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1 Motivation

This document presents a case study to illustrate how land cover change

may be analysed using the R environment for statistical computing and

visualisation [9].

These notes only scratch the surface of R’s capabilities; the reader is en-

couraged to consult the on-line help, tutorials, and user’s manuals. Sim-

ilarly, they do not pretend to fully explain the applied statistical meth-

ods. A good source for general linear models is Fox [2, 4, 3]; all sorts of

advanced methods for R are explained by Venables and Ripley [20]. Hos-

mer and Lemeshow [8] give an accessible treatment of logistic regression

using examples from medical diagnostics.

These notes are designed so that you can cut the code shown in the boxes

labelled R code and paste it directly into the R console; you should then

see the output in the boxes labelled R console output. You can also load

the source .R files, which should have been provided as a compressed

file with this document, into an R environment such as RStudio and run

the code there1. Of course, you are encouraged to edit the code and

experiment.

The aim of this analysis is to quantify and explain observed land cover

changes between two dates, based on a set of factors that are a priori ex-

pected to affect such change. The aim is to predict the probability that a

plot’s land use has changed, given a set of predictive factors. The factors

that are associated with a higher chance of change are then examined

more closely, to see if any reason can be given for the close association.

As with any statistical model, this one does not say anything about cau-! →
sation, only the degree of association between change and predictors.

Reasoning about causation requires meta-statistical analysis, i.e. using

statistical evidence to support arguments about likely mechanisms of

change.

2 Research questions

Although the focus of this note is on the R techniques, it is instructive

to place the example used in context by examining some of the original

research questions for which the dataset was collected [13, §1.3]; the

results have been summarized in a research paper [19].

1. What were the changes in land cover in the Chapare region of

Cochabamba Province, Bolivia from 1986 to 2002?

2. What are the causative or controlling factors associated with defor-

estation?
1 The sequence of these is LCC_{0, 1, 21, ROC, 22, 2a, 3, 3a}
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(a) Agricultural colonization (legal and illegal);

(b) Distance to roads and existing settlements;

(c) Land tenure;

(d) Soil suitability and constraints for agriculture.

To answer the second question, we would like to build an quantitative

explanatory model including one or more of the suspected factors.

3 Example data set

This data set is described by Loza [13]. It consists of 1 064 samples,

each representing a single 30×30 m grid cell, from the Chapare region

of Cochabamba province, Bolivia. This data set will be used to build and

calibrate models of land cover change.

The data has been prepared as a comma-separated value (“CSV”) file.

This format is an export option from Excel.

Task 1 : Open lcc.csv in a plain text editor such as Notepad and

examine its structure. •

Here are the first few lines.

"cov","dr","ds","t","lspos","text"

"CC", 2924.3,4853,"Nt","A","LC"

"CC", 2535.2,5242,"Nt","A","LC"

"CO", 2146.1,4957,"Ci","A","LC"

The fields are:Fields

cov : Land cover class

dr : Distance to nearest road, meters

ds : Distance to nearest settlement, meters

t : Land tenure class

lspos : Landscape position class (slope and wetness)

text : General soil texture class

The first item is a composite code of two letters. The first identifies land

cover in 1986 and the second in 2000. The single letters are:Land cover

C : closed forest

O : open forest

N : no forest
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The distances to road (code dr) and settlement (code ds) were computedDistances

in ILWIS, using a segment map of the road network and a point map of

the settlements, respectively.

The fourth item is the land tenure [13, Table 6]; this was and is a compli-Land tenure

cated issue in Bolivia and we just give the most important points about

each class, accurate at the date of the study:

Nt : No established title; this is generally private land that has not yet

been regulated under the terms of the 1996 Agrarian Reform law;

in some cases this has reverted to the State because of under-

utilization but in others it is actively managed by its pre-Reform

owner;

CA : Agricultural colonies (private); these are legal tenure agriculture

and ranching colonies;

Ce : Carrasco National Park (protected area);

Ci : Indigenous communities (traditional rights);

Cp : Conservation areas (private); in the study area this is a 6300 ha

University research station.

The last two items were generalised from classes of the Fertility Capabil-

ity Classification [17, 18], and are thought to represent important soil-

landscape factors that are expected to influence land use decisions.

Landscape position (code lspos):Landscape

position
A : flat; seasonally wet (gleyed; LCC code g);

B : 1− 25% slope gradient;

C : 25− 90% slope gradient;

F : > 90% slope gradient; very steep

Generalized soil texture (code text):Soil

texture
L : loamy

L’ : loamy with 10− 35% gravel

LC : loamy topsoil, clayey subsoil

3.1 Browsing the example data set

Task 2 : Start R and switch to the directory where the dataset is stored.

•
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How you do this depends on your system; see [16] if you are not clear on

how to do this.

Note: The output in some parts of this document was produced by
Sweave [11, 10] and R version 3.2.4 (2016-03-10) running on Darwin ver-
sion 15.4.0. The text and graphical output you see here was automatically
generated and incorporated into LATEX by running code through R and its
packages. Then the LATEX document was compiled into the PDF version
you are now reading. Your output may be slightly different on different
versions and on different platforms.

Task 3 : Load the dataset from file lcc.csv into variable dset, examine

its structure, and display the first few observations. •

> dset <- read.csv("lcc.csv")
> str(dset)

'data.frame': 1064 obs. of 6 variables:
$ cov : Factor w/ 9 levels "CC","CN","CO",..: 1 1 3 6 4 9 2 6 1 1 ...
$ dr : num 2924 2535 2146 2442 2831 ...
$ ds : int 4853 5242 4957 4690 5079 4283 3999 3732 4121 3976 ...
$ t : Factor w/ 5 levels "CA","Ce","Ci",..: 5 5 3 3 3 5 5 5 5 5 ...
$ lspos: Factor w/ 4 levels "A","B","C","F": 1 1 1 1 1 1 1 1 1 1 ...
$ text : Factor w/ 3 levels "L","L'","LC": 3 3 3 3 3 3 3 3 3 3 ...

> dset[1:5,]

cov dr ds t lspos text
1 CC 2924.3 4853 Nt A LC
2 CC 2535.2 5242 Nt A LC
3 CO 2146.1 4957 Ci A LC
4 NO 2442.3 4690 Ci A LC
5 NC 2831.4 5079 Ci A LC

> summary(dset)

cov dr ds t lspos
CC :356 Min. : 0 Min. : 44 CA: 58 A:371
CN :279 1st Qu.: 322 1st Qu.: 813 Ce:132 B:387
CO :220 Median : 713 Median :1288 Ci: 37 C:217
NN : 86 Mean : 1215 Mean :1506 Cp: 63 F: 89
NO : 45 3rd Qu.: 1411 3rd Qu.:1928 Nt:774
OO : 33 Max. :12516 Max. :5750
(Other): 45
text
L :518
L':207
LC:339

Note that the read.csv function2 was able to determine that four of the

variables are nominal, or in R terms, unordered factors.

2 A shorthand for the read.table function with defaults appropriate for Comma-
Separated Values (CSV) files
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If the object is attached to the search path, we can refer to the fields by

name, rather than use the frame$field construction.

Task 4 : Attach the dataframe to the search path. •

> attach(dset)

4 Identifying land cover change

Field cov codes the land covers at two dates; the first letter represents

the cover at the first date and the second letter at the second date. From

this we can derive a field that codes whether the sample changed or not

between those dates. This is a logical response variable, which takes

only two values: True or False. These are often incorrectly coded as

binary variables, with 1 standing for change and 0 for no change. If this

mistake is made, the analyst is tempted to use the numbers 0 and 1 as if

they were values of a ratio variable3, and try to apply statistical methods

appropriate for ratio response variables, such as linear regression. This

is a serious error. R helps here by clearly identifying logical variables as

such.

Task 5 : Compute a logical vector of True values for observations with

a change in land cover between the two dates, and False values for the

others. •

Q1 : What proportion of observations changed land cover between the

two dates? •

> changed <- ! (cov=="CC" | cov=="OO" | cov=="NN")
> summary(changed)

Mode FALSE TRUE NA's
logical 475 589 0

> round(sum(changed)/length(changed),3)

[1] 0.554

About 55% of the samples changed their land cover.

Task 6 : Add the logical vector as a field to the data frame using the

cbind() method, and then remove the temporary variable. •
3 a continuous numerical variable with a natural zero
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> dset <- cbind(dset, changed)
> str(dset)

'data.frame': 1064 obs. of 7 variables:
$ cov : Factor w/ 9 levels "CC","CN","CO",..: 1 1 3 6 4 9 2 6 1 1 ...
$ dr : num 2924 2535 2146 2442 2831 ...
$ ds : int 4853 5242 4957 4690 5079 4283 3999 3732 4121 3976 ...
$ t : Factor w/ 5 levels "CA","Ce","Ci",..: 5 5 3 3 3 5 5 5 5 5 ...
$ lspos : Factor w/ 4 levels "A","B","C","F": 1 1 1 1 1 1 1 1 1 1 ...
$ text : Factor w/ 3 levels "L","L'","LC": 3 3 3 3 3 3 3 3 3 3 ...
$ changed: logi FALSE FALSE TRUE TRUE TRUE FALSE ...

> rm(changed)

Note that the field changed has type ‘logical’, i.e. it takes the values TRUE

(a change has occurred) or FALSE. Also note that this field was automat-

ically given the same name as the temporary variable.

4.1 Limiting the changes to one original cover class

Different driving forces may be behind different sorts of change. In this

example we will only analyze the changes from an initial state of closed

forest, i.e. deforestation, between the two dates; see §12 for other ideas.

Task 7 : Make a new data frame as a subset of the full dataset, with

only those observations whose initial land cover was ‘closed forest’. •

> dc <- dset[substring(as.character(cov),1,1)=="C",]

This R code uses a logical expression to select rows which meet the cri-

terion (note that the criterion is written in the rows position of the ar-

ray notation [rows, columns], and then includes all columns in the

selected rows (note the empty expression in the columns position).

Q2 : How many observations are in the subset? •

> str(dc)

'data.frame': 855 obs. of 7 variables:
$ cov : Factor w/ 9 levels "CC","CN","CO",..: 1 1 3 2 1 1 1 1 3 2 ...
$ dr : num 2924 2535 2146 1188 2254 ...
$ ds : int 4853 5242 4957 3999 4121 3976 4551 2921 3311 3026 ...
$ t : Factor w/ 5 levels "CA","Ce","Ci",..: 5 5 3 5 5 5 5 5 5 5 ...
$ lspos : Factor w/ 4 levels "A","B","C","F": 1 1 1 1 1 1 1 1 1 1 ...
$ text : Factor w/ 3 levels "L","L'","LC": 3 3 3 3 3 3 3 3 3 3 ...
$ changed: logi FALSE FALSE TRUE TRUE FALSE FALSE ...

> dim(dc)[1]

[1] 855
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The subset has 855 of the original 1064 observations.

Task 8 : Remove (detach) the complete dataset dset from the search

path, and replace it (attach) with the subset dc. We also re-compute the

change for the subset. •

> detach(dset); attach(dc)

> changed <- (cov!="CC"); summary(changed)

Mode FALSE TRUE NA's
logical 356 499 0

> round(sum(changed)/length(changed),3)

[1] 0.584

Note that changed now refers to dc$changed, not dset$changed.

Q3 : What is the proportion of deforestation? •

About 58% of the original closed forest has been converted.

5 Probability of change assessed by cross-classification

A simple way to assess the relation between a classified factor and change

is to classify the changed sites according to the factor, in a cross-classifi-

cation table. We can examine the numbers of observations that changed,

or see these as proportions of each class that changed. The χ2 statistic

for such a table tests whether the uneven proportions in the table could

arise by chance.

Task 9 : Compute a cross-classifiction table of the number of obser-

vations deforested, classfied by landscape position; test whether it is

different from a chance assignment of change to landscape positions. •

First, the cross-classification table, and the computed χ2:

> (ct <- table(changed, lspos))

lspos
changed A B C F
FALSE 118 107 87 44
TRUE 155 198 102 44

> summary(ct)

Number of cases in table: 855
Number of factors: 2
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Test for independence of all factors:
Chisq = 9.7, df = 3, p-value = 0.021

> (cs <- chisq.test(ct))

Pearson's Chi-squared test

data: ct
X-squared = 9.71, df = 3, p-value = 0.021

The expected change if points were randomly assigned to classes is:

> round(cs$expected)

lspos
changed A B C F
FALSE 114 127 79 37
TRUE 159 178 110 51

And the difference between observed and expected is then:

> ct - round(cs$expected)

lspos
changed A B C F
FALSE 4 -20 8 7
TRUE -4 20 -8 -7

As the example shows, the summary method applied to a contingency

table calculates the χ2 statistic.

Q4 : Does this table show a difference from a chance assignment of

change to landscape positions? •

The difference between observed and expected shows that landscape po-

sition B was deforested more than expected; the reverse is true for the

other positions. The χ2 test of independence shows that this is unlikely

by chance alone (p = 0.02 < 0.05), so landscape position is somewhat as-

sociated with different proportions of change. However, this test applies

to the whole table, and does not indicate which classes are significantly

different from the mean proportion of change (in this case, 0.584).

Task 10 : Express the contingency table as proportions rather than

frequencies (counts), normalized to 1 for each class. •

> (ct.p <- round(t(t(ct)/apply(ct,2,sum)),2))

lspos
changed A B C F
FALSE 0.43 0.35 0.46 0.50
TRUE 0.57 0.65 0.54 0.50
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Note how the column sums are all 1 (normalized).

This is fairly tricky R code, so some comments are in order.

First, the apply method applies the function given by its third

argument, in this case sum, across rows (if the second argu-

ment is 1) or columns (if 2), to the matrix named in the first

argument, in this case table ct. The result is a vector with

the same number of rows or columns, containing the value of

the function applied to that row or column. So here we com-

pute the column sum and then divide this sum into the count

of each cell to get the proportion in the column. To make

the vector conform with the correct dimension, the table has

to be transposed with the t method before the division, and

then transposed back again for presentation.

Q5 : Do the four landscape positions have different proportions of

TRUE (plot was converted) and FALSE (not)? If so, which positions are

more and less converted than the average? •

The proportion of change is clearly highest for position B (not wet, not

steep), suggesting a slight preference of colonists for these sites.

5.1 Visualising cross-classification with a bar plot

Cross-classification tables lend themselves to visualisation with a bar

plot. This shows bars (rectangles) for each level of the classifying factor,

with area proportional to its number or proportion of TRUE and FALSE.

Bar charts of such tables are of two forms: stacked (one bar per level,

separated into T and F portions) or side-by-side (two bars per level, one

each for T and F).

Task 11 : Show both the frequencies and proportions of TRUE and

FALSE by landscape position as bar charts, both stacked and side-by-

side. •

> par(mfrow=c(2,2))
> col.vec <- c("gray10", "gray60")
> barplot(ct, col=col.vec, main="Frequency of deforestation",
+ xlab="Landscape position")
> barplot(ct, beside=T, col=col.vec, main="Frequency of deforestation",
+ xlab="Landscape position")
> col.vec <- c("lavender", "cornsilk")
> barplot(ct.p, col=col.vec, main="Proportion of deforestation",
+ xlab="Landscape position")
> barplot(ct.p, beside=T, col=col.vec,
+ main="Proportion of deforestation", xlab="Landscape position")
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> par(mfrow=c(1,1))
> rm(col.vec)

A B C F

Frequency of deforestation

Landscape position

0
50

15
0

25
0

A B C F

Frequency of deforestation

Landscape position

0
50

10
0

15
0

A B C F

Proportion of deforestation

Landscape position

0.
0

0.
4

0.
8

A B C F

Proportion of deforestation

Landscape position

0.
0

0.
2

0.
4

0.
6

Q6 : What are the respective advantages of the stacked and side-by-side

barcharts? •

The stacked chart splits the whole into two parts, and at the same time

shows the relative totals of the classes. The side-by-side chart makes it

easier to compare the changed/not changed within each class.

Q7 : What are the respective advantages of the frequency and propor-

tions plots? •

The proportions sum to 1 within each class, so show clearly the relative

changes. The frequencies show the actual number changed.
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6 The logistic transformation

For a deeper analysis, we will use logistic regression, implemented as a

special case of generalised linear models. As a preliminary, we have to

define and explain the logistic transformation; in the following section

we will put it to work.

The logistic transformation is often applied to variables which are de-

fined only on the open interval (0 . . .1), such as proportions, to variables

on (−∞ . . .∞). The transformed variable is the natural logarithm of the

odds corresponding to the proportion; this is called the log-odds:

` = log
p

1− p (1)

The odds are simply the ratio of the chance an event will occur, divided

by the chance it won’t, and is another way to express probability. For

example, if for an event p = 0.8, the odds of the event occurring are

0.8/(1 − 0.8) = 0.8/0.2 = 4, conventionally expressed as “four to one”,

or 4 : 1, in favour of the event’s occurrence. In common language, it

is four times as likely that the event will occur as that it will not. The

log-odds in this case is log 4 = 1.386.

If an event is equally likely and unlikely, p = 0.5, the odds are 1 : 1,

and the log-odds are 0. Thus zero is the centre of a logit-transformed

proportion; negative values indicate less than even odds, and positively

values more.

Note: In games of chance the odds ratio is conventionally

used in an inverse sense to the above: it expresses the odds

that an event will not occur. This is because a positive out-

come is almost always less likely than a negative one in such

games. For example, the gambling odds that a random card

drawn from a standard 52 card deck will not be a face card

or ace is (13− 5)/5 = 1.6, conventionally expressed with the

smallest possible integer denominator as “eight to five”, or

8 : 5, “against”.

The logistic transformation is undefined for proportions 0 and 1. This

makes sense if we consider the proportions as estimates of probabilities:

if the event is certain or impossible, there is nothing to analyse. We are

only interested in modelling uncertain events. Another way to under-

stand this is the realise that it is meaningless to have infinite odds for or

against an event, so the range of the logistic function does not include

±∞.

The inverse transform, from log odds to proportion, is:

p = 1

1+ e−` (2)
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which is often written in the mathematically-equivalent form (obtained

by multiplying numerator and denominator by e`):

p = e`

1+ e` (3)

To examine the transformation in R, we define two functions, the logis-

tic transformation and its inverse. The forward function goes from a

proportion on (0 . . .1) to its logistic value on (−∞ . . .∞) and the inverse

function goes from a logistic variable back to the proportion.

Task 12 : Define R functions for the forward and inverse logistic trans-

formations. •

> logit <- function(x) log(x/(1-x))
> logit.inv <- function(x) 1/(1+exp(-x))

We can examine the effect of these two functions on probabilities from

0.02 to 0.98, in increments of 0.04:

> (x <- seq(0.02, 0.98, by=0.04))

[1] 0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38 0.42 0.46
[13] 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94
[25] 0.98

> logit(x)

[1] -3.89182 -2.75154 -2.19722 -1.81529 -1.51635 -1.26567
[7] -1.04597 -0.84730 -0.66329 -0.48955 -0.32277 -0.16034

[13] 0.00000 0.16034 0.32277 0.48955 0.66329 0.84730
[19] 1.04597 1.26567 1.51635 1.81529 2.19722 2.75154
[25] 3.89182

> logit.inv(logit(x))

[1] 0.02 0.06 0.10 0.14 0.18 0.22 0.26 0.30 0.34 0.38 0.42 0.46
[13] 0.50 0.54 0.58 0.62 0.66 0.70 0.74 0.78 0.82 0.86 0.90 0.94
[25] 0.98

We can graph the logistic curve as follows:

> x <- seq(0.01, 0.99, by=0.01)
> plot(x,logit(x),type="l", main="Logistic curve")
> abline(h=0, lty=2); abline(v=0.5, lty=2)
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6.1 A single-predictor logistic model

The logistic model in R is a special case of the generalised linear model

(GLM), implemented in R by the glm method. This method requires a

model specification using the same S model notation as used in the lm

method, and in addition a specification of the model family. For the

logistic model, this family is the binomial, also known as the Bernoulli

family, where the response is a logical variable.

Let’s begin by modelling change based on one predictor: landscape posi-

tion. The question is to what extent the position affects the decision to

covert a site from closed forest.

> glm.lspos <- glm(changed ~ lspos, family=binomial, data=dc)
> summary(glm.lspos)

Call:
glm(formula = changed ~ lspos, family = binomial, data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.45 -1.30 0.93 1.06 1.18

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.273 0.122 2.23 0.026 *
lsposB 0.343 0.171 2.00 0.045 *
lsposC -0.114 0.190 -0.60 0.550
lsposF -0.273 0.246 -1.11 0.267
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1151.5 on 851 degrees of freedom
AIC: 1159

Number of Fisher Scoring iterations: 4

The notation changed ~ lspos is an example of the S model specifica-

tion; it can be read “model variable changed as a function of predictor

lspos”).

The intercept (representing the first class, A), and the coefficient for class

B both have probability p < 0.05 that they could occur by chance, so the

model does find some significant differences (but not much). Positions A

and B are more likely to be converted than the other two.

This looks very much like the summary of a (non-generalised) linear one-

way ANOVA model, except there is no goodness-of-fit (R2). Instead, we

are given the null deviance, which measures the variability of the dataset,

compared to the residual deviance, which measures the variability of

the residuals, after fitting the model. These deviances can be used like

the total and residual sum of squares in a linear model to estimate the

goodness of fit; this is sometimes referred to as the D2 (by analogy with

R2):

> d2 <- function(model) { round(1-(model$deviance/model$null.deviance),4) }
> d2(glm.lspos)

[1] 0.0084

In this code, the notation glm.lspos$deviance extracts component deviance

from fitted model object glm.lspos.

Note: To see the components of an object, use the str (‘struc-

ture’) method.

Less than 1% of the deviance in the model has been explained by land-

scape position. This is not very good! It is an example of a model that

is significantly different from random effects, but it not very helpful to

understand the underlying process.

6.2 Visualising the logistic model

The logistic model assigns a probability of change, on (0 . . .1), for each

sample. The sample itself was observed either to change (1) or not (0).

We have written a function logit.plot (§A.1) to produces a plot of the

logistic model’s predictions, sorted by probability (so, the less probable

changes to the left, the most probable to the right), with the samples

corresponding to each probability either at the top (if the site actually

changed) or at the bottom (if not).
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This function is provided in the lcc.R source code file, which can loaded

using the R source() method, and then applied to any fitted model:

> source("lcc.R")
> logit.plot(glm.lspos)
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The plot for this model shows that the relation is clearly very poor. The

fitted probabilities of change are all close to the mean probability (0.584),

shown as a horizontal line. Also, there is very little difference between

the density of the changed and unchanged samples.

6.3 Comparing models

Let’s try this again,but with a different single predictor, land tenure.

> glm.t<-glm(changed ~ t, family=binomial, data=dc)
> summary(glm.t)

Call:
glm(formula = changed ~ t, family = binomial, data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.552 -1.413 0.959 0.959 2.582

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.847 0.309 2.75 0.0060 **
tCe -0.486 0.363 -1.34 0.1810
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tCi -1.358 0.523 -2.60 0.0093 **
tCp -4.143 0.783 -5.29 1.2e-07 ***
tNt -0.309 0.320 -0.97 0.3332
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1068.8 on 850 degrees of freedom
AIC: 1079

Number of Fisher Scoring iterations: 5

> 1-(glm.t$deviance/glm.t$null.deviance)

[1] 0.079627

> logit.plot(glm.t)
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AIC: 1079

Null deviance: 1161

This is much better: one class (Cp, private conservation area) is very

highly significantly different (lower probability of conversion) from the

mean probability of conversion (in this case, much lower) and two oth-

ers (Ci, i.e. indigenous comunities, and the intercept, representing the

first-listed class CA, i.e. agricultural colonies) are highly significantly dif-

ferent (lower and higher probability, respectively). The residual deviance

is much lower, and almost 8% of the variability has been explained. The

plot clearly shows that this relation is much better than when land-

scape position was used as the single predictor. In particular, some non-
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changed samples are fitted very well. There is a clear difference between

the density of the changed and unchanged samples; the unchanged are

clustered to the

To compare linear models we often use the adjusted R2. A more general

measure for these, which is also applicable to generalised linear models,

is the Akaike Information Criterion, or AIC. This adjusts the residual de-

viance for the number of predictors, thus favouring parsimonious mod-

els. The AIC for the model from land tenure is 1078.8; for the prediction

from landscape position it was 1159.5. Thus the model from land tenure

is much better than the model from landscape position.

Note that the AIC for a null model is the same as the null

deviance, since there are no predictors to adjust it, in the

present case 1161.3.

6.4 Evaluating models with the ROC curve

The success of logistic regression models may be assessed with the ROC,

abbreviation for “Receiver Operating Characteristic” curve.4

This is well-explained for ecological models by Liao and McGee [12]; the

same technique has been applied to land cover change models [15]. It

was originally elaborated to compare medical diagnostic procedures [6,

7, 5]. ROC curves were used as an R programming example by Lumley

[14]. Fawcett [1] presents a tutorial on ROC curves and other diagnostics

to select classifiers, and a practical guide for their use research.

Note: R package ROCR can be used to produce and evaluate ROC curves
and other measures of logistic model performance. It was first placed on
CRAN after these notes were complete; I have not evaluated it; probably it
does some of what is explained in this section somewhat more elegantly
or attractively.

The ROC curve is a plot of the sensitivity (proportion of true positives) of

the model prediction against the complement of its specificity (propor-

tion of false positives), at a series of thresholds for a positive outcome.

The logistic model gives the probability that each location has changed;

this can be changed to a binary outcome (changed vs. not changed) by

selecting a threshold.

To explain this, we first examine the concepts of sensitivity and speci-

ficity at a given threshold, and then show how to construct an ROC curve

from a series of thresholds.
4 The name comes from its original application to signal detection; the “receiver” was

a radio receiver at different detection thresholds.
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6.4.1 Sensitivity and specificity at one threshold

In the present example we have 855 observations, with predicted proba-

bilities of change from 0.0357 (almost zero) to 0.7. If we select a thresh-

old of p = 0.5 (change equally likely or not), 775 (of 855) locations are

predicted to change; if the threshold is raised to 0.65, only 50 are pre-

dicted to change. In fact, 499 changed:

> length(glm.t$fitted)

[1] 855

> summary(glm.t$fitted)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0357 0.6310 0.6310 0.5840 0.6310 0.7000

> sum(glm.t$fitted>0.5)

[1] 775

> sum(glm.t$fitted>0.65)

[1] 50

> sum(dc$changed)

[1] 499

At any threshold we can compute the sensitivity and specificity, by com-

paring the predicted with actual change. The sensitivity is defined as the

ability of the model to find the “positives”, i.e. sites that actually changed

land use:

Sensitivity
def= True positives

Total positives

For example, at p = 0.5, this model predicts 488 of the 499 sites that

changed land use, so the sensitivity is 0.98, which is very good.

> sum((glm.t$fitted > 0.5) & dc$changed)

[1] 488

> (sens.5 <- sum((glm.t$fitted > 0.5) & dc$changed)/sum(dc$changed))

[1] 0.97796

(A note on this R code: the sum() method when applied to a logical

vector of TRUE and FALSE counts the number of TRUE in the vector.)

There is another side to a model’s performance: the specificity, defined

as the proportion of “negatives” that are correctly predicted

Specificity
def= True negatives

Total negatives

20



In this case 356 sites did not change land use; at at a threshold of p = 0.5
the model predicts that 80 sites did not change; of these 69 didn’t change

in fact; the specificity is thus 69/356 = 0.19, which is very poor:

> sum(!dc$changed)

[1] 356

> sum((glm.t$fitted < 0.5))

[1] 80

> sum((glm.t$fitted < 0.5) & (!dc$changed))

[1] 69

> (spec.5 <- sum((glm.t$fitted < 0.5) & (!dc$changed))/sum(!dc$changed))

[1] 0.19382

This model is quite successful in identifying sites that changed (488 of

499), but quite poor at finding sites that did not change (69 of 356).

The complement of the specificity is the false positive rate, that is, the

proportion of incorrect predictions of change to the total unchanged.

This and the specificity must sum to 1. Similarly, the complement of the

sensitivity is the false negative rate, that is, the proportion of incorrect

predictions of no change to the total changed. This and the sensitivity

must sum to 1.

For this model, using a threshold of p = 0.5, there is a high rate of false

positives (0.81) but a very low rate of false negatives (0.02). The model

is predicting too much change.

> (fp.5 <- sum((glm.t$fitted > 0.5) & !dc$changed)/sum(!dc$changed))

[1] 0.80618

> spec.5 + fp.5

[1] 1

> (fn.5 <- sum((glm.t$fitted < 0.5) & dc$changed)/sum(dc$changed))

[1] 0.022044

> sens.5 + fn.5

[1] 1

We have written a function logit.plot.quad (§A.2) to produces a plot

of the logistic model’s sensitivity, specificity, false and true positives and

negatives, at a user-supplied threshold; this is included in source code

file lcc.R:
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> source("lcc.R")

We plot this for the default threshold (p = 0.5); this is shown in Figure

1.

> logit.plot.quad(glm.t)
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True negatives: 69 False negatives: 287

True positives: 488False positives: 11

Model success

Sensitivity: 0.978 ; Specificity: 0.1938

Figure 1: Illustrating the logistic model’s performance

The red ticks represent errors: either false positives or false negatives.

In this example it’s clear that there are many false positives (i.e. negative

cases that the model missed), leading to a low specificity, whereas there

are few false negatives (i.e. positive cases that the model missed), leading

to a high sensitivity.

6.4.2 The ROC curve

These computations can be repeated for any threshold; the sensitivity

and specificity will change accordingly. A graph of the sensitivity, i.e.

true positive rate (on the y-axis) vs. the false positive rate (on the x-axis)

at different thresholds is called the Receiver Operating Characteristic

(ROC) curve. Ideally, even at low thresholds, the model would predict

most of the true positives with few false positives, so the curve would

rise quickly from (0,0). The closer the curve comes to the left-hand

border and then the top border of the graph (“ROC space”), the more ac-

curate is the model; i.e. it has high sensitivity and specificity even at low

thresholds. The closer the curve comes to the diagonal, the less accurate
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is the model. This is because the diagonal represents the random case:

the model predicts at random, so the chance of a true positive is equal

to that of a false positive, at any threshold.

The area under the ROC curve (AUC) The ROC curve can be sum-

marised by the area under the curve (AUC), computed by the trapezoidal

rule (base times the median altitude):

A =
n∑
t=1

[xi+1 − xi][(yi+1 +yi)/2)]

where the i are the thresholds where the curve is computed. Note that

the area under the diagonal is 0.5, so the ROC curve must define an area

at least that large. The ROC area then measures the discriminating power

of the model: the success of the model in correctly classifying sites that

did and did not actually change.

We have written functions to:

1. compute the ROC curve for a model, along with the AUC and the

sensitivity/specificity (logit.roc; §A.3);

2. compute the area under an ROC curve (AUC) (logit.roc.area;

§A.4); and

3. plot the curve with its area (logit.roc.plot; §A.5).

These are included in source code file lcc.R, which was loaded above.

Applying these to the single-predictor model (land tenure):

> r <- logit.roc(glm.t)
> logit.roc.area(r)

[1] 0.60266

> logit.roc.plot(r, "ROC for prediction by land tenure")
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ROC for prediction by land tenure

This model is not very successful: the ROC is close to the diagonal and

its area is only 0.6, not much better than a random model (area = 0.5).

6.4.3 How to evaluate the AUC

There is no statistical test of the AUC; it depends on the application

field, and what other modellers have found in similar studies. As a rule

of thumb, the area can be “graded” as an academic grade on the 0-10

scale: 6 is “passing” (model is at least somewhat useful), 7 is ‘good”, 8 is

“very good” and 9 is “excellent”.

AUC vs. AIC In §6.3 we explained the use of the Akaike Information Cri-

terion, abbreviated AIC, to compare models. Recall that the AIC adjusts

the residual deviance for the number of predictors (i.e. model complex-

ity), thus favouring parsimonious models. By contrast, the AUC does

not take into account the model complexity; adding predictors to the

model can never lower the AUC and will usually raise it, with no indica-

tion of whether this improvement is fitting signal (true relation) or noise

(chance variability in the sample). Therefore, AIC should be used to com-

pare models, and then AUC can be reported for the best parsimonious

model.

6.5 Prediction from a single-predictor classified model

The predicted probability of change for a sample from any class is com-

puted from the inverse logistic equation (Equation 2), and the coefficient

for the appropriate class. This is the simplest use of the inverse link

function. The glm() method finds coefficients for each class to predict
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the logistic value, so we must apply the inverse transformation (Equa-

tion 2) to find the probability. The coefficient for a class can be extracted

from the model and used in the inverse logit function.

p = 1
1+ e−(β0+βc) (4)

where β0 is the log-likelihood of change for the first class (here, CA), βc is

the difference from the first class the log-likelihood of change associated

with the named class c.

For example, for land tenure class Cp we compute:

> glm.t$coefficients

(Intercept) tCe tCi tCp tNt
0.84730 -0.48628 -1.35812 -4.14313 -0.30941

> logit.inv(glm.t$coefficients["(Intercept)"]+glm.t$coefficients["tCp"])

(Intercept)
0.035714

The probability of change for this class as predicted by the model is very

small, less than 0.04. This is the first “step” on Figure 1, above.

We can compare this with the probability of change estimated directly

from the classification table:

> summary(changed[t=="Cp"])

Mode FALSE TRUE NA's
logical 54 2 0

The actual change was 2/56 = 0.0357, almost exactly the estimate from

the GLM, 0.03571431.

To compute the probability of change of a given observation (e.g. a pixel

in the image, whether or not it was part of the original sample), the value

of the predictor (here, the class) must be extracted from the database,

and the appropriate coefficient must be selected. Formally this can be

written:

p = 1

1+ e−(β0+
∑
i βciδci)

(5)

where β0 is the log-likelihood of change for the first class (i.e. the in-

tercept), βci is the difference from the first class the log-likelihood of

change associated with class ci, and δci is the Kronecker delta for class

ci, i.e. 1 if the observation is in the class, 0 otherwise. At most one of the

δci will be 15.

In practice, R code will be used to extract the correct coefficient from

the model summary, knowing the class extracted from the database. For

5 None will be 1 if the observation is in the first class
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example, to compute the probability of change for all the observations

in the sample:

> p.change <-
+ logit.inv(glm.t$coefficients["(Intercept)"]
+ + ifelse(as.numeric(dc$t)==1, 0,
+ glm.t$coefficients[as.numeric(dc$t)]));
> summary(p.change)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0357 0.6310 0.6310 0.5840 0.6310 0.7000

Note the use of the as.numeric function to identify the the position

in the array of coefficients for each class. Also, note that the model

coefficients for all except the first-named class (here, CA) are offsets from

the intercept, hence the use of the ifelse function.

This code can be used for non-sampled locations, replacing the sample

dataframe dc with a dataframe of the new locations with the same struc-

ture. For the original sample, this is much more simply achieved by using

the fitted method on the model object:

> p.change <- fitted(glm.t);
> summary(p.change)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.0357 0.6310 0.6310 0.5840 0.6310 0.7000

7 Change related to several categorical variables

In most land cover change studies, we suspect that several factors have

influenced the change, perhaps additively but more likely with interac-

tions. In the previous sections we considered categorical factors one by

one, and found the one with strongest predictive power. In this section

we model change from two factors at once.

Interpretation of multivariate models is complicated by possible corre-

lation between the predictors. For example, if a given tenure class were

mostly associated with a given landscape position (e.g. public lands on

the steep hills and private lands on the river terraces), then an additive

multivariate model with the two predictors might select one or the other

as the primary predictor, with the other appearing insignificant (i.e. no

additional predictive power). This is mathematically correct, but we miss

the insight into the process.

To assess the relation of two classified predictors, we can use a two-

way table or contingency matrix and also the logistic multiple regression

itself.
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7.1 Cross-tabulation

The simplest way to study the effect of several predictors on land cover

change is with a multi-way table. One way to produce this is with the

xtabs() method, which uses the S model syntax. First we compute the

total number of samples in each cross-tabulation category, then the num-

ber of true and the number of false, and finally their ratio, which esti-

mates the likelihood of conversion. This latter is compared to the overall

likelihood.

> t.all<-xtabs( ~ lspos + t, dc)
> t.t<-xtabs((changed==T) ~ lspos + t, dc)
> t.f<-xtabs((changed==F) ~ lspos + t, dc)
> t.all; t.t; t.f

t
lspos CA Ce Ci Cp Nt

A 5 5 24 2 237
B 23 80 0 1 201
C 12 27 0 42 108
F 10 0 0 11 67

t
lspos CA Ce Ci Cp Nt

A 4 3 9 0 139
B 14 48 0 0 136
C 9 15 0 2 76
F 8 0 0 0 36

t
lspos CA Ce Ci Cp Nt

A 1 2 15 2 98
B 9 32 0 1 65
C 3 12 0 40 32
F 2 0 0 11 31

> round(t.t/t.f, 3)

t
lspos CA Ce Ci Cp Nt

A 4.000 1.500 0.600 0.000 1.418
B 1.556 1.500 0.000 2.092
C 3.000 1.250 0.050 2.375
F 4.000 0.000 1.161

> sum(t.t)/sum(t.f)

[1] 1.4017

It’s clear from the first table that not all combinations are present; in

fact tenure class Ci (indigenous communities) only occurs on landscape

position A (flat, wet areas). So any result related to this tenure class au-

tomatically affects an interpretation based on landscape position; these

two are confounded. Similarly, tenure class Cp (private conservation) is
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almost never found on the lowest two landscape positions, and Ce (na-

tional park) never on the steepest slopes and rarely on the flat positions.

The mean likelihood of change is 1.402, i.e. p = 0.584, as we’ve seen

before (note: 0.584/(1−0.584) = 1.402). So if there is no effect of either

land use or tenure, all the non-empty cells in the last table should be

1.402. If the factors are significant, the cells will be different, but they

should equal the product of the marginal likelihoods, i.e. computed for

each class; another way to say this is that any pattern of values in one

row or column should be repeated (perhaps at a different level) in all

other rows or columns, respectively. Here we see that for land tenure

(column) CA, the likelihood is highest for landscape positions A and F,

but that this is exactly reversed for land tenure Nt. Hence there is an

interaction between the factors. However, we don’t yet know if this is

statistically significant in the logistic model.

7.2 Logistic regression with several classified predictors

The S model syntax predictand ~ predictor may be extended to sev-

eral predictors, separated by + for additive effects and * for additive

effects with interactions. The presence or absence of interactions is very

important in interpreting causes of land cover change, so we first see if

the interactions are significant:

> glm.ls.t<-glm(changed ~ lspos * t, family=binomial)
> summary(glm.ls.t)

Call:
glm(formula = changed ~ lspos * t, family = binomial)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.794 -1.329 0.838 1.011 2.468

Coefficients: (4 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.39e+00 1.12e+00 1.24 0.21
lsposB -9.44e-01 1.20e+00 -0.79 0.43
lsposC -2.88e-01 1.30e+00 -0.22 0.83
lsposF -6.16e-14 1.37e+00 0.00 1.00
tCe -9.81e-01 1.44e+00 -0.68 0.50
tCi -1.90e+00 1.19e+00 -1.59 0.11
tCp -1.70e+01 1.03e+03 -0.02 0.99
tNt -1.04e+00 1.13e+00 -0.92 0.36
lsposB:tCe 9.44e-01 1.52e+00 0.62 0.54
lsposC:tCe 1.05e-01 1.64e+00 0.06 0.95
lsposF:tCe NA NA NA NA
lsposB:tCi NA NA NA NA
lsposC:tCi NA NA NA NA
lsposF:tCi NA NA NA NA
lsposB:tCp 9.44e-01 1.78e+03 0.00 1.00
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lsposC:tCp 1.29e+01 1.03e+03 0.01 0.99
lsposF:tCp -1.63e-08 1.12e+03 0.00 1.00
lsposB:tNt 1.33e+00 1.21e+00 1.10 0.27
lsposC:tNt 8.03e-01 1.33e+00 0.61 0.54
lsposF:tNt -2.00e-01 1.40e+00 -0.14 0.89

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1056.9 on 839 degrees of freedom
AIC: 1089

Number of Fisher Scoring iterations: 14

The key items in this output are the probability values for the interac-

tions. Note that some interactions were not present: there are no sam-

ples with both landscape position F and land tenure Ce, so no estimate of

the interaction is possible. None of the interactions were anywhere near

significant; the lowest probability that the observed interaction was due

to chance is for lsposB:tNt at p = 0.272. So we conclude that the two

factors affect deforestation independently. So, we recompute the model

with only additive effects:

> glm.ls.t<-glm(changed ~ lspos + t, family=binomial, data=dc)
> summary(glm.ls.t)

Call:
glm(formula = changed ~ lspos + t, family = binomial, data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.651 -1.338 0.856 1.025 2.541

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.622 0.344 1.81 0.071 .
lsposB 0.333 0.188 1.77 0.076 .
lsposC 0.445 0.224 1.99 0.047 *
lsposF -0.128 0.265 -0.48 0.630
tCe -0.605 0.371 -1.63 0.102
tCi -1.133 0.544 -2.08 0.037 *
tCp -4.255 0.794 -5.36 8.2e-08 ***
tNt -0.252 0.325 -0.77 0.439
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1061.9 on 847 degrees of freedom
AIC: 1078

Number of Fisher Scoring iterations: 5
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> d2(glm.ls.t)

[1] 0.0855

Over 8.5% of the variability has been explained. Tenure class Cp has a

very highly significant coefficient, as in the single-factor model (§6.3);

class Ci has a significant coefficient. Landscape positions C, B, and A

are significant. Interestingly, C is the most significant here, unlike in

the single factor model of §6.1. Notice that the AIC is lower than for

the model with interactions, although the residual deviance is slightly

higher. This shows that the model with interactions was over-fitting the

data.

We now plot the success of this model:

> logit.plot(glm.ls.t)
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Model: changed ~ lspos + t

AIC: 1078

The relation is clearly much better than with any single predictor. The

plot looks like a combination of tenure as single predictor, with the

smaller steps from the model with landscape position as single predictor

superimposed.

7.3 Prediction from multiple-predictor classified model

The predicted probability of change for a sample from any covariate

pattern (combination of classes) is computed from the inverse logistic

equation (Equation 2), with the coefficients for the appropriate classes.
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The coefficient for each class is extracted from the model and used in

the inverse logit function. For the two-classifier model:

p = 1

1+ e−(β0+
∑
i βc1iδc2i+

∑
j βc2jδc2j )

(6)

where:

• β0 is the log-likelihood of change for samples with the covariate

pattern of both first-named classes, i.e. the intercept, (here, tenure

class CA and landscape position A);

• βc1i is the log-likelihood of change associated with the ith class for

the first factor (its difference from the intercept);

• δc1i is the Kronecker delta for class c1i of the first factor, i.e. 1 if

the observation is in the class, 0 otherwise. At most one of the δc1i
will be 1; none will be 1 if the observation is in the first class.

• Thus the
∑
i of the products βc1iδc2i will be the value of the appro-

priate coefficient;

• βc2j , δc2j ,
∑
j have the same meaning as βc1i , δc1i ,

∑
i, but for the

second, instead of the first, factor; to avoid confusion we use the

index j instead of i for this factor.

These will be different for every combination of predictor classes. For

example, for landscape position class A and land tenure class Ci we com-

pute:

> glm.ls.t$coefficients["(Intercept)"]

(Intercept)
0.62197

> glm.ls.t$coefficients["tCi"]

tCi
-1.1328

> glm.ls.t$coefficients["(Intercept)"] + glm.ls.t$coefficients["tCi"]

(Intercept)
-0.51083

> logit.inv(glm.ls.t$coefficients["(Intercept)"] +
+ glm.ls.t$coefficients["tCi"])

(Intercept)
0.375

The intercept represents the covariate pattern for the first level of both

factors, i.e. landscape position A and tenure class CA. Here we add the
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coefficient for tenure class Ci, because the model is additive (no interac-

tions), before converting the log-likelihood (here, −0.511) to a probabil-

ity (here, 0.375). So, the probability of change for this covariate pattern

(combination of factors) as predicted by the model is 3/8. The previ-

ous figure shows the 24 samples with this pattern as a narrow step at

abscissa 0.375.

In practice, R code will be used to extract the correct coefficient, as

shown for the single-predictor model in §6.5.

8 The logistic model of change for continuous predictors

We also have two possible continuous predictors of land use change:

distance to nearest road and to nearest settlement. These can be used

as predictors, using exactly the same syntax.

Before we use a continuous predictor, however, it should be approxi-

mately symmetric. This helps ensure the numerical stability of the solu-

tion, and in particular that the residuals are well-distributed. So we first

examine the distribution of the predictors ds (distance to settlement)

and dr (distance to road) in the full dataset, object dset:

> summary(dset$ds); summary(dset$dr)

Min. 1st Qu. Median Mean 3rd Qu. Max.
44 813 1290 1510 1930 5750

Min. 1st Qu. Median Mean 3rd Qu. Max.
0 322 713 1210 1410 12500

> par(mfrow=c(1,2))
> hist(dset$ds); hist(dset$dr)
> par(mfrow=c(1,1))
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The predictors are quite strongly (positively) skewed (mean >>median).

Therefore we first transform them to remove the skew; the log transform

is appropriate for this. In both cases we add the size of one plot, 30 m,

to avoid samples with zero distance, where the logarithm is undefined:
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> ds.l<-log(dset$ds+30); dr.l<-log(dset$dr+30)
> summary(ds.l); summary(dr.l)

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.30 6.74 7.18 7.13 7.58 8.66

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.40 5.86 6.61 6.54 7.27 9.44

> par(mfrow=c(1,2))
> hist(ds.l); hist(dr.l)
> par(mfrow=c(1,1))
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Comparing the four histograms, the effect of the transformation is ob-

vious: after transformation there is almost no skew and the variables

are symmetric. We will modify both data frames (the full dataset and

the “deforestation" subset) to include these fields. To access the added

variables without naming the currently-attached dataframe dc, we must

first detach and then re-attach it to the search path.

> dset <- cbind(dset, dr.l=log(dset$dr+30), ds.l=log(dset$ds+30))
> dc <- cbind(dc, dr.l=log(dc$dr+30), ds.l=log(dc$ds+30))
> str(dset)

'data.frame': 1064 obs. of 9 variables:
$ cov : Factor w/ 9 levels "CC","CN","CO",..: 1 1 3 6 4 9 2 6 1 1 ...
$ dr : num 2924 2535 2146 2442 2831 ...
$ ds : int 4853 5242 4957 4690 5079 4283 3999 3732 4121 3976 ...
$ t : Factor w/ 5 levels "CA","Ce","Ci",..: 5 5 3 3 3 5 5 5 5 5 ...
$ lspos : Factor w/ 4 levels "A","B","C","F": 1 1 1 1 1 1 1 1 1 1 ...
$ text : Factor w/ 3 levels "L","L'","LC": 3 3 3 3 3 3 3 3 3 3 ...
$ changed: logi FALSE FALSE TRUE TRUE TRUE FALSE ...
$ dr.l : num 7.99 7.85 7.69 7.81 7.96 ...
$ ds.l : num 8.49 8.57 8.51 8.46 8.54 ...

> detach(dc); attach(dc)

Now we can compute a one-predictor GLM from the log of distance to

roads:

> glm.dr <- glm(changed ~ dr.l, family=binomial, data=dc)
> summary(glm.dr)
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Call:
glm(formula = changed ~ dr.l, family = binomial, data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.829 -1.245 0.859 1.049 1.472

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.6969 0.4475 6.03 1.7e-09 ***
dr.l -0.3623 0.0675 -5.37 7.9e-08 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1130.6 on 853 degrees of freedom
AIC: 1135

Number of Fisher Scoring iterations: 4

> d2(glm.dr)

[1] 0.0264

> logit.plot(glm.dr)
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FALSE Samples

TRUE Samples

Model: changed ~ dr.l

AIC: 1135

This model is also quite poor; it explains less than 3% of the variation,

although the predictor is very highly significant. The plot shows a very
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“flat” logistic-shaped curve; it doesn’t come close to either 0 or 1, mean-

ing that no sample is predicted with any certainty. The distributions

of the changed and unchanged samples on the horizontal axes is only

slightly different.

8.1 Prediction from a single-predictor continuous model

The predicted probability of change for a sample at any distance is

computed from the inverse logistic equation (Equation 2) with the log-

likelihood computed by the linear equation found by the model:

p = 1
1+ e−(β0+β1x)

(7)

where β0 is the intercept (log-likelihood of change at zero distance), β1

is the slope of the log-likelihood, and x is the distance of the sample to

be predicted. For example, for zero distance (actually 30 m), we compute

from the intercept only:

> glm.dr$coefficients

(Intercept) dr.l
2.69685 -0.36234

> glm.dr$coefficients["(Intercept)"]

(Intercept)
2.6969

> glm.dr$coefficients[1]

(Intercept)
2.6969

> logit.inv(glm.dr$coefficients["(Intercept)"])

(Intercept)
0.93684

> logit.inv(glm.dr$coefficients[1])

(Intercept)
0.93684

The probability of change for a sample at a road is predicted by the

model to be quite high, 0.937. Note that we can select a coefficient either

by its name or its position in the coefficient array; the second way is

shorter but the first way is clearer.

For any distance greater than zero, we must use the linear combina-

tion of intercept and coefficient times distance, i.e. the same formula we

would use in a linear model, but then as an argument to the inverse logis-

tic transformation. From the slope (−0.362) we can see that increasing

distance from road decreases the likelihood of change. For example a
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sample 3 000 m from the road has a predicted probability of change of

0.450:

> glm.dr$coefficients["dr.l"]

dr.l
-0.36234

> glm.dr$coefficients[2]

dr.l
-0.36234

> logit.inv(glm.dr$coefficients["(Intercept)"] +
+ log(3000+30)*glm.dr$coefficients["dr.l"])

(Intercept)
0.44825

> logit.inv(glm.dr$coefficients[1] +
+ log(3000+30)*glm.dr$coefficients[2])

(Intercept)
0.44825

Note that we had to take the logarithm of the distance plus 30 m, since

the coefficient was computed on a variable so transformed.

9 Change related to several continuous variables

Just as in the case of classified predictors, we can use several continuous

predictors in the same predictive model. The first task is to assess their

relation; perhaps one is superfluous.

9.1 Relation among continuous predictors

We can visualise the relation between continuous predictors with a scat-

terplot. If two predictors are not too skewed6, we can test their relation

with the Pearson’s product-moment correlation sxy/sxsy .

In this example we have two continuous predictors: distance to roads

and to settlements. The log-transform of these resulted in two fairly

symmetrical and compact variables; see the histograms in §8. We plot

their relation and assess it numerically:

> plot(dr.l, ds.l,
+ xlab="log(distance to road)",
+ ylab="log(distance to settlement)")
> abline(h=mean(ds.l),lty=2); abline(v=mean(dr.l),lty=2)
> cor.test(dr.l,ds.l)

6 Actually, they should be bivariate normally distributed, but in practice this measure
is somewhat robust
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Pearson's product-moment correlation

data: dr.l and ds.l
t = 21.3, df = 1060, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.50394 0.58821

sample estimates:
cor

0.54746
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The figure clearly shows that there is some relation; note that the lower-

right and upper-left quadrants (defined by the sample means) have many

fewer points than the other two.

The correlation coefficient is definitely non-zero; note we tested against

zero since we had no pre-conception of the relation. However, the coef-

ficient of determination r2 ≈ (0.547)2 ≈ 0.30, so the two predictors are

not so closely related that one could be discarded. In particular, there are

some points that are close to a road but far from a settlement (upper-left

quadrant).

Note: The non-parametric Spearman’s rank correlation is 0.544, almost
identical to the parametric Pearson’s correlation of 0.547; this shows that
the assumption of bivariate normality was not seriously violated.
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9.2 Multiple logistic regression

The S model language works the same for several continuous predictors

as for several classified ones. We try the model with interactions first:

> glm.dr.ds<-glm(changed ~ dr.l*ds.l, family="binomial", data=dc)
> summary(glm.dr.ds)

Call:
glm(formula = changed ~ dr.l * ds.l, family = "binomial", data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.839 -1.280 0.878 1.004 1.707

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -7.5546 3.4234 -2.21 0.0273 *
dr.l 1.4129 0.5505 2.57 0.0103 *
ds.l 1.4188 0.4919 2.88 0.0039 **
dr.l:ds.l -0.2441 0.0768 -3.18 0.0015 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1119.8 on 851 degrees of freedom
AIC: 1128

Number of Fisher Scoring iterations: 4

> d2(glm.dr.ds)

[1] 0.0357

> logit.plot(glm.dr.ds)
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FALSE Samples

TRUE Samples

Model: changed ~ dr.l * ds.l

AIC: 1128

The AIC is lower than for the model using only distance to roads, so

this is a better model. Very importantly, the interaction term dr.l:ds.l

is highly significant. From the coefficients we can see that increasing

distance to roads and settlements, each taken individually, increase the

likelihood that a site will be changed, in contrast to the single-predictor

models, and in contrast to the hypothesis.

However, the negative interaction term shows that as distance from both

roads and settlements together increases, the likelihood decrease, in

agreement with the hypothesis. Numerically, the interaction term is

smaller, but recall that it applies to the product of the two distances,

so at any substantial distance it will overwhelm the coefficients for the

individual distances.

Because the interaction is significant, we do not fit the additive model.

The plot of model success here is much better than the previous one;

in particular some samples are fitted with probabilities < 0.2 and some

> 0.8. These are due to the interaction term, which accounts for points

close to (or far from) both roads and settlements.

10 Change related to continuous and classified variables

The generalised linear model implemented by the glm() method can use

both continuous and classified variables together, exactly as the general

linear model implemented by the lm() method. This leads to greater
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predictive power but also difficulties of interpretation and model selec-

tion.

10.1 Relation between classified and continuous predictors

To visualise the relation of a continuous to a classified predictor, we

produce a classified boxplot:
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> par(mfrow=c(2,2))
> plot(dr.l~t, xlab="land tenure class",
+ ylab="log(distance to roads)", data=dc)
> plot(ds.l~t, xlab="land tenure class",
+ ylab="log(distance to settlements)", data=dc)
> plot(dr.l~lspos, xlab="landscape position class",
+ ylab="log(distance to roads)", data=dc)
> plot(ds.l~lspos, xlab="landscape position class",
+ ylab="log(distance to settlements)", data=dc)
> par(mfrow=c(1,1))
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The boxplots show some strong interactions between classified and con-

tinuous predictors. In particular, tenure class Ci (indigenous communi-

ties) is only found far from roads, and landscape position F (very steep
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slopes) is not found near settlements.

To test whether at least one class has a different mean value of the con-

tinuous variable from the other, we can compute the one-way ANOVA;

however it is more informative to compute the linear model and interpret

its summary:

> lm.rt <- lm(dr.l~t, data=dc); summary(lm.rt)

Call:
lm(formula = dr.l ~ t, data = dc)

Residuals:
Min 1Q Median 3Q Max

-3.135 -0.573 0.155 0.697 2.446

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.4049 0.1406 45.55 < 2e-16 ***
tCe 0.1308 0.1691 0.77 0.44
tCi 2.4947 0.2469 10.10 < 2e-16 ***
tCp 0.7934 0.1935 4.10 4.5e-05 ***
tNt -0.0991 0.1462 -0.68 0.50
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.994 on 850 degrees of freedom
Multiple R-squared: 0.183, Adjusted R-squared: 0.179
F-statistic: 47.7 on 4 and 850 DF, p-value: <2e-16

The linear model shows a significant intercept (class CA, agricultural

colonies); this just means that the mean distance (6.4 km) from the roads

is not zero. Classes Ci (indigenous communities) and Cp (private conser-

vation area) are significantly further from the roads than class CA, the

others (national park and untitled land) not.

10.2 The combined generalised linear model in R

In previous sections we’ve seen that landscape position, land tenure, and

the distances to roads and settlements (with their interaction) are signif-

icant predictors of deforestation. We can combine these all in one model

with the S model syntax.

> glm.t.ls.drs <- glm(changed ~ t + lspos + dr.l*ds.l, family=binomial,
+ data=dc)
> summary(glm.t.ls.drs)

Call:
glm(formula = changed ~ t + lspos + dr.l * ds.l, family = binomial,

data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max
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-1.836 -1.273 0.819 0.967 2.674

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.9026 3.5701 -1.37 0.170
tCe -0.5283 0.3735 -1.41 0.157
tCi -0.4206 0.5799 -0.73 0.468
tCp -3.9814 0.8003 -4.98 6.5e-07 ***
tNt -0.2779 0.3286 -0.85 0.398
lsposB 0.1906 0.1981 0.96 0.336
lsposC 0.2772 0.2335 1.19 0.235
lsposF -0.3212 0.2735 -1.17 0.240
dr.l 0.8082 0.5703 1.42 0.156
ds.l 1.0688 0.5165 2.07 0.039 *
dr.l:ds.l -0.1556 0.0807 -1.93 0.054 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1047.8 on 844 degrees of freedom
AIC: 1070

Number of Fisher Scoring iterations: 5

> d2(glm.t.ls.drs)

[1] 0.0977

> logit.plot(glm.t.ls.drs)
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FALSE Samples

TRUE Samples

Model: changed ~ t + lspos + dr.l * ds.l

AIC: 1070

This is the lowest AIC we’ve seen, and the total variance explained is

almost 10%. As before, tenure is the most significant predictor, with a

very negative coefficient for class Cp; this shows that the private con-

servation area is in fact well-protected. Distance to settlement and its

interaction with distance to roads are also significant. But no landscape

position is now a significant predictor; the association with one of the

other predictors has removed its significance.

Therefore we re-compute the model, leaving out this factor.

> glm.t.drs <- glm(changed ~ t + dr.l*ds.l, family=binomial,
+ data=dc)
> summary(glm.t.drs)

Call:
glm(formula = changed ~ t + dr.l * ds.l, family = binomial, data = dc)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.977 -1.322 0.840 0.966 2.721

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -4.5029 3.5565 -1.27 0.205
tCe -0.4150 0.3675 -1.13 0.259
tCi -0.4836 0.5697 -0.85 0.396
tCp -3.8909 0.7897 -4.93 8.3e-07 ***
tNt -0.2952 0.3229 -0.91 0.361
dr.l 0.7896 0.5659 1.40 0.163
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ds.l 1.0291 0.5132 2.01 0.045 *
dr.l:ds.l -0.1536 0.0799 -1.92 0.055 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1161.3 on 854 degrees of freedom
Residual deviance: 1052.7 on 847 degrees of freedom
AIC: 1069

Number of Fisher Scoring iterations: 5

> d2(glm.t.drs)

[1] 0.0934

> logit.plot(glm.t.drs)
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FALSE Samples

TRUE Samples

Model: changed ~ t + dr.l * ds.l

AIC: 1069

The AIC is a bit lower; the total variance explained is a bit lower also,

about 9.3%. This is the best parsimonious model. The main predictive

factors are land tenure class Cp (strongly reduces likelihood of deforesta-

tion), distance to settlements (increases likelihood), and the synergistic

relation between distances to roads and settlements (somewhat reduces

likelihood as both increase together).

This final model can be evaluated with the area under the ROC curve. We

approximate the curve with many steps because it is continuous.
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> par(mfrow=c(1,2))
> logit.plot.quad(glm.t.drs)
> r <- logit.roc(glm.t.drs, steps=100)
> logit.roc.area(r)

[1] 0.65398

> logit.roc.plot(r, "ROC for tenure, roads, settlements")
> par(mfrow=c(1,2))
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Area under ROC: 0.654

ROC for tenure, roads, settlements

This area (0.654) is still not very good. We conclude that our set of

explanatory variables is only marginally successful in explaining defor-

estation.

10.3 Prediction from a combined model

This combines the approaches of §7.3 and §8.1. The coefficient for a

class can be extracted from the model and used in the inverse logit func-

tion along with the slopes of any continuous predictors. Formally:

p = 1

1+ e−(β0+β1x1+β2x2···+
∑
i βc1iδc2i+

∑
j βc2jδc2j )

(8)

where:

• β0 is the log-likelihood of change for samples with the covariate

pattern of both first-named classes, and values of 0 for the contin-

uous predictors, i.e. the intercept;
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• β1 is the slope of the log-likelihood for continuous predictor with

value x1 (and similarly for x2 etc.);

• βc1i is the log-likelihood of change associated with the ith class for

the first factor (its difference from the intercept);

• δc1i is the Kronecker delta for class c1i of the first factor, i.e. 1 if

the observation is in the class, 0 otherwise. At most one of the δc1i
will be 1; none will be 1 if the observation is in the first class.

• Thus the
∑
i of the products βc1iδc2i will be the value of the appro-

priate coefficient;

• βc2j , δc2j ,
∑
j have the same meaning as βc1i , δc1i ,

∑
i, but for the

second, instead of the first, factor; to avoid confusion we use the

index j instead of i for this factor.

For example, we can calculate the probability of deforestation for a site

1 500 m from a road, 2 500 m from a settlement, with tenure type Nt as

follows:

> attach(glm.t.drs)
> coefficients

(Intercept) tCe tCi tCp tNt
-4.50289 -0.41499 -0.48360 -3.89087 -0.29516

dr.l ds.l dr.l:ds.l
0.78956 1.02909 -0.15361

> logit.inv(coefficients["(Intercept)"]
+ + log(1500+30)*coefficients["dr.l"]
+ + log(2500+30)*coefficients["ds.l"]
+ + log(1500+30)*log(2500+30)*coefficients["dr.l:ds.l"]
+ + coefficients["tNt"]
+ )

(Intercept)
0.55705

> detach(glm.t.drs)

The probability of deforestation is about 0.56 in this case. Note that the

interaction coefficient is multiplied by the product of the two distances.
In practice, R code will be used to extract the correct coefficient, as

shown for the single-predictor model in §6.5.

11 Polytomous response variables

To this point we have been considering a dichotomous (“two outcomes”)

response variable: either something has occurred (e.g. deforestation) or

not. There are also situations where the response is polytomous (“many

outcomes”) , i.e. there are several possible outcomes.

For example, starting with closed forest there are three possibilities:
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CC : closed → closed forest; no change

CO : closed → open forest (partial deforestation)

CN : closed → no forest (deforestation)

We can see the number of pixels in each of these classes:

> table(dc$cov)

CC CN CO NC NN NO OC ON OO
356 279 220 0 0 0 0 0 0

Thus, 356 did not change, 220 were partially deforested, and 279 were

fully deforested.

It is possible to simultaneously assess polytomous results. Fox [2, §15.2][3,

§5.2.2] describes two approaches:

1. Nested dichotomies: a series of binary models, based on succes-

sive divisions of the classes so that there are only two responses at

each level;

2. Multinomial logistic model: one category is treated as the base,

and the probabilites of the others are simultaneously evaluated

with respect to the base.

We will explore the second method here; the “no change” class CC serves

logically as the base class.

The nested model is appropriate when the classes form a natural hierar-

chy. Here that would also be possible: the higher level “any deforesta-

tion?” (binary response ‘no’; ‘yes’), then the second level for deforested

‘yes’ being “complete deforestation?” (‘no’, i.e. partial; ‘yes’); however we

do not pursue it further here.

11.1 Multinomial logistic model: Theory

The mathematical formulation of the multinomial logistic model is more

complicated than the binomial model. We want to model the probability

πij that observation i is in each jth class of the m response classes

j = 1 . . .m. The first response class j = 1 is taken as the base class; so

the base probability πi1 is computed as the residual probability after the

other classes πi2 . . . πim have been modelled.

Thus the model has k+ 1 coeffiecients for each of the j =m− 1 classes

(leaving out the base class): one intercept αj and one “slope” for each

predictor (continuous or each class of a classified predictor) βlj , where

l = 1 . . . k is a column in the model matrix.
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The fitted probabilites are then:

πij = e(αj+β1jxi1+···βkjxik)

1+
∑m
l=2 e(αj+β1lxi1+···βklxik) , j = 2, . . . ,m (9)

πi1 = 1−
m∑
j=2

πij (10)

This set of equations is fitted by maximum likelihood; see Fox [2, §15.2.1]

for details.

The fitted α and β can then be used to assess the log-odds of an obser-

vation being classified in each class, relative to the base class. That is,

what is the chance that, instead of the base class (in our example, no de-

forestation), the observation is in another class (in our example, partial

or complete deforestation)? Note these are not the odds of being in that

class, only the odds relative to the base class: how much more likely is

each alternative, compared to the base?

The log-odds are computed as:

ln
πij
πi1

= αj + β1jxi1 + . . .+ βkjxik , j = 2, . . . ,m (11)

Note that if m = 2 this reduces to the binomial logit model, as we have

used it up till now.

So, once we fit the model, we can predict the odds of some class, relative

to the base. We can also predict the odds between any two classes, by

combining the above equation for the two classes j and l:

ln
πij
πil

= ln
(πij/πi1
πil/πi1

)
(12)

= ln
πij
πi1

− ln
πil
πi1

(13)

= (αj −αl)+ (β1j − β1l)xi1 + . . .+ (βkj − βkl)xik (14)

To recover the actual odds, the inverse logistic transformation is used, as

explained in §6. In practice we are usually interested in the probability

of all the classes (which of course sum to 1); these are provided by the

predict method, as explained in §11.4.

This is a lot of information to interpret properly!

11.2 Multinomial logistic model: R implementation

The glm method we have used up until now can not fit multinomial mod-

els. Instead, we use the multinom method of the nnet “Neural networks”

package; this is part of the MASS “Modern Applied Statistics with S” li-

brary provided with the R base distribution; we will also used some meth-

ods from MASS.
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> require(MASS)
> require(nnet)

The multinom method converts the problem to a neural network and

then solves it with the nnet method.

Before computing the model, we must ensure that the base (reference)

class is listed first; in this case it already is (because of the default al-

phabetic order). If necessary, levels can be reordered with the relevel

method.

We compute a multinomial logistic model using the same predictors as

the best parsimonious binomial model, as determined in §10.2.

> mlm.t.drs <- multinom(cov ~ t + dr.l*ds.l, data=dc)

# weights: 27 (16 variable)
initial value 939.313507
iter 10 value 867.829240
iter 20 value 860.261576
iter 30 value 859.955097
final value 859.955021
converged

> summary(mlm.t.drs, Wald=T)

Call:
multinom(formula = cov ~ t + dr.l * ds.l, data = dc)

Coefficients:
(Intercept) tCe tCi tCp tNt dr.l

CN -5.7734 -0.55500 -1.0322 -3.7719 -0.093916 0.95997
CO -5.4861 -0.30212 -0.3461 -4.0180 -0.524883 0.74894

ds.l dr.l:ds.l
CN 1.16729 -0.18727
CO 0.99354 -0.13540

Std. Errors:
(Intercept) tCe tCi tCp tNt dr.l ds.l

CN 4.1135 0.43291 0.87336 1.0770 0.37055 0.67089 0.59321
CO 4.4736 0.41566 0.63498 1.0742 0.36679 0.70269 0.64206

dr.l:ds.l
CN 0.094958
CO 0.098928

Value/SE (Wald statistics):
(Intercept) tCe tCi tCp tNt dr.l ds.l

CN -1.4035 -1.28202 -1.18186 -3.5022 -0.25345 1.4309 1.9677
CO -1.2263 -0.72685 -0.54506 -3.7404 -1.43102 1.0658 1.5474

dr.l:ds.l
CN -1.9721
CO -1.3686

Residual Deviance: 1719.9
AIC: 1751.9
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11.3 Multinomial logistic model: Interpretation

The summary gives the coefficients, their standard errors, and the Wald

statistics. This latter is printed if the Wald=T optional argument to the

summary method is specified. It is the coefficient divided by its standard

error. Thus, if the relative error is high, the Wald statistic is small. This

gives an idea of the significance of each predictor: the greater the abso-

lute value, the more significant. Note that the sign of the Wald statistic

is the same as that of the coefficient, and thus gives the direction of the

effect: increase or decrease in probability due to the predictor.

Here we see that for both deforestation classes, the distances from roads

and settlements increase the probability of deforestation, and more so

for the complete than the partial deforestation:

> coefficients(mlm.t.drs)[, c("dr.l", "ds.l")]

dr.l ds.l
CN 0.95997 1.16729
CO 0.74894 0.99354

This seems to contradict the hypothesis that roads and settlements lead

to deforestation; however recall the discussion in §9.2 on multiple logis-

tic regression: these positive coefficients are in fact corrections for the

negative coefficient for the interaction of these two, which is numerically

much larger (recall, the values are multipled):

> coefficients(mlm.t.drs)[, "dr.l:ds.l"]

CN CO
-0.18727 -0.13540

So at a combination of far distances (to settlements and roads), the prob-

ability of either kind of deforestation is reduced; the individual coeffi-

cients correct this for the case where a pixel is close to one but not the

other.

The Wald statistic shows that it is significant:

> summary(mlm.t.drs, Wald=T)$Wald.ratios[, c("dr.l", "ds.l", "dr.l:ds.l")]

dr.l ds.l dr.l:ds.l
CN 1.4309 1.9677 -1.9721
CO 1.0658 1.5474 -1.3686

Considering the land tenure predictor, we again see the strong effect of

the conservation area (class Cp) on the deforestation probabilities:

> coefficients(mlm.t.drs)[, "tCp"]

CN CO
-3.7719 -4.0180
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> summary(mlm.t.drs, Wald=T)$Wald.ratios[, "tCp"]

CN CO
-3.5022 -3.7404

This class has by far the largest coefficient and Wald ratio in the model.

The only major contrast in the factors leading to partial vs. complete

deforestation seems to be tenure classes Ci “Indigenous communities”

and Nt “No established title”:

> coefficients(mlm.t.drs)[, c("tCi", "tNt")]

tCi tNt
CN -1.0322 -0.093916
CO -0.3461 -0.524883

Other factors being equal, on indigenous land deforestation tends to be

complete and on land with no title partial.

As with all R models, we can extract the fitted values with the fitted

method; here the fits are the probabilities of each response:

> head(fitted(mlm.t.drs))

CC CN CO
1 0.54629 0.202551 0.25116
2 0.53192 0.210648 0.25743
3 0.55686 0.097412 0.34573
7 0.43083 0.288256 0.28091
9 0.50742 0.231649 0.26093
10 0.54804 0.204711 0.24724

Notice that the probabilities of the three classes for each case sum to 1.

We see that the first pixel has p=0.5463 of remaining as closed forest,

p=0.2512 of partial deforestation, and p=0.2512 of complete deforesta-

tion. In fact this pixel remained in forest:

> dc[1,"cov"]

[1] CC
Levels: CC CN CO NC NN NO OC ON OO

The highest probability matches reality in this case.,

11.4 Multinomial logistic model: Prediction

The probabilities of each class, for any combination of predictor values,

can be computed with the predict generic method, which in this case is

implemented by predict.multinom in package nnet.

We first set up a range of cases to predict, for the best model. There are

two continuous and one classified predictor.
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The range of the continuous variables is:

> range(dc$dr.l)

[1] 3.4012 9.4372

> range(dc$ds.l)

[1] 4.3041 8.6289

We make a dataframe with all the combinations of land tenure and a

series of distances, and then predict on it with the fitted model:

> to.predict <- expand.grid(t = levels(dc$t),
+ dr.l = seq(3.4, 9.4, by=.2),
+ ds.l = seq(4.3, 8.8, by=.2))
> head(to.predict, 10)

t dr.l ds.l
1 CA 3.4 4.3
2 Ce 3.4 4.3
3 Ci 3.4 4.3
4 Cp 3.4 4.3
5 Nt 3.4 4.3
6 CA 3.6 4.3
7 Ce 3.6 4.3
8 Ci 3.6 4.3
9 Cp 3.6 4.3
10 Nt 3.6 4.3

> p.fit <- predict(mlm.t.drs, to.predict, type="probs")
> head(p.fit, 10)

CC CN CO
1 0.43108 0.343175 0.2257416
2 0.54226 0.247818 0.2099182
3 0.60458 0.171448 0.2239721
4 0.97301 0.017822 0.0091657
5 0.49152 0.356208 0.1522767
6 0.42328 0.347551 0.2291708
7 0.53430 0.251851 0.2138489
8 0.59683 0.174569 0.2285992
9 0.97217 0.018366 0.0094682
10 0.48360 0.361489 0.1549065

Notice (again) that the probabilities of the three classes for each predic-

tion point sum to 1.

The relative probabilities of any situation can be extracted in the same

way. For example, what are the probalities for agricultural colony land

2 km from a settlement and 1 km from a road?

> predict(mlm.t.drs, data.frame(t="CA",
+ dr.l=log(1030),
+ ds.l=log(2030)), type="probs")
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CC CN CO
0.33120 0.29433 0.37447

(Recall we added 30 m to both distance variables before converting to

logarithms.)

In this case the probabilities are quite similar, with a slight preference

for complete deforestation.

11.5 Multinomial logistic model: Visualization

This is a complex situation to visualize, because there are three out-

comes and three predictors.

11.5.1 Probabilities vs. predictors

We graph the relative probabilities for various combinations, using the

p.fit object. Because one of the predictors is a class, we have to show

the results separately for each class. In a 2D plot, we also have to fix one

of the distances.

We illustrate this with the probabilities of the three classes for the fur-

thest distance from settlements (ds.l == 8.7) and tenure class “no ti-

tle” (t == Nt). We set up a frame with the probabilities for just this

situation:

> to.graph <- subset(to.predict, (t=="Nt") & (ds.l == 8.7))
> str(to.graph)

'data.frame': 31 obs. of 3 variables:
$ t : Factor w/ 5 levels "CA","Ce","Ci",..: 5 5 5 5 5 5 5 5 5 5 ...
$ dr.l: num 3.4 3.6 3.8 4 4.2 4.4 4.6 4.8 5 5.2 ...
$ ds.l: num 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 8.7 ...

> g.fit <- predict(mlm.t.drs, to.graph, type="probs")

We first set up the axes (distance on the x-axis and probility on the y-axis)

and then draw curves for the three outcomes.

For distance from roads, the limits are 3.4 to 9.4:

> plot(c(3.4, 9.4), c(0,1), type="n",
+ xlab="Log distance from road",
+ ylab="Probability", main="Non-titled lands, far from settlements")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CC"], lty=1, lwd=3, col="green")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CO"], lty=2, lwd=3, col="magenta")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CN"], lty=3, lwd=3, col="red")
> text(4, .9, "No deforestation", col="green", pos=4)
> text(4, .85, "Partial deforestation", col="magenta", pos=4)
> text(4, .8, "Complete deforestation", col="red", pos=4)
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This clearly shows the increasing probability that forest will be con-

served away from roads, for this tenure type and (far) distance from

settlements. The probability of partial deforestation is fairly constant in

this situation; the trade-off is with complete deforestation.

The picture for the indigenous lands at the same distance is somewhat

different:

> to.graph <- subset(to.predict, (t=="Ci") & (ds.l == 8.7))
> g.fit <- predict(mlm.t.drs, to.graph, type="probs")
> plot(c(3.4, 9.4), c(0,1), type="n",
+ xlab="Log distance from road",
+ ylab="Probability", main="Indigenous lands, far from settlements")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CC"], lty=1, lwd=3, col="green")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CO"], lty=2, lwd=3, col="magenta")
> lines(seq(3.4, 9.4, by=.2), g.fit[,"CN"], lty=3, lwd=3, col="red")
> text(4, .9, "No deforestation", col="green", pos=4)
> text(4, .85, "Partial deforestation", col="magenta", pos=4)
> text(4, .8, "Complete deforestation", col="red", pos=4)
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Here the chance of both kinds of deforestation decreases substantially

with distance from roads. Complete deforestation is always more likely

than partial on these lands.

11.5.2 Model fit to observations

In the case with three classes, the relative probabilities of each observa-

tion can be viewed as a triangle plot; this is provided by the triangle.plot

method of the ade4 package for ecological analysis.

We first load the library:

> require(ade4)

We then plot the fits as a triangle, colour-coded by the actual class:

> fits <- data.frame(fitted(mlm.t.drs))
> str(fits)

'data.frame': 855 obs. of 3 variables:
$ CC: num 0.546 0.532 0.557 0.431 0.507 ...
$ CN: num 0.2026 0.2106 0.0974 0.2883 0.2316 ...
$ CO: num 0.251 0.257 0.346 0.281 0.261 ...

> pts <- triangle.plot(fits, scale=F, show.position=F)
> points(pts, col=c("green","magenta","red")[as.numeric(dc$cov)])
> levels(dc$cov)[1:3]

[1] "CC" "CN" "CO"
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A few points have very high probability of not being deforested; the

green colour corresponding to the first class CC shows the correct clas-

sification. The rest of the diagram is disappointing. The middle of the

triangle is where all classes are equally-likely. The ideal would be to have

the first class (no deforestation, coloured green) in the lower-left corner

(corresponding to class CC=1), the second class (full deforestation, red)

in the lower-right (CN=1), and the third (partial deforestation, magenta)

at the top (CO=1).

Cleaning up from this section:

> rm(mlm.t.drs, to.predict, p.fit, to.graph, g.fit, fits, pts)

12 Suggestions for further study

The easiest way to make sure you understand the techniques presented

in this note is to re-analyze the dataset, but another sort of change rather

than deforestation (from closed forest to any other type):

• Rapid deforestation: conversion from closed forest to non-forest

(i.e. conversion to open forest is not considered a conversion);

• Clearing: conversion from either closed or open forestto non-forest;

• Reforestation: conversion from non-forest to either closed or open

forest.

These require a change in the subset selection command in §4.1.
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If you are more ambitious, you can use your own dataset. All that is

required is that it have, or that you can create, a logical field (values

TRUE and FALSE) stating the condition you want to model. For example,

this can be presence/absence of a species in a set of plots.

Note: If you have a binary (values 0 and 1) field you can use

it directly as a response variable in glm.
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A R code for visualising the logistic model

This section show the R code for six functions for visualising the perfor-

mance of logistic regression models; these are used in the text. The code

may be cut-and-paste from here; however, it is easier to load them from

the lcc.R source code file with the R source() method:

R code:
source("lcc.R")
ls()

R console output:
"logit.plot" "logit.plot.quad" "logit.plot.ss"
"logit.roc" "logit.roc.area" "logit.roc.plot"

These can be applied to any fitted logistic model, for example:

R code:
glm.lspos <- glm(changed ~ lspos, family=binomial, data=dc)
logit.plot(glm.lspos)
logit.plot.quad(glm.lspos)
r <- logit.roc(glm.lspos)
logit.roc.area(r)
logit.roc.plot(r)
logit.plot.ss(r)
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A.1 logit.plot

R code:
## visualise the success of a logistic model
## plot logistic curve, mean change, T/F, AIC, null deviance
## arguments
## model a fitted glm
## title (optional)
logit.plot <- function(model, title="Success of logistic model") {

# sort the fitted values
sf <- sort(fitted(model), index=T)
plot(sf$x, ylim=c(0,1), type="l", col="blue", lwd=3,

xlab="sorted sample number", ylab="probability")
text(0, min(fitted(model))-.03,

"fitted probability",col="blue",pos=4)
title(title)
abline(h=mean(fitted(model)), lty=2)
text(0, mean(fitted(model))+.02, "mean probability", pos=4)

# name of the response field
field.name <- attr(attr(terms(formula(model)), "factors"),

"dimnames")[[1]][1]
# extract the T/F vector
# depends on whether glm was called
# with a data argument

eval(parse(text=paste("tmp <- ",
ifelse(class(model$data) == "data.frame", "model$data$", ""),
field.name, sep="")))

abline(v=length(tmp)/2,lty=2)
text(length(tmp)/2,.03,"midpoint",pos=4)

# show T/F
points(1:length(tmp), tmp[sf$ix],

pch="|",cex=1,col=ifelse(tmp[sf$ix], "green4", "red"))
text(0,.03,"FALSE Samples",col="red",pos=4)
text(0,.97,"TRUE Samples",col="green4",pos=4)

# print model and fit
text(length(tmp),0.30,paste(

"Model:", formula(model)[2], formula(model)[1],
formula(model)[3],sep=" "), pos=2,font=4)

text(length(tmp),0.25,paste(
"AIC:", round(model$aic,0), sep=" "),pos=2,font=4)

text(length(tmp),0.20,paste(
"Null deviance:", round(model$null.deviance,0), sep=" "),
pos=2,font=4)

}
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A.2 logit.plot.quad

R code:
## plot logistic curve, threshold, T/F +/-, sensitivity, specificity
## arguments
## model a fitted glm
## threshold cutoff for sensitivity/specificity, default 0.5
## title (optional)
logit.plot.quad <- function(model, threshold=0.5, title="Model success") {

sf<-sort(fitted(model), index=T)
# leave extra space at bottom

par(mar=c(6,4,4,2)+.1); par(xaxs="i", yaxs="r")
plot(sf$x, ylim=c(0,1), type="l", col="blue", lwd=3, xlab="",

ylab="probability of change")
abline(h=c(0,1), lty=1)

# show threshold and crossover point
abline(h=threshold,lty=2); text(0,threshold+.02,

paste("threshold =", threshold), pos=4)
crossover <- sum(fitted(model) < threshold)
abline(v=crossover,lty=2)
text(crossover,.05,"crossover",pos=4)
text(crossover, threshold-.03,

"fitted probability of change",col="blue",pos=4)
# name of the response field

field.name <- attr(attr(terms(formula(model)), "factors"),
"dimnames")[[1]][1]

# extract the T/F from it
eval(parse(text=paste("tmp <- ",

ifelse(class(model$data) == "data.frame", "model$data$", ""),
field.name, sep="")))
# show T/F as vertical bars at the index
# colours differ with T/F predictions

points(1:length(tmp),tmp[sf$ix],
pch="|",cex=1,
col=ifelse((tmp[sf$ix] == (sf$x>threshold)),"green4","red"))

# compute proportions
tn <- sum((!tmp[sf$ix]) & (sf$x < threshold))
fn <- sum((!tmp[sf$ix]) & (sf$x >= threshold))
tp <- sum(tmp[sf$ix] & (sf$x >= threshold))
fp <- sum(tmp[sf$ix] & (sf$x < threshold))
right <- length(sf$x)*.65
text(0,.1,paste("True negatives:",tn), col="green4",pos=4)
text(right,.1,paste("False negatives:", fn), col="red",pos=4)
text(right,.9,paste("True positives:", tp), col="green4",pos=4)
text(0,.9,paste("False positives:", fp), col="red",pos=4)
title(main=title)
title(sub=paste("Sensitivity:", round(tp/(tp+fp),4),

"; Specificity:", round(tn/(tn+fn),4)), line=4)
}
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A.3 logit.roc

R code:
## compute an empirical ROC curve from a fitted logistic model
## and a data frame with the modelled logical field
##
## results are used as an argument to logit.plot.ss, logit.roc.plot
##
## arguments
## model a fitted glm
## steps how many thresholds; default 20
## returns
## logit.roc data frame with three fields:
## pts vector of points along the curve
## sens, spec sensitivity, specificity
logit.roc <- function(model, steps=20) {

# get the response field
# from the model object

field.name <- attr(attr(terms(formula(model)), "factors"),
"dimnames")[[1]][1]

# and extract the T/F from it
eval(parse(text=paste("tmp <- ",

ifelse(class(model$data) == "data.frame", "model$data$", ""),
field.name, sep="")))

r <- data.frame(pts = seq(0, 1-(1/steps), by=1/steps),
sens = 0, spec=0);

for (i in 0:steps) {
thresh <- i/steps;
r$sens[i] <- sum((fitted(model) >= thresh) & tmp)/sum(tmp);
r$spec[i] <- sum((fitted(model) < thresh) & !tmp)/sum(!tmp)
}

return(r)
}

A.4 logit.roc.area

R code:
## compute area under a ROC curve computed by logit.roc()
## typical usage: logit.roc.area(roc(model, dataset))
## argument
## r an ROC curve returned by logit.roc()
logit.roc.area <- function(r) {

area <- 0;
for (i in 1:(length(r$pts)-1))

area <- area + ((1 - r$sens[i+1]) - (1 - r$sens[i])) *
((r$spec[i+1] + r$spec[i])/2);

return(area)
}
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A.5 logit.roc.plot

R code:
## plot an ROC curve computed by logit.roc()
## typical usage: logit.roc.plot(roc(model, dataset))
## argument
## r an ROC curve returned by logit.roc()
logit.roc.plot <- function(r, title="ROC curve") {

old.par <- par(no.readonly = TRUE); on.exit(par(old.par))
par(xaxs="i", yaxs="i")
plot(1 - r$spec, r$sens, xlim=c(0, 1), ylim=c(0,1), type="l",

xlab="(1 - specificity): false positive rate",
ylab="sensitivity: true positive rate",
col="blue", lwd=2);

points(1 - r$spec, r$sens, pch=20, cex=2, col="blue");
abline(0, 1, lty=2);
segments(1-r$spec, 1-r$spec, 1-r$spec, r$sens, lty=2)
text(0, 0.9, paste("Area under ROC:",round(logit.roc.area(r),4)), pos=4)
title(main = title)
}

A.6 logit.plot.ss

R code:
## plot sensitivity, specificity vs. threshold for a logistic model
## typical usage: logit.plot.ss(logit.roc(model, dataset))
## argument
## r ROC curve computed by logit.roc()
logit.plot.ss <- function(r) {

plot(r$pts, r$spec, type="n",
xlab="Threshold", ylab="value", ylim=c(0,1));

title(main = "Sensitivity and specificity vs. threshold");
abline(h=seq(0, 1, by=0.1, lty="dashed", lwd=0.5));
lines(r$pts, r$spec, col="blue", lwd=1.5);
lines(r$pts, r$sens, col="green4", lwd=1.5);
text(0.05, 0.05, pos=4, col="blue", "Specificity");
text(0.05, 0.95, pos=4, col="green4", "Sensitivity");
}

A.7 Programmer’s notes

This paragraph is for those who are curious about some of the less-

obvious aspects of the R code.

The main trick in this code is to look inside the fitted model object us-

ing extractor methods such as fitted (to get the fitted probabilities of

change), and formula (to get the model formula). In some cases we have
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to access the model object directly, for example the $data field (to get

the data used to fit the model).

The terms method is used to extract the terms of the formula; this then

has named attribute "factors", which we extract with the attr method;

this attribute itself has attribute "dimnames" which we also extract with

attr; finally we get the first element [1] of the first list [[1]]:

R code:
formula(model)
terms(formula(model))
attr(terms(formula(model)), "factors")
attr(attr(terms(formula(model)), "factors"),"dimnames")
attr(attr(terms(formula(model)), "factors"),"dimnames")[[1]]
attr(attr(terms(formula(model)), "factors"),"dimnames")[[1]][1]

R console output:
changed ~ lspos

attr(,"variables")
list(changed, lspos)
attr(,"factors")

lspos
changed 0
lspos 1
attr(,"term.labels")
[1] "lspos"
attr(,"order")
[1] 1
attr(,"intercept")
[1] 1
attr(,"response")
[1] 1
attr(,".Environment")
<environment: R_GlobalEnv>

lspos
changed 0
lspos 1

[[1]]
[1] "changed" "lspos"

[[2]]
[1] "lspos"

[1] "changed" "lspos"

[1] "changed"
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An especially tricky aspect is getting the data itself, because there are

two ways that glm could have been called: with or without an explicit

data= argument. We can tell which way it was called by applying the

class method to the $data field of the model. The results will either be

data.frame (if called with an explicit data= argument) or environment

(if data was taken from the environment, e.g. if the data frame were

attached before the call).

To copy the data into a local vector, we build up a command as a text

string (using the paste method), parse it into an R language object (us-

ing the parse method), and finally evaluate it in the environment (using

the eval method). This illustrates the tremendous flexibility of the S

language:

R code:
eval(parse(text=paste("tmp <- ",

ifelse(class(model$data) == "data.frame", "model$data$", ""),
field.name, sep="")))

For example, suppose the model was built in the local environment (no

data= argument to glm), and the field is changed; this will be evaluated

as if the following code were in the program:

R code:
tmp <- changed
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