Exercise: Thin plate spline interpolation
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“A person of noble character constantly improves, a person
of low character continuously degenerates.”
- The Analects, 14.23

1 Introduction

Spatial interpolation is the process of predicting values of a target vari-
able or attribute at an unobserved location, from a set of values at known
(observed) locations.

- In ordinary kriging (OK) interpolation we assume that the obser-
vations are the result of a locally spatially-correlated second-order
stationary random process; we model that process, and use the
model to predict.

- In trend surface (TS) interpolation we assume that the observations
are the result of a regional process; we model that process with a
single surface as a polynomial of the coordinates and predict from
the equation of the surface.

- In universal kriging (UK) interpolation we assume that some of the
variation is explained by regional processes, with some residual
local variation explained by a locally spatially-correlated second-
order stationary random process; we model the two processes si-
multaneously, and use the model to predict.

In this tutorial we introduce another method: fitting a surface (as in the
trend surface) but adjusting to local observations (as in kriging) using
2-dimensional smoothing splines. This method is not “geostatistical”
in the sense that there is no assumed model, other than the require-
ment that the fitted surface be in some sense “smooth”. Like UK, it fits a
regional trend with local variations from the trend dependent on the ob-
servations. Unlike UK, the analyst does not perform a formal analysis of
the spatial structure [4]; thus some authors consider splines to be suit-
able only for visualization [5]. This method of interpolation, under the
name of “radial basis function” interpolation, is provided by the Geosta-
tistical Analyst toolkit of ArcGIS [11] and of course is easily implemented
inR.

In §5 we discuss the (dis)advantages of using smoothing splines for in-
terpolation.

2 1-D spline interpolation

To illustrate how splines work, we begin with interpolation in one di-
mension by smoothing splines [9, §5.4] [18, §8.7]. This can be useful in
its own right, shows how the mathematics work, and allows easy visual-
ization. In §3 we then consider two-dimensional (surface) interpolation.



2.1 Non-smoothing splines

We first discuss non-smoothing splines, i.e., where some data values are
respected.

A spline is a piecewise polynomial function (i.e., each piece is defined
only over some range), with the pieces being joined at knots. These
splines match the function value at each knot. Splines are a type of basis
expansion Hastie et al. [9, §], which allow linear methods to be used on
non-linear relations. In particular, splines allow local fitting of piecewise
polynomials to observations, with a defined degree of continuity between
the pieces. An order-M spline is a piecewise polynomial function defined
to have continuous derivatives up to order (M — 2).

The most common order is the fourth, i.e., with two continuous deriva-
tives, so that values, slopes and curvatures match at the knots. These
look smooth to the human eye and also correspond to an intuitive con-
cept of smoothness. A non-smoothing spline goes through each knot,
i.e., the measured values are considered exact. When the spline is only
defined in terms of the knots (including boundaries) it is called basis
spline, often abbreviated to B-spline.

The coefficients of each piece are found from a system of linear equa-
tions with constraints of order (M — 2); for the common fourth-order
splines these are the first and second derivatives, as well as the data val-
ues, at the knots. So-called natural splines have another constraint: the
function must be linear outside the boundary knots; this guards against
high-order polynomial extrapolation outside the knots.

To compute a spline, the analyst must specify:

1. the order of the spline; most commonly cubic splines (4th order);
2. the number of knots;

3. the placement of knots in the range of the variable.

The knots can be at the known data points, in which case the spline inter-
polation is exact at known points. A more common approach is to define
equally-spaced knots through the range of the sequence, make a linear
interpolation from adjacent known points, and fit the spline through the
knots.

As an example, we use a dataset from a transect near Sandford-on-
Thames (Oxfordshire, England), originally reported by Webster and Cua-
nalo [22], and also used by Davis [3, Example 4.12]." The soil was sam-
pled at three depth intervals (5-6 cm thick, centred on 8, 30, 65 cm
depth) by augering every 10 m along a regular transect, resulting in 321
sites.

TASK 1: Load the example dataset and examine its structure. .

1 This same example is used in the exercise on compositional variables.



This dataset was provided by Richard Webster to Murray Lark, who for-
matted it for easier processing. He in turn kindly provided it to us as file
sandford. txt.

TASK 2 : Examine the text file structure in a text editor. .
> file.show("sandford.txt")

The first few lines are:

Top 2 3

Clay Silt Clay Silt Clay Silt
1 70 15 85 10 84 14
2 65 20 75 15 85 10
3 65 20 75 10 70 20

Each row (after the headers) is an observation number in sequence along
the transect, followed by the silt and clay in layers 1, 2 and 3 respectively.
It’s easiest to read this in without the header lines, and add our own
column labels.

TASK 3 : Read the text file into a data frame and assign field names. o

Function read.table is the generic function to read text files; in this
case the only non-default setting is the skip argument to skip the first
two lines.

We read the file into an R data frame we name (unimaginatively) as ds
(for ‘dataset’):

> ds <- read.table("sandford.txt", skip=2)
> names(ds) <- c("seq","clayl","siltl","clay2","si1t2","clay3","si1t3")

'data.frame': 321 obs. of 7 variables:

seq :1int 12345678910 ...

clayl: int 70 65 65 70 80 65 70 65 65 40 ...
siltl: int 15 20 20 10 10 10 10 15 25 40 ...
clay2: int 85 75 75 65 85 80 65 70 75 60 ...
silt2: int 10 15 10 25 10 5 10 15 10 10 ...
clay3: num 84 85 70 65 80 1 25 80 30 25 ...
silt3: num 14 10 20 10 15 1 15 10 10 25 ...

A A A A A A A

TASK 4 : Display the clay and silt fractions along the transect for the
second layer. o
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weight %

plot(ds$clay2, type="1", ylim=c(0,100), x1im=c(0,320), main="Layer 2", xlab="Station on transect", ylab="weigh1

Tines(ds$silt2, Tty=2, col="blue")
legend("topright", c("clay","silt"), 1ty=1:2, col=c("black","blue"))

grid(Q)
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Clearly there is spatial dependence, and we could attempt to model this
with a variogram and use the model to interpolate. However, we also
see some abrupt changes, e.g., the transition from very low clay and silt
from positions 120-150 to quite high clay and moderate silt by position
155.

TAsK 5 : Fit a natural spline basis to the clay content of the second
layer. .

The ns function of the spT1ines package computes a B-spline basis ma-
trix for a natural spline of order 4 (cubic). The analyst must decide on the
number of knots and their placement; this determines how closely the
spline matches the data values. For the placement, since the points were
equally-spaced on the transect, it makes sense to also space the knots
equally.” For the number of knots, we must decide on a smoothness:
fewer knots gives fewer pieces and thus more smoothness. Looking at
the plot, most of the short-range irregularity seems to be at about 10
stations; so we place a knot every 10 stations along the transect, with
the df argument to ns function.

TASK 6 : Compute the spline basis. .

We first compute the spline basis, an n x k matrix (k knots at ech of

2We could also place the knots at what appear to be transitions between sections of
the transect.



n observation) used when computing splines. These are weights that
will be given to each observation when computing the coefficients of the
splines.

> require(splines)

Loading required package: splines

> (n <- length(ds$clay2))
[1] 321

> basis.10 <- ns(ds$seq, df=floor(n/10))
> str(basis.10)

ns [1:321, 1:32] 0 0.000167 0.001333 0.0045 0.010667 ...
- attr(x, "dimnames")=List of 2
..$ : NULL
..$ : chr [1:32] "1" "2" "3" "4"
- attr(x, "degree")= int 3
- attr(x, "knots")= Named num [1:31] 11 21 31 41 51 61 71 81 91 101 ...
..- attr(*, "names")= chr [1:31] "3.125%" "6.25%" "9.375%" "12.5%" ...
- attr(x, "Boundary.knots")= int [1:2] 1 321
- attr(x, "intercept")= logi FALSE
- attr(x, "class")= chr [1:3] "ns" "basis

nwon

matrix"

This spline basis has 32 cubic functions, each of which is defined at all
321 stations (data points), which will be used to determine the coeffi-
cients (see below). But most of the basis values at any station are zero.

TASK 7 : Display the non-zero basis values for stations 148 to 152. e
> for (i in 148:152) {

+ print(paste("Station",i))
+ print(round(basis.10[1i,basis.10[i,]!=0],4))
+ 1}
[1] "Station 148"

12 13 14 15
0.0045 0.3482 0.5902 0.0572
[1] "Station 149"

12 13 14 15
0.0013 0.2827 0.6307 0.0853
[1] "Station 150"

12 13 14 15
0.0002 0.2212 0.6572 0.1215
[1] "Station 151"

13 14 15
0.1667 0.6667 0.1667
[1] "Station 152"

13 14 15 16

0.1215 0.6572 0.2212 0.0002

For example, at station 150, four of the 32 basis functions have non-zero
basis values, corresponding to polynomial pieces 12...15. Since station
151 is a knot, it only has values for three pieces.

TASK 8 : Compute the coefficients for each basis polynomial of the
spline. .

Now we use this basis in the workhorse Tm function to compute the co-
efficients for each basis polynomial, from the observed values of the



response variable, here clay percentage. The response variable is a vec-
tor of n observations, while the predictor is a n x k matrix; thus the
coefficients are estimated by ordinary least squares:

y=XB+e—B=X"XxX)"1xTy (1)

> m.10 <- Tm(ds$clay2 ~ basis.10)
> summary(m.10)$adj.r.squared

[1] 0.800346
The computed model also includes the fitted values at each known point,

which we extract with the fitted generic method:
> summary(pred.10 <- fitted(m.10))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.945 15.030 35.860 34.610 49.390 81.570

> summary(ds$clay2)

Min. 1st Qu. Median Mean 3rd Qu. Max .
2.00 15.00 34.00 34.61 50.00 90.00

TASK 9 : Plot the original station data, with the values from the fitted
splines. o
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clay, weight %

plot(pred.10, type="1",ylab="clay, weight %", xlab="Position on transect")
Tines(ds$clay2, col="darkgray")

Tegend("bottomright", 1ty=1,

col=c("black","darkgray"),
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We note several features of this fit:



- The fitted values have the same mean, similar medians and quar-
tiles. However, the extrema are quite different: the actual maxi-
mum is not reached, and an artefact of the polynomial fit produces
a non-physical (negative) value for the minimum.

- The degree of smoothness seems to track the local trends fairly
well.

TASK 10 : Compare this with fits with half and double the number of
knots. o

> basis.20 <- ns(ds$seq, df=floor(n/20))
> basis.5 <- ns(ds$seq, df=floor(n/5))

> m.20 <- Im(ds$clay2 ~ basis.20)

> summary(m.20)$adj.r.squared

[1] 0.6955464

> m.5 <- Tm(ds$clay2 ~ basis.5)
> summary(m.5)$adj.r.squared

[1] 0.8528901

We can see that the more knots, the closer to the known values; but this
does not necessarily mean a better fit to the process that produced the
data - if the process is noisy, a spline that does not fit so well may better
represent it.

TASK 11 : Show the three spline fits (dividing the transect into 20, 10
and 5-station increments). o
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clay, weight %

plot(pred.10, type="1", ylab="clay, weight %", xlab="Position on transect",
y1lim=c(-10,100))

gridQ)

abline(h=0, col="darkgray"); abline(h=100, col="darkgray")
Tines(predict(m.20), col="blue")

Tines(predict(m.5), col="darkgreen")

Tines(ds$clay2, col="darkgray")

Tegend("bottomright", Tty=1, col=c("black","blue","darkgreen","darkgray"),

c("spline (10)","spline (20)", "spline (5)", "actual™))
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The graph shows that using too few knots can lead to over-smoothing
and even an un-physical result (outside the possible range of the vari-
able); here the negative values near station 140 when the transect is split
into 20-station increments.

Note that the splines are all linear at the boundaries: this is a property
of natural splines.

If a prediction at other than the observations is wanted, we use function
interpSpline to determine the coefficients of the spline from the data,
and then the generic predict function, which specialized to the invisible
predict.bSpline prediction function.

Note: The function predict.Tm which predicts from the fitted linear
model can not be used, because the predictors are the basis function
values computed at the original stations; there is no data value anywhere
else.

TASK 12 : Predict the value half-way between stations 145 and 146, 150
and 151, and 150 and 160. o
> pts <- c(145.5,150.5,155.5)

> str(ispl <- interpSpline(ds$seq, ds$clay2, bSpline=TRUE))

List of 3



$ knots : num [1:327] -2 -1 01234567 ...

$ coefficients: num [1:323] 99.1 85 70.9 81.3 53.8 ...

$ order : num 4

- attr(x, "formula")=Class 'formula' length 3 ds$clay2 ~ ds$seq
..- attr(*, ".Environment")=<environment: 0x7fdd5a426ed0>

- attr(x, "class")= chr [1:3] "nbSpline" "bSpline" "spline"
> (pred3 <- predict(ispl, x=pts)$y)

[1] 2.875619 4.611803 12.803852
> ds$clay2[145:156]

[1] 3 3 4 3 6 6 4 6 3 713 12

Display this part of the spline curve, original data, and predicted value.

> plot(pred.10, type="1", ylab="clay, weight %",

+ xlab="Position on transect", x1im=c(140,160))

> grid(Q)

> lines(predict(m.20), col="blue", type="1")

> lines(predict(m.5), col="darkgreen", type="1")

> Tlines(ds$clay2, col="darkgray", type="b")

> legend("topleft", Tty=1, col=c("black","blue","darkgreen","darkgray","red"),

+ c("spline (10)","spline (20)", "spline (5)", "actual", "interpolation"))
> points(x=pts, y=pred3, col="red")

> rm(pred3)
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— spline (20)
— spline (5)
actual
o —— interpolation
©

clay, weight %
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Position on transect

Evidently the interpolation spline closely matches the immediately sur-
rounding values.

2.2 Smoothing splines

One problem with the natural spline approach of the previous § is that
the analyst must decide on the number of knots and their placement,
using prior knowledge on the presumed smoothness of the relation. An
alterative approach is smoothing splines. These make a compromise



between fit and degree of smoothness; this matches the typical situation
when it is not necessary to match the exact values at the knots, but
rather to make a smooth curve that (we hope) represents the local trends
without “too much” noise. The optional degree of smoothness can be
estimated by generalized cross-validation[19].

The solution minimizes the general formula:

N
min 3. (i - f ()} + AJ[Sf] (2)
i=1

where J is the penalty function and A controls how important itis; A = 0
means there is no roughness penalty and the data will be fit exactly; as
A — w the solution approximates the least-squares line, i.e., the trend
line averaged over all the points.

In 1D an appropriate penalty is:

JIf]= JR [F ()} dt 3)

Le., the integral of the squared second derivative over the interval; so the
more curves, the higher the penalty. In practice the integral is discretized
over the knots.

TAsK 13 : Fit a smoothing spline to the clay content. .

Smooth splines can be fit by the smooth.spline function of the stats
package that is loaded with base R. We start with the default smooth
spline. It is possible to specify the degree of smoothing with the spar
smoothing parameter or the df degrees of freedom argument. If these
are missing, leave-one-out cross-validation is used to determine the op-
timal A; we choose this option.

> (spl.fit <- smooth.spline(ds$clay2))

Call:
smooth.spline(x = ds$clay2)

Smoothing Parameter spar= 0.2544574 Tlambda= 1.204002e-07 (12 +iterations)
Equivalent Degrees of Freedom (Df): 73.46845

Penalized Criterion: 18226.75

GCV: 95.48895

> round(length(ds$seq)/spl.fit$df,1)

[1] 4.4
Among the returned parameters are:

spar : the smoothing parameter, usually in (0...1];
lambda : the value of A of Equation 2 corresponding to spar;

degrees of freedom : equivalent degrees of freedom used in the fit;

10



y: vector of fitted values

Here we see that about 73.5 degrees of freedom were used. This is equiv-
alent to a non-smooth fit with 320/73.5 = 4.4 stations between knots,
similar to the non-smooth fit with 5 stations between knots?, i.e., the
most knots among the three we compared in §2.1.

TASK 14 : Plot the original data and the spline fit. .

We also plot the knot positions as small blue bars.

V+V+V VYV +YV

clay, weight %

plot(ds$clay2, type="1", col="darkgray", ylim=c(0,100), x1im=c(0,320),
xlab="Station on transect", ylab="clay, weight %")

Tines(spl.fit$y)

Tines(predict(m.5), col="darkgreen", type="1")
points(spl.fit$fit$knot+Tength(ds$clay2), rep(0, length(spl.fit$fit$knot)),

spl.fit$nk, pch="|", col="blue™)

Tegend("topright”, c("clay","smooth spline fit", "natural spline fit, df=5"),

grid(Q)
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won

Tty=1, col=c("darkgray","black", "darkgreen"))
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—— smooth spline fit
— natural spline fit, df=5

0 50 100 150 200 250 300

Station on transect

TASK 15 : Repeat the plot, zooming in on stations 0 to 100. .

3 Confusingly, this number is referred to as the degrees of freedom in the non-smooth
fit.
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> plot(ds$clay2, type="b", col="darkgray", ylim=c(0,100), xTim=c(0,100), xlab="Station on transect", ylab="clay,
> Tines(spl.fit$y)
> lines(predict(m.5), col="darkgreen")
> points(spl.fit$fit$knot=Tength(ds$clay2), rep(0, Tength(spl.fit$fit$knot)),
+ spl.fit$nk, pch="|", col="blue™)
> legend("topright", c("clay","smoothing spline", "natural spline, df=5"),
+ Tty=1, col=c("darkgray","black", "darkgreen"))
> gridQ)
o
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In this case, the penalty function was optimized with a somewhat closer
fit to the observations than the natural spline with 5 degrees of freedom.
The figure shows a slightly closer match to the observations, according
to the penalty function without excessive curvature.

3 Thin-plate splines
3.1 Theory

Hastie et al. [9, §5.7] explains the mathematics of multi-dimensional
smoothing splines. A more thorough mathematical treatment is given
by Wood [23] and Mitasova and Mitas [16]; these are developments from
the “minimum curvature” methods of Briggs [2]. Applications include
Hutchinson [10] and Mitasova and Hofierka [15].

The method we use to fit the surface is known as a thin plate spline
(TPS); the analogy is with a thin (so, flexible) plate that is warped to fit the
data. But this can range from very “rigid”, i.e., just a single surface (the
usual least-squares plane of a first-order trend surface) to very “flexible”,
i.e., perfectly fitting every observation. In general we want something
in between: if we think there is an overall surface we just fit it as one
polynomial (first, second ...order polynomials on the codrdinates), but
if we want to fit more locally, we must expect local noise which should
be somehow locally averaged-out.

12



Fitting a TPS depends on the k data points with known codrdinates and
attribute values. They can be described by 2(k + 3) parameters, six of
which are overall affine transformation parameters (to center the func-
tion in 2D) and 2k of which link to the control points.

The general method is to minimize the residual sum of squares (RSS) of
the fitted function, subject to a constraint that the function be “smooth”
in some sense; this is expressed by a roughness penalty which balances
the fit to the observations with smoothness. This is a minimization prob-
lem. If x; is one point in 2D space (i.e., it has two coordinates) and y; is
the attribute value at the same points, the aim is to minimize:

N
m}nz{yi_f(xi)}z‘f'/\f[f] 4)
i-1

where J is the penalty function and A controls how important itis; A = 0
means there is no roughness penalty and the data will be fit exactly; as
A — w the solution approximates the least-squares plane, i.e., the trend
surface averaged over all the points.

In 2D an appropriate penalty is:

2 2 2
02 f (x) 0°f (%) ) 02 f (x)
= +2=—— + dx:d 5
JUf J[R J[R {( ox? 0x10x2 dx3 xidxz (5)
where (x1,x2) are the two coordinates of the vector x. This is the same
approach as taken for the 1D smoothing splines, above (§2.2), but now

considering second derivatives in two dimensions as well as the second
cross-derivative.

In practice the double integral is discretized over some grid known as
knots; these may be defined by the observations or may be a different
set, maybe an evenly-spaced grid.

This penalty can be interpreted as the “bending energy” of a thin plate
represented by the function f(x); by minimizing this energy the spline
function in over the 2D plane is a thin (flexible) plate which, according to
the first term of Equation 4 would be forced to pass through data points,
with minimum bending. However the second term of Equation 4 allows
some smoothing: the plate does not have to bend so much, since it is
allowed to pass “close to” but not necessarily through the data points.
The higher the A, the less exact is the fit. This has two purposes: (1) it
allows for measurement error; the data points are not taken as exact; (2)
it results in a smoother surface.

Of course, the question is, how to balance the smoothness and the penalty.
In the case of kriging the degree of smoothing away from known points
is determined by the variogram, especially the proportion of the variance
due to the nugget. For TPS there is no model, so there is no internal esti-
mate of the desired degree of smoothing. So cross-validation is used to
determine the degree of smoothness.

13



The solution to Equation 5 is a linear function:

N
f(x) = Bo+B"x+ > xjhj(x) (6)
j=1
where the S account for the overall trend and the « are the coefficients
of the warping.

The set of functions h;(x) is the basis kernel, also called a radial basis
function (RBF), for thin-plate splines:

hjx) = lIx-x|?

log [Ix — x| (7)
where the norm distance » = ||x—X;|| is also called the radius of the basis
function. The norm is usually the Euclidean (straight-line) distance.

3.2 The fields R package

The fields package is a “collection of programs written in the R lan-
guage for curve and function fitting with an emphasis on spatial data”
[17]. It was developed at the National Center for Atmospheric Research
(USA). It includes methods for kriging, sampling design, and visualiza-
tion; we will use the Tps “thin plate splines” method for surface interpo-
lation®.

TASK 16 : Load the fields package. o
> require(fields)

Loading required package: fields

Loading required package: spam

Loading required package: grid

Spam version 1.3-0 (2015-10-24) is loaded.

Type ’help( Spam)’ or ’demo( spam)’ for a short introduction
and overview of this package.

Help for individual functions is also obtained by adding the
suffix ’.spam’ to the function name, e.g. ’help( chol.spam)’.

Attaching package: ’spam’

The following objects are masked from ’package:base’:
backsolve, forwardsolve

Loading required package: maps

Warning: package ’maps’ was built under R version 3.2.3

# maps v3.1: updated ’world’: all lakes moved to separate new #
# ’lakes’ database. Type ’?world’ or ’news(package="maps'")’. #

4Recall that R names are case-sensitive; this is Tps not tps.
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3.3 Fitting thin-plate splines

We use the “Jura soils” dataset: a set of soil samples from the Swiss Jura,
supplied by J.-P. Dubois of the Ecole Polytechnique Fedérale in Lausanne
(CH). This dataset is used as a running example in the well-known text of
Goovaerts [7]; there are also many research papers[1, 6,8, 12, 13, 21, 25]
that use it as a test case for geostatistical methods. It is included as an
example in the gstat package.

TASK 17 : Load the Jura dataset .
> require(gstat)

Loading required package: gstat

Warning: package ’gstat’ was built under R version 3.2.3

> data(jura)
> 1s(pattern="jura")

[1] "jura.grid" "jura.pred" "jura.val"
[4] "juragrid.dat"

The Jura dataset contains several objects; we will work with the “calibra-
tion” observations jura.pred and an interpolation surface jura.grid.
The objective is to map one of the heavy metal concentrations over the

grid, based on the observations.
> str(jura.pred)

'data.frame': 259 obs. of 13 variables:

$ Xloc :num 2.39 2.54 2.81 4.31 4.38 ...

$ Yloc : num 3.08 1.97 3.35 1.93 1.08 ...

$ long : num 6.85 6.85 6.86 6.88 6.88 ...

$ lat :num 47.1 47.1 47.1 47.1 47.1 ...

$ Landuse: Factor w/ 4 levels "Forest","Pasture",..: 322 3333333...
$ Rock : Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3232555113 ...
$ Cd :num 1.74 1.33 1.61 2.15 1.56 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$ Ni :num 21.3 29.7 21.4 29.7 26.2 ...

$ Pb :num 77.4 77.9 30.8 56.4 66.4 ...

$ Zn : num 92.6 73.6 64.8 90 88.4 ...

> str(jura.grid)

'data.frame': 5957 obs. of 6 variables:

$ Xloc :num 0.3 0.35 0.35 0.4 0.4 0.4 0.40.40.40.4 ...

$ Yloc :hum 1.7 1.7 1.75 1.7 1.75 1.8 1.85 1.9 2.1 2.15 ...

$ Tong ! num 6.82 6.82 6.82 6.82 6.82 ...

$ lat : num 47.1 47.1 47.1 47.1 47.1 ...

$ Landuse: Factor w/ 4 levels "Forest","Pasture",..: 2222 111133...

$ Rock : Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 332223311...

The fields package does not use sp classes, nor does it work directly
on dataframes with fields representing the coodrdinates. It requires two
arguments: a matrix of coordinates (rows are observation locations, col-
umns are the two coordinates) and a vector of dependent variables (the
attribute to map). The second we already have as data fields of the
jura.pred dataframe. So we must make a matrix from the two coord-
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inate fields.

TAsk 18 : Reformat the coodrdinate of jura.pred into the form ex-
pected by the fields package. .

The coordinates are formatted as a matrix with the matrix function; the
single vector of coordinate built from the separate vectors for X and Y
are organized by column (i.e., first the column for X, then for Y), thus
we specify the byrow=FALSE argument® and specify that there are two
columns:

> jura.pred$coords <- matrix(c(jura.pred$Xloc, jura.pred$Yloc), byrow=F, ncol=2)
> str(jura.pred$coords)

num [1:259, 1:2] 2.39 2.54 2.81 4.31 4.38 ...

TAsk 19 : Fit the default thin-plate spline. .

The Tps function® fits a thin-plate spline to observations. There are
many parameters but we start with the defaults:

> surf.l <-Tps(jura.pred$coords, jura.pred$Co)
> class(surf.1)

[1] "Krig" "Tps"

The class of the returned object, Krig, Tps, is Krig, defined by fields.

> summary(surf.1)

CALL:

Tps(x = jura.pred$coords, Y = jura.pred$Co)
Number of Observations: 259
Number of unique points: 259
Number of parameters in the null space 3
Parameters for fixed spatial drift 3
Effective degrees of freedom: 156.1
Residual degrees of freedom: 102.9
MLE sigma 0.9095
GCV sigma 1.095
MLE rho 68350
Scale passed for covariance (rho) <NA>
Scale passed for nugget (sigmaA2) <NA>
Smoothing parameter lambda 1.21e-05

Residual Summary:
min 1st Q median 3rd Q max
-3.151000 -0.266200 -0.006246 0.201500 2.901000

Covariance Model: Rad.cov
Names of non-default covariance arguments:
p

DETAILS ON SMOOTHING PARAMETER:
Method used: GCV Cost: 1

Tambda trA GCV  GCV.one GCV.model shat
1.210e-05 1.561e+02 3.016e+00 3.016e+00 NA 1.095e+00

Summary of all estimates found for Tambda

> this is the default, but we show it here explicitly
6 note the “T” is not “t”!
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Tambda trA  GCV shat -TnLike Prof

GCV 0.0000121 156.13 3.016 1.095 599.9

GCV.model NA NA NA NA NA

GCV.one 0.0000121 156.13 3.016 1.095 NA

RMSE NA NA NA NA NA

pure error NA NA NA NA NA

REML 0.0001309 95.17 3.479 1.483 576.4
converge

GCV 2

GCV.model NA

GCV.one 2

RMSE NA

pure error NA

REML 4

There is a lot to see here. A very important parameter is the smoothing
parameter A:
> print(surf.1%$1ambda)

[1] 1.210237e-05

This can be specified by the analyst, but if omitted it is determined by
generalized cross-validation (GCV) [19].

The fields package solves the thin-plate spline as a special case of krig-
ing, using the Krig function and specifying that the spatial covariance
is a radial basis function (RBF), i.e., a real-valued function whose value
depends only on the distance from some center, e.g., a given point. A
RBF can have any form as long as the only argument is ||+ ||, where v is
the radius from the origin. For thin-plate splines, a single RBF is used,
¢ (r) = r?log(r). This can be proven to be the solution to Equation 6,
as expressed in Equation 7.

TASK 20 : Predict over the grid with the fitted splines. .

First the prediction locations must be formatted as a matrix, then the
predict.Krig function can be called to do the prediction. This function
is called automatically by the generic predict method for objects of
class Kr1ig, including the output from Tps.

> jura.grid$coords <- matrix(c(jura.grid$Xloc, jura.grid$Yloc), byrow=F, ncol=2)
> surf.l.pred <- predict.Krig(surf.1l, jura.grid$coords)
> summary(as.vector(surf.l.pred))

Min. 1st Qu. Median Mean 3rd Qu. Max .
2.094 7.585 10.090 9.553 11.700 16.890

TASK 21 : Show the fitted surface as 2.5D plot. o

We use the plot function, with the codrdinates as axes, and show the
value by the size of the symbol:

> surf.l.pred.m <- matrix(surf.l.pred,

+ Tength(jura.grid$coords[,1]),
+ Tength(jura.grid$coords[,2]),
+ byrow=F)

> str(surf.l.pred.m)
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num [1:5957, 1:5957] 6.95 6.98 7.33 7.04 7.43 ...

> plot(jura.grid$coords, pch=20, asp=1,

+ cex=0.8+*surf.l.pred/max(surf.1l.pred),
+ xlab="E", ylab="N",
+ main="relative Co concentration')

> grid(col="gray")

relative Co concentration

We can also use colours for the third dimension; the cut function di-
vides the predictions into equal-size ranges and codes them by the range
number into which they fall: We use the bpy.colors function of the sp

package to specify a blue-purple-yellow colour ramp.
> require(sp)

Loading required package: sp

> plot(jura.grid$coords, pch=20, asp=1l, cex=.6,

+ col=bpy.colors(256) [cut(surf.l.pred, 256)],
+ xlab="E", ylab="N",
+ main="relative Co concentration")

> grid(col="gray")
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3.4 Evaluation

relative Co concentration

We can evaluate (“validate”) the spline approach with an independent
dataset, here jura.val. Note that the fit was optimized by cross-validation
with the calibration dataset, and we have an estimate of generalized
cross-validation error. But this is an internal validation; if an indepen-
dent dataset is used the validation is external.

TASK 22 : Predict at the validation points and compute the validation
statistics. o

We summarize the results in a SpatialPointsDataFrame provided by
the sp package.

> jura.val$coords <-

+ matrix(c(jura.val$Xloc, jura.val$Yloc), byrow=F, ncol=2)
> surf.l.val <-

+ predict.Krig(surf.1l, jura.val$coords)

> surf.l.val.res <-

+ (jura.val$Co - surf.l.val)

> summary(as.vector(surf.l.val.res))

Min. 1st Qu. Median Mean 3rd Qu. Max .
-5.7150 -1.0350 0.4150 0.3621 1.8520 8.6250

require(sp)
surf.l.val.res.sp <-
SpatialPointsDataFrame(coords = jura.val$coords,
data=data.frame(res=surf.l.val.res))
(rmse.tps <- with(surf.l.val.res.sp@data, sum(resA2)/length(res)))

V + + V V

[1] 6.331696

19



> rmse.tps/median(jura.val$Co)

[1] 0.6293932

> (me.tps <- with(surf.l.val.res.sp@data, sum(res)/length(res)))
[1] 0.3620904

> bubble(surf.1l.val.res.sp, zcol="res", pch=1,

+ main="Residuals from thin-plate spline validation",
+ sub="Co concentration, mg kg-1")

Residuals from thin—plate spline validation

O o
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Co concentration, mg kg-1

There is a slight negative bias (mean of the actual observations at the
evaluation locations is somewhat higher than that of the predictions) and
a high RMSE, compared to the median value of the target variable. There
does not seem to be any spatial pattern to the residuals - it’s just that
the thin-plate spline does not approach some very high or low values.

4 Comparison with a geostatistical approach

A natural question is how this interpolation compares to a geostatistical
approach, e.g., Ordinary Kriging (OK).

TAsK 23 : Compare to OK interpolation. o

OK depends on a model of spatial autocovariance, so we must first select
and parameterize an authorized variogram model of the spatial struc-
ture of the calibration points. This can then be used to krige at the val-
idation points. We use gstat functions for geostatistical analysis; this
package works with objects of class SpatialPointsDataFrame, so we
copy the calibration points and convert with the coordinates function
of the sp package:

> jura.pred.sp <- jura.pred

> coordinates(jura.pred.sp) <- ~Xloc + Yloc

> v <- variogram(Co ~ 1, Toc=jura.pred.sp)

> (vmf <- fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5)))
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mode’ psill range
1 Nug 1.269763 0.000000
2 Pen 12.649771 1.449021

> plot(v, plot.numbers=T, model=vmf,
+ main="Fitted variogram model, Jura Co",
+ xlab="Separation (km)")

Fitted variogram model, Jura Co

semivariance

T T T T
05 1.0 15 20

Separation (km)

We use this model to krige at the validation points:
> jura.val.sp <- jura.val

> coordinates(jura.val.sp) <- ~Xloc + Yloc

> k <- krige(Co ~ 1, loc=jura.pred.sp, newdata=jura.val.sp, model=vmf)

[using ordinary kriging]

We compare the summary statistics with the spline prediction at these

points. First the predictions:
> summary(k$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max .
3.554 7.698 9.978 9.468 11.280 14.090

> summary(as.vector(surf.1l.val))

Min. 1st Qu. Median Mean 3rd Qu. Max.
2.851 7.396 9.896 9.431 11.640 14.570

> summary(k$varl.pred - as.vector(surf.l.val))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.69800 -0.34730 0.06987 0.03719 0.51050 1.52100

The OK prediction has a narrower overall and inter-quartile range; that
is, in this case OK smooths more than splines.

Now the residuals:
> summary(k$res <- (jura.val.sp$Co - k$varl.pred))

Min. 1st Qu. Median Mean 3rd Qu. Max .
-5.5910 -1.2230 0.4242 0.3249 1.7330 8.9510

> summary(as.vector(surf.l.val.res))

Min. 1st Qu. Median Mean 3rd Qu. Max .
-5.7150 -1.0350 0.4150 0.3621 1.8520 8.6250

> summary(k$res - as.vector(surf.l.val.res))
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Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.52100 -0.51050 -0.06987 -0.03719 0.34730 1.69800

We see that the spline residuals have a less extreme maximum but more

extreme minimum.

And finally the validation RMSE and ME:
> (rmse.k <- with(k@data, sum(resA2)/length(res)))

[1] 6.130507

> print(rmse.tps)

[1] 6.331696

> (me.k <- with(k@data, sum(res)/length(res)))

[1] 0.3249007

> print(me.tps)

[1] 0.3620904

In this case OK performs slightly better, probably due to the strong local
spatial structure which can be captured by a reliable variogram model.

The wider IQR and range produced by the TPS were not justified by the
validation data.

To visually compare the predicted fields, we also krige over the grid and
compare the two predictions side-by-side. However first we need to con-
vert them to the same data structure.

TASK 24 : Predict over the interpolation grid by OK. o
> jura.grid.sp <- jura.grid

coordinates(jura.grid.sp) <- ~Xloc + Yloc

gridded(jura.grid.sp) <- TRUE

k <- krige(Co ~ 1, loc=jura.pred.sp, newdata=jura.grid.sp, model=vmf)

vV V V

[using ordinary kriging]

TAsSK 25 : Convert the TPS interpolation to a SpatialPixelsDataFrame.

We use the existing SpatialPixelsDataFrame just produced by kriging,
and add the TPS prediction to it as a data field. Note the structure of the
data vector is identical, since both predictions were over the same grid.
> class (k)

[1] "SpatialPixelsDataFrame"

attr(, "package™)
[1] "sp"

> k$tps.pred <- surf.l.pred
> str(k)

Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots

..@ data :'data.frame': 5957 obs. of 3 variables:
. ..%$ varl.pred: num [1:5957] 8.88 8.8 9.04 8.71 8.99 ...
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..$ varl.var : num [1:5957] 9.7 8.84 8.87 7.89 7.96 ...
..$ tps.pred : num [1:5957, 1] 6.95 6.98 7.33 7.04 7.43 ...
..@ coords.nrs : int [1:2] 1 2
..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots
..@ cellcentre.offset: Named num [1:2] 0.3 0.1
..- attr(x, "names")= chr [1:2] "Xloc" "Yloc"

..@ cellsize : Named num [1:2] 0.05 0.05
.. ..- attr(x, "names")= chr [1:2] "Xloc" "Yloc"
..@ cells.dim : Named int [1:2] 97 117

..- attr(x, "names")= chr [1:2] "Xloc" "Yloc"

..@ grid.index : int [1:5957] 8149 8150 8053 8151 8054 7957 7860 7763 7375 7278 ...

..@ coords : num [1:5957, 1:2] 0.3 0.35 0.35 0.4 0.4 0.4 0.4 0.4 0.4 0.4 ...
..- attr(x, "dimnames")=List of 2
..%$ : chr [1:5957] "1™ "2" "3" "4" ..
e v ..$ : chr [1:2] "Xloc" "Yloc"
..@ bbox : num [1:2, 1:2] 0.3 0.1 5.1 5.9
..- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "Xloc" "Yloc"
. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
..@ projargs: chr NA

TASK 26 : Display the two interpolations side-by-side. .

+ V + VYV +V

zlim <- c(floor(min(k$varl.pred, k$tps.pred)),
ceiling(max(k$varl.pred, k$tps.pred)))
ats <- seq(zlim[1], z1im[2], Tength=256)
spplot(k, zcol="varl.pred", col.regions=bpy.colors(256), at=ats,
main="Co concentration, mg kg-1", sub="0OK")
spplot(k, zcol="tps.pred", col.regions=bpy.colors(256), at=ats,
main="Co concentration, mg kg-1", sub="TPS")

Co concentration, mg kg-1 Co concentration, mg kg-1
F =

16

14

12

10

OK TPS
TASK 27 : Display the differences between the two predictions. .
> summary (k$diff <- k$tps.pred - k$varl.pred)
vl
Min. 1-2.525298

Ist Qu.:-0.417421
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Median :-0.031525

Mean : 0.009275
3rd Qu.: 0.376290
Max . : 5.719727

> spplot(k, zcol="diff", col.regions=terrain.colors(64),
+ main="Difference, TPS-OK", sub="Co, mg kg-1")

Difference, TPS-OK

Co, mg kg-1

The spline predicts considerably higher values in the extreme south and
to a lesser extent along the NE edge. It predicts somewhat lower at some
“basins” in the interior.

5 Considerations for using thin-plate spline interpolation

A few studies [e.g. 4, 24] have compared TPS or similar radial basis func-
tion methods to kriging.

An early analysis of splines vs. kriging is from Dubrule:

“Spline interpolation is equivalent to kriging with fixed co-
variance and degree of polynomial trend. Usually kriging is
performed in two steps, a structural analysis, which fits a co-
variance and a degree of trend to the variable under study,
then the interpolation itself, which uses the results of the
structural analysis. With spline interpolation, no preliminary
structural analysis is performed. The covariance and degree
of trend do not depend on the variable under study. This
should result in a loss of accuracy of splines compared to
kriging.”

“[S]plines and kriging are two methods which should be used
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alternately, depending on what one wants to obtain. If the
map is going to be used for future calculations, one needs
accuracy; kriging is good in this situation. If one wants to
quickly obtain a clear map showing the main features of the
variable, splines are a good tool.” [4]

“Kriging, by minimizing the estimation variance, is designed
to provide estimates which are as close as possible to the ac-
tual values. Spline interpolation, by minimizing the total cur-
vature, is designed to provide maps which have nice cosmetic
properties.” [5]

Smoothing splines do not take into account the spatial structure of the
target variable; they just use its values to fit the radial basis functions.
If the roughness penalty A is optimized by cross-validation, the spatial
structure of the target variable is implicitly considered but not explicitly
modelled.

Since no model is needed, one could consider an advantage of smooth-
ing splines that there is no need to model regional trends or local spa-
tial structure; and further than this structure can vary across the field.
Thus there is no assumption of either first- or second-order stationar-
ity, and no need to model. This may be especially attractive if there
are not enough observations to reliably estimate a variogram. However,
estimating the optimal roughness penalty is also problematic with few
observations.

Note: Another approach to relaxing stationarity assumption is moving-
window kriging [20] as implemented by the VESPER computer program
[14]; however this requires a dense network of observations and is best-
suited to precision agriculture.

A clear disadvantage of splines is that we can not interpret a model of
spatial structure (whether a trend surface or local autocorrelation), we
can only predict. Such a model is often interesting to reveal the spatial
process which is presumed to have produced the observations; for exam-
ple in ecology or soil science this can suggest hypotheses of processes
over the landscape.

Further, there is no internal measure of prediction error, equivalent to
the kriging prediction variance; this is because there is no knowledge of
the target variable’s spatial structure. So spline predictions can only be
assessed from an independent dataset or (somewhat) by cross-validation.

In summary, splines have a place in the analyst’s toolkit for a fast method
to visualize the main features of a spatial dataset (1D or 2D) and to make
spatial predictions, but they are not suitable for spatial analysis.
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