

+ "beta0"], beta[i, "beta1"], beta[i, "sigma"], mhw$grain,

+ mhw$straw)

> summary(beta$loglik)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-821 -614 -530 -556 -484 -465

> (beta.mle <- beta[which.max(beta$loglik), ])

beta0 beta1 sigma loglik

666 0.86628 1.4305 0.61477 -465.22

As expected, these optimal parameter values are identical to those computed
by lm using least squares.

Task 130 : Visualize the likelihood surface, first 1D for each parameter
separately and then 2D for a combination of two parameters. •
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First, the three per-parameter one-dimensional plots, holding the other two
parameters constant:

> par(mfrow = c(1, 3))

> tmp <- beta[(beta$sigma == beta.mle$sigma), ]

> tmp <- tmp[(tmp$beta1 == beta.mle$beta1), ]

> plot(tmp$loglik ~ tmp$beta0, type = "b", xlab = "intercept",

+ ylab = "log-likelihood", main = "Constant slope, s.d.")

> grid()

> abline(v = beta.mle$beta0)

> tmp <- beta[(beta$sigma == beta.mle$sigma), ]

> tmp <- tmp[(tmp$beta0 == beta.mle$beta0), ]

> plot(tmp$loglik ~ tmp$beta1, type = "b", xlab = "slope",

+ ylab = "log-likelihood", main = "Constant intercept, s.d.")

> grid()

> abline(v = beta.mle$beta1)

> tmp <- beta[(beta$beta1 == beta.mle$beta1), ]

> tmp <- tmp[(tmp$beta0 == beta.mle$beta0), ]

> plot(tmp$loglik ~ tmp$sigma, type = "b", xlab = "s.d.",

+ ylab = "log-likelihood", main = "Constant intercept, slope")

> grid()

> abline(v = beta.mle$sigma)

> par(mfrow = c(1, 3))
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Second, a two-dimensional surface, holding one parameter constant, using
the wireframe function of the lattice package:

> tmp <- beta[(beta$sigma == beta.mle$sigma), ]

> wireframe(loglik ~ beta0 + beta1, data = tmp, aspect = c(1,

+ 0.5), drape = T, main = "Log-likelihood, Constant s.d.")
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> rm(like, beta, i, beta.mle, tmp)

18.2 Residual Maximum Likelihood

We first complete the theoretical derivation of REML (§18.2.1), and then
show how to compute the GLS relation using this method (§18.2.2).

18.2.1 REML – theory

Returning now to Equation 18.2, where we can not assume i.i.d. residuals
as in Equation 18.1, Lark and Cullis [28, Eq. 12] show that the likelihood of
the parameters is now expanded to include the spatial dependence implicit
in the variance-covariance matrix V, rather than a single residual variance
σ2. The log-likelihood is then:

`(β, θ|y) = c − 1
2

log |V| − 1
2
(y− Xβ)TV−1(y− Xβ) (18.20)

where c is a constant (and so does not vary with the parameters) and V
is built from the variance parameters θ and the distances between the ob-
servations. By assuming second-order stationarity20, the structure can be
summarized by the covariance parameters θ = [σ2, s, a], i.e., the total sill,
nugget proportion, and range.

However, maximizing this likelihood for the random-effects covariance pa-
rameters θ also requires maximizing in terms of the fixed-effects regression
parameters β, which in this context are called nuisance parameters since
at this point we don’t care about their values; we will compute them after
determining the covariance structure.

Both the covariance and the nuisance parameters β must be estimated, it
seems at the same time (“chicken and egg”problem) but in fact the technique
of REML can be used to first estimate θ without having to know the nuisance
parameters. Then we can use these to compute C with equation 18.5 and

20 that is, the covariance structure is the same over the entire field, and only depends on
the distance between pairs of points
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from this V, after which we can use equation 18.4 to estimate the fixed effects
β.

The maximum likelihood estimate of θ is thus called “restricted”, because
it only estimates the covariance parameters (random effects). Conceptu-
ally, REML estimation of the covariance parameters θ is ML estimation of
both these and the nuisance parameters β, with the later integrated out [42,
§2.2.5]:

`(θ|y) =
∫
`(β, θ|y) dβ (18.21)

Pinheiro and Bates [42, §2.2.5] show how this is achieved, given a likelihood
function, by a change of variable to a statistic sufficient for β.

Lark and Cullis [28, Eq. 15], following Smyth and Verbyla [48], show that
the log-likelihood of θ is then conditional on the sufficient statistic t for β:

`(θ|t) = c − 1
2

log |V| − 1
2

log |XTV−1X| (18.22)

−1
2

yTV−1(I−Q)y

where Q = X(XTV−1X)−1XTV−1

Since the nuisance parameters β are not present in Equation 18.22, the
likelihood of the covariance parameters θ, which determine the variance-
covariance matrix V, can be maximized independently of the nuisance (re-
gression) parameters.

18.2.2 REML – computation

Equation 18.22 must be maximized by varying the three parameters in θ
which determine V, there is no analytic solution. This is is a non-linear op-
timization problem over a large parameter space, and there is no guarantee
of finding the true optimum. This is in contrast to ordinary least squares,
which is a direct computation from the model matrix and observation values.
This problem can be partially addressed by starting the solution with rea-
sonable covariance parameters, for example, those inferred from a variogram
fit to the OLS residuals. But even this is no guarantee; Lark and Cullis [28]
used simulated annealing, which can escape local minima. We use a gradient
method, a multivariate version of Newton-Raphson minimization.

In the R environment REML by the gradient method is implemented with
the gls “Generalized Least Squares” function of the nlme “Linear and Non-
linear Mixed Effects Models” package, based on the text by Pinheiro and
Bates [42]. See Bates [2] for a simple introduction to the concepts, and how
to use them in the R environment.

Task 131 : Load the nlme package and examine the help for the gls function.
•

> require(nlme)

> help(gls)
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As with the lm function, this requires a formula (here called a ‘model’)
and a dataframe in which to find variables. In addition, it requires either
a correlation structure or a weights matrix. In our case we have a known
spatial correlation, so we need to specify how the residuals may be correlated.

The nlme package provides a number of constructors of correlation structures
for both time and spatial correlation. The spatial correlation models are
similar to familiar variogram models: exponential, Gaussian, and Spherical
(the structure we used to model the residuals, above). All that is required is
a starting value for the range and nugget, which we extract from the fitted
variogram model and put together in a list, and the formula for spatial
coordinates. These constructors are functions named corSpher, corExp and
so forth; see ?corClasses for details.

A small complication is that nlme does not depend on the sp structures, so
we need to convert to a dataframe with the as.data.frame function, so that
the coordinate names x and y become visible.

Task 132 : Fit the regression model by GLS, using a spherical correlation
structure based on the variogram analysis. •

The model fitting takes a bit of time; we can see how much by enclosing the
call to gls in the system.time function:

> system.time(

+ model.gls.straw.grain <-

+ gls(model=straw ~ grain,

+ data=as.data.frame(mhw.sp),

+ correlation=corSpher(

+ value=c(vgmr[2,"range"],vgmr[1,"psill"]),

+ form=~x+y, nugget=T))

+ )

user system elapsed

8.691 0.179 8.875

Task 133 : Summarize the model. •

> summary(model.gls.straw.grain)

Generalized least squares fit by REML

Model: straw ~ grain

Data: as.data.frame(mhw.sp)

AIC BIC logLik

853.54 874.59 -421.77

Correlation Structure: Spherical spatial correlation

Formula: ~x + y

Parameter estimate(s):

range nugget

8.02312 0.37426
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Coefficients:

Value Std.Error t-value p-value

(Intercept) 1.5605 0.240165 6.4977 0

grain 1.2557 0.059545 21.0879 0

Correlation:

(Intr)

grain -0.978

Standardized residuals:

Min Q1 Med Q3 Max

-3.114035 -0.637046 -0.010328 0.619166 4.790892

Residual standard error: 0.61467

Degrees of freedom: 500 total; 498 residual

There is quite a bit of information in the model summary:

1. the fixed-effects model form;

2. the fitting information: Akaike’s Information Criterion (AIC), Bayes’
Information Criterion (BIC) and the log-likelihood of the final REML
fit;

3. the random-effects model form, i.e., the correlation structure, with
estimates of its parameters (here, range and proportional nugget);

4. the fitted model coefficients for the fixed effects, their standard errors
and significance;

5. the correlation between parameters;

6. the residuals and residual standard error (i.e., lack of fit).

Q136 :

(1) How do the GLS linear regression coefficients compare with those esti-
mated by OLS?;

(2) What parameters for the specified spatial correlation structure were fit
by REML?

(3) How do these spatial structure parameters compare with the fitted vari-
ogram model? Jump to A136
•

> coefficients(model.gls.straw.grain)

(Intercept) grain

1.5605 1.2557

> coefficients(model.straw.grain)

(Intercept) grain

0.86628 1.43050
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We now have two models to compare; which is better? One way to an-
swer this is to compute each model’s log-likelihood with the logLik “log-
likelihood” function, which can be applied to most models; but this is not
corrected for degrees of freedom. For that, we use the AIC “Akaike’s An
Information Criterion” function; this is defined as:

AIC = −2 log(likelihood)+ 2 p (18.23)

where p is the number of model parameters. Thus the AIC penalizes mod-
els with many parameters, similarly to the adjusted R2 for linear models.
Because of the change in sign, the lower AIC is better.

> logLik(model.gls.straw.grain)

'log Lik.' -421.77 (df=5)

> logLik(model.straw.grain)

'log Lik.' -465.21 (df=3)

> AIC(model.gls.straw.grain)

[1] 853.54

> AIC(model.straw.grain)

[1] 936.43

This comparison can only be applied to hierarchical models, that is, where
one is an extension of the other. In this case the GLS model has the same
form for the regression parameters but an extended form for the residual
structure, so they can be compared.

Q137 : Is the GLS model more likely than the OLS model? Which model
has more parameters? Which model is better according to the AIC? Jump
to A137 •

Finally, we visualize the effect on the regression model fit of using GLS
instead of OLS.

Task 134 : Plot the straw vs. grain yield, with the OLS and GLS regression
lines. •

> plot(straw ~ grain, data=mhw, pch=20,

+ sub="black: OLS; red: GLS")

> grid()

> abline(model.straw.grain)

> abline(model.gls.straw.grain, col="red")
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Q138 : What may account for the shallower slope of the GLS line? Jump
to A138 •

Challenge: Recompute the GLS regression, but using an exponential vari-
ogram model form – this is often used for these sorts of problems, because
it has a simple structure and interpretation.

You will first have to re-fit the residual variogram with an exponential model
to obtain starting values for gls.

Compare the GLS regression line with that obtained with the spherical
model; compare the fitted correlation structure with that from the spherical
model. Plot all three lines on the scatterplot and comment on the differ-
ences. How much difference did the choice of correlation structure make in
the estimates?

Compare the log-likelihoods of the two GLS models (exponential and spher-
ical variogram forms); which is more likely?

Note: Recall that the reported range parameter of an exponential model is
one-third of its effective range, i.e., when the correlation is reduced to 5% of
the total.

18.3 Answers

A132 : Yes, there are definitely many high (orange to yellow) and low (blue)
patches of a few adjacent plots. Return to Q132 •

A133 : (1) Yes, the variance is less at closer separations; (2) about (0.35 −
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0.2)/0.35 ≈ 40% of the total sill appears to be structural (not nugget variance);
(3) the range is about 6 to 7 m, i.e., about two to three plots. Return to Q133 •

A134 : There is a fairly high nugget (theoretically, the same as for the residuals
of straw yield) but clear spatial structure to about 6 meters (a bit more than two
plot widths) and then some fluctuation around a sill, suggestive of periodicity; see
§21. Return to Q134 •

A135 : A proportion of pure noise s = 1 means that the nugget c0 = σ 2, i.e., is
equal to the total sill (c0 + c1 in variogram terms), so the residuals have no spatial
correlation and the OLS solution is valid; there is no need to account for correlation
in the residuals by GLS. Return to Q135 •

A136 :

(1) The intercept is higher (1.56 vs. 0.87) and the slope is shallower (1.26 vs. 1.43).

(2) A range of just over 8 m and a nugget of about 0.37.

(3) The range is quite comparable to the variogram model fit, just a little longer;
but the nugget has a different meaning. Here it is the proportion of the total sill,
which for the variogram fit is 0.4684; the REML fit decreases this a bit.

Return to Q136 •

A137 : The GLS model is substantially more likely than the OLS model; its log-
likelihood is -421.8 compared to -465.2 for the OLS model. The GLS model has two
more parameters, because three parameters are needed for the covariance structure,
but only one for the variance assuming i.i.d. residuals. Still, the AIC for the GLS
model, 853.5, is much superior to that for the OLS model, 936.4 Return to Q137 •

A138 : If the very high- and very low-yielding plots, with the highest leverage on
the regression line, are spatially-correlated (which seems likely), the clusters in the
scatterplot at extreme upper-right (above the average line) and extreme lower-left
(below) will have less effect; because of spatial correlation they will be effectively
clustered by the GLS fit, to some degree sharing their weights. So the line will not
be pulled so much by these high-leverage plots. Return to Q138 •

19 Geographically-weighted regression*

Another approach to spatial correlation in regression is to use it to reveal an
underlying process. In §8.2 and §18 we implicitly assumed that the process
by which straw and grain yields are related (i.e., the plant physiology in re-
sponse to environmental factors) is the same everywhere. The environmental
factors could result in higher or lower yields (linear model intercept), but
the relation of straw to grain is constant (linear model slope). But is this
true?

A recently-developed technique for investigating this is“geographically weight-
ed regression” (GWR). This computes the coefficients of the regression equa-
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tion for each plot, in a local window which moves across a spatial field. Fur-
ther, it weights plots near to the target plot more than those further away,
using a density kernel. Thus the equation reported at each point can be
thought of as the local linear relation between the response and predictor,
which is now allowed to vary across the field. The main interpretive interest
in GWR is the spatial pattern of the coefficients, which is taken as evidence
of a spatially-varying process.

GWR is comprehensively described by Fotheringham et al. [18] and briefly by
Fotheringham et al. [17, §5.4.3]; these same authors maintain a web page21

with tutorial material.

One implementation of GWR in the R environment is the spgwr package22,
which builds on the sp package loaded in §16.3.

Task 135 : Load the spgwr package. •

> library(spgwr)

A key issue in GWR is the size and shape of the window to be moved over
the field, and centred on each point in turn. This is closely related to kernel
density estimation of a single variable (not a regression relation). The most
common kernel shape is Gaussian (bivariate normal, the familiar bell-curve),
and the bandwidth is often chosen to minimize the average cross-validation
error of all the points predicted by their own local regression.

Task 136 : Compute the optimal bandwidth for GWR of the straw vs. grain
relation. •

The gwr.sel function does this:

> (bw <- gwr.sel(straw ~ grain, data = mhw.sp, adapt = F,

+ verbose = F))

[1] 7.7937

Q139 : To the range of the variogram of which variable should this band-
width correspond? Jump to A139
•

Task 137 : Compute and model the empirical variogram of the grain/straw
ratio. •

> (vmf.gsr <- fit.variogram(v.gsr <- variogram(gsr ~ 1, loc=mhw.sp),

+ model=vgm(0.004, "Sph", 10, 0.002)))

21 http://ncg.nuim.ie/ncg/GWR/whatis.htm
22 Although the package loads with the somewhat of-putting disclaimer“NOTE: This pack-

age does not constitute approval of GWR as a method of spatial analysis”!
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model psill range

1 Nug 0.0018000 0.0000

2 Sph 0.0016304 8.4351

Q140 : Does the effective range of the fitted variogram model of the
grain/straw ratio match the fitted bandwidth for GWR? Jump to A140 •

Task 138 : Compute the GWR for the straw vs. grain regression. •

The gwr.sg function computes this:

> (gwr.sg <- gwr(straw ~ grain, data = mhw.sp, bandwidth = bw))

Call:

gwr(formula = straw ~ grain, data = mhw.sp, bandwidth = bw)

Kernel function: gwr.Gauss

Fixed bandwidth: 7.7937

Summary of GWR coefficient estimates at data points:

Min. 1st Qu. Median 3rd Qu. Max. Global

X.Intercept. -0.0923 1.1565 1.6190 2.0558 3.4352 0.87

grain 0.8949 1.1047 1.2486 1.4006 1.7064 1.43

Q141 : How much do the local slopes vary? How do they compare with the
slope computed for the relation over the whole field? Jump to A141 •

Task 139 : Plot the GWR slopes (coefficient of straw vs. grain) across the
field. •

The SDF field of the fitted object contains the fitted coefficients, the predic-
tion from the local model, the residuals, and the local goodness-of-fit. The
grain field within the SDF field is the slope coefficient.

For easier visualization, we convert the points representing plots into pixels.

> gwr.coef <- as(gwr.sg$SDF,"SpatialPixelsDataFrame")

> print(spplot(gwr.coef, zcol="grain",

+ col.regions=bpy.colors(64),

+ key.space="right", cuts=8,

+ main="Slope: straw ~ grain"))
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Q142 : Does the relation of straw vs. grain appear to vary across the field?
What is the interpretation? Jump to A142 •

Task 140 : Plot the GWR residuals and investigate if they have any spatial
structure. •

The gwr.e field within the SDF field contains the residuals.

> print(spplot(gwr.coef, zcol="gwr.e",

+ col.regions=bpy.colors(64),

+ key.space="right", cuts=8,

+ main="Slope: straw ~ grain"))
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To check for spatial structure, we compute the empirical variogram of these
GWR residuals, and model it. A technical point: the variogram method
can not handle non-square grid cells, so we have to convert to spatial points.

> vr.gwr <- variogram(gwr.e ~ 1, loc = as(gwr.coef, "SpatialPointsDataFrame"),

+ cutoff = 12, width = 1)

> plot(vr.gwr, plot.numbers = TRUE, pch = 20)
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This is quite irregular.

Now attempt to fit it, using starting values estimated from the empirical
variogram plot:

> (vmf.r.gwr <- fit.variogram(vr.gwr,

+ model=vgm(0.10, "Sph", 8, 0.25)))

model psill range

1 Nug 0.00000 0.0000
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2 Sph 0.31142 4.6731

> plot(vr.gwr, plot.numbers=TRUE, pch=20,

+ model=vmf.r.gwr)
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Q143 : Is there any spatial structure in the GWR residuals? Jump to
A143 •

Task 141 : Plot the empirical variogram and fitted variogram model for
these residuals, along with those from the OLS global fit (§8.2.1) and the
REML fit (§18) to the entire dataset. •

We first must compute and model the variogram for the REML fit:

> mhw.sp$gls.res <- residuals(model.gls.straw.grain)

> vr.gls <- variogram(gls.res ~ 1, loc = mhw.sp, cutoff = plot.wid *

+ 10, width = plot.wid)

> (vmf.r.gls <- fit.variogram(vr.gls, model = vgm(0.1,

+ "Sph", 5, 0.2)))

model psill range

1 Nug 0.14957 0.0000

2 Sph 0.20439 7.2488

To put these on one plot it’s easiest to use the base graphics plot method
to establish the plotting axes and show one of the point sets; we then use
the lines and points functions to add more point sets and lines. The lines
are computed from the fitted variogram models with the variogramLine

function.

> ylim.plot=c(0, max(vr.gwr$gamma, vr.gls$gamma, vr$gamma))

> plot(gamma ~ dist, data=vr.gwr, ylim=ylim.plot,

+ type="b", lty=2, col="red", xlab="separation, m",

+ ylab="semivariance, (lbs plot-1)^2",

+ main="Regression model residuals")
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> lines(variogramLine(vmf.r.gwr, maxdist=max(vr.gwr$dist)),

+ col="red")

> points(gamma ~ dist, data=vr, type="b", lty=2, col="blue")

> lines(variogramLine(vgmr, maxdist=max(vr.gwr$dist)),

+ col="blue")

> points(gamma ~ dist, data=vr.gls, type="b", lty=2, col="green")

> lines(variogramLine(vmf.r.gls, maxdist=max(vr.gwr$dist)),

+ col="green")

> legend(20,0.15,c("OLS", "GLS", "GWR"), lty=1,

+ col=c("blue","green","red"))
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Q144 : Explain the change in spatial structure from (1) OLS residuals, (2)
GLS residuals, (3) GWR residuals. Jump to A144 •

19.1 Answers

A139 : In this case of a bivariate relation, the bandwidth might be expected to
correspond to the variogram range for the grain/straw ratio, which also represents
the same process as the straw vs. grain regression. Return to Q139 •

A140 : The bandwidth 7.8 m is a bit less than the range for grain/straw with a
spherical model, 8.4; but they are comparable. Return to Q140 •

A141 : There is quite a wide range of both coefficients; the IQR is also wide. The
global coefficients are nowhere near the medians of the GWR coefficient distribu-
tions. Return to Q141
•
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A142 : Most definitely. There is a very high straw yield per unit grain yield
in the NW and SE, very low in the SW. The process by which carbohydrates
are partitioned between grain and straw appears to be systematically different in
patches of about 1/5 field size, not just random noise plot-to-plot. Return to
Q142 •

A143 : The variogram is quite irregular, however there does appear to be some
structure. The fitted variogram model shows a range of 4.7 m and a structural sill
to total sill ratio of 100%, i.e., zero nugget. This is an artefact of the automated
fitting. Return to Q143 •

A144 : The OLS fit has the highest residuals; these are slightly lowered by the
REML fit, presumably because it better accounted for very high and low values
close to each other. The GWR residuals are considerably lower and are fit with a
slightly longer range. The lower residuals are because the GWR fit is local and so
can better adjust to local relations between straw and grain. Return to Q144 •

20 Management zones*

In §16 we saw that there is spatial structure in the field, i.e., there are
clusters of similar grain yields, straw yields, and grain/straw ratios. This
observation is common for farmers, and they may attempt to divide a seem-
ingly homogeneous field into management zones. For example, areas with
a low grain/straw ratio may have excess N, leading to excessive vegetative
growth, so the farmer may use less fertilizer in such a zone. These zones
may be based on covariates that are not homogeneous across the field (e.g.,
slope, surface soil texture) or by on-the-go sensor measurements (e.g., elec-
trical conductivity of the surface soil) but may also be inferred from a cluster
analysis of grain yields [16, 33].

The concept is that clusters in feature (attribute) space may also be clustered
in geographic space, leading to delineation of zones. In this section we take
a simple approach to defining management zones in the Mercer & Hall field,
mainly as an exercise in cluster analysis.

Let’s look again at the straw vs. grain scatterplot to see if we can estimate
how many clusters might be distinguished in feature space. We take this
chance to introduce the ggplot2 “grammer of graphics” [59] graphics pack-
age. This has a very different approach than base graphics towards building
up a plot; see the textbook by the package author Wickham [58].

Task 142 : Display a scatterplot of straw vs. grain, with the grain/straw
ratio highlighted by a colour ramp. •

Graphs in ggplot2 are built up in layers, separated by the + operator, which
in this context means “add an element to the graph”. Here is a simple
example:

1. Define the data source with the data argument to the ggplot function;
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2. Specify that points are to be displayed, with the geom_point “point
geometry” function;

3. Define the “aesthetic” with the aes function: how the points will be
displayed on the plot.

(a) We specify the data fields to display on the two axes of the scat-
terplot with the x and y arguments; here these are the grain and
straw yields.

(b) We define the color to assign to each point in the scatterplot, with
the col argument; here this is a continuous color ramp based on
the grain/straw ratio.

> library(ggplot2)

> ggplot(data = mhw) +

+ geom_point(aes(x = grain, y = straw, col = gsr))
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Clearly there is a wide range of yields of both grain and straw, as well as a
wide range of grain/straw ratios.

Q145 : How many clusters of similar yields and ratios do you see? How
could these be described? Jump to A145 •

20.1 k -means clustering

Based on our subjective answer to the preceding question, we now cluster
the observations in feature space.

The k -means algorithm [23] divides a multivariate dataset into an analyst-
defined k groups such that the sum of the within-cluster sum of squares is
minimized; this implies that the between-cluster centroids sum of squares is
maximized, for a fixed k.
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One implementation in R is by the kmeans function of the standard stats

package.

However, we first need to decide if we should normalize the two predictors to
the same scale. The original variables are of different magnitudes: straw has
larger number than grain, and also a slightly higher coefficient of variation
(i.e., more variable).

> range(mhw$straw); range(mhw$grain)

[1] 4.10 8.85

[1] 2.73 5.16

> round(sd(mhw$straw)/mean(mhw$straw),3)

[1] 0.138

> round(sd(mhw$grain)/mean(mhw$grain),3)

[1] 0.116

If these are not normalized, the straw yield will be more important than the
grain yield in the clustering. For management it seems we should consider
them equally. Normalization transforms each variable to have mean 0 and
standard deviation 1.

Task 143 : Make a version of the dataset with normalized grain and straw
yields. •

We write a small function, using the function function (!), and apply it to
both variables in the data frame, with the apply function over the second
“margin” of the data frame, i.e., the columns (fields):

> mhw.normal <- mhw[ , c("grain", "straw")]

> normalize <- function(x) {

+ return( (x - mean(x)) / sd(x) )

+ }

> mhw.normal <- apply(mhw.normal,

+ MARGIN=2,

+ FUN=normalize)

> summary(mhw.normal)

grain straw

Min. :-2.6592 Min. :-2.688

1st Qu.:-0.6789 1st Qu.:-0.709

Median :-0.0188 Median :-0.172

Mean : 0.0000 Mean : 0.000

3rd Qu.: 0.7012 3rd Qu.: 0.729

Max. : 2.6433 Max. : 2.600

Task 144 : Divide the plots into five feature-space clusters (the centers

argument), based on the normalized grain and straw yields. Compare 20
different random starting allocations (the nstart argument). •
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Since a true optimum is computationally unfeasible, the algorithm repeats
for a user-defined nstart number of random starting cluster centroids, and
compares the between-cluster sum-of-squares achieved for each one, taking
the largest as the result.

(Note that we use set.seed here so that your results will match those in
this document. In practice you should not use this.)

> set.seed(314)

> (gs.cluster <- kmeans(mhw.normal,

+ centers = 5, nstart = 20))

K-means clustering with 5 clusters of sizes 135, 68, 135, 90, 72

Cluster means:

grain straw

1 0.42241 0.71082

2 1.50635 1.55364

3 -0.66378 -0.45904

4 0.38338 -0.46386

5 -1.44932 -1.35959

Clustering vector:

[1] 3 4 1 1 3 5 5 5 4 5 5 1 1 1 1 2 1 1 3 3 1 1 1 2 1 3 3 5 3 3 3 3

[33] 3 1 4 1 1 1 1 1 1 1 1 1 2 1 1 1 2 1 3 1 1 2 1 1 1 2 2 2 2 2 2 1

[65] 2 2 1 2 1 1 2 1 2 1 1 1 2 1 2 2 5 4 3 3 3 3 5 3 3 1 1 3 1 1 4 3

[97] 5 2 2 1 4 3 1 4 1 3 3 3 1 1 2 2 2 2 1 3 3 1 2 1 2 2 2 2 2 1 2 2

[129] 2 2 2 2 2 2 1 1 1 1 2 1 4 4 3 2 1 3 1 3 5 3 1 1 1 3 1 1 2 1 1 1

[161] 1 1 5 5 1 1 1 1 1 1 1 1 1 1 3 1 1 1 1 1 4 4 3 4 2 4 2 2 2 2 2 2

[193] 2 2 1 2 2 1 2 1 1 4 4 4 3 3 4 4 3 3 1 1 2 1 1 3 1 2 2 1 4 4 4 5

[225] 3 4 3 5 3 4 1 5 1 3 1 3 1 1 2 2 2 4 3 4 3 3 1 3 1 3 1 1 1 3 3 5

[257] 3 2 1 3 4 4 2 3 4 3 3 4 4 3 5 5 5 5 5 3 4 3 1 1 5 3 3 5 1 5 3 3

[289] 5 5 3 4 3 3 1 5 3 3 3 5 3 3 1 1 4 4 2 4 2 4 1 1 3 3 3 5 3 5 5 5

[321] 5 5 5 4 3 3 4 3 4 4 5 3 1 5 5 5 3 5 5 5 5 4 5 3 4 4 4 3 4 4 3 3

[353] 4 3 5 5 3 5 3 3 4 2 4 4 4 4 3 5 3 4 1 1 3 3 5 5 3 3 3 3 3 4 4 4

[385] 3 3 4 3 4 4 2 2 2 1 3 3 1 1 1 3 5 3 4 3 3 4 5 4 4 1 1 1 1 3 3 5

[417] 3 3 4 3 5 5 3 4 3 4 5 3 3 4 4 4 1 1 3 3 1 3 4 3 5 5 5 5 5 4 5 3

[449] 4 4 4 4 4 4 5 3 4 3 4 5 4 4 4 5 4 3 5 5 5 5 3 3 4 3 3 3 3 3 1 3

[481] 1 4 1 3 4 4 5 1 4 4 5 3 1 4 5 3 1 3 1 3

Within cluster sum of squares by cluster:

[1] 50.781 31.514 38.102 27.364 34.655

(between_SS / total_SS = 81.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

The results show:

1. the cluster centroids, i.e., mean grain and straw yields;

2. the cluster to which each plot is assigned;
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3. the within-cluster sum of squares for each cluster. This shows how
compact is each cluster – some may be better defined than others;

4. the proportion of the total sum-of-squares (variability among plots) not
explained by the clusters, i.e., by the between-cluster sum-of-squares.
If any cluster is “too” diffuse this may indicate that more clusters
should have been requested, i.e., there is more differentiation in feature
space. If several clusters are “too” similar this may indicate that fewer
clusters should have been requested, i.e., there is less differentiation in
feature space.

Q146 : What does Cluster 2 represent? Jump to A146 •

Q147 : How much of the total variability is explained by this clustering?
What do you conclude from this about (1) the feature-space distribution of
grain and straw yields; (2) the choice of number of feature-space clusters?

Jump to A147 •

Task 145 : Display a scatterplot of straw vs. grain, with the assigned clusters
shown by colour. •

Challenge: Run the k -means clustering again, but without set.seed, i.e.,
from a random starting point. Do you get the same result? If not, how
different, and in what way(s)?

Challenge: Run the k -means clustering again, but with fewer random start-
ing positions (e.g., 5 instead of 20). Do you get the same result? If not, how
different, and in what way(s)? What do you conclude about the robustness
of k -means clustering with this dataset and number of clusters?

We add the cluster assignment to the spatial object’s data frame, and use
this to colour the plot.

> mhw.sp$cluster.5 <- as.factor(gs.cluster$cluster)

> ggplot(data = mhw.sp@data) +

+ geom_point(aes(grain, straw, color=cluster.5)) +

+ labs(colour="cluster.5")
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Q148 : Which cluster(s) are most compact (most tightly defined)? most
diffuse? Jump to A148 •

Now we want to see if these feature space zones have a geographic expression;
if so, these could be managed separately.

Task 146 : Display a map of the field with the plots coloured by feature-
space cluster. •

We first create the plot and save it in workspace variable g, and then display
it. This allow us to update the plot with extra or changed information, see
below.

> g <- ggplot(data = mhw.sp@data) +

+ geom_point(aes(c, r, color=cluster.5), shape=15, size=5)

> print(g)
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This map is difficult to read because of the “soft” colours. We can find more
suitable palettes defined in the RColorBrewer package.

Task 147 : Display the pre-defined palettes for classified (factor) values
provided by the RColorBrewer package. •

We use the display.brewer.all function, with the type argument to show
just the palettes that apply to qualitative values.

> require(RColorBrewer)

> display.brewer.all(type="qual")

Accent

Dark2

Paired

Pastel1

Pastel2

Set1

Set2

Set3
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Task 148 : Repeat the map display, using a stronger palette. •

The scale_colour_brewer function of ggplot2 specifies an RColorBrewer

palette. Notice how the previous plot, saved in workspace variable g, is
updated with this additional specification; there is no need to repeat the
code for the original plot.

> g +

+ scale_colour_brewer(name="cluster.5", palette="Accent")
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Now the zones are clearer.

Q149 : Do the feature-space clusters also cluster in geographic space?
Would this map be useful for management by zones? Jump to A149 •

20.2 Optimum number of clusters

The obvious question is how many management zones to specify. These
should be (1) relatively homogeneous in feature space, (2) relatively large
and compact in geographic space. In the present case we see that both
conditions are not well-met, perhaps specifying fewer zones would give a
better result?

Charrad et al. [7] developed the NbClust R package to determine the “rele-
vant” number of clusters in a data set, i.e., the number which best separates
the dataset. This paper contains an extensive discussion of the many algo-
rithms that have been developed for clustering (both k -means and hierar-
chical clustering) and the various measures of clustering success.
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One measure is the “silhouette” index, where each cluster is characterized by
a “silhouette”, which represents the relation between the cluster’s compact-
ness and separation from other clusters in multi-dimensional feature space
[46]. Too many clusters will each be compact but not well-separated, too few
clusters will have well-separated centroids but diffuse clusters. This index
balances these two aspects of a clustering.

This index is defined as an average (1/n) ·
∑n
i=1 S(i) of an index S(i) for

each object i, of the n total objects to be clustered, and:

� i has been clustered into class Cr ;

� S(i) = b(i)−a(i)
max{a(i),b(i)} , where:

– j is a single object, of n total, clustered into class Cs ;

– dij is the “distance” in attribute space between two objects. This
can be measured in several ways, see the help for the NbClust

function.

– a(i) =
∑
j∈{Cr \i}
nr−1 dij : the average dissimilarity of the ith object to

all other objects of cluster Cr ;

– b(i) = mins 6=r

∑
j∈CS dij
ns : the average dissimilarity of the ith ob-

ject to all objects of cluster Cs ;

Task 149 : Compute an optimum number of clusters based on the grain and
straw yields, using k -means clustering, Euclidean distance between observa-
tions, and the “silhouette” index. Display the index (more is better) against
the number of clusters. •

The optimum is computed with the NbClust function of the NbClust pack-
age. We specify a minimum and maximum number of clusters to evaluate,
with the min.nc and max.nc arguments.

> library("NbClust")

> opt.clust <- NbClust(mhw.normal,

+ distance = "euclidean", min.nc = 2, max.nc = 8,

+ method = "kmeans", index = "silhouette")

> summary(opt.clust)

Length Class Mode

All.index 7 -none- numeric

Best.nc 2 -none- numeric

Best.partition 500 -none- numeric

> print(opt.clust$All.index)

2 3 4 5 6 7 8

0.4860 0.3886 0.3685 0.3536 0.3414 0.3437 0.3402

> print(opt.clust$Best.nc)

Number_clusters Value_Index

2.000 0.486
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> plot(opt.clust$All.index, type="l",

+ xlab="(Number of clusters - 1)",

+ ylab="Average silhouette width")

> grid()
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Q150 : According to this criterion, what is the optimum number of clusters?
Jump to A150 •

Task 150 : Re-compute the clustering with this “optimum”and display both
the feature-space and geographic-space plots. •

> set.seed(314)

> (gs.cluster.opt <- kmeans(mhw.normal,

+ centers=2, nstart = 20))

K-means clustering with 2 clusters of sizes 281, 219

Cluster means:

grain straw

1 -0.64769 -0.69090

2 0.83106 0.88649

Clustering vector:

[1] 1 1 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 1 1 1 1 1 1 1

[33] 1 2 1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2

[65] 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 1 2 2 1 2 2 1 1

[97] 1 2 2 1 2 1 2 1 2 1 1 1 2 2 2 2 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2

[129] 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 2 1 1 1 2 2 1 1 2 2 2 2 2 2

[161] 2 2 1 1 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 1 2 1 1 2 1 2 2 2 2 2 2

[193] 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 1 2 1 1

[225] 1 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 2 1 1 1 1 2 1 2 1 2 2 2 1 1 1

[257] 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1

[289] 1 1 1 2 1 1 2 1 1 1 1 1 1 1 2 2 1 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1
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[321] 1 1 1 1 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 2 1 1 1

[353] 1 1 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 2 2 1

[385] 1 1 1 1 2 1 2 2 2 2 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 2 2 2 2 1 1 1

[417] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 1

[449] 1 1 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1

[481] 2 1 2 1 2 2 1 2 2 1 1 1 2 1 1 1 2 1 2 1

Within cluster sum of squares by cluster:

[1] 230.96 191.67

(between_SS / total_SS = 57.7 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

> mhw.sp$cluster.2 <- as.factor(gs.cluster.opt$cluster)

> ggplot(data = mhw.sp@data) +

+ geom_point(aes(grain, straw, color=cluster.2)) +

+ labs(colour="cluster.2")
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> g <- ggplot(data = mhw.sp@data) +

+ geom_point(aes(c, r, color=cluster.2), shape=15, size=5) +

+ scale_colour_brewer(name="cluster.2", palette="Accent")

> print(g)
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Q151 : Describe the two clusters in feature space. How well are they sepa-
rated in geographic space? Could these be a good basis for two management
zones? Jump to A151 •

20.3 Spatial clustering

We can combine feature and geographic space in a single cluster analysis.
This will include the geographic aspect, and perhaps produce larger spatial
clusters that are still somewhat similar in feature space. These could be
management zones.

We choose to weight the position in the field the same as the position in multi-
dimensional feature space, by normalizing the row and column number.

Task 151 : Add the normalized row and column numbers as fields to the
normalized data frame. •

> mhw.normal <- cbind(mhw.normal, r = normalize(mhw$r))

> mhw.normal <- cbind(mhw.normal, c = normalize(mhw$c))

> summary(mhw.normal)

grain straw r c

Min. :-2.6592 Min. :-2.688 Min. :-1.646 Min. :-1.662

1st Qu.:-0.6789 1st Qu.:-0.709 1st Qu.:-0.823 1st Qu.:-0.831

Median :-0.0188 Median :-0.172 Median : 0.000 Median : 0.000

Mean : 0.0000 Mean : 0.000 Mean : 0.000 Mean : 0.000

3rd Qu.: 0.7012 3rd Qu.: 0.729 3rd Qu.: 0.823 3rd Qu.: 0.831

Max. : 2.6433 Max. : 2.600 Max. : 1.646 Max. : 1.662
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Task 152 : Compute the optimum clustering and display it in both feature
and geographic space. •

> set.seed(314)

> opt.clust <- NbClust(mhw.normal,

+ distance = "euclidean", min.nc = 2, max.nc = 8,

+ method = "kmeans", index = "silhouette")

> print(opt.clust$All.index)

2 3 4 5 6 7 8

0.3200 0.2937 0.2764 0.2660 0.2650 0.2630 0.2461

> print(opt.clust$Best.nc)

Number_clusters Value_Index

2.00 0.32

> plot(opt.clust$All.index, type="l",

+ xlab="(Number of clusters - 1)",

+ ylab="Average silhouette width",

+ main="Spatial/feature space")

> grid()

1 2 3 4 5 6 7

0.
26

0.
28

0.
30

0.
32

Spatial/feature space

(Number of clusters − 1)

A
ve

ra
ge

 s
ilh

ou
et

te
 w

id
th

> set.seed(314)

> (gs.cluster.opt <- kmeans(mhw.normal,

+ centers=2, nstart = 20))

K-means clustering with 2 clusters of sizes 290, 210

Cluster means:

grain straw r c

1 -0.52931 -0.65158 -0.12486 0.56657

2 0.73095 0.89980 0.17242 -0.78240

Clustering vector:

[1] 2 2 2 2 1 1 1 1 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2
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[33] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[65] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2

[97] 1 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2

[129] 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 2 2 1 2 1 1 1 2 2 2 1 2 2 2 2 2 2

[161] 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 2 1 1 2 1 2 2 2 2 2 2

[193] 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 2 2 2 2 2 1 2 2 2 2 1 1 1 1

[225] 1 1 1 1 1 1 2 1 2 1 2 1 2 2 2 2 2 1 1 1 1 1 2 1 2 1 2 2 2 1 1 1

[257] 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1 1 1 2 1 1 1

[289] 1 1 1 2 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 2 2 1 2 2 1 1 1 1 1 1 1 1

[321] 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[353] 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

[385] 1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1

[417] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[449] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[481] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Within cluster sum of squares by cluster:

[1] 765.84 511.16

(between_SS / total_SS = 36.0 %)

Available components:

[1] "cluster" "centers" "totss" "withinss"

[5] "tot.withinss" "betweenss" "size" "iter"

[9] "ifault"

> mhw.sp$cluster.2.sp <- as.factor(gs.cluster.opt$cluster)

> ggplot(data = mhw.sp@data) +

+ geom_point(aes(grain, straw, color=cluster.2.sp)) +

+ labs(colour="cluster.2")
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> g <- ggplot(data = mhw.sp@data) +
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+ geom_point(aes(c, r, color=cluster.2.sp), shape=15, size=5) +

+ scale_colour_brewer(name="cluster.2.sp", palette="Accent")

> print(g)
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Q152 : How does including the spatial position in the clustering change the
feature and geographic space clustering? Jump to A152 •

20.4 Answers

A145 : Of course this is subjective, but I can see (1) very low grain/straw (upper-
left of the plot), (2) very high grain/straw (lower right), (3) very high yields of both
(upper right), (4) very low yields of both (lower left), (5) a group of intermediate
yields near the centre of the plot, one lower than the other. Return to Q145 •

A146 : Cluster 2 has both the highest normalized grain yield (mean 1.51) and
highest normalized straw yield (mean 1.55), i.e., the largest plants overall. Return
to Q146 •

A147 : 18% of the variation is explained. This means that the clusters do separate
the feature space, so that the clusters are more homogeneous than the whole dataset.
More clusters would increase the variation explained, but might not correspond to
useful distinctions. Return to Q147 •

A148 : The highest and lowest yield clusters (2 and 3) are the most diffuse. The
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cluster with the second-highest grain and straw yields (Cluster 1) is the most tightly
defined. However, several plots are far from any cluster. Return to Q148 •

A149 : There is some clustering in geographic space; however the“zones”generally
do not extend beyond about three plots, and there are many single-plot “zones”.
This map would not be useful for management by zones. Notice that most of the
“large plant” cluster (#2) plots are on the West half of the field. Return to Q149 •

A150 : Separation into only two clusters is by far the best. Return to Q150 •

A151 : The two clusters are a high and low yielding, with a separation plane
in feature space based on both grain and straw yield. There is no break between
the two clusters, the plane is just the best that can be found to make two classes.
The two clusters are not well-separated in geographic space. The higher-yielding
plots are somewhat concentrated in the northwest, but there is a lot of intermixing.

Return to Q151 •

A152 : Again two clusters are optimum, but the difference with more clusters is
less pronounced. The feature-space clusters are more diffuse and poorly-separated.
The geographic-space clusters are somewhat more homogeneous (see for example
the upper-left of the field). Return to Q152 •

21 Periodicity*

Mercer & Hall asserted that the field was uniform; however others [36, 44, 51]
have suggested that the field was not as uniform as assumed, and that there
were systematic patterns of previous management that affected yield. In §9
we determined that the field halves had significantly different straw yields;
in §17.4 we determined that the two halves had different spatial structures,
i.e., local spatial dependence. These two findings support the idea that the
two halves of the field had in the past been managed differently. However,
there is another possible management effect: periodic variation across rows
or columns due to previous ploughing or ridging. Had this field previously
been used with a ridge-furrow system or divided into ‘lands’?

Note: There is also some evidence of periodicity in the analysis of local
spatial structure of grain yields in §17.2. The variogram shows a dip at the
5th bin, at about 11.6 m, then an increase in the 6th (13.9 m), then again a
dip in the 7th (16.4 m).

Here we follow the analysis of McBratney and Webster [36] to investigate this
possibility. The hypothesis is that in either the W–E (column-wise) or N–S
(row-wise) direction that there is either positive or negative autocorrelation
in grain or straw yields, at some spacing between columns or rows.

Note: The field layout is explained in §A.

To investigate this, we use the tools of one- and two-dimensional spatial
correlation analysis. Thus we analyze the W–E dimension (columns along
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single rows) and the N–S dimension (rows along single columns), in all com-
binations. The 1D and 2D spatial correlations are symmetric; the same
correlation is found E–W and W–E, and the same S–N as N–S; for the 2D
case the correlations are radially symmetric.

21.1 Visualizing periodicity

In this section we attempt to reproduce Fig. 3 from McBratney and Webster
[36], which shows an autocorrelation surface of grain yields, i.e., autocor-
relations at all combinations of row and column lags. Autocorrelation is
closely related to semivariance (see Eq. 21.1, just below), and fortunately
a semivariogram surface can computed by the variogram “compute empir-
ical variogram” method of the gstat package, specifying the map argument
as TRUE; we apply this to a spatial version of the dataset, with coördinates
specified by row and column; i.e., we compute lags in terms of rows and
columns:

> mhw.rc <- mhw

> coordinates(mhw.rc) <- ~r + c

> v.map <- variogram(grain ~ 1, loc = mhw.rc, map = TRUE,

+ cutoff = 10, width = 1)

> summary(v.map$map$var1)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.0986 0.1834 0.2038 0.2012 0.2170 0.2622 1

> class(v.map)

[1] "variogramMap" "list"

> plot(v.map, col.regions = bpy.colors(64), xlab = "Row-wise (N-S) lag",

+ ylab = "Column-wise (W-E) lag")
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To convert semivariances γ to covariances C, and then to correlations ρ, we
use the relations:

C(h) = C(0)− γ(h) (21.1)

ρ(h) = C(h)/C(0) (21.2)

By definition the autocorrelation at the origin is 1. The covariance at a
point C(0) is estimated as as the variance over the field, using the var

function. We also replace the “not applicable” semivariance at the origin
with the known autocorrelation, i.e., 1, finding the proper location in the
matrix with the is.na and which functions:

> c0 <- var(mhw$grain)

> v.map$map$cov <- c0 - v.map$map$var1

> v.map$map$cor <- v.map$map$cov/c0

> v.map$map$cor[which(is.na(v.map$map$cor))] <- 1

> summary(v.map$map$cor)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.2484 -0.0329 0.0298 0.0442 0.1321 1.0000

To view as a 3D plot, we convert the autocorrelations to a matrix using the
matrix function, since this is the form required by the wireframe function.
To get a perspective view, we use aspect (vertical and horizontal axis ratio)
and screen (rotation and tilt) arguments.

> str(v.map$map@data)

'data.frame': 441 obs. of 4 variables:

$ var1 : num 0.202 0.189 0.205 0.19 0.179 ...

$ np.var1: num 150 165 180 195 210 225 240 255 270 285 ...

$ cov : num 0.00776 0.02126 0.00469 0.01954 0.03102 ...

$ cor : num 0.037 0.1012 0.0223 0.0931 0.1477 ...

> n <- sqrt(length(v.map$map$cor))

> v.map.mat <- matrix(v.map$map$cor, nrow=n, ncol=n)

> plot(wireframe(v.map.mat, drape=T, aspect=c(1,.25),

+ screen=c(z=225, x=-60), ylab="Column-wise (W-E) lag",

+ xlab="Row-wise (N-S) lag", zlab="rho(h)",

+ main="Autocorrelation surface, grain yields",

+ col.regions=bpy.colors(72)))
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Autocorrelation surface, grain yields
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This plot is diagonally symmetric. The front (positive, row-wise) half re-
sembles Fig. 3 from McBratney and Webster [36], except at the (+10,+10)
corner where our figure shows a strong low autocorrelation (corresponding
to a large semivariance in the variogram map) and the corresponding figure
has another positive peak.

Q153 : Does there appear to be any periodicity in one or both directions?
What does this imply about the uniformity of the field? Jump to A153 •

Task 153 : Plot the average autocorrelation along rows and columns. •

The variogram map (surface) has this information in the central row and
column of the matrix. Since the map is symmetric, we only need to plot
from the centre out.

First, compute the correlations along the central row (E–W) and column
(N–S):

> (c <- ceiling(n/2))

[1] 11

> (v.map.mat[c:n, c])

[1] 1.00000 0.53053 0.41881 0.37809 0.36462 0.30621 0.20680 0.17216

[9] 0.20485 0.18515 0.15488

> (v.map.mat[c, c:n])
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[1] 1.00000000 0.29431834 0.14698574 0.17645418 0.08599151

[6] 0.00029433 0.07806734 0.04102077 -0.13276224 -0.00651483

[11] -0.02592755

Plot the autocorrelations in the two directions:

> par(mfrow = c(1, 2))

> str(v.map.mat)

num [1:21, 1:21] 0.037 0.1012 0.0223 0.0931 0.1477 ...

> plot(v.map.mat[c, c:n], type = "h", ylim = c(-0.2, 1),

+ main = "Along columns (E-W)", ylab = expression(rho),

+ col = "blue", xlab = "lag (rows)")

> abline(h = 0)

> plot(v.map.mat[c:n, c], type = "h", ylim = c(-0.2, 1),

+ main = "Along rows (N-S)", ylab = expression(rho),

+ col = "darkgreen", xlab = "lag (columns)")

> abline(h = 0)

> par(mfrow = c(1, 1))
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Q154 : Does there appear to be any periodicity in one or both directions?
Jump to A154 •

21.2 Spectral analysis

McBratney and Webster [36] also examine the spatial autocorrelation in the
frequency domain (as opposed to the spatial domain); that is, they consider
the signal as a sum of periodic components (so-called Fourier analysis), and
examine the power spectrum, that is, the relative contribution of each period
to the overall signal. This should reveal the periodicity. This technique is
widely used in time-series analysis, but is equally applicable to data orga-
nized in space. The frequency is relative to a cycle, which in time series is
some natural cycle such as a year or day. Here the cycle is the single field.
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21.2.1 Theory

The theory of power spectra and the Fourier transform from and to the
spatial domain are explained in the text of Webster and Oliver [55, Ch. 7];
we present enough theory here to motivate and interpret our application.
We consider the 1D case, i.e., observations arranged in a line, to develop the
theory, and then extend it to the 2D case.

The fundamental transformation from covariances at each lag C(h) to the
power at each frequency R(f) is:

R(f) = 1
2π

∫∞
−∞

cos(fh)C(h)dh (21.3)

In words, the integral is of the covariances, each multiplied by the cosine at
the given frequency, over all lags. As the frequency increases, the period of
the cosine function gets shorter. If the higher covariances coincide with that
period, the power at that frequency is higher.

Eqn. 21.3 assumes a 2nd–order stationary process in R1, in which as the lag
h gets wider, the covariance C(h) approaches 0.

This ideal equation can not be computed, for several reasons. First, we
do not have an infinite number of lags (i.e., infinite-length sequence of ob-
servations), so the integral is restricted to some window L, after which the
covariances ≈ 0. Second, the experimental covariances are increasingly un-
reliable at large lags, so a rule of thumb is to limit L to about one-fifth of
a 1D series length. Finally, observations are not made at infinitesimal lags,
rather they have a minimum spacing, and higher-frequency components, if
any, can not be estimated.

So, the spectrum is estimated for frequencies f , ranging from −0.5 to 0.5
cycles, from the empirical covariances Ĉ(k) estimated from the observations.
So the spectrum is estimated as:

R̂(f ) = 1
2π

Ĉ(0)+ 2
L−1∑
k=1

Ĉ(k) cos(πfk)

 (21.4)

Notice that the integral of Eqn. 21.3 is replaced by a sum over the chosen
window. For correlations rather than covariances, replace C with c and
omit the term with Ĉ(0). These sums estimate the relative contribution,
also called spectral density or power, of each frequency to the overall signal
in the 2nd-order stationary series.

The cosine term varies from 0 to k for f = 0 . . .0.5, i.e., πf = 0 . . . π/2. For
example, at f = 0 (i.e., at the centre of a full cycle), in terms of correlations
c:

R̂(0) = 1
π

L−1∑
k=1

ĉ(k)

At f = 0.5 (i.e., half a cycle):

R̂(0.5) = 1
π

L−1∑
k=1

ĉ(k) cos(
π
2
k)
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There is a further refinement to the estimate of Eq. 21.4: using a window
that emphasizes the more reliable shorter lags, without discarding too much
information from longer lags. Webster and Oliver [55, §7.3.1] propose several
window functionsw(k) to multiply the covariances in Equation 21.4; the one
used by McBratney and Webster [36, Eq. 9] is the Bartlett window:

w(k) =

1− (|k|/L) if 0 ≤ |k| ≤ L
0 if |k| > L

(21.5)

Note: Fig. 7.3 of Webster and Oliver [55] shows the relative weights of lags
within a window for the rectangular, Bartlett, and Parzen window; these
authors favour the latter.

There is only one quantity left to estimate; this is the auto-covariance at each
lag h, including zero; this follows directly from the definition of covariance:

Ĉ(h) = 1
N − h

N−h∑
i=1

{(z(i)− z̄)(z(i+ h)− z̄)} (21.6)

where z is the data value.

We now apply this theory to the 2D case of the Mercer & Hall wheat field.

21.2.2 Covariance surface

We first compute the auto-covariances cp,q in two dimensions as [36, Eq. 6]:

cp,q =
1

(m− p)(n− q)

(m−p)∑
i=1

(n−q)∑
j=1

(xi,j − x̄)(xi+p,j+q − x̄) (21.7)

where x̄ is the mean of them×n matrix, and the lags in the two dimensions
are p and q. Thus, all possible combinations cells that contribute to the two-
dimensional lag are included in the weighted sum. Auto-correlations are
obtained by dividing the auto-covariances by c0,0, i.e., the overall variance.

Note: This should give identical results to the variogram surface, con-
verted to an auto-correlation surface, which was computed by the variogram

method in §21.1, above. However, its calculation is a good example of the
use of the for flow control operator.23

To compute this sum, we use the for flow control operator in a so-called
“for-loops”. These are not much used in R, since in many cases vectorized
operators can be used, but in this case we need to step through the matrix,
and at each position compute a covariance of selected neighbour cells.

We first convert the grain yields to a matrix matching the field shape, and
centre the yields on the mean, since the covariances are based on differences,
not absolute values:

23 This was covered in more detail in §15.
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> m <- max(mhw$r)

> n <- max(mhw$c)

> str(mhw.grain.matrix <- matrix(data = (mhw.rc$grain -

+ mean(mhw.rc$grain)), nrow = m, ncol = n))

num [1:20, 1:25] -0.3186 0.1214 0.5614 -0.0486 -0.3186 ...

Task 154 : Write a function to implement Eqn. 21.7. •

The following functions compute covariances cp,q and cp,−q, respectively,
when given the the row and column lags, and the data matrix, as arguments.
The return function returns the computed covariance to the caller.

> cpq <- function(p, q, mat) {

+ s <- 0

+ for (i in 1:(m - p)) for (j in 1:(n - q)) s <- s +

+ (mat[i, j]) * (mat[i + p, j + q])

+ return((1/((m - p) * (n - q))) * s)

+ }

> cpmq <- function(p, q, mat) {

+ s <- 0

+ for (i in 1:(m - p)) for (j in (q + 1):n) s <- s +

+ (mat[i, j]) * (mat[i + p, j - q])

+ return((1/((m - p) * (n - q))) * s)

+ }

Task 155 : Apply these functions the desired combination of row and column
lags. •

Following McBratney and Webster [36] we compute up to fourteen lags in
both directions, although this is considerably more than the recommended
one-fifth of the overall dimension (i.e., 4 rows and 5 columns). The matrix
is radial symmetric, so we can fill in the other two quadrants from the first
two.

> max.l <- 14

> d <- 2 * max.l + 1

> ch <- matrix(0, d, d)

> for (lag.r in 1:max.l) for (lag.c in 1:max.l) {

+ ch[(max.l + 1) + lag.r, (max.l + 1) - lag.c] <- (cpmq(lag.r,

+ lag.c, mhw.grain.matrix))

+ ch[(max.l + 1) - lag.r, (max.l + 1) + lag.c] <- ch[(max.l +

+ 1) + lag.r, (max.l + 1) - lag.c]

+ }

> for (lag.r in 0:max.l) for (lag.c in 0:max.l) {

+ ch[(max.l + 1) + lag.r, (max.l + 1) + lag.c] <- (cpq(lag.r,

+ lag.c, mhw.grain.matrix))

+ ch[(max.l + 1) - lag.r, (max.l + 1) - lag.c] <- ch[(max.l +

+ 1) + lag.r, (max.l + 1) + lag.c]

+ }

> ch <- ch/var(mhw$grain)

> summary(as.vector(ch))
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Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.44978 -0.10421 -0.01259 -0.00802 0.09195 0.99800

Task 156 : Plot the autocorrelation surface. •

Again we use the wireframe function:

> plot(wireframe(ch, drape=T, aspect=c(1,.25),

+ screen=c(z=225, x=-60), ylab="Column-wise (W-E) lag",

+ xlab="Row-wise (N-S) lag", zlab="rho(h)",

+ main="Autocorrelation surface, grain yields",

+ auto.key=T,

+ col.regions=bpy.colors(72)))

Autocorrelation surface, grain yields

Row−wise (N−S) lag Column−wise (W−E) lag

rho(h)
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0.4

0.6

0.8
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Indeed, this is the same surface computed in §21.1, but extended to max-
imum lag 14, so the stretch is somewhat different, here reaching −0.45 at
lag (−14,+14). The periodicity in the N-S direction is obvious

21.2.3 Power spectrum

The 1D spectral calculation of Eqn. 21.4 can be extended into 2D, by con-
sidering the lags, correlations, and weights in 2D. For frequencies from −0.5
to 0.5 cycles per sampling interval, the 2D power spectrum (in the frequency
domain) is estimated from the auto-covariances (in the spatial domain) as
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[36, Eq. 8]:

Gr ,s = K−1
L∑

q=−L

L∑
p=−L

cp,qwp,q cos
{
(π/T)(rp + sq)

}
(21.8)

where:

� K is a normalizing constant, taken here as (2π)2 = 4π2;24

� L is the maximum lag, i.e., window size, to be included in the estimate;

� p,q are the lags in two dimensions (rows or columns);

� r , s = −T ,−T + 1, . . . ,0,1, T − 1, T , i.e., the number of frequency
estimates in the interval −0.5 . . .0.5 cycles;

� wp,q is Bartlett’s smoothing function (Equation 21.5), which damps
the cosine function’s amplitude at greater lags, computed in 2D as:

wp,q =

1− |h|/L if 0 ≤ |h| ≤ L
0 if |h| > L

where |h| =
√
p2 + q2, i.e., the Euclidean distance between plots, and

L is the maximum lag at which we want compute the spectral density.

That is, the spectral estimate for a given combination of frequencies is a
weighted sum of lagged covariances multiplied by the appropriate point in
the period, i.e., the argument to the cosine function.

The number of frequency estimates T is not dependent on the number of
lags; it is set by the analyst to obtain a sufficiently fine-resolution estimate.
There is no disadvantage to a high value of T other than computation time;
McBratney and Webster [36] used T = 50 to obtain their Fig. 5.

However, the choice of L is critical: small L are reliable but do not reveal
high-frequency components; large L may be unreliable. The usual procedure
is to compute for a variety of L and examine the spectra to see where suffi-
cient detail, without excessive noise, is found. It is also possible to compute
confidence intervals; see Webster and Oliver [55, §7.3.3]; we have not (yet)
implemented that here.

Task 157 : Write a function to implement Eqn. 21.8, i.e., to convert the auto-
correlation surface into a spectrum Gr ,s for each combination of frequency
estimates, from −t,−t + 1, . . . ,0,1, . . . t − 1, t, where t is the number of
frequency estimates. •

We use the function command to write a function from the lag combination
r and s, the number of frequency estimates t, the maximum lag L, and the
matrix of correlation coefficients cor.mat:

24 This constant only affects the absolute values, not the relative magnitudes, which are
of primary interest.
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Note: This function also includes an internal function (i.e., only visible
inside the function) to compute Barlett’s weighting.

> grs <- function(r = 0, s = 0, t, L, cor.mat) {

+ w <- function(x, y) {

+ h <- sqrt(x^2 + y^2)

+ return(ifelse(h <= L, 1 - (h/L), 0))

+ }

+ max.p <- dim(cor.mat)[1]

+ max.q <- dim(cor.mat)[2]

+ centre.p <- ((max.p - 1)/2) + 1

+ centre.q <- ((max.q - 1)/2) + 1

+ sum <- 0

+ for (q in -L:L) {

+ if (centre.q + q + 1 > max.q)

+ break

+ for (p in -L:L) {

+ if (centre.p + p + 1 > max.p)

+ break

+ s1 <- (cor.mat[centre.p + p, centre.q + q] *

+ w(p, q) * cos((pi/t) * ((r * p) + (s *

+ q))))

+ sum <- sum + s1

+ }

+ }

+ return(sum/(4 * pi^2))

+ }

Task 158 : Apply this function at a resolution of 50 estimates per cycle, first
along the 1D W-E axis, with no N-S offsets and for a window size L = 10. •

Since the spectrum is symmetric, we only need to compute the positive half,
i.e., from s = 0 . . . T :

> theta <- 50

> dens <- rep(0, theta + 1)

> for (s in 0:theta) dens[s + 1] <- grs(0, s, t = theta,

+ L = 10, cor.mat = ch)

Task 159 : Plot the spectral density as a function of frequency. •

We use the interpolating spline function spline to smooth the graph. How-
ever, the estimates at each knot are not changed by the spline:

> plot(dens ~ seq(0, 0.5, length = theta + 1), type = "p",

+ main = "Spectral density, W-E", sub = "window size 10",

+ ylab = "density", xlab = "frequency, cycles", pch = 20,

+ cex = 0.6)

> dens.smooth <- spline(dens)

> lines(dens.smooth$y ~ seq(0, 0.5, length = length(dens.smooth$x)),

+ lty = 1)

> grid()
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The selection of the window width L is subjective, so we now look for the
width that best reveals the spectral characteristics.

Task 160 : Compute the power spectrum along the E-W dimension for win-
dow sizes L = 4,6,8,10,12,14 and plot their spectral densities vs. frequency
on one graph. •

We set up a matrix whose rows are the window size and whose columns are
the densities for that window size, at the chosen resolution:

> l.s <- seq(4,14,by=2)

> theta <- 50

> dens <- matrix(rep(0, length(l.s)*(theta+1)),

+ nrow=length(l.s))

We then compute the spectral density for each window size, again using a
for loop to step through the window sizes, i.e., rows of the results matrix:

> for (i in 1:length(l.s)) {

+ for (s in 0:theta) {

+ dens[i, s + 1] <- grs(0, s, theta, l.s[i], ch)

+ }

+ }

Finally, we plot them on one graph, first setting up the axes and then using
a for loop to place each curve in the figure. This corresponds to Fig. 5 in
McBratney and Webster [36].

> plot(dens[1, ] ~ seq(0, 0.5, length = theta + 1), type = "n",

+ main = "Spectral density, W-E", ylab = "density",

+ xlab = "frequency, cycles", ylim = c(min(0, dens),

+ max(dens) * 1.1))

> for (i in 1:length(l.s)) {

+ dens.smooth <- spline(dens[i, ])

+ lines(dens.smooth$y ~ seq(0, 0.5, length = length(dens.smooth$x)),

+ lty = i)
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+ text(0, max(dens[i, ]), paste("L =", l.s[i], sep = ""),

+ pos = 3)

+ }

> grid()
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Note: This figure is slightly different from Fig. 5 in McBratney and Webster
[36]; the reason is not clear. However the major features are similar.

Q155 : What are the outstanding features of the power spectrum? What
do they imply about periodicity in this direction? Jump to A155 •

Q156 : Which window size best reveals the features? Jump to A156 •

In §21.1 we concluded that there was periodicity in the W–E direction
(column-wise along rows) but not the N–S direction (row-wise along col-
umn); the W–E power spectrum confirms the first; now we examine the
second.

Task 161 : Compute and plot the N–S power spectrum for window width
L = 10. •

> theta <- 50

> dens <- rep(0, theta + 1)

> for (r in 0:theta) dens[r + 1] <- grs(r, 0, t = theta,

+ L = 10, cor.mat = ch)

> plot(dens ~ seq(0, 0.5, length = theta + 1), type = "p",

+ main = "Spectral density, N-S", sub = "window size 10",

+ ylab = "density", xlab = "frequency, cycles", pch = 20,

+ cex = 0.6)
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> dens.smooth <- spline(dens)

> lines(dens.smooth$y ~ seq(0, 0.5, length = length(dens.smooth$x)),

+ lty = 1)

> grid()
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Q157 : Is there any evidence of periodicity in this direction? Jump to
A157 •

We can visualize the power in both directions simultaneously, and also dis-
cover if there are any interactions of the directions; for example if the peri-
odicity were not along rows or columns.

Task 162 : Compute and plot the two-dimensional power spectrum for
window width L = 10; this corresponds to Fig. 7 in McBratney and Webster
[36]. •

This requires O(θ2) density calculations, so we reduce the frequency resolu-
tion to 25 to speed up the computation:

> theta = 25

> dens <- matrix(rep(0, (theta + 1)^2), nrow = theta +

+ 1)

> for (s in 0:theta) for (r in 0:theta) dens[r + 1, s +

+ 1] <- grs(r, s, theta, 10, ch)

> wireframe(dens, drape = T, aspect = c(1, 0.35), screen = c(z = 225,

+ x = -60), xlab = "N-S frequency", ylab = "E-W frequency",

+ zlab = "density", auto.key = T, col.regions = topo.colors(72))
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Task 163 : Remove the variables created in this section. •

> rm(mhw.rc, v.map, c0, v.map.mat, m, n, c, max.l, lag.r,

+ lag.c, r, s, theta, dens, dens.smooth, l.s, grs,

+ ch)

Challenge: Repeat this analysis for straw yields. Does this confirm, weaken,
or strengthen the conclusions from the analysis of grain yields?

Challenge: Recall (§17.4) that the local spatial structure is different in the
N and S field halves. Is the periodicity in the E–W direction present in both
field halves? If so, does it show the same pattern?

Challenge: Use anisotropic variogram analysis to confirm the periodic ef-
fect.

21.3 Answers

A153 : There are clear “ripples” on the autocorrelation surface in the E–W di-
rection (columns along rows); these appear to be at 3-plot intervals. However, this
pattern varies somewhat with increasing separation in the N–S direction. There
seems to be no such a pattern in the N–S direction, just the expected decreasing
autocorrelation with separation. Return to Q153 •

A154 : The autocorrelation graphs show clearly the pattern of the previous an-
swer, i.e., along rows there is a clear dip in autocorrelation at lags 3 and 6, and even

223



a negative autocorrelation at lag 9. No such pattern is seen along columns. This
implies a periodic structure along the E-W (row-wise) direction, at an interval of
approximately three rows; recalling that the row length is 3.30 m (§A), the period-
icity appears to have a fundamental period of about 10 m; this is also the conclusion
of McBratney and Webster [36, §4], who examine the likely causes. Return to
Q154 •

A155 : The highest power is at the origin, i.e., the overall mean, representing
a full cycle. However there is significant power at approximately 0.33̄ cycles, i.e.,
20/3 = 6.6̄ plots. Return to Q155 •

A156 : L = 10 is sufficiently detailed to clearly see the spike at 0.33̄ cycles without
the small fluctuations for L > 10. At L < 4 the feature becomes increasingly vague.

Return to Q156 •

A157 : No. Return to Q157 •

22 The effect of plot size*

Mercer and Hall’s original research objective was to determine how within-
plot variability is affected by plot size. To investigate this, they grouped
the 1 acre field into plots of 1/500 acre (the original plots), 1/250 acre,
1/125 acre, 1/50 acre, 1/25 acre, and finally 1/10 acre; they measured the
variability in the resulting samples and graphed this by plot size. They then
could determine how large a plot would be necessary to reduce the variability
to an acceptable level. We will repeat their analysis here.

Q158 : Based on the geostatistical analysis (§17.2), what size plot would
be expected to remove most of the local variation? Jump to A158 •

Before proceeding, we need an operational definition of heterogeneity, so
we can compare the variability between different plot sizes. In §7 we used
the probable error, but that required modelling a normal distribution. A
simpler, and commonly-used, measure of variability for samples that are ap-
proximately normally-distributed is the coefficient of variation (CV), which
is defined as:

CV = s/x̄

This normalizes the sample standard deviation s by the sample mean x̄. It
is commonly expressed in percent. This measure was also used by Mercer
and Hall25.

There is no R function to compute the CV; we can compute it on any sample
by first using the mean function and then the sd function, and then taking
their ratio:

25 although they mistakenly refer to it as “standard deviation”
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> round(100 * sd(mhw$grain)/mean(mhw$grain), 1)

[1] 11.6

To avoid writing this out for each vector whose CV we want to compute, we
can write a small function to do this computation on any sample; this uses
the function function to define the algorithm.

Task 164 : Write a function to compute the CV of a vector. •

> cv <- function(x) {

+ round(100 * sd(x)/mean(x), 1)

+ }

> class(cv)

[1] "function"

The object cv in the workspace is a function which can now be applied to
any vector, just like a built-in R function.

Q159 : What is the CV of the grain yields of the entire set of 500 plots?
Jump to A159 •

> cv(mhw$grain)

[1] 11.6

Now we group the plots into increasingly-larger plots and see how the CV
of the set is affected. Mercer and Hall compared six sizes: 1/250, 1/125,
1/100, 1/50, 1/25 and 1/10 acre; these are all possible groupings of rows
and columns to this size, given the field layout.

Task 165 : Determine how adjacent plots can be grouped in increasingly-
large blocks, up to 1/10 acre. •

We are restricted to divisors of 20 (rows), i.e. 2, 2 and 5, and 25 (columns),
i.e. 5:

1/500 acre : Original layout; grid is (20 x 25);

1/250 acre : Combine the plots in each two adjacent rows; resulting grid is (10 x
25);

1/125 acre : Combine the plots in each four adjacent rows; resulting grid is (5 x
25);

1/100 acre : Combine the plots in each five adjacent columns; resulting grid is (20
x 5);

1/50 acre : Combine the plots in each five adjacent columns and two adjacent
rows; resulting grid is (10 x 5);
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1/25 acre : Combine the plots in each five adjacent columns and four adjacent
rows; resulting grid is (5 x 5);

1/10 acre : Combine plots in each five adjacent columns and ten adjacent rows;
resulting grid is (2 x 5);

Three larger sizes are possible: 1/5, 1/4 and 1/2 acre; however these do not
have enough plots to evaluate variability.

Task 166 : Make a data structure with each plot size and its dimensions. •

From §16.2 we have the plot length, width, and area:

> plot.len; plot.wid; plot.area

[1] 3.1807

[1] 2.5446

[1] 8.0937

We can use these to compute dimensions for each combinations.

We first make a data frame with information about the combinations, using
the data.frame function to combine three lists, each made with the c func-
tion; we also name the rows with the row.names function for easy reference.
We name each field (column) explicitly with the field.name = ... syntax.

> plots <- data.frame(acre.fraction = c(500, 250, 125,

+ 100, 50, 25, 10), adj.rows = c(1, 2, 4, 1, 2, 4,

+ 10), adj.col = c(1, 1, 1, 5, 5, 5, 5))

> row.names(plots) <- c("1/500", "1/250", "1/125", "1/100",

+ "1/50", "1/25", "1/10")

> str(plots)

'data.frame': 7 obs. of 3 variables:

$ acre.fraction: num 500 250 125 100 50 25 10

$ adj.rows : num 1 2 4 1 2 4 10

$ adj.col : num 1 1 1 5 5 5 5

Now we can compute dimensions and add them to the frame with the cbind

function:

> plots <- cbind(plots, len = plot.len * plots$adj.row)

> plots <- cbind(plots, wid = plot.wid * plots$adj.col)

> plots <- cbind(plots, area = plots$len * plots$wid)

> plots

acre.fraction adj.rows adj.col len wid area

1/500 500 1 1 3.1807 2.5446 8.0937

1/250 250 2 1 6.3615 2.5446 16.1874

1/125 125 4 1 12.7230 2.5446 32.3748

1/100 100 1 5 3.1807 12.7230 40.4686

1/50 50 2 5 6.3615 12.7230 80.9371

1/25 25 4 5 12.7230 12.7230 161.8742

1/10 10 10 5 31.8075 12.7230 404.6856
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The row names are shown when the entire frame is printed; this allows us
to identify each combination.

Q160 : What are the dimensions of these in meters, and their areas in m2?
Jump to A160 •

Task 167 : Compute the grain yields for the 1/250 acre plots made up of
two adjacent rows, and its CV. •

To group in pairs, we make use of the modulus arithmetic operator %% to
identify the odd and even rows:

> head(mhw$r%%2, 20)

[1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Now we split the plots into two groups using the unstack function and sum
the two adjacent plots:

> tmp <- unstack(mhw, grain ~ r%%2)

> str(tmp)

'data.frame': 250 obs. of 2 variables:

$ X0: num 4.07 3.9 3.16 3.42 3.4 4.43 4.46 5.13 4.38 3.61 ...

$ X1: num 3.63 4.51 3.63 3.18 3.97 3.39 4.52 3.46 4.23 3.85 ...

> grain.250 <- tmp$X0 + tmp$X1

> rm(tmp)

> str(grain.250)

num [1:250] 7.7 8.41 6.79 6.6 7.37 7.82 8.98 8.59 8.61 7.46 ...

> cv(grain.250)

[1] 10.1

Q161 : Is the variation reduced, as expected, when plot size is doubled?
By how much? Jump to A161 •

We now build a data frame of the combined plots, using the data.frame

function, labelling each with its original column number and the average of
the two rows:

> plots.250 <- data.frame(r = seq(1.5, 19.5, by = 2), c = rep(1:25,

+ each = 10), grain = grain.250)

> str(plots.250)

'data.frame': 250 obs. of 3 variables:

$ r : num 1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5 17.5 19.5 ...

$ c : int 1 1 1 1 1 1 1 1 1 1 ...

$ grain: num 7.7 8.41 6.79 6.6 7.37 7.82 8.98 8.59 8.61 7.46 ...
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Task 168 : Visualise the variation across the field with the 1/250 acre plot
size. •

We visualize by colour ramp:

> with(mhw,

+ plot(plots.250$c, plots.250$r, pch=20, cex=2,

+ bg="lightblue", xlab="column", ylab="row",

+ main="Grain yield of 1/250 acre plots",

+ sub="Colour of circles from low yield (green) to high (gray)",

+ xlim=c(1, 25), ylim=c(20, 1),

+ col=terrain.colors(8)[cut(grain,

+ quantile(grain, seq(0, 1, length=9)),

+ include.lowest=T, labels=F)]))
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These figures can be compared to those for the 1/500 acre plots in §16.1.

Q162 : Does the field appear more homogeneous with 250 vs. 500 plots?
What about the pattern of spatial dependence? Jump to A162 •

Task 169 : Repeat this process for the other combinations. •

First, for 1/125 acre. We introduce the very useful apply function, which
applies any other function (here, the sum) across an array margin; here the
1 as second argument specifies that the sum is across rows of the matrix.
Since the results of unstack are organized into a set of rows, this will add
the four plots.

> tmp <- unstack(mhw, grain ~ r%%4)

> str(tmp)
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'data.frame': 125 obs. of 4 variables:

$ X0: num 3.9 3.42 4.43 5.13 3.61 4.64 3.35 3.7 3.89 4.22 ...

$ X1: num 3.63 3.63 3.97 4.52 4.23 4.15 4.27 3.61 3.79 3.87 ...

$ X2: num 4.07 3.16 3.4 4.46 4.38 4.21 3.55 3.71 4.09 4.12 ...

$ X3: num 4.51 3.18 3.39 3.46 3.85 4.29 3.5 3.64 4.42 4.28 ...

> grain.125 <- apply(tmp, 1, sum)

> rm(tmp)

> str(grain.125)

num [1:125] 16.1 13.4 15.2 17.6 16.1 ...

> cv(grain.125)

[1] 8.9

> plots.125 <- data.frame(r = seq(2, 18, by = 4), c = rep(1:25,

+ each = 10), grain = grain.125)

> str(plots.125)

'data.frame': 250 obs. of 3 variables:

$ r : num 2 6 10 14 18 2 6 10 14 18 ...

$ c : int 1 1 1 1 1 1 1 1 1 1 ...

$ grain: num 16.1 13.4 15.2 17.6 16.1 ...

For the 1/100 acre plots the combination is by column:

> tmp <- unstack(mhw, grain ~ c%%5)

> grain.100 <- apply(tmp, 1, sum)

> rm(tmp)

> cv(grain.100)

[1] 7

> plots.100 <- data.frame(r = rep(1:20, each = 5), c = seq(3,

+ 23, by = 5), grain = grain.100)

> str(plots.100)

'data.frame': 100 obs. of 3 variables:

$ r : int 1 1 1 1 1 2 2 2 2 2 ...

$ c : num 3 8 13 18 23 3 8 13 18 23 ...

$ grain: num 20 21.1 21.7 20.1 21.2 ...

The 1/50 acre plots are the first where both rows and columns are combined.
So we have to repeat the unstacking process twice. However, we can start
from the 1/100 acre frame which already has combined the columns.

> tmp <- unstack(plots.100, grain ~ r%%2)

> grain.50 <- apply(tmp, 1, sum)

> rm(tmp)

> cv(grain.50)

[1] 5.9

> plots.50 <- data.frame(r = rep(seq(1.5, 19.5, by = 2),

+ each = 5), c = seq(3, 23, by = 5), grain = grain.50)

> str(plots.50)
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'data.frame': 50 obs. of 3 variables:

$ r : num 1.5 1.5 1.5 1.5 1.5 3.5 3.5 3.5 3.5 3.5 ...

$ c : num 3 8 13 18 23 3 8 13 18 23 ...

$ grain: num 39.1 39.7 40.9 40.6 41.1 ...

The 1/25 acre plots are constructed similarly, but combining four instead of
two rows:

> tmp <- unstack(plots.100, grain ~ r%%4)

> grain.25 <- apply(tmp, 1, sum)

> rm(tmp)

> cv(grain.25)

[1] 4.8

> plots.25 <- data.frame(r = rep(seq(2.5, 18.5, by = 4),

+ each = 5), c = seq(3, 23, by = 5), grain = grain.25)

> str(plots.25)

'data.frame': 25 obs. of 3 variables:

$ r : num 2.5 2.5 2.5 2.5 2.5 6.5 6.5 6.5 6.5 6.5 ...

$ c : num 3 8 13 18 23 3 8 13 18 23 ...

$ grain: num 79.9 79.8 83.8 84.6 82.4 ...

The 1/10 acre plots are constructed similarly, but combining ten rows:

> tmp <- unstack(plots.100, grain ~ r%%10)

> grain.10 <- apply(tmp, 1, sum)

> rm(tmp)

> cv(grain.10)

[1] 3.9

> plots.10 <- data.frame(r = rep(seq(5.5, 15.5, by = 10),

+ each = 5), c = seq(3, 23, by = 5), grain = grain.10)

> str(plots.10)

'data.frame': 10 obs. of 3 variables:

$ r : num 5.5 5.5 5.5 5.5 5.5 15.5 15.5 15.5 15.5 15.5

$ c : num 3 8 13 18 23 3 8 13 18 23

$ grain: num 203 204 205 207 202 ...

Now we attempt to answer Mercer & Hall’s research question.

Q163 : What is the trend of the summary statistics (extremes, mean,
median, IQR) as the plot size increases, normalized to a 1/500 acre basis?

Jump to A163 •

Note: To compare these we have to divide the summary by the number of
1/500 acre plots making up the larger plots:

> summary(mhw$grain)

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.73 3.64 3.94 3.95 4.27 5.16
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> summary(plots.250$grain)/2

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.89 3.69 3.94 3.95 4.21 5.12

> summary(plots.125$grain)/4

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.03 3.68 3.92 3.95 4.16 4.80

> summary(plots.100$grain)/5

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.23 3.78 3.99 3.95 4.14 4.50

> summary(plots.50$grain)/10

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.40 3.82 3.95 3.95 4.11 4.40

> summary(plots.25$grain)/20

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.67 3.78 3.90 3.95 4.13 4.25

> summary(plots.10$grain)/50

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.73 3.83 3.98 3.95 4.07 4.14

Q164 : What is the trend in the CV as the plot size increases? Jump to
A164 •

> print(size.cv <- data.frame(area = plots$area, cv = c(

+ cv(mhw$grain), cv(plots.250$grain), cv(plots.125$grain),

+ cv(plots.100$grain), cv(plots.50$grain), cv(plots.25$grain),

+ cv(plots.10$grain))))

area cv

1 8.0937 11.6

2 16.1874 10.1

3 32.3748 8.9

4 40.4686 7.0

5 80.9371 5.9

6 161.8742 4.8

7 404.6856 3.9

> plot(size.cv$area, size.cv$cv, xlab="Plot size, m^2",

+ ylab="Coefficient of variation, %",

+ main="Plot size vs. CV, Mercer-Hall grain", type="b",

+ xlim=c(0,600))

> grid()

> text(size.cv$area, size.cv$cv, pos=4,

+ paste(

+ plots$adj.rows,

+ " row",
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+ ifelse(plots$adj.rows==1,"","s"),

+ ", ",

+ plots$adj.col,

+ " column",

+ ifelse(plots$adj.col==1,"","s"),

+ sep=""))
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Q165 : What plot size do you recommend? Jump to A165 •

We now clean up from this section:

> rm(cv, plot.len, plot.wid, plot.area, plots, plots.250,

+ plots.125, plots.100, plots.50, plots.25, plots.10,

+ grain.250, grain.125, grain.100, grain.50, grain.25,

+ grain.10, size.cv)

22.1 Answers

A158 : The range of local spatial dependence was about 8 m; plot size is (3.30 m
long x 2.45 m wide) (§A); grouping six plots into one plot of (6.60 m long x 7.35 m
wide) would remove most of this structure; grouping 12 plots into one plot (9.90 m
long x 9.70 m wide) would remove all of it. Return to Q158 •

A159 : 11.6%. Return to Q159 •

A160 : The dimensions are:

> plots[, c("len", "wid", "area")]
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len wid area

1/500 3.1807 2.5446 8.0937

1/250 6.3615 2.5446 16.1874

1/125 12.7230 2.5446 32.3748

1/100 3.1807 12.7230 40.4686

1/50 6.3615 12.7230 80.9371

1/25 12.7230 12.7230 161.8742

1/10 31.8075 12.7230 404.6856

Return to Q160 •

A161 : Yes, it is reduced somewhat, from 11.6%. to 10.1%. . Return to Q161 •

A162 : There are half the plots so the detailed spatial structure is lost. However
there are still clear patches of higher and lower yields. Return to Q162 •

A163 : The means are almost identical (3.95 to 3.95), and the medians close
(3.94 to 3.98); however the extremes (and hence the range) are reduced as plot size
increases (from 2.73 . . .5.16 in the full set to 3.72 . . .4.14 in the largest plot) and
the IQR is somewhat narrower (from 3.64 . . .4.27 in the full set to 3.82 . . .4.08 in
the largest plot). Return to Q163 •

A164 : The CV decreases rapidly at first, from 11.6% (500 plots) to 10.1% (250
plots) to 8.9% (125 plots) to 7% (100 plots), and then less dramatically, to 5.9% (50
plots), 4.8% (25 plots), and 3.9% (10 plots). The graph has a hyperbolic shape and
shows a clear inflection point around 80 m2 plot size (50 plots per acre). Return
to Q164 •

A165 : This depends on the precision required, which depends on the purpose of
the experiment. However, the apparent inflection point of the CV vs. plot size curve
is at two rows, five columns, i.e., plots of 1/50 acres, or about 80 m2: 6.36 m long by
12.72 m wide. Put another way, one acre could be used for a trial of ten treatments
(e.g., crop varieties or fertilizer combinations) with five replications, with a CV due
to random error (not treatment effects) of 5.9%. Return to Q165 •
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Index of R Concepts

* formula operator, 106
* operator, 5
+ formula operator, 103
+ operator, 5, 194
- formula operator, 134, 136
- operator, 5, 11
/ formula operator, 113
/ operator, 5, 29
: operator, 11, 143
< operator, 13
<- operator, 4, 8, 61
<= operator, 13
= operator, 8
== operator, 13
> operator, 13
>= operator, 13
[] operator, 10, 143
%% operator, 227
^ operator, 5
~ formula operator, 38, 47

abline, 22, 32, 38, 48, 56, 58, 96, 107
abs, 51
adj graphics argument, 22
aes (ggplot2 package), 195
AIC, 185
anova, 105, 106
apply, 196, 228
as, 154
as.character, 143
as.data.frame, 183
aspect argument (wireframe function), 149,

211

bg graphics argument, 22, 248
biplot, 118
biplot.prcomp, 118
boot (package:boot), 80–85
boot, 80
boot package, 80, 81
boot.ci (package:boot), 83
border graphics argument, 17
boxplot, 73
bpy.colors, 154
bpy.colors (sp package), 149
breaks graphics argument, 17
by, 74

c, 11, 26, 64, 111, 226
cbind, 30, 110, 226
centers argument (kmeans function), 196
cex graphics argument, 22
class, 9
coef, 126, 131
coefficients, 46, 104, 126
col argument (aes function), 195
col function argument, 132
col graphics argument, 17, 22, 50, 107
colMeans, 39
colnames, 9, 143
colors, 246
colours, 246
conf argument (boot.ci function), 83
coordinates (sp package), 153
cor, 43, 94, 135
cor.test, 43, 94
corExp (nlme package), 183
corSpher (nlme package), 183
curve, 34, 175
cut, 148

data argument (ggplot function), 194
data argument (lm function), 47
data argument (plot function), 48
data.frame, 55, 56, 226, 227
decreasing argument (sort function), 12
density, 18, 25, 31
detach, 27
diff, 27
digits argument (summary function), 146
dim, 10, 125
display.brewer.all (RColorBrewer pack-

age), 200
dnorm, 175

e1071 package, 26, 27
ecdf, 32
expand.grid, 152, 179

fg graphics argument, 248
file.show, 8
fit.variogram (gstat package), 160
fix, 29
for flow control structure, 143, 179, 215,

220
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function, 61, 62, 80, 84, 142, 178, 196, 218,
225

geom_point (ggplot2 package), 195
getwd, 8
ggplot (ggplot2 package), 194
ggplot2 package, 194, 201
gls (nlme package), 182, 183, 186
gray, 248
grid, 22, 56
gstat package, 3, 153, 159, 210
gwr.sel (spgwr package), 188
gwr.sg (spgwr package), 189

head, 11, 12, 124, 161
heat.colors, 154, 248
help, 5
help.search, 6
hist, 16–18, 20
horizontal argument (boxplot function),

74
hsv, 248

I, 134
id.n graphics argument, 53, 109
identify, 23, 246
ifelse, 50, 111
index argument (plot.boot function), 85
IQR, 26, 91
is.na, 211

kmeans, 196
kurtosis (e1071 package), 26, 27

lattice package, 3, 149, 153, 180
legend, 96, 131
length, 161
library, 153
lines, 18, 56, 192
list, 142
lm, 46, 47, 52, 63, 65, 76, 103, 106, 107, 127,

131, 134, 136, 179, 183
lm class, 54
load, 14
logLik, 185
lowess, 52
lqs, 97
ls, 5
lty argument (plot function), 132
lty graphics argument, 22, 107

main graphics argument, 17
map argument (variogram function), 210
MASS package, 39, 40, 97, 98
matrix, 211
max, 13, 26
max.nc argument (NbClust function), 202
mean, 5, 22, 26, 33, 91, 224
median, 26, 27, 91
method argument (cor function), 94
mfrow argument (par function), 74
min, 13
min.nc argument (NbClust function), 202
mvrnorm (MASS package), 39, 40

n argument (head function), 124
names, 9, 134
names argument (boxplot function), 74
NbClust (NbClust package), 202
NbClust package, 201, 202
newdata argument (predict.lm function),

127
nlme package, 182, 183
nstart argument (kmeans function), 196,

197

order, 11, 12, 15, 51, 110

palette, 246, 247
par, 74
paste, 143
pc.biplot argument (biplot.pc function),

118
pch graphics argument, 22, 248
plot, 20, 21, 23, 32, 48, 50, 52, 56, 66, 73,

82, 96, 109, 131, 137, 147, 192
points, 22, 56, 192
pos graphics argument, 22
prcomp, 117
prcomp class, 117, 118, 120
predict, 54, 127
predict.lm, 54, 55, 127
print, 4, 154
probs argument (quantile function), 26

q, 7
qqline, 32
qqnorm, 32
qt, 36
quantile, 26, 28, 81, 148
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R argument (boot function), 81
rainbow, 248
rank, 92
RColorBrewer package, 200, 201
read.csv, 8
replace argument (sample function), 125
require, 27, 40, 81, 149, 153
residuals, 131
return, 61, 81, 142, 178, 216
rev, 12
rgb, 248
rm, 5
rnorm, 39
round, 3
row.names, 124, 226
rownames, 147
rstandard, 110
rug, 17, 19
runif, 3, 5, 39

sample, 125, 161
save, 14
scale argument (prcomp function), 117
scale_colour_brewer (ggplot2 package),

201
screen argument (wireframe function), 149,

211
sd, 26, 33, 91, 224
search, 153
seq, 17, 28, 56, 143, 152
set.seed, 7, 125, 161, 197, 198
setdiff, 125
setequal, 125
setwd, 8
shapiro.test, 35
sim argument (boot function), 80
size argument (sample function), 125
skewness (e1071 package), 26
sort, 3, 11, 12, 15, 51, 157, 161
sp, 149
sp package, 3, 153, 183, 188
SpatialPixelsDataFrame (sp class), 154
spgwr package, 188
spline, 219
split, 164
spplot (sp package), 154
stats package, 196
stem, 15
str, 8

subset, 28
subset argument (lm function), 107
sum, 228
summary, 25, 46, 131, 146
system.time, 183

tail, 11, 12
terrain.colors, 148, 154
text, 20, 22, 48, 131, 147
title, 22, 48, 56
type argument (boot.ci function), 83
type argument (display.brewer.all func-

tion), 200
type graphics argument, 147

union, 125
unstack, 227, 228

var, 5, 26, 40, 211
variogram (gstat package), 159, 191, 210,

215
variogramLine (gstat package), 192
vgm (gstat package), 160

which, 51, 110, 211
which argument (plot.lm function), 52
which graphics argument, 109
which.max, 13, 120, 179
which.min, 13, 28, 120
wireframe (lattice package), 149, 180, 211,

217
with, 66, 96

x argument (aes function), 195
xlab graphics argument, 22, 147
xlim graphics argument, 137, 157

y argument (aes function), 195
ylab graphics argument, 22, 147
ylim graphics argument, 73, 137, 147
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A Example Data Set

In the early days of scientific agriculture, Mercer and Hall [37] were trying
to determine the optimum plot size for agricultural yield trials:

� Plots that are too small will be too variable;

� Plots that are too large waste resources (land, labour, seed); if the land
area is limited, the number of treatments will be unnecessarily small.

So, they performed a very simple experiment: an apparently homogeneous
field was selected, prepared as uniformly as possible and planted to the
same variety of wheat. They attempted to treat all parts of the field field
exactly the same in all respects during subsequent farm operations. When
the wheat had matured, the field was divided into 500 equally-size plots.
Each plot was harvested separately. Both grain and straw were air-dried,
then hand-threshed and weighed to a precision of 0.01 lb (= 4.54 g). The
reported values are thus air-dry weight, lb plot-1.

The field was a square of 1 acre26, which is 0.40469 ha or 4,046.9 m2,
which was divided into a 20 rows by 25 columns, giving 500 plots, each
of 1/500 acre, which is about 8.09 m2 (3.30 m long x 2.45 m wide). We do
not have records of the original orientation of the field, so we assume that
the rows ran W to E, with 25 plots in each row, beginning at 1 on the W
and running to 25 at the E, so that columns run N to S with 20 plots in
each, running from 1 at the N to 20 at the S. Thus the NW corner (1,1) is
plot 1, the NE corner (1, 25) is plot 481, the SE corner (25, 20) is plot 500,
and the SW corner (1, 20) is plot 20.

Research questions This experiment was one of a series of so-called unifor-
mity trials which were conducted early in the 20th century [8, 15], mainly
to determine optimum plot sizes [57], field layouts and numbers of replica-
tions27.

This data set has attracted many statisticians since 1911 [15, 29, 36, 38, 44,
51, 56] because of a simple fact: although the yields should be identical, they
are not; in fact they vary considerably. How is this to be explained?

Mercer and Hall distinguished two possible causes:

“If we consider the causes of variation in the yield of a crop it
seems that broadly speaking they are divisible into two kinds.
The first are random, occurring at haphazard all over the field.
Such would be attacks by birds, the incidence of weeds or the
presence of lumps of manure. The second occur with more reg-
ularity, increasing from point to point or having centres from
which they spread outwards; we may take as instances of this
kind changes of soil, moist patches over springs or the presence
of rabbit holes along a hedge.”

26 2.471054 acres = 1 ha = 10 000 m2
27 The intimate relation between the development of applied statistics and scientific agri-

culture is given in fascinating detail by Gower [22]
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The first we recognize as multiple small random errors, with no spatial pat-
tern, which should be normally-distributed (Gaussian) errors.

The second, however, may be evidence of local spatial autocorrelation, which
can be investigated by geo-statistical analysis.

Others [36, 44, 51] have suggested that the field was not as uniform as
assumed, so that there are both random effect as mentioned by Mercer and
Hall but also systematic effects from previous management. These effects
could include a regional trend, management blocks, or periodic effects due
to, e.g., ridge-and-furrow or previous use as an orchard.

The CSV file The data has been prepared as the comma-separated values
(“CSV”) file mhw.csv in a plain-text editor. The first line gives the four field
names:

"r","c","grain","straw"

These represent:

r : Row number in the field

c : Column number in the field

grain : Grain yield, lbs plot-1

straw : Straw yield, lbs plot-1

The following 500 lines each represent a plot; the four fields are separated
by commas. For example, the first line is:

1,1,3.63,6.37

If you can not find the CSV file in digital form, here it is to copy-and-paste
into a text file, which you should name mhw.csv. Note this is presented here
in three columns to save space; the file should be one long column of four
fields.

"r","c","grain","straw"

1,1,3.63,6.37

2,1,4.07,6.24

3,1,4.51,7.05

4,1,3.9,6.91

5,1,3.63,5.93

6,1,3.16,5.59

7,1,3.18,5.32

8,1,3.42,5.52

9,1,3.97,6.03

10,1,3.4,5.66

11,1,3.39,5.61

12,1,4.43,7.07

13,1,4.52,7.1

14,1,4.46,7.16

15,1,3.46,8.85

16,1,5.13,8.37

17,1,4.23,6.89

18,1,4.38,6.72

19,1,3.85,6.59

20,1,3.61,6.2

1,2,4.15,6.85

2,2,4.21,7.29

3,2,4.29,7.71

4,2,4.64,8.23

5,2,4.27,7.73

6,2,3.55,6.45

7,2,3.5,5.87

8,2,3.35,5.71

9,2,3.61,6.01

10,2,3.71,6.29

11,2,3.64,6.3

12,2,3.7,6.17

13,2,3.79,6.33

14,2,4.09,7.22

15,2,4.42,5.2

16,2,3.89,7.05

17,2,3.87,6.82

18,2,4.12,7.38

19,2,4.28,7.03

20,2,4.22,7.65

1,3,4.06,7.19

2,3,4.15,7.41

3,3,4.4,7.35

4,3,4.05,7.89

5,3,4.92,8.58

6,3,4.08,7.04

7,3,4.23,7.02

8,3,4.07,7.05

9,3,4.67,7.64

10,3,4.27,7.17

11,3,3.84,6.6

12,3,3.82,6.87

13,3,4.41,7.03
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14,3,4.39,7.73

15,3,4.29,7.52

16,3,4.26,6.99

17,3,4.23,7.14

18,3,4.39,7.55

19,3,4.69,8.06

20,3,4.42,8.45

1,4,5.13,7.99

2,4,4.64,7.8

3,4,4.69,7.5

4,4,4.04,6.66

5,4,4.64,7.86

6,4,4.73,7.98

7,4,4.39,6.98

8,4,4.66,7.28

9,4,4.49,6.95

10,4,4.42,6.95

11,4,4.51,7.86

12,4,4.45,7.17

13,4,4.57,7.93

14,4,4.31,7.31

15,4,4.08,6.67

16,4,4.32,6.93

17,4,4.58,7.73

18,4,3.92,6.7

19,4,5.16,8.78

20,4,5.09,8.72

1,5,3.04,4.71

2,5,4.03,6.34

3,5,3.77,6.17

4,5,3.49,5.7

5,5,3.76,6.05

6,5,3.61,5.89

7,5,3.28,4.97

8,5,3.72,5.78

9,5,3.75,5.94

10,5,4.13,7.31

11,5,4.01,7.18

12,5,3.59,6.53

13,5,3.94,7.06

14,5,4.29,7.08

15,5,3.96,6.54

16,5,3.78,6.72

17,5,3.19,6.06

18,5,4.84,8.85

19,5,4.46,7.54

20,5,3.66,7.09

1,6,4.48,6.08

2,6,3.74,6.63

3,6,4.46,6.98

4,6,3.91,6.46

5,6,4.1,6.77

6,6,3.66,6.15

7,6,3.56,6.06

8,6,3.84,6.1

9,6,4.11,6.83

10,6,4.2,6.86

11,6,4.21,8.23

12,6,4.37,8.75

13,6,4.47,8.53

14,6,4.47,8.15

15,6,3.96,7.1

16,6,3.54,6.46

17,6,3.49,6.63

18,6,3.94,6.75

19,6,4.41,8.15

20,6,4.22,7.72

1,7,4.75,7.31

2,7,4.56,7.88

3,7,4.76,8.18

4,7,4.52,7.6

5,7,4.4,7.91

6,7,4.39,7.36

7,7,4.94,8.06

8,7,4.44,7.5

9,7,4.64,7.92

10,7,4.66,7.59

11,7,4.77,8.23

12,7,4.45,8.74

13,7,4.42,8.02

14,7,4.37,7.69

15,7,3.89,6.86

16,7,4.27,7.79

17,7,3.91,7.34

18,7,4.38,7.43

19,7,4.68,7.51

20,7,4.06,7.06

1,8,4.04,6.08

2,8,4.27,6.35

3,8,3.76,5.93

4,8,4.52,7.29

5,8,4.17,7.33

6,8,3.84,6.28

7,8,4.06,6.81

8,8,3.4,5.97

9,8,2.99,5.07

10,8,3.61,6.33

11,8,3.95,7.11

12,8,4.08,7.17

13,8,3.92,6.7

14,8,3.44,6.62

15,8,4.11,7.58

16,8,4.12,7.32

17,8,4.41,7.53

18,8,4.24,7.32

19,8,4.37,7.19

20,8,3.97,7.53

1,9,4.14,6.98

2,9,4.03,6.91

3,9,3.3,5.95

4,9,3.05,5.82

5,9,3.67,7.33

6,9,4.26,7.61

7,9,4.32,7.37

8,9,4.07,6.99

9,9,4.37,7.25

10,9,3.99,7.26

11,9,4.17,7.52

12,9,3.72,7.28

13,9,3.86,7.2

14,9,3.82,7.05

15,9,3.73,6.89

16,9,4.13,7.24

17,9,4.21,7.41

18,9,3.96,7.04

19,9,4.15,7.47

20,9,3.89,7.36

1,10,4,5.87

2,10,4.5,6.5

3,10,3.67,6.2

4,10,4.59,5.41

5,10,5.07,8.05

6,10,4.36,5.58

7,10,4.86,7.51

8,10,4.93,7.57

9,10,5.02,8.23

10,10,4.44,7.75

11,10,4.39,7.73

12,10,4.56,7.73

13,10,4.77,7.67

14,10,4.63,7.87

15,10,4.03,7.16

16,10,4.47,7.84

17,10,4.61,7.51

18,10,4.29,6.96

19,10,4.91,7.96

20,10,4.46,6.91

1,11,4.37,6.75

2,11,3.97,6.09

3,11,3.94,6.18

4,11,4.01,5.99

5,11,3.83,6.36

6,11,3.79,5.46

7,11,3.96,6.23

8,11,3.93,6.13

9,11,3.56,5.75

10,11,3.86,6.14

11,11,4.17,7.2

12,11,4.1,6.9

13,11,4.99,7.82

14,11,4.36,7.39

15,11,4.09,7.03

16,11,3.41,5.96

17,11,4.27,7.17

18,11,4.52,7.73

19,11,4.68,8.07

20,11,4.44,6.87

1,12,4.02,6.1

2,12,4.19,6.43

3,12,4.07,6.37

4,12,3.34,5.6

5,12,3.63,6.43

6,12,4.09,6.1

7,12,3.74,6.38

8,12,3.04,4.96

9,12,3.59,6.03

10,12,3.99,6.26

11,12,4.17,7.08

12,12,3.07,6.12

13,12,3.91,7.34
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14,12,3.79,6.33

15,12,3.82,7.3

16,12,3.55,6.7

17,12,4.06,7

18,12,4.19,7.3

19,12,5.13,8.31

20,12,4.52,8.17

1,13,4.58,7.23

2,13,4.05,6.57

3,13,3.73,6.02

4,13,4.06,6.19

5,13,3.74,6.13

6,13,3.72,6.03

7,13,4.33,6.79

8,13,3.72,5.97

9,13,4.05,6.82

10,13,3.37,6.25

11,13,4.09,7.28

12,13,3.99,7.13

13,13,4.09,7.72

14,13,3.56,6.69

15,13,3.57,6.55

16,13,3.16,5.84

17,13,3.75,6.31

18,13,4.49,7.57

19,13,4.19,6.93

20,13,3.7,6.8

1,14,3.92,6.33

2,14,3.97,6.03

3,14,4.58,7.23

4,14,3.19,6.56

5,14,4.14,5.98

6,14,3.76,5.49

7,14,3.77,5.48

8,14,3.93,6.07

9,14,3.96,6.35

10,14,3.47,5.78

11,14,3.29,5.71

12,14,3.14,5.05

13,14,3.05,5.7

14,14,3.29,5.71

15,14,3.43,5.38

16,14,3.47,5.84

17,14,3.91,6.21

18,14,3.82,6.37

19,14,4.41,6.78

20,14,4.28,6.97

1,15,3.64,5.11

2,15,3.61,5.58

3,15,3.64,5.86

4,15,3.75,4.62

5,15,3.7,7.67

6,15,3.37,5

7,15,3.71,5.66

8,15,3.71,5.79

9,15,3.75,5.12

10,15,3.09,5.47

11,15,3.37,6.44

12,15,4.86,6.39

13,15,3.39,5.86

14,15,3.64,6.36

15,15,3.73,8.58

16,15,3.3,5.7

17,15,3.51,5.99

18,15,3.6,6.34

19,15,3.54,5.58

20,15,3.24,5.95

1,16,3.66,5.96

2,16,3.82,5.8

3,16,4.07,6.74

4,16,4.54,7.08

5,16,3.92,6.14

6,16,4.01,5.99

7,16,4.59,7.28

8,16,4.76,6.49

9,16,4.73,8.64

10,16,4.2,6.49

11,16,3.74,8.63

12,16,4.36,7.26

13,16,3.6,6.27

14,16,3.6,5.84

15,16,3.39,6.42

16,16,3.39,5.8

17,16,3.45,6.05

18,16,3.14,5.48

19,16,3.01,5.68

20,16,3.29,5.58

1,17,3.57,5.12

2,17,3.44,5

3,17,3.44,5.56

4,17,3.97,6.03

5,17,3.79,5.33

6,17,3.87,5.57

7,17,3.97,6.03

8,17,3.83,6.29

9,17,4.24,6.45

10,17,4.09,6.16

11,17,3.41,5.78

12,17,3.51,6.11

13,17,4.13,6.87

14,17,3.19,5.87

15,17,3.08,5.42

16,17,2.92,4.95

17,17,3.05,7.64

18,17,2.73,4.77

19,17,2.85,4.96

20,17,3.48,5.52

1,18,3.51,5.05

2,18,3.92,5.83

3,18,3.53,4.91

4,18,3.77,5.79

5,18,4.29,5.58

6,18,4.35,6.09

7,18,4.38,6.24

8,18,3.71,5.91

9,18,4.21,6.29

10,18,4.07,6.18

11,18,3.86,6.14

12,18,3.47,5.9

13,18,3.89,6.23

14,18,3.8,6.14

15,18,3.48,5.52

16,18,3.23,5.33

17,18,3.68,5.82

18,18,3.09,5.41

19,18,3.36,6.14

20,18,3.49,5.82

1,19,4.27,6.54

2,19,4.26,8.61

3,19,4.2,6.55

4,19,4.3,5.95

5,19,4.22,6.15

6,19,4.24,5.88

7,19,3.81,5.69

8,19,3.54,5.21

9,19,3.85,6.15

10,19,4.09,5.47

11,19,4.36,7.39

12,19,3.94,6.68

13,19,3.67,6.2

14,19,3.72,6.34

15,19,3.05,5.2

16,19,3.25,5.25

17,19,3.52,5.85

18,19,3.66,5.84

19,19,3.85,6.15

20,19,3.68,6.76

1,20,3.72,5.47

2,20,4.36,6.14

3,20,4.31,6.44

4,20,4.1,5.96

5,20,3.74,5.76

6,20,3.58,5.61

7,20,4.06,6.25

8,20,3.66,5.78

9,20,4.41,6.15

10,20,3.95,6.11

11,20,4.54,7.46

12,20,4.47,7.84

13,20,4.54,7.33

14,20,3.91,6.96

15,20,3.65,6.6

16,20,3.86,6.64

17,20,3.91,6.71

18,20,3.77,6.98

19,20,4.15,6.85

20,20,3.36,6.08

1,21,3.36,4.76

2,21,3.69,5.56

3,21,4.33,6.17

4,21,3.81,6.13

5,21,3.55,5.89

6,21,4.2,5.92

7,21,3.42,5.45

8,21,3.95,5.92

9,21,4.21,6.04

10,21,4.08,7

11,21,4.24,7.2

12,21,4.11,6.95

13,21,4.11,6.64
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14,21,3.35,6.27

15,21,3.71,6.29

16,21,3.22,5.4

17,21,3.87,6.13

18,21,3.48,6.14

19,21,3.93,6.57

20,21,3.71,6.35

1,22,3.17,4.95

2,22,3.53,5.09

3,22,3.66,6.15

4,22,3.89,5.92

5,22,3.67,5.45

6,22,3.94,5.87

7,22,3.05,4.57

8,22,3.84,5.66

9,22,3.63,5.81

10,22,4.03,5.72

11,22,4.08,6.54

12,22,3.97,6.47

13,22,4.58,6.79

14,22,4.11,6.64

15,22,3.25,6.37

16,22,3.69,5.93

17,22,3.87,7.5

18,22,3.76,6.11

19,22,3.91,6.09

20,22,3.54,6.21

1,23,2.97,4.53

2,23,3.14,5.11

3,23,3.59,5.41

4,23,3.32,4.62

5,23,3.57,5.24

6,23,4.24,5.82

7,23,3.44,4.56

8,23,3.76,5.24

9,23,4.17,5.58

10,23,3.97,5.65

11,23,3.89,5.98

12,23,4.07,5.8

13,23,4.02,6.35

14,23,4.39,6.11

15,23,3.69,5.18

16,23,3.8,5.7

17,23,4.21,5.48

18,23,3.69,5.43

19,23,4.33,6.04

20,23,3.59,4.66

1,24,4.23,6.08

2,24,4.09,5.91

3,24,3.97,6.28

4,24,3.46,5.41

5,24,3.96,5.6

6,24,3.75,5.5

7,24,2.78,4.28

8,24,3.47,5.59

9,24,3.44,4.81

10,24,2.84,4.1

11,24,3.47,5.84

12,24,3.56,6.38

13,24,3.93,5.69

14,24,3.47,5.78

15,24,3.43,5.82

16,24,3.79,6.21

17,24,3.68,6.01

18,24,3.84,6.35

19,24,4.21,6.98

20,24,3.76,6.36

1,25,4.53,6.78

2,25,3.94,5.68

3,25,4.38,7.49

4,25,3.64,6.55

5,25,4.31,6.56

6,25,4.29,6.15

7,25,3.44,5.68

8,25,4.24,7.26

9,25,4.55,6.32

10,25,3.91,5.96

11,25,3.29,5.65

12,25,3.83,6.29

13,25,4.33,7.11

14,25,3.93,6.07

15,25,3.38,5.68

16,25,3.63,5.99

17,25,4.06,6.88

18,25,3.67,6.33

19,25,4.19,6.93

20,25,3.36,6.33
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B Colours

Colours may be specified in several ways; the most intuitive is by predefined name; these
can be listed with the colours or colors methods.

> colours()

[1] "white" "aliceblue" "antiquewhite" "antiquewhite1"

[5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"

...

Note: These colours are shown various ways on the PDF colour chart http:
//research.stowers-institute.org/efg/R/Color/Chart/ColorChart.pdf.

These colours can be visualised as a bar graph:

> plot(seq(1:length(colors())), rep(2, length(colours())), type="h",

+ lwd=2, col=colors(), ylim=c(0,1), xlab="Colour number",

+ ylab="", yaxt="n",

+ main="Colours available with the colour() function")

0 100 200 300 400 500 600

Colours available with the colour() function

Colour number

An individual colour number can be identified interactively with the identify function;
left-click on the vertical colour bar at its midpoint; right-click anywhere in the graph when
done.

> abline(h=0.5, lwd=3)

> (selected <- identify(seq(1:length(colors())),

+ rep(0.5, length(colors()))))

> colors()[selected]; rm(selected)

For example, clicking on the light blue bar near colour 430, and then right-clicking to end
the interaction, shows the colour number and name:

[1] 432

[1] "lightskyblue2"

Colours can also be referred by number; this is their position in the active palette. These
names are displayed or extracted with the palette function:

> palette()
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[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"

[7] "#F5C710" "gray62"

> palette()[2]

[1] "#DF536B"

Numbered colours are often used when the graphical element matches a numbered element
in some data structure:

> boxplot(mhw$straw ~ mhw$r, col=mhw$r, xlab="row",

+ ylab="Straw yield, lbs plot-1")
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Here the row number is directly used as the colour: row 1 black, row 2 red, row 3 green
etc. Note that the colours are recycled if there are more plot elements than colours in the
palette.

The palette function can also be used to set the palette. For example to make a 20-element
grey-scale to match the 20 rows of wheat plots:

> palette(gray(seq(0,.9,len=20))); palette()

[1] "black" "#0C0C0C" "#181818" "gray14" "gray19" "#3C3C3C"

[7] "#484848" "#555555" "gray38" "#6D6D6D" "#797979" "gray52"

[13] "gray57" "#9D9D9D" "darkgray" "gray71" "#C1C1C1" "#CDCDCD"

[19] "gray85" "#E6E6E6"

> boxplot(mhw$straw ~ mhw$r, col=mhw$r,

+ xlab="row", ylab="Straw yield, lbs plot-1")

> palette("default"); palette()

[1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"

[7] "#F5C710" "gray62"
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Note how some colours are given by their Red-Green-Blue saturations, as two hexidecimal
digits per hue, e.g. #E6E6E6# is approximately 90% of white:

> as.numeric("0xe6")/as.numeric("0xff")

[1] 0.90196

This example also shows the gray function to set up a grey-scale colour ramp; other colour
ramp functions are rgb, hsv, rainbow, and heat.colors.

Plotting symbols There are 25 pre-defined plotting symbols which can be specified
with the pch, fg and bg graphics arguments:

●1

2

3

4

5

6

7

8

9

●10

11

12

●13

14

15

●16

17

18

●19

●20

●21

22

23

24

25

In addition, ASCII characters can be used; e.g. pch=51 prints a ‘1’.

248


	1 Introduction
	2 R basics
	2.1 Leaving R
	2.2 Answers

	3 Loading and examining a data set
	3.1 Reading a CSV file into an R object
	3.2 Examining a dataset
	3.3 Saving a dataset in R format
	3.4 Answers

	4 Exploratory graphics
	4.1 Univariate exploratory graphics
	4.1.1 Enhancing the histogram*
	4.1.2 Kernel density*
	4.1.3 Another histogram enhancement: colour-coding relative frequency*

	4.2 Bivariate exploratory graphics
	4.3 Answers

	5 Descriptive statistics
	5.1 Other descriptive statistics*
	5.2 A closer look at the distribution
	5.3 Answers

	6 Editing a data frame
	6.1 Answers

	7 Univariate modelling
	7.1 Answers

	8 Bivariate modelling: two continuous variables
	8.1 Correlation
	8.1.1 Parametric correlation

	8.2 Univariate linear regression
	8.2.1 Fitting a regression line – 1
	8.2.2 Ordinary least-squares*
	8.2.3 Fitting a regression line – 2
	8.2.4 Regression diagnostics
	8.2.5 Prediction

	8.3 Structural Analysis*
	8.3.1 A user-defined function

	8.4 No-intercept model*
	8.4.1 Fitting a no-intercept model
	8.4.2 Goodness-of-fit of the no-intercept model

	8.5 Answers

	9 Bivariate modelling: continuous response, classified predictor
	9.1 Exploratory data analysis
	9.2 Two-sample t-test
	9.3 One-way ANOVA
	9.4 Answers

	10 Bootstrapping*
	10.1 Example: 1% quantile of grain yield
	10.2 Example: structural relation between grain and straw
	10.3 Answers

	11 Robust methods*
	11.1 A contaminated dataset
	11.2 Robust univariate modelling
	11.3 Robust bivariate modelling
	11.4 Robust regression
	11.5 Answers

	12 Multivariate modelling
	12.1 Additive model: parallel regression
	12.2 Comparing models
	12.3 Interaction model
	12.4 Regression diagnostics
	12.5 Analysis of covariance: a nested model*
	12.6 Answers

	13 Principal Components Analysis
	13.1 Answers

	14 Model evaluation
	14.1 Splitting the dataset
	14.2 Developing the model
	14.3 Predicting at the evaluation observations
	14.4 Measures of model quality*
	14.4.1 MSD
	14.4.2 SB
	14.4.3 NU
	14.4.4 LC

	14.5 An inappropriate model form*
	14.6 Answers

	15 Cross-validation*
	15.1 Answers

	16 Spatial analysis
	16.1 Geographic visualisation
	16.2 Setting up a coördinate system
	16.3 Loading add-in packages
	16.4 Creating a spatially-explicit object
	16.5 More geographic visualisation
	16.6 Answers

	17 Spatial structure
	17.1 Spatial structure: trend
	17.2 Spatial structure: local
	17.3 Absence of spatial structure*
	17.4 Spatial structure of field halves*
	17.5 Answers

	18 Generalized least squares regression*
	18.1 A detour into Maximum Likelihood*
	18.1.1 Numerical solution

	18.2 Residual Maximum Likelihood
	18.2.1 REML – theory
	18.2.2 REML – computation

	18.3 Answers

	19 Geographically-weighted regression*
	19.1 Answers

	20 Management zones*
	20.1 k-means clustering
	20.2 Optimum number of clusters
	20.3 Spatial clustering
	20.4 Answers

	21 Periodicity*
	21.1 Visualizing periodicity
	21.2 Spectral analysis
	21.2.1 Theory
	21.2.2 Covariance surface
	21.2.3 Power spectrum

	21.3 Answers

	22 The effect of plot size*
	22.1 Answers

	References
	Index of R concepts
	A Example Data Set
	B Colours

