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1 Introduction

This exercise shows how to compute trend surfaces using the R environment
for statistical computing [4, 8].

A trend surface is a map of some continuous variable, computed as a function
of the coördinates. This corresponds to the concept of a geographic trend,
where the variable changes its value along a geographic gradient. This can
be a linear trend, i.e., the variable increases or decreases a fixed amount for
each unit change in the coördinates in some direction. This is called a first-
order trend surface. It can also be a polynomial trend, i.e., a linear model
of some polynomials of the coördinates, for example, a quadratic, which is
called a second-order trend surface.

Note: It is possible to use a non-linear function of the coördinates, but we
will not explore that in this exercise.

1.1 Example dataset

We use an example dataset that is well-suited to illustrate the concepts of
trend surface: a set of observations on the elevation above mean sea level of
the top of an aquifer in western Kansas, USA measured in 161 wells.

Note: This aquifer is in Miocene–Pliocene sedimentary rocks, the Ogalalla
formation, and is an important source of irrigation water, especially for
centre-pivot irrigation systems.

This dataset is used as an example in the well-known geology statistics text
of Davis [2, pp. 435-438]1. The practical task is to map the elevation of the
top of the aquifer over the study area.

Q1 : What is the purpose of producing a map of the the elevation of the
top of the aquifer over the study area? In other words, who would use the
map and for what purpose? Jump to A1 •

Note: More information on the aquifer monitoring network from which this
dataset is taken is available at the Kansas Geological Survey2, for example
Olea and Davis [6, 7]. The water-level logs are also available on-line3.

Figure 1 is taken from the original report [6]. It shows the location of wells,
the boundary of the aquifer, and the well IDs. The example dataset uses
a small portion of this, in the SE corner of the study area4. Figure 2 is a
Google Earth view of part of the study area, with the location of several of
the wells as placemarks.

1 The datasets for this book are available at http://www.kgs.ku.edu/Mathgeo/Books/

Stat/index.html
2 http://www.kgs.ku.edu
3 http://www.kgs.ku.edu/Magellan/WaterLevels/
4 portions of Pratt, Kingman, Stafford and Reno counties

1
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Figure 1: Location of aquifer monitoring wells, SE Kansas (USA). Source: [6], plate 1

2 Preparing for the exercise

The easiest way to complete these exercises is:

1. Start RStudio;

2. Load the code for this exercise, TrendSurface_ex1.R, into R Studio,
using the File | Open . . . menu command;

3. Make sure the working directory in R console is where you’ve down-
loaded the sample datafile AQUIFER.TXT (use the Tools | Set Working
Directory . . . menu item);

4. Pass the code step-by-step from RStudio to the R console using the
“Run” toolbar button or the Code | Run lines . . . menu item.

2.1 Loading R packages

Task 1 : Load the sp “spatial data structures”, the gstat “geostatistics”,
and the lattice “Trellis graphics” packages. •
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Figure 2: Google Earth view of part of the study area, with the location of several of the wells
as placemarks

Note: You can also load this via checkboxes in the RStudio“Packages”pane.

The require or library functions are used to load R packages.

> require(sp)

> require(gstat)

> require(lattice)

2.2 Loading and adjusting the dataset

Task 2 : Change R’s working directory to where you have downloaded the
text file AQUIFER.TXT. •

You can do this with the RStudio menu command Tools | Change directory. . . ,
or with the setwd function.

Task 3 : Examine the contents of file AQUIFER.TXT. •

You can view this file from within RStudio, by opening it from the Files
pane.
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The first few lines look like this:

UTM easting UTM northing Water Table, ft.

569464.5 4172114.75 1627.66

573151.25 4167192.75 1588.83

559973.94 4169585 1675.72

553514.44 4174584.5 1689.52

The field names are self-explanatory. The UTM zone is 14N (see Davis [2,
Fig. 5-100 caption]) and the coördinates are meters. The aquifer elevation is
in US feet5 above mean sea level according to an unspecified vertical datum
(probably NAVD 88).

Task 4 : Read text file AQUIFER.TXT into an R data frame, rename the
columns to shorter names, and examine its structure. •

The read.table function can read many kinds of tabular data. It has
many arguments, to adjust to different text formats. See the R Data Im-
port/Export Manual [9] for details. By default the data fields in the text
file are assumed to be separated by white space (tabs, spaces), as is the case
here. Another optional argument is skip; we use it here because the header
line of AQUIFER.TXT has more spaces than the other lines, so if we try to
use the header for the variable names, R thinks the other lines are incom-
plete. One solution would be to place quotes around the variable names, or
rename the variables, in the text file. What we do here is skip the first line
and assign variable names ourselves in R.

We name the R data frame aq:

> aq <- read.table("AQUIFER.TXT", skip = 1)

> str(aq)

'data.frame': 161 obs. of 3 variables:

$ V1: num 569464 573151 559974 553514 550350 ...

$ V2: num 4172115 4167193 4169585 4174584 4171337 ...

$ V3: num 1628 1589 1676 1690 1691 ...

> names(aq) <- c("UTM.E", "UTM.N", "z")

> str(aq)

'data.frame': 161 obs. of 3 variables:

$ UTM.E: num 569464 573151 559974 553514 550350 ...

$ UTM.N: num 4172115 4167193 4169585 4174584 4171337 ...

$ z : num 1628 1589 1676 1690 1691 ...

However, this dataset can be manipulated to make it more suitable for anal-
ysis. First, the elevation should be converted to meters, to conform to in-
ternational standards.

5 1 foot = 0.3048 m exactly

4



Task 5 : Convert the elevation in feet above sea level to elevation in meters
above sea level (m.a.s.l.), and add it as a new field in the dataframe. •

> ft.to.m <- 0.3048

> aq$zm <- aq$z * ft.to.m

Second, the E and N coördinates give the location in UTM zone is 14N, but
for numerical stability it’s useful to reduce these to local coördinates, with
the (0,0) point in the middle of the range, and because the numbers are
large, convert to km. This will make the equations easier to read.

Task 6 : Subtract the median E and N coördinates of the dataset from the
UTM 14N E and N coördinates, convert these from m to km, and add these
as new fields to the dataframe. •

The median function computes the median of a vector.

> aq$e <- (aq$UTM.E - median(aq$UTM.E))/1000

> aq$n <- (aq$UTM.N - median(aq$UTM.N))/1000

3 Exploratory spatial analysis

Task 7 : Summarize the dataset. •

> summary(aq)

UTM.E UTM.N z zm

Min. :500361 Min. :4150248 Min. :1560.0 Min. :475.50

1st Qu.:518465 1st Qu.:4176120 1st Qu.:1721.2 1st Qu.:524.61

Median :533366 Median :4197238 Median :1813.6 Median :552.79

Mean :535668 Mean :4198439 Mean :1807.8 Mean :551.01

3rd Qu.:553569 3rd Qu.:4220405 3rd Qu.:1901.0 3rd Qu.:579.42

Max. :574430 Max. :4248312 Max. :2044.8 Max. :623.24

e n

Min. :-33.0050 Min. :-46.9903

1st Qu.:-14.9011 1st Qu.:-21.1180

Median : 0.0000 Median : 0.0000

Mean : 2.3014 Mean : 1.2008

3rd Qu.: 20.2023 3rd Qu.: 23.1665

Max. : 41.0632 Max. : 51.0740

Q2 : How many observations are there? What was recorded at each point?
Jump to A2 •

Q3 : What are the geographic limits of the study area? What is its area,
in km2? Jump to A3 •

5



The range function computes the range of numeric variable; the diff func-
tion computes the difference between two numeric values.

> range(aq$UTM.E)

[1] 500361.34 574429.56

> range(aq$UTM.N)

[1] 4150248.2 4248312.5

> diff(range(aq$UTM.E)) * diff(range(aq$UTM.N))/10^6

[1] 7263.4444

Task 8 : Find the location of this sample area in the large study area, shown
in Fig. 1. •

Q4 : What is the range of elevations in the sample set? Jump to A4 •

> range(aq$zm)

[1] 475.50324 623.24285

> diff(range(aq$zm))

[1] 147.73961

We now try three different visualizations of the distribution of the data
values (i.e. aquifer elevations); these are known as postplots. To keep the
geographic reference, we use the original UTM 14N coördinates.

Task 9 : Display a text postplot of the data values, showing the elevations,
rounded to the nearest foot, as text labels centred at the observation point.

•

We use the two coördinates as plot axes, so this looks like a map:

> plot(aq$UTM.N ~ aq$UTM.E, pch = 20, cex = 0.2, col = "blue",

+ asp = 1, xlab = "UTM 14N E", ylab = "UTM 14N N")

> grid()

> text(aq$UTM.E, aq$UTM.N, round(aq$zm), adj = c(0.5, 0.5))

> title("Elevation of aquifer, m")
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The aquifer elevation is clearly higher in the west (towards the Rocky Moun-
tains about 650 km to the west, where it outcrops).

Note: Parameter cex is an expansion factor; here we plot a very small blue
dot and then add the data value at each point with the text method. The
adj argument centres the text at the point. The asp=1 argument makes the
two axes have the same scale. This is necessary to get a true map when the
study area is not square.

Another visualization is with the symbol size proportional to the the data
value.

Task 10 : Display a graphical postplot of the data values, with size propor-
tional to the data value. •

> plot(aq$UTM.N ~ aq$UTM.E, cex = 1.8 * aq$zm/max(aq$zm),

+ col = "blue", bg = "red", pch = 21, asp = 1, xlab = "UTM 14N E",

+ ylab = "UTM 14N N")

> grid()

> title("Elevation of aquifer, m")
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Note: Print character (pch) 21 has both a symbol (col) and fill (bg) colour.

A final visualization combines both size and colour:

Task 11 : Display a graphical postplot of the data values, with size and
colour proportional to the data value •

Notice the use of the rank function to give the rank order of the elevations;
these are then used as indices into a vector of colours, created with the
bpy.colors function, of the same length as the vector of elevation values.

The ~ formula operator show the functional relation between two variables;
here it is the North coördinate for the y-axis, depending on the East coörd-
inate for the x-axis.

> plot(aq$UTM.N ~ aq$UTM.E, pch=21,

+ xlab="UTM 14N E", ylab="UTM 14N N",

+ bg=bpy.colors(length(aq$zm))[rank(aq$zm)],

+ cex=1.8*aq$zm/max(aq$zm), asp=1)

> grid()

> title("Elevation of aquifer, m")
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Q5 : Describe the spatial pattern of the elevations. Do nearby points have
similar values? Is there a trend across the whole area? Are there local
exceptions to the trend? Jump to A5 •

Q6 : Discuss the relative advantages of the three types of postplot. Jump
to A6 •

4 Trend surface analysis by Ordinary Least Squares

The visualizations suggest a trend surface, i.e., the aquifer elevations as
a linear model of the coördinates. This is a polynomial function of the
coördinates to any degree (1st, 2nd, 3rd etc.), which is called the order of the
surface. The higher the degree, the more the surface can match the points,
but the degree should also be chosen to match a plausible process, in this
case, the structure of the aquifer.

4.1 First-order trend surface

We begin with a first-order trend: a plane defined by the two coördinates
and an intercept that sets the overall level, here the aquifer elevation.

Q7 : What is the geological interpretation of a first-order trend surface of
the aquifer? Jump to A7 •

A trend surface has the same form as a standard linear model, using the
coördinates as regression predictors. The first-order trend surface model has
the form:

z = β0 + β1E + β2N + ε (1)
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where ε ∼ N (0, σ2), i.e., independently and normally distributed. This
assumption allows us to fit the trend surface with Ordinary Least Squares
(OLS)

In the linear model, with any number of predictors, there is a n× p design
matrix of predictor values usually written as X, with one row per observation
(data point), i.e., n rows, and one column per predictor, i.e., p columns. In
the first-order trend surface case, it is a n × 3 matrix with three columns:
(1) a column of 1 representing the intercept, to center the response, (2) a
column of predictor values ei from the Easting, and (3) a column of predictor
values ni from the Northing. The predictand (response variable), here the
aquifer elevation is a n× 1 column vector y, one row per observation. The
coefficient vector β is a p×1 column vector, i.e., one row per predictor (here,
3). This multiplies the design matrix to produce the response:6

y = Xβ+ ε (2)

where ε is a n × 1 column vector of residuals, also called errors, i.e., the
lack of fit. We know the values in the predictor matrix X and the response
vector y from our observations, so the task is to find the optimum values of
the coefficients vector β. This can be found directly; see the Appendix A for
the derivation. The OLS solution is:

β̂ols = (XTX)−1XT ·y (3)

where X is the design matrix.

The term “first-order” refers to the power to which each coördinate is raised;
here it is the first power, so it’s a first-order trend surface.

Note: This assumption of uncorrelated residuals is in fact not true in this
case; we prove this in §6 below. So the trend surface should in fact be fit not
by OLS but by Generalized Least Squares (GLS), taking into account the
spatial auto-correlation of the residuals. We pursue this further in §7.

For this dataset with many observations well-spread in space, the result will
be similar to the OLS estimate.

Task 12 : Fit a first–order trend surface (i.e. linear in the E and N coör-
dinates) to the elevations. Summarize the model and evaluate its goodness-
of-fit. •

The lm “linear model” function fits linear models.

> model.ts1 <- lm(zm ~ n + e, data = aq)

> summary(model.ts1)

Call:

lm(formula = zm ~ n + e, data = aq)

Residuals:

6 The dimensions of the matrix multiplication are n× 1 = (n× p)(p × 1)
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Min 1Q Median 3Q Max

-25.35498 -5.82668 0.26742 7.10623 16.73489

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 554.775093 0.684781 810.1496 <2e-16 ***

n -0.033361 0.025281 -1.3196 0.1889

e -1.617135 0.032014 -50.5132 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.6286 on 158 degrees of freedom

Multiple R-squared: 0.94169, Adjusted R-squared: 0.94095

F-statistic: 1275.8 on 2 and 158 DF, p-value: < 2.22e-16

Q8 : What is the equation of the trend surface? How does elevation
vary with the E and N coördinates? Is the relation statistically-significant?
How much of the total variability does it explain? Are all the coefficients
statistically-significant? Jump to A8 •

Task 13 : Summarize the residuals (lack of fit) from the trend surface both
numerically and graphically, in feature space. Express this in terms of the
median elevation. •

The residuals function extracts the residuals from a linear model object.
The hist function displays a histogram of a numeric vector.

> res.ts1 <- residuals(model.ts1)

> summary(res.ts1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-25.35498 -5.82668 0.26742 0.00000 7.10623 16.73489

> hist(res.ts1, main = "Residuals from 1st-order trend",

+ xlab = "residual elevation (m)")

> pts <- seq(min(res.ts1), max(res.ts1), length = 101)

> lines(pts, dnorm(pts, mean = mean(res.ts1), sd = sd(res.ts1)))

> curve(rnorm, xname = "res.ts1", )

> max(abs(res.ts1))/median(aq$zm) * 100

[1] 4.5867691
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Residuals from 1st−order trend
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Q9 : What is the range of residuals? How does this compare with the target
variable? How are they distributed in feature space? Jump to A9 •

Task 14 : Show the diagnostic plots of the residuals •

The plot method applied to a linear model object produces some diagnostic
plots. We will display the most important: (1) residuals vs. fitted values; (2)
quantile-quantile (“QQ”) plot of the standardized residuals.

The Q-Q plot shows (1) on the y-axis, the standardized residuals, (2) on
the x-axis, the standardized residuals that would be expected if the residuals
were from a normal distribution with the mean and standard deviation com-
puted from the actual standardized residuals. (See §B for details on these
residuals). These two should match exactly on 1:1 line.
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> par(mfrow=c(1,2))

> plot(model.ts1, which=1:2)

> par(mfrow=c(1,1))
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Q10 : Does this model meet the feature-space requirements for a valid
linear model?

1. No relation between the fitted values and the residuals;

2. Normally-distributed standardized residuals.

Jump to A10 •

Task 15 : Display the residuals as a postplot. •

> plot(aq$n ~ aq$e, cex=3*abs(res.ts1)/max(abs(res.ts1)),

+ col=ifelse(res.ts1 > 0, "green", "red"),

+ xlab="E", ylab="N",

+ main="Residuals from 1st-order trend",

+ sub="Positive: green; negative: red", asp=1)

> grid()
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Q11 : Is there a spatial pattern to the residuals? Is there local spatial
correlation without an overall pattern? Jump to A11 •

4.2 Second-order trend surface

We see from the pattern of residuals from the first-order surface that there
is still structure, in particular clear bands of positive and negative residuals.
These suggest that a higher-order trend surface might fit better.

Q12 : What is the geological interpretation of a second-order trend surface
of the aquifer? Jump to A12 •

Task 16 : Fit a second-order trend surface to the aquifer elevations. •

A full second-order surface uses the coördinates, their squares, and their
cross-products.

z = β0 + β1E + β2N + β3E2 + β4N2 + β5(E ∗N)+ ε (4)

> model.ts2 <- lm(zm ~ n + e + I(n^2) + I(e^2) + I(e *

+ n), data = aq)

> summary(model.ts2)

Call:

lm(formula = zm ~ n + e + I(n^2) + I(e^2) + I(e * n), data = aq)

Residuals:

Min 1Q Median 3Q Max

-19.84694 -3.36558 0.82202 3.53842 14.80713
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.6106e+02 7.9990e-01 701.4110 < 2.2e-16 ***

n -1.6555e-02 1.6644e-02 -0.9946 0.3215

e -1.6207e+00 2.2119e-02 -73.2739 < 2.2e-16 ***

I(n^2) -7.4997e-03 6.4350e-04 -11.6546 < 2.2e-16 ***

I(e^2) -1.6476e-03 1.0742e-03 -1.5338 0.1271

I(e * n) 6.6999e-03 7.7813e-04 8.6103 7.743e-15 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.5985 on 155 degrees of freedom

Multiple R-squared: 0.97592, Adjusted R-squared: 0.97514

F-statistic: 1256.3 on 5 and 155 DF, p-value: < 2.22e-16

Note the use of the I “identity” function for the squares and cross-product;
if this function is not used, lm interprets the ^ and * symbols as formula
operators, rather than as their normal mathematical meanings.

Q13 : How much of the variance does the second-order surface explain?
Jump to A13 •

Task 17 : Compare the second-order model statistically with the first-order
model. •

The anova “analysis of variance” method compares the residual sums-of-
squares of two or more models and computes the probability that the more
complicated model is not better than the less complicated model:

> anova(model.ts2, model.ts1)

Analysis of Variance Table

Model 1: zm ~ n + e + I(n^2) + I(e^2) + I(e * n)

Model 2: zm ~ n + e

Res.Df RSS Df Sum of Sq F Pr(>F)

1 155 4858.18

2 158 11763.49 -3 -6905.31 73.4379 < 2.22e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Q14 : Is the second-order surface statistically superior to the first-order
surface? Jump to A14 •

Task 18 : Summarize the residuals from the second-order trend surface
both numerically and graphically, in feature space. Express this in terms of
the median elevation. •
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> res.ts2 <- residuals(model.ts2)

> summary(res.ts2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-19.84694 -3.36558 0.82202 0.00000 3.53842 14.80713

> hist(res.ts2)

> max(abs(res.ts2))/median(aq$zm)

[1] 0.035903517

Histogram of res.ts2

res.ts2
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Q15 : What is the range of residuals? How does this compare with the
target variable? How are they distributed in feature space? How do these
compare with the residuals from the first-order surface? Jump to A15 •

Task 19 : Show the diagnostic plots of the residuals, as for the first-order
trend surface residuals. •

16



> par(mfrow=c(1,2))

> plot(model.ts2, which=1:2)

> par(mfrow=c(1,1))
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Q16 : Does this model meet the feature-space requirements for a valid
linear model? How do these diagnostics compare to those from the first-
order surface?

1. No relation between the fitted values and the residuals;

2. Normally-distributed standardized residuals;

Jump to A16 •

Task 20 : Display the residuals as a postplot; compare to the postplot from
the first-order trend surface. •

> plot(aq$n ~ aq$e, cex=3*abs(res.ts2)/max(abs(res.ts2)),

+ col=ifelse(res.ts2 > 0, "green", "red"),

+ xlab="E", ylab="N",

+ main="Residuals from 2nd-order trend",

+ sub="Positive: green; negative: red", asp=1)

> grid()
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Q17 : Is there an overall pattern to the residuals? Is there local spatial
correlation without an overall pattern? Does there seem to be any anisotropy
(stronger spatial dependence in one direction than the orthogonal direction)?

Jump to A17 •

Since this second-order trend surface is much better than the first-order
trend surface, we will use it for subsequent modelling.

5 Trend surface prediction

This exercise uses the trend surface model of the previous section to predict
over an interpolation grid.

5.1 Creating a prediction grid

We first make a grid on which to predict.

Task 21 : Create a grid of equally-spaced (1 x 1 km) points across the
study area, beginning with UTM (500 000E, 4150 000N) in the lower-left
corner, as in Davis [2, Fig. 5-100, 5-101, 5-102], but adjusted for the reduced
coördinates. •

The seq function creates a regular sequence of numbers; the expand.grid

function makes a grid from two sequences.

> range(aq$e)

[1] -33.00497 41.06325

> range(aq$n)
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[1] -46.99025 51.07400

> seq.e <- seq(-33, 42, by = 1)

> seq.n <- seq(-47, 52, by = 1)

> grid <- expand.grid(e = seq.e, n = seq.n)

> plot(grid$n ~ grid$e, cex = 0.2, asp = 1)
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5.2 Mapping the trend surface

Task 22 : Interpolate the second-order trend surface onto this grid. Com-
pute both the best fit and a 95% prediction interval for each point on the
grid. •

The predict.lm function, applied to a linear model object, computes the
predicted values at new locations, in this case the regular grid. The optional
interval argument specifies that a prediction interval, as well as the best
fits, should also be computed. The optional level argument specifies the
(1−α) probability, where α is the probability that, on repeated calculation
from a similar sample, the true value at the point would not be included in
the computed prediction interval.

> pred.ts2 <- predict.lm(model.ts2, newdata=grid,

+ interval="prediction", level=0.95)

> summary(pred.ts2)

fit lwr upr

Min. :461.07 Min. :448.96 Min. :473.17

1st Qu.:516.41 1st Qu.:505.15 1st Qu.:527.72

Median :547.31 Median :536.06 Median :558.56

Mean :546.68 Mean :535.39 Mean :557.97

3rd Qu.:577.01 3rd Qu.:565.73 3rd Qu.:588.22

Max. :614.63 Max. :603.23 Max. :626.03
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The predict.lm produces three fields in the resulting object: fit (the best
fit value), lwr (the value at the lowest 2.5% limit) and upr (the value at the
upper 2.5% limit).

The prediction interval is a range in which future observations are expected
to fall, with a given probability specified by the analyst. It is based on the
known observations and the regression model..

There are two sources of prediction error:

1. The uncertainty of fitting the best regression parameters from the avail-
able data;

2. The uncertainty in the prediction, even with perfect regression param-
eters, because of uncertainty in the process which is revealed by the
regression, i.e., the inherent noise in the process.

The prediction interval is computed from the prediction variance, which is
then assumed to represent the variance of a t-distribution.

The prediction variance s2
Y0

for predictand x0 depends on the variance of the

regression s2
Y .x but also on the distance of the predictor x0 from the value

of the predictor at the centroid of the regression, x. The further from the
centroid, the more any error in estimating the slope of the line will affect
the prediction:

s2
Y0
= s2

Y .x

[
1+ 1

n
+ (x0 − x)2∑n

i=1(xi − x)2

]
(5)

where x refers to both coördinates.

The variance of the regression s2
Y .x is computed from the squared deviations

of actual (yi) and estimated (ŷi values:

s2
Y .x =

1
n− 2

n∑
i=1

(yi − ŷi)2 (6)

To display a map of the interpolated surface, it’s easiest to format the grid
as a spatial object, so that the plotting method spplot‘spatial plot” can be
used.

Task 23 : Convert the grid to a spatial object: a SpatialGridDataFrame.
•

The gridded function specifies that the spatial object is points on a regular
grid. Since this is a complete grid, we can improve computational efficiency
by using the fullgrid function to specify that the grid is complete (“full”).

> coordinates(grid) <- c("e", "n")

> sp.grid <- SpatialPointsDataFrame(coords = coordinates(grid),

+ data = as.data.frame(pred.ts2))

> gridded(sp.grid) <- TRUE

> fullgrid(sp.grid) <- TRUE

> summary(sp.grid)
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Object of class SpatialGridDataFrame

Coordinates:

min max

e -33.5 42.5

n -47.5 52.5

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

e -33 1 76

n -47 1 100

Data attributes:

fit lwr upr

Min. :461.07 Min. :448.96 Min. :473.17

1st Qu.:516.41 1st Qu.:505.15 1st Qu.:527.72

Median :547.31 Median :536.06 Median :558.56

Mean :546.68 Mean :535.39 Mean :557.97

3rd Qu.:577.01 3rd Qu.:565.73 3rd Qu.:588.22

Max. :614.63 Max. :603.23 Max. :626.03

Task 24 : Display the best-fit interpolation, with the data points superim-
posed. •

The spplot “spatial plot” method plots spatial objects, i.e., those in one of
the sp classes.

The fit field of the prediction object contains the trend surface fits.

We save this plot for comparison later with the Generalized Least Squares
(GLS) trend surface (§7).

> ts.plot.breaks <- seq(440, 640, by=5)

> p.ols <- spplot(sp.grid, zcol="fit",

+ main="2nd-order trend, OLS fit",

+ sub="Aquifer elevation, m.a.s.l.",

+ xlab="East", ylab="North",

+ at=ts.plot.breaks,

+ col.regions = topo.colors(length(ts.plot.breaks)),

+ panel=function(x, ...) {

+ panel.levelplot(x, ...);

+ panel.points(coordinates(aq), pch=1,

+ col=ifelse(res.ts2 < 0, "red", "black"),

+ cex=2*abs(res.ts2)/max(abs(res.ts2)))

+ })

> print(p.ols)
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2nd−order trend, OLS fit

Aquifer elevation, m.a.s.l.
East
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In this plot the residual from the model at each observation point is shown
(1) in colour: red = negative (actual < predicted), black = positive (actual >
predicted). If a prediction is exactly on the trend surface it will not appear.
This gives a nice visualization of the fit of the trend surface to the sample
points.

Note: The spplot method in the sp package makes use of the levelplot

method of the lattice graphics package. Unlike base graphics, in lattice

all plotting must be done at once; you can’t start a plot and add more later.
Graphical elements are added with a panel function, introduced with the
panel argument. This function may contain many methods to draw graphic
elements. In this case there is panel.levelplot to draw the levelplot (trend
surface) and panel.points to place a set of points on top of it.

Q18 : How well does the trend surface fit the points? Are there obvious
problems? Jump to A18 •

Task 25 : Summarize the uncertainty from the trend surface, as absolute
differences between the upper and lower prediction limits, and then this as
a percentage of the best fit value. •

> summary(sp.grid$lwr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

448.96 505.15 536.06 535.39 565.73 603.23

> summary(sp.grid$diff <- sp.grid$upr - sp.grid$lwr)
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Min. 1st Qu. Median Mean 3rd Qu. Max.

22.303 22.336 22.455 22.580 22.731 24.362

> summary(100 * sp.grid$diff/sp.grid$fit)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.7062 3.9004 4.1011 4.1500 4.3576 5.2525

The lwr “lower” and upr “upper” fields of the prediction object contain the
lower and upper limits of the 95% prediction interval for each point on the
grid. Their difference is the range of uncertainty; this divided by the fit is
an approximation to 2 standard deviations.

Task 26 : Display the prediction interval of the trend surface as a map,
showing also the location of the observation points. •

> spplot(sp.grid, zcol="diff",

+ main="Range of 95% prediction interval",

+ panel=function(x, ...) {

+ panel.levelplot(x, ...);

+ panel.points(coordinates(aq),

+ pch=20, col="white")}

+ )

Range of 95% prediction interval

22.5

23.0

23.5

24.0

24.5

Q19 : What are the units of prediction interval? How large are they? How
does this compare to the variable we are trying to predict? Jump to A19 •
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Q20 : Describe the spatial pattern of the prediction interval. Jump to
A20 •

6 Spatial correlation of the residuals

We saw that the residuals from the OLS fit are not spatially independent
– there are local clusters of similar values. The spatial structure of the
residuals can be modelled with a variogram; this structure can be used
to adjust the trend surface with Generalized Least Squares (GLS). In this
section we examine the empirical variogram of the residuals and model it;
this model can be used to improve the linear model and also can be used
to make a better prediction, based on nearby values, using Simple Kriging
(SK) on the residuals.

6.1 Extracting the residuals

Task 27 : Add the second-order trend-surface predictions and residuals as
fields to the aq data frame. •

The fitted method extracts fitted values from a linear model object; the
residuals method extracts the residuals.

> aq$fit.ts2 <- fitted(model.ts2)

> aq$res.ts2 <- residuals(model.ts2)

> str(aq)

'data.frame': 161 obs. of 8 variables:

$ UTM.E : num 569464 573151 559974 553514 550350 ...

$ UTM.N : num 4172115 4167193 4169585 4174584 4171337 ...

$ z : num 1628 1589 1676 1690 1691 ...

$ zm : num 496 484 511 515 516 ...

$ e : num 36.1 39.8 26.6 20.1 17 ...

$ n : num -25.1 -30 -27.7 -22.7 -25.9 ...

$ fit.ts2: num 490 480 507 521 526 ...

$ res.ts2: num 6.1 4.59 4.2 -6.24 -10 ...

6.2 Making a spatial object

For this section we need to make the dataset into an explicitly spatial data
structure. A spatial object, for the sp package, is one that has explicit
coördinates. The aq dataframe does have coördinates, but “hidden” as at-
tributes. These in fact have a special status. To continue the analysis, we
identify these explicitly as being spatial.

Task 28 : Convert the dataset into a spatial object. •

The coordinates method specifies coördinates, thus converting a dataframe
or matrix into an explicitly spatial object.
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> coordinates(aq) <- c("e", "n")

> str(aq)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 161 obs. of 6 variables:

.. ..$ UTM.E : num [1:161] 569464 573151 559974 553514 550350 ...

.. ..$ UTM.N : num [1:161] 4172115 4167193 4169585 4174584 4171337 ...

.. ..$ z : num [1:161] 1628 1589 1676 1690 1691 ...

.. ..$ zm : num [1:161] 496 484 511 515 516 ...

.. ..$ fit.ts2: num [1:161] 490 480 507 521 526 ...

.. ..$ res.ts2: num [1:161] 6.1 4.59 4.2 -6.24 -10 ...

..@ coords.nrs : int [1:2] 5 6

..@ coords : num [1:161, 1:2] 36.1 39.8 26.6 20.1 17 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "e" "n"

..@ bbox : num [1:2, 1:2] -33 -47 41.1 51.1

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "e" "n"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

This structure display is quite different from the previous one. The object
now is of class SpatialPointsDataFrame and has five slots, marked with
the @ symbol.

The information in the original dataframe is now clearly split into two kinds:

Geographic space : Coordinates; location of the observation in some coördinate reference
system;

Feature-space : Also called attribute space: properties of the observation. Here there
is only one, the aquifer elevation.

Q21 : Looking at the names of the slots, which likely refer to geographic
space? Which slot contains the feature-space information? Jump to A21 •

We’ve done some work to get this data set into proper form for spatial
analysis; so we save it in this format.

Task 29 : Save the spatial object as an R Data file. •

> save(aq, file = "aquifer.rda")

This can be read into a later R session with the load method.

6.3 Omnidirectional (isotropic) variogram analysis

Task 30 : Compute and plot the omnidirectional empirical variogram of
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the residuals from the second-order surface, with a cutoff of 40 km. •

The variogram function of the gstat package computes the empirical var-
iogram We show both the variogram cloud and the summarized variogram,
which averages the points in the variogram cloud over some separation
ranges; these are called variogram bins.

> vr.c <- variogram(res.ts2 ~ 1, loc = aq, cutoff = 40,

+ cloud = T)

> vr <- variogram(res.ts2 ~ 1, loc = aq, cutoff = 40)

> p1 <- plot(vr.c, col = "blue", pch = 20, cex = 0.5)

> p2 <- plot(vr, plot.numbers = T, col = "blue", pch = 20,

+ cex = 1.5)

> print(p1, split = c(1, 1, 2, 1), more = T)

> print(p2, split = c(2, 1, 2, 1), more = F)
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Note: The code to print two variograms side-by-side uses the split and more
optional arguments to the print method for Lattice graphics plots.

Q22 : What are the estimated sill, range, and nugget of this variogram?
Jump to A22 •

The shape of the variogram suggests that an exponential model would fit
it7.

Task 31 : Model this variogram with an exponential model by eye, and then
fit it with gstat’s default automatic fit. Plot both models side-by-side. •

Note: An exponential model’s effective range (where it reaches 95% of its
asymptotic sill) is three times the range parameter of the variogram model.
Thus in this case if we’ve estimated 21 km range, we specify 7 km as our
initial guess for the range parameter.

7 There are many model shapes; in this introduction there is no space to discuss them
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The fit.variogram function of the gstat package uses weighted least squares
to adjust the variogram model to the empirical variogram.

> vr.m <- vgm(35, "Exp", 7, 0)

> (vr.m.f <- fit.variogram(vr, vr.m))

model psill range

1 Nug 0.000000 0.00000

2 Exp 35.551201 10.47154

> p1 <- plot(vr, plot.numbers=T,

+ model=vr.m, main="Estimated variogram model")

> p2 <- plot(vr, plot.numbers=T,

+ model=vr.m.f, main="Fitted variogram model")

> print(p1, split=c(1,1,2,1), more=T)

> print(p2, split=c(2,1,2,1), more=F)
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Q23 : What are the parameters of the fitted variogram? Jump to A23 •

7 Trend surface analysis by Generalized Least Squares

As explained in §4, the OLS solution is only valid for independent residu-
als. The previous § shows that in this case the residuals are not spatially
independent, and we were able to model that dependence with a variogram
model. Thus, using OLS may result in an incorrect trend surface equation,
although the OLS estimate is unbiased. A large number of close-by points
with similar values will “pull” a trend surface towards them. Furthermore,
the OLS R2 (goodness-of-fit) may be over-optimistic. This is discussed by
Fox [3, §14.1].

The solution is to use Generalised Least Squares (GLS) to estimate the trend
surface. This allows a covariance structure between residuals to be included
directly in the least-squares solution of the regression equation. GLS is a
special case of Weighted Least Squares (WLS).
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The GLS estimate of the regression coefficients is [1]:

β̂gls = (XTC−1X)−1XTC−1y (7)

where X is the design matrix, C the covariance matrix of the (spatially-
correlated) residuals, and y the vector of observations. If there is no spatial
dependence among the errors, C reduces to Iσ2 and the estimate to OLS as
in Equation 3.

The covariance matrix C gives the covariance between the residuals at each
pair of points used to determine the β̂gls. Clearly, there is no way to know the
covariance between all the point-pairs, since we only have one realization of
the random field. So we model the covariance as a function of the separation
(usually the distance) between point pairs, similar to what we did in §6.3, to
fit a variogram model. However, we instead fit a spatial covariance model.
This leads us to a further difficulty: the covariance structure refers to the
residuals, but we can’t compute these until we fit the trend . . . but we need
the covariance structure to fit the trend . . . and so on. This is a classic“which
came first: the chicken or the egg?” problem.

One method to compute the GLS model is iterative:

1. make a first estimate of the trend surface with OLS;

2. compute the residuals;

3. model the covariance structure of the OLS residuals as a function of
their separation;

4. use this covariance structure to determine the weights to compute the
GLS trend surface;

5. repeat steps (2)–(4) until the covariance structure does not change
between iterations.

In many cases only one iteration is necessary. However, theoretically this is
not optimal, because the estimates of the covariance parameters are biased.

A more elegant solution is to fit the covariance structure at the same time
the trend surface coefficients are computed.

7.1 Computing the GLS trend surface

GLS trend surfaces can be computed in several R packages. The lm method
itself can be used for weighted least squares (WLS), but the weights have
to be computed from the spatial correlation structure. A better solution is
to compute the trend and the covariance at the same time, using Residual
maximum likelihood (REML). See Lark and Cullis [5] for the mathematical
development. This is implemented in the gls method of the nlme package.

Task 32 : Compute the coefficients of a full second-order trend, using GLS.
•
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> require(nlme)

> model.ts2.gls <- gls(

+ model = zm ~ n + e + I(n^2) + I(e^2) + I(e * n),

+ data = aq,

+ method="ML",

+ correlation=corExp(form=~e + n,

+ nugget=FALSE,

+ value=c(vr.m.f[2,"range"]))

+ )

> class(model.ts2.gls)

[1] "gls"

> summary(model.ts2.gls)

Generalized least squares fit by maximum likelihood

Model: zm ~ n + e + I(n^2) + I(e^2) + I(e * n)

Data: aq

AIC BIC logLik

939.38904 964.04028 -461.69452

Correlation Structure: Exponential spatial correlation

Formula: ~e + n

Parameter estimate(s):

range

14.421573

Coefficients:

Value Std.Error t-value p-value

(Intercept) 559.30664 3.3622674 166.348052 0.0000

n -0.05110 0.0546869 -0.934399 0.3516

e -1.54989 0.0675256 -22.952609 0.0000

I(n^2) -0.00547 0.0016897 -3.236521 0.0015

I(e^2) -0.00125 0.0024507 -0.511079 0.6100

I(e * n) 0.00453 0.0019477 2.325551 0.0213

Correlation:

(Intr) n e I(n^2) I(e^2)

n 0.017

e 0.057 -0.038

I(n^2) -0.620 -0.083 0.024

I(e^2) -0.571 0.029 -0.233 0.099

I(e * n) 0.031 -0.048 0.012 -0.026 -0.066

Standardized residuals:

Min Q1 Med Q3 Max

-3.40969259 -0.54853371 0.12769732 0.65139981 2.07524940

Residual standard error: 6.385512

Degrees of freedom: 161 total; 155 residual

Notice that the gls method also estimates the range of spatial correlation.

Q24 : What is the range of spatial correlation of the exponential model,
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as estimated by gls? Does this agree with the estimate from fitting the
variogram of the residuals? What could account for the difference? Jump
to A24 •

This gives different coefficients than the OLS fit.

Task 33 : Compare the coefficients from the GLS and OLS fits, as absolute
differences and as percentages of the OLS fit. •

The generic coef method extracts coefficients from model objects.

> coef(model.ts2.gls) - coef(model.ts2)

(Intercept) n e I(n^2)

-1.75094930811 -0.03454451954 0.07085948553 0.00203106936

I(e^2) I(e * n)

0.00039507895 -0.00217053276

> round(100 * (coef(model.ts2.gls) - coef(model.ts2))/coef(model.ts2),

+ 1)

(Intercept) n e I(n^2) I(e^2)

-0.3 208.7 -4.4 -27.1 -24.0

I(e * n)

-32.4

Q25 : Why are the GLS coefficients different than the OLS coefficients?
Jump to A25 •

Task 34 : Display the 90% confidence intervals for the GLS model param-
eters. •

The generic intervals method has a specific method for a fitted GLS model;
internally this is the intervals.gls function of the nlme package.

> intervals(model.ts2.gls, level = 0.9)

Approximate 90% confidence intervals

Coefficients:

lower est. upper

(Intercept) 553.7429446750 559.3066357528 564.8703268306

n -0.1415921569 -0.0510993632 0.0393934305

e -1.6616273076 -1.5498896721 -1.4381520365

I(n^2) -0.0082645545 -0.0054686072 -0.0026726598

I(e^2) -0.0053077229 -0.0012524867 0.0028027495

I(e * n) 0.0013065100 0.0045294039 0.0077522979

attr(,"label")

[1] "Coefficients:"

Correlation structure:

lower est. upper
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range 8.1391394 14.421573 25.553287

attr(,"label")

[1] "Correlation structure:"

Residual standard error:

lower est. upper

5.0059190 6.3855120 8.1453104

Q26 : Are the OLS estimates of the trend surface parameters, and the
spatial correlation range parameter of the empirical variogram from these
residuals, within the 90% confidence intervals from the GLS model? Jump
to A26 •

7.2 Predicting from the GLS trend surface

Task 35 : Predict over the grid with the GLS trend. •

The predict generic method has a specific method for a fitted GLS model;
internally this is the predict.gls function of the nlme package.

> pred.ts2.gls <- predict(model.ts2.gls, newdata=grid)

> summary(pred.ts2.gls)

Min. 1st Qu. Median Mean 3rd Qu. Max.

473.38 517.83 547.48 547.04 576.25 610.93

Task 36 : Display the best-fit interpolation, with the data points superim-
posed. •

First we need to compute and store the residuals, to be displayed on the
trend surface:

> res.ts2.gls <- residuals(model.ts2.gls)

The spplot “spatial plot” method plots spatial objects, i.e., those in one of
the sp classes.

The fit field of the prediction object contains the trend surface fits.
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> sp.grid$gls.fit <- pred.ts2.gls

> p.gls <- spplot(sp.grid, zcol="gls.fit",

+ main="2nd-order trend, GLS fit",

+ sub="Aquifer elevation, m.a.s.l.",

+ xlab="East", ylab="North",

+ at=ts.plot.breaks,

+ col.regions = topo.colors(length(ts.plot.breaks)),

+ panel=function(x, ...) {

+ panel.levelplot(x, ...);

+ panel.points(coordinates(aq), pch=1,

+ col=ifelse(res.ts2.gls < 0, "red", "black"),

+ cex=2*abs(res.ts2.gls)/max(abs(res.ts2.gls)))

+ })

> print(p.ols, split=c(1,1,2,1), more=T)

> print(p.gls, split=c(2,1,2,1), more=F)
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Task 37 : Compute the difference between the OLS and GLS trend surfaces,
and map them. •

> sp.grid$diff <- sp.grid$gls.fit - sp.grid$fit

> spplot(sp.grid, zcol="diff", main="GLS-OLS fits",

+ sub="m", xlab="East", ylab="North",

+ col.regions = terrain.colors(64))
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Q27 : Where are the largest differences between the OLS and GLS trend
surfaces? Explain why. Jump to A27 •

8 Local interpolation of the residuals

The trend surface fits an overall trend, but of course does not fit every
observation exactly. This lack of fit can be pure noise, but it can also have a
spatially-correlated component which can be modelled and used to improve
the predictions.

Task 38 : Display the residuals from the GLS trend surface as a postplot.
•

> summary(res.ts2.gls)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-21.772633 -3.502669 0.815413 -0.057213 4.159521 13.251530

> plot(aq$n ~ aq$e, cex=3*abs(res.ts2.gls)/max(abs(res.ts2.gls)),

+ col=ifelse(res.ts2.gls > 0, "green", "red"),

+ xlab="E", ylab="N",
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+ main="Residuals from 2nd-order trend, GLS fit",

+ sub="Positive: green; negative: red", asp=1)

> grid()
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We can see from this post-plot of the residuals that there is local spatial
correlation. The GLS fit optimized the estimates of the trend surface coef-
ficients, and correctly estimated the spatial correlation of the residuals, but
did not correct for this in mapping.

Task 39 : Compute the empirical variogram model residuals from the GLS
trend surface model, and fit it with an exponential model. •

First extract the residuals into the point observations object, compute the
empirical variogram, and display it to estimate the variogram model param-
eters.

> aq$res.ts2.gls <- residuals(model.ts2.gls)

> vr.gls <- variogram(res.ts2.gls ~ 1, loc = aq)

> plot(vr.gls, plot.numbers = T)

> (vr.gls.m.f <- fit.variogram(vr.gls, vgm(35, "Exp", 7,

+ 0)))

model psill range

1 Nug 0.000000 0.000000

2 Exp 43.758464 14.169087
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Second, fit it and display the fitted model on the empirical variogram.

> (vr.gls.m.f <- fit.variogram(vr.gls, vgm(35, "Exp", 7,

+ 0)))

model psill range

1 Nug 0.000000 0.000000

2 Exp 43.758464 14.169087

> plot(vr.gls, model = vr.gls.m.f, plot.numbers = T)
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Q28 : How does this variogram model compare to the variogram computed
from the OLS 2nd-order surface (§6.3)? Does the range parameter of this
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model agree with the estimate from the GLS fit? Jump to A28 •

> vr.m.f

model psill range

1 Nug 0.000000 0.00000

2 Exp 35.551201 10.47154

> vr.gls.m.f

model psill range

1 Nug 0.000000 0.000000

2 Exp 43.758464 14.169087

> intervals(model.ts2.gls)$corStruct[2]

[1] 14.421573

Task 40 : Interpolate the residuals onto the prediction grid by Ordinary
Kriging (OK). •

> kr <- krige(res.ts2.gls ~ 1, loc = aq, newdata = sp.grid,

+ model = vr.gls.m.f)

[using ordinary kriging]

> summary(kr)

Object of class SpatialGridDataFrame

Coordinates:

min max

e -33.5 42.5

n -47.5 52.5

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

e -33 1 76

n -47 1 100

Data attributes:

var1.pred var1.var

Min. :-20.824450 Min. : 0.13688

1st Qu.: -3.141128 1st Qu.: 7.96014

Median : -0.037762 Median :10.20159

Mean : -0.372732 Mean :10.83563

3rd Qu.: 2.783062 3rd Qu.:12.43497

Max. : 12.832161 Max. :33.72589

Note: Notice that the mean kriging prediction is not zero.

Task 41 : Display the kriging predictions and their prediction standard
deviations. •
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> p1 <- spplot(kr, zcol = "var1.pred", col.regions = bpy.colors(64),

+ main = "Residuals from GLS trend")

> kr$var1.sd <- sqrt(kr$var1.var)

> print(p1)
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> p2 <- spplot(kr, zcol = "var1.sd", col.regions = cm.colors(64),

+ main = "Kriging prediction standard deviation")

> print(p2)
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Q29 : Which areas were most changed by interpolating the residuals? Why?
Which areas have the most and least uncertainty? Why? Jump to A29 •

Task 42 : Add the OK predictions of the residuals to the prediction grid
object, and then add them together with the trend surface prediction to
obtain a final prediction. •

The kriging prediction object was built from the spatial grid, so it has the
same dimensions.

> sp.grid$ok <- kr$var1.pred

> sp.grid$rk.gls <- sp.grid$fit + sp.grid$ok

Task 43 : Plot the final prediction. •

> p.rk <- spplot(sp.grid, zcol="rk.gls",

+ main="GLS-RK prediction",

+ sub="Aquifer elevation, m.a.s.l.",

+ xlab="East", ylab="North",

+ at=ts.plot.breaks,

+ col.regions = topo.colors(length(ts.plot.breaks)))

> print(p.rk)
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9 Cleaning up

Task 44 : Remove the temporary objects from the workspace. Leave the
fitted variogram model and the spatial points data frame with the trend
surface results. •

> rm(p1, p2)

Task 45 : Save the workspace. •

> save.image(file = "tsresults.RData")

This saves the workspace (objects and their names), in R’s binary format.

Task 46 : Quit R. •
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9.1 Answers

A1 : The map of aquifer elevations, along with a map of the elevation of the land
surface, can be used by well-drillers, to estimate the cost of drilling a well to reach
the aquifer at any location. Return to Q1 •

A2 : There are 161 observations (wells); for each we know the coördinates (E and
N) and the elevation of aquifer (z); we also have the transformed elevation in meters
and the reduced coördinates. Return to Q2 •

A3 : UTM East from 500361.3 m . . . 574429.6 m (range 74.068 km); UTM North
from 4150248.2 m . . . 4248312.5 m (range 98.064 km); total area 7263 km2. Return
to Q3 •

A4 : Elevations are from 476 to 623 m.a.s.l., a range of 148 m. Return to Q4 •

A5 : Nearby points tend to be similar; there appears to be trend from E to W,
but there are portions of the map that do not follow this strictly. Return to Q5 •

A6 : (1) The text postplot has the advantage of showing the actual values, but
it is not very graphical and difficult to read; (2) the size postplot clearly shows the
relative data values; (3) the size and colour postplot gives two ways to visualize; it
seems especially good for seeing the E–W increasing first-order trend. Return to
Q6 •

A7 : The aquifer has a flat surface, tilted towards some direction, by some regional
uplift. In this case, the uplift of the Rocky Mountains about 650 km to the west
has tilted the aquifer. Return to Q7 •

A8 : The trend surface equation is: z = 555 + -1.617135 e + -0.033361 n. The
intercept term gives the estimated aquifer elevation at the centroid of the area.
Then the two coefficients give the change in elevation per unit change of the target
variable. That is, for each km E the elevation decreases by -1.62 m, for each km N
it decreases by -0.03 m. The relation is highly-significant; it explains 94.1% of the
variability in the observations; however the N coördinate is not needed – it is not
statistically different from zero. Return to Q8 •

A9 : Residuals range from -25.4 to 16.7 m; compare this to the median elevation
552.8 m; the maximum calibration error is 4.6%. Return to Q9 •

A10 :

1. No relation between fitted values and residuals; but . . .
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2. The residuals are not normally-distributed, especially in the high tail. That
is, the largest positive residuals (under-predictions) are not as extreme as
would be expected. The largest negative residuals (over-predictions) are a
bit too extreme.

Conclusion: this OLS fit does not satisfy the assumptions of independent residuals.
Return to Q10 •

A11 : There is a spatial pattern. Large residuals tend to be near each other, and
vice-versa. Positive residuals (above the trend surface) are found almost exclusively
in the middle third of the map. Dependence seems to be stronger along a SW-NE
axis (range about 50 to 70 km) than the NW-SE axis (range about 10 to 20 km).
This implies a higher-order trend surface or a periodic surface superimposed on the
linear trend. Return to Q11 •

A12 : The tilted structure has local warping as either a dome or a basin. Return
to Q12 •

A13 : The model explains 97.5% of the variance in the observations, compared to
94.1% for the first-order significance. Return to Q13 •

A14 : The probability that the higher-order surface is this much better just by
chance is almost zero, so the second-order surface is statistically superior to the
first-order surface. Return to Q14 •

A15 : Residuals range from -19.8 to 14.8 m; compare this to the median elevation
552.8 m; the maximum calibration error is 3.6%. This range is narrower than for
the first-order surface: -25.4 to 16.7 m. Return to Q15 •

A16 :

1. No relation between fitted values and residuals;

2. The residuals are not normally-distributed. The largest negative residuals
(over-predictions) are a bit too extreme. However, the problem with the
largest positive residuals from the first-order surface has been solved.

Conclusion: this OLS is much closer to being valid than for the first-order surface.
Return to Q16 •

A17 : These residuals form local clusters of positive, negative, and near-zero; there
does not appear to be any overall spatial pattern. So, a higher-order trend surface
is not indicated. Instead, some local interpolation of the residuals would seem to
improve the model. Return to Q17 •

A18 : The fit is generally good but some clusters of points stand out from the
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background; their values are not that well matched. Return to Q18 •

A19 : The prediction errors are from -23.5 to 26.3 m; this is about -0.1% of the
predicted value. This much uncertainty in the prediction corresponds to uncertainty
in the expense of drilling a well at the location. Return to Q19 •

A20 : They are least at the centre of gravity of the regression in both E and N;
they increase away from this in both directions; the largest uncertainties are in the
corners of the grid. Return to Q20 •

A21 : There are several slots in the object that refer to geographic space:

1. bbox for the bounding box (extreme values of coördinates)

2. coords storing the coördinatesof each observation

3. proj4string for the map projection, not used here

The attribute data are in slot data, which is a data frame, like the original (non-
spatial) dataset. In this case there is only one attribute: the elevation of the aquifer
at the location. Return to Q21 •

A22 : The sill of about 35 m2 is reached near a range of 21 km; there is no
evidence of nugget variance. Return to Q22 •

A23 : Exponential model: total sill 36 m2, distance parameter 10 m, so the
effective range is 31 m; nugget variance 0 m2. A zero or very small nugget is to be
expected with spatially-continuous variables like groundwater level; the only reason
for a non-zero nugget would be measurement error. Return to Q23 •

A24 : The range parameter of spatial correlation of the exponential model, as
estimated by gls, is 14.4 km. This does not agree with the estimate from fitting
the variogram of the residuals, . These two fits use completely different methods.
The fit.variogram method uses weighted least squares on the binned empirical
variogram, the weights proportional to n/h2. Also, the empirical variogram is of
residuals computed by OLS. The gls method uses restricted maximum likelihood
(REML) on the entire dataset, which does not depend on a variogram nor on the
OLS fit. Return to Q24 •

A25 : High and low residuals from the OLS fit are clustered. This shows that the
OLS trend surface is being “pulled” towards these highest and lowest values, which
are on the edges of map, thus leading to a more strongly “tilted” surface. The GLS
fit corrects for this by effectively declustering the correlated residuals. Return to
Q25 •

A26 : Yes. Return to Q26 •
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A27 : The largest positive differences (GLS higher than OLS) are in the NW
and SE corners; the largest negative differences in the NE and SW corners. This
is because all the coefficients, which are E, N or combinations, are lower for GLS
than for OLS. So in the SW–NE plane the values are lower; in the opposite NW–SE
plane higher. Return to Q27 •

A28 : The variogram from the GLS residuals has a somewhat higher sill and
quite a bit longer range parameter, about 14 km vs. about 10.5 km The fitted range
agrees closely with that fitted as part of the GLS procedure. Return to Q28 •

A29 : The centre-SE has a large negative adjustment, the centre-SW a large
positive adjustment. These are the areas with clusters of model residuals of the
corresponding sign.

The most certain predictions are near the observation points, especially where they
are clustered. The least certain are in the NE and SE corners, where there are few
observations. Return to Q29 •
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A Derivation of the OLS solution to the linear model

To solve Equation 2 we need an optimization criterion, i.e., what makes a
particular solution (values of β) better than any other. The obvious criterion
is to minimize the total error (lack of fit) as some function of ε = y−Xβ; the
goodness-of-fit is then measured by the size of this error. A common way
to measure the total error is by the sum of vector norms; in the simplest
case the Euclidean distance from the expected value, which we take to be 0
in order to have an unbiased estimate. If we decide that both positive and
negative residuals are equally important, and that larger errors are more
serious than smaller, the vector norm is expressed as the sum of squared
errors, which in matrix algebra can be written as:

S = (y− Xβ)T (y− Xβ) (8)

which expands to

S = yTy− βTXTy− yTXβ+ βTXTXβ
S = yTy− 2βTXTy+ βTXTXβ (9)

Note: yTXβ is a 1 × 1 matrix, i.e., a scalar8, so it is equivalent to its
transpose: yTXβ = [yTXβ]T = βTXTy. So we can collected the two identical
1× 1 matrices (scalars) into one term.

This is minimized by finding the partial derivative with respect the the
unknown coefficients β, setting this equal to 0, and solving:

∂
∂βT

S = −2XTy+ 2XTXβ

0 = −XTy+ XTXβ
(XTX)β = XTy

(XTX)−1(XTX)β = (XTX)−1XTy

β̂OLS = (XTX)−1XTy (10)

which is the OLS solution.

B Standardized residuals

Standardized residuals9 adjust the residuals from a linear regression model to
residuals which should be distributed asN (0,1) with equal variance. These
can then be compared to residuals drawn from that theoretical distribution,
for example in a quantile-quantile (“QQ”) plot of the standardized residuals.

The standardized residuals are computed as ri/(s ·
√

1− hii), where ri are
the unstandardized residuals, s is the sample standard deviation of the
residuals, and the hii are the diagonal entries of the so-called “hat” matrix
V = X(X′X)−1X′.

8 The dimensions of the matrix multiplication are (1×n)(n× p)(p × 1)
9 This is the term used by plot.lm; some authors call this the “studentized” residuals.
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The sample standard deviation of the residuals s is computed as the square
root of the estimated variance of the random error:

s =
√

1
(n− p) ·

∑
r2
i

where n is the number of observations and p the number of predictors. It
is shown in the linear model summary as “Residual standard error”; it can
be extracted as summary(model_name)$sigma. This is an overall measure
of the variability of the residuals, and so can be used to standardize the
residuals to N (0,1).

The “hat” matrix V is another way to look at linear regression. This matrix
multiplies the observed values to compute the fitted values. The hat value for
an observation gives the overall leverage (i.e., importance when computing
the fit) of that observation. So the term

√
1− hii in the denominator shows

that with low influence (small hii) the ratio ri/s (a simple standardization)
is not affected much, but with a high influence (large hii) the denominator
is smaller and so the standardized residual is increased. Thus the standard-
ized residuals are higher for points with high influence on the regression
coefficients.
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