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“One day of cold weather is not enough to freeze ice three feet

thick!” – Chinese proverb

This tutorial gives an overview of spatial point-pattern analysis. This con-
siders the distribution of one or more sets of points in some bounded region
as possibly being the result of some stochastic process which produces a fi-
nite number of “events” or “occurrences”. Examples are a forest plot with
the locations of individual trees, a microscope slide with the locations of in-
dividual cell centres, and a municipal boundary with point pollution sources.
These may be viewed as pure point-patterns (just the locations) but some-
times attributes are included in the analysis; for example, the size or species
of a tree in the forest plot.

After completing this exercise you should be able to:

1. Display spatial point patterns;

2. Analyze single spatial point patterns with the F, G, K and L functions;

3. Compute a kernel density of an inhomogeneous point pattern;

4. Analyze interactions between two point patterns with the K and L
functions;

5. Model spatial point patterns as realizations of a spatial data generating
process (sDGP) including both trend and interaction components, and
evaluate model success.

6. Predict over an areas based on a fitted model.

The theory behind point-pattern analysis is comprehensively presented in
the text of Diggle [7]. An accessible and less technical introduction is Boots
and Getis [4]. Bivand et al. [3, Ch. 7] present worked examples in the context
of R processing. Here we work through some of the main ideas only. Some
of the code here is adapted from that chapter. Illian et al. [8] present a
computational framework for fitting complex spatial point process models
using a recently-developed methodology known as INLA.

Point-pattern analysis is based on theories of point processes. A modern
review article is by Møller and Waagepetersen [11].

We will consider two kinds of properties of point patterns:

� First-order: considering points as individuals, no interaction, over the
whole region. An example is the spatial density, which is taken as the
indication of the intensity of the process that gave rise to the PPA;

� Second-order: considering interactions between marked sets of points,
e.g., their tendency to cluster or repel. An example is bird nests of two
different species in the same area.

In addition, we will attempt (§7) to model the presumed spatial data gener-
ating process.
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Note: The code in these exercises was tested with Sweave [9, 10] on R version
3.6.3 (2020-02-29), sp package Version: 1.4-1, splancs package Version: 2.01-
40, lattice package Version: 0.20-41, and spatstat package Version: 1.63-3
running on Mac OS X 10.10.12. So, the text and graphical output you see
here was automatically generated and incorporated into LATEX by running the
code through R and its packages. Then the LATEX document was compiled
into the PDF version you are now reading. Your output may be slightly
different on different versions and on different platforms.

1 Examining some point patterns

Supplementary reading:

� Bivand et al. [3, §7.2]: R packages relevant for spatial point-pattern
analysis.

We use the same examples as Bivand et al. [3, Ch. 7]: location of cell cen-
tres in a microscope slide (“Cells”); locations of Japanese black pine saplings
(“Japanese”); and locations of saplings of California redwood trees (“Red-
wood”).

Task 1 : Load the Japanese pines example dataset japanesepines and
summarize it. •

These are examples in the spatstat package and are provided in a suitable
format, namely as objects of R class ppp, a “planar point pattern”.

> require(spatstat)

> data(japanesepines)

> class(japanesepines)

[1] "ppp"

> str(japanesepines)

List of 5

$ window :List of 4

..$ type : chr "rectangle"

..$ xrange: num [1:2] 0 1

..$ yrange: num [1:2] 0 1

..$ units :List of 3

.. ..$ singular : chr "metre"

.. ..$ plural : chr "metres"

.. ..$ multiplier: num 5.7

.. ..- attr(*, "class")= chr "unitname"

..- attr(*, "class")= chr "owin"

$ n : int 65

$ x : num [1:65] 0.09 0.29 0.38 0.39 0.48 0.59 0.65 0.67 0.73 0.79 ...

$ y : num [1:65] 0.09 0.02 0.03 0.18 0.03 0.02 0.16 0.13 0.13 0.03 ...

$ markformat: chr "none"

- attr(*, "class")= chr "ppp"

> summary(japanesepines)
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Planar point pattern: 65 points

Average intensity 65 points per square unit (one unit = 5.7 metres)

Coordinates are given to 2 decimal places

i.e. rounded to the nearest multiple of 0.01 units

(one unit = 5.7 metres)

Window: rectangle = [0, 1] x [0, 1] units

Window area = 1 square unit

Unit of length: 5.7 metres

Note: Notice that the ppp class has a structure that, according to the authors
of the spatstat package, facilitates point-pattern analysis. Of course it has
the coordinates (fields x and y) and the number of points (field n), but it also
defines a window (field window) as a list of four characteristics: the shape,
the limiting coordinates, and the units of measure. This field is of class owin.

Q1 : How many trees are represented by this point pattern? Jump to A1
•

Q2 : What is the area covered by this point pattern? Jump to A2 •

Task 2 : Plot the locations of the trees. •

The generic plot method specializes to plot.ppp for an object of class ppp:

> plot(japanesepines, main = "Locations of Japanese pine trees",

axes = T)

> grid()
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Q3 : Does this pattern look completely random, clustered, or regular?
Jump to A3 •

Task 3 : Load the other two example datasets redwoodfull and cells;
view the spatial distribution of all three on one graph. •

> data(redwoodfull)

> data(cells)

To plot all three patterns together, we could repeat the plot.ppp command
on each pattern separately; but it is more elegant to make a single data
frame with the coordinates of the points, each labelled by its pattern name,
and use the xyplot function of the lattice package. This uses a model
formula to specify scatterplots, conditioned on a factor; so we need to build
a data frame with three columns: the two coördinates and the name of the
pattern.

We begin by converting the ppp objects to sp objects, using the generic
conversion method as, specialized to convert from ppp to sp (and vice-versa)
by methods loaded with the maptools package:

> require(sp)

> require(maptools)

> spjpines <- as(japanesepines, "SpatialPoints")

> summary(spjpines)

Object of class SpatialPoints

Coordinates:

min max

[1,] 0 5.7

[2,] 0 5.7
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Is projected: NA

proj4string : [NA]

Number of points: 65

> spred <- as(redwoodfull, "SpatialPoints")

> summary(spred)

Object of class SpatialPoints

Coordinates:

min max

[1,] 0 1

[2,] 0 1

Is projected: NA

proj4string : [NA]

Number of points: 195

> spcells <- as(cells, "SpatialPoints")

> summary(spcells)

Object of class SpatialPoints

Coordinates:

min max

[1,] 0 1

[2,] 0 1

Is projected: NA

proj4string : [NA]

Number of points: 42

Q4 : What has happened to the bounding box, as the object was converted
from ppp to sp? Jump to A4 •

The cells and redwoods are defined on a unit square; we are not told the
true size of the bounding box. However, the pines did have a size, namely
5.7 m by 5.7 m1. To visualize these patterns on the same scale, we have
to convert the spjpines sp object to the unit square. We do this with the
elide method of the maptools package, which is designed to disguise true
coordinates in cases where the location in the real world would compromise
privacy.2 The scale argument scales the coördinate with the wider spread
to [0 . . .1]

> spjpines1 <- elide(spjpines, scale = TRUE, unitsq = TRUE)

We now build a single data frame, using the data.frame function, to join
the three SpatialPoints objects “vertically” into the data frame using the
rbind “row bind” function. We use the coordinates method to extract the
coordinates from the sp object as two columns:

> spall <- data.frame(

rbind(coordinates(spjpines1),

1 ?japanesepines
2“Elide” is defined in the OED as “To strike out, suppress, pass over in silence”, and in

grammar “to omit a vowel, or syllable in pronunciation”.
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coordinates(spred),

coordinates(spcells)))

We now add a third column to the data frame with the cbind “column bind”
function. This column contains the factor name, which is repeated (using
the rep function) for the number of rows (using the nrow function) of each
pattern:

> spall <- cbind(spall,

c(rep("JAPANESE",nrow(coordinates(spjpines1))),

rep("REDWOOD", nrow(coordinates(spred))),

rep("CELLS", nrow(coordinates(spcells))))

)

Finally, we name the three columns of the data frame, using the names

function:

> names(spall) <- c("x", "y", "dsn")

The xyplot function of the lattice package uses the model formula y ~ x

to specify scatterplots where y is the y-axis variable and x the x-axis, and
used the vertical bar | formula operator to specify that the plot is conditioned
on a factor, written to its right. Here the conditioning factor is the data set
name:

> require(lattice)

> print(xyplot(y ~ x | dsn, data = spall, pch = 19, aspect = 1))
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Q5 : Are there differences in the point patterns? Which pattern(s) look
completely random, clustered, or regular? Jump to A5 •

2 Assessing complete spatial randomness: the G function

Supplementary reading:

� Bivand et al. [3, §7.3]: Preliminary Analysis of a Point Pattern

A suitable null hypothesis for SPPA is that there is no pattern, i.e., the points
are distributed at random; this is known as Complete Spatial Randomness
(abbreviation CSR). Assuming CSR we can compute several expected dis-
tributions of the points:

� The G function: the distribution of the distances from an arbitrary
observed point to its nearest neighbour; expressed as the cumulative
distribution function G(r) of the proportion of points that have at
least one neighbour within a distance r . Formally:

di = min
j
{dij ,∀j 6= i ∈ S}, i = 1, . . . , n (1)

Ĝ(r) = {#di : di ≤ r ,∀i}
n

(2)
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� The F function: the distribution of the distances from an arbitrary
location in the plane to its nearest observation; this is sometimes called
the empty space function: it measures the average empty space between
observed points. This is examined in §5, below.

A homogeneous Poisson process (HPP) is a process on the “landscape” by
which points (occurrences, events . . . ) are produced at specific locations,
and in which the points are independently and uniformly distributed over a
given region. Thus the location of one point does not affect the location of
other points; so another point can be anywhere. There are no clusters and
no “empty” sub-regions, except by chance.

A homogeneous Poisson process with known intensity (a first-order prop-
erty), conventionally called λ, will produce a CSR pattern, with the statis-
tical properties:

G(r) = F(r) = 1− exp{−λπr2} (3)

where r is the distance, and λ is the mean number of points per unit area,
in the given distance units; it is also called the intensity of the process.

In this section we examine the G function, also known as the nearest-
neighbour-distance distribution function. It is easily interpretable as the
distance one must travel from any observation, to find at least one other
observation. It is “short-sighted”, since it only considers the nearest neigh-
bour, and so gives no information about behaviour at long distances. It is
a point-related function, i.e., computed from each point in the pattern. As
such it gives no information about empty space; for that see the F function
(§5), which is a location-related function

Task 4 : Compute and display the empirical vs. theoretical G function for
the Japanese pines. •

The Gest function of the spatstat package computes this function on an
object of class ppp, so we must first convert the class with the as method.

> G <- Gest(as(spjpines1, "ppp"))

> class(G)

[1] "fv" "data.frame"

> summary(G)

r theo han rs

Min. :0.0000 Min. :0.000 Min. :0.000 Min. :0.000

1st Qu.:0.0594 1st Qu.:0.513 1st Qu.:0.519 1st Qu.:0.458

Median :0.1187 Median :0.944 Median :0.970 Median :0.970

Mean :0.1187 Mean :0.738 Mean :0.735 Mean :0.722

3rd Qu.:0.1781 3rd Qu.:0.998 3rd Qu.:1.000 3rd Qu.:1.000

Max. :0.2374 Max. :1.000 Max. :1.000 Max. :1.000

km hazard theohaz

Min. :0.000 Min. : 0.0 Min. : 0.0

1st Qu.:0.478 1st Qu.: 0.0 1st Qu.:24.2

Median :0.958 Median : 0.0 Median :48.5
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Mean :0.723 Mean : 13.3 Mean :48.5

3rd Qu.:1.000 3rd Qu.: 0.0 3rd Qu.:72.7

Max. :1.000 Max. :1494.6 Max. :97.0

The returned object has fields for the distance (r), the theoretical value of
G(r) (theo), and four variants of an empirical estimate of G. These differ
in how edge effects are accounted for; see ?Gest for an explanation of the
options.

Note: The “edge effect” occurs because any points produced by the spatial
process but outside the window can not be observed. If not accounted for
there is bias, because points near the edge may well have a nearer neighbour
outside the window, but since that is not observed, we can not compute the
distance to it. So, we presume there are such unobserved points, and they
are“similarly”distributed as the ones we observe; statisticians have proposed
various ways to implement this “similarity”.

The plot method specializes to plot.fv, to handle the returned object of
class fv; this is just a convenient structure for this sort of plot.

> plot(G, main = "G-function, Japanese pines")
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This graph can be interpreted as follows:

� r -axis: the distance away from an arbitrary point;

� G(r)-axis: the G function, namely, he proportion of points that have
at least one neighbour within a distance r .

The default graph does not quite show the whole empirical function, i.e.,
where G(r) = 1, so we re-draw and specify the radius limits explicitly:

> plot(G, xlim = c(0, 0.16), main = "G-function, Japanese pines")
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Note that at 0.16 the expected value of G(r) is:

> 1 - exp(-japanesepines$n * pi * (0.16)^2)

[1] 0.99463

This is of course an asymptotic function, so never reaches 1; the empirical
function does.

Q6 :

(a) What is the distance across the unit square at which at least 95% of the
points have at least one neighbour within that distance, according to the
“reduced sample” (rs), also called “border”, method of edge correction?

(b) What proportion of points have at least one neighbour within 0.05 units?
Jump to A6 •

To answer this questions, we can make a visual estimate from the graph,
or look inside the object; field r is the radius and rs is the reduced-sample
estimate of G(r). The selection function which picks out the entries meeting
the required condition, and the min “minimum” function finds the first one
in the list. For example, we can find the radius at which at least 95% of the
points have at least one point within that threshold

> G$r[min(which(G$rs >= 0.95))]

[1] 0.11687

> G$rs[min(which(G$r >= 0.05))]

[1] 0.38776

Q7 : How closely do the four variants of the empirical G function match the
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theoretical G function for this intensity? Note this last is marked Gpois(r)
on the graph; the estimates are marked (Ĝ)method(r). Jump to A7 •

Another way to look at this is as expected vs. actual, which should be a 1:1
relation.

Task 5 : Plot the actual reduced-sample estimate against the theoretical
value of G(r). •

> plot(G, cbind(rs,theo) ~ theo,

main="G-function, Japanese pines")
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Here both axes are values of G(r); the radius r is not shown.

Q8 : How closely does the empirical match the theoretical? Jump to A8 •

Task 6 : Compute the G function and plot it for the other two datasets. •

First the Redwood trees:

> ## 2 : example of clustered pattern?

> G.clust <- Gest(as(spred, "ppp"))

> par(mfrow=c(1,2))

> plot(G.clust, cbind(rs,theo) ~ r,

main="G-function, Redwood trees")

> plot(G.clust, cbind(rs,theo) ~ theo,

main="G-function, Redwood trees")

> par(mfrow=c(1,1))
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Q9 : Describe and interpret the differences between this G function and
that for the Japanese pines. Jump to A9 •

Now the cells:

> ## 3 : example of dispersed / regular pattern?

> G.disp <- Gest(as(spcells, "ppp"))

> par(mfrow=c(1,2))

> plot(G.disp, cbind(rs,theo) ~ r,

main="G-function, cells")

> plot(G.disp, cbind(rs,theo) ~ theo,

main="G-function, cells")

> par(mfrow=c(1,1))
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Q10 : Describe and interpret the differences between this G function and
that for the Japanese pines. Jump to A10 •

So far we have formed subjective opinions about which patterns are consis-
tent with CSR. There is no formal test; the way this is assessed is to form an
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envelope of how the empirical G function would look, under the null hypoth-
esis of CSR and with the observed homogeneous intensity. This envelope is
computed by a large number of simulations of the Poisson point process
that gives rise to CSR. Each realization will be a bit different, because it’s a
discrete simulation, not the theoretical curve. Then the envelope is plotted
along with the actual empirical G function, and we can see if it is contained
inside, and if not, at what points it diverges.

Q11 : Would simulations be more or less variable as the intensity of the
process increases? Jump to A11 •

Task 7 : Compute an envelope for the G function of the Japanese pines,
and plot it along with the observed empirical G function. •

The envelope function of the spatstat package computes this for an object
of class ppp. Arguments include the object, the function name (here, Gest),
the radii at which to compute point-wise envelopes, the rank of the envelope
value among the simulated values, and the number of simulations.

Note: The nrank argument controls the width of the envelope. A low
value, such as the default nrank=1, uses the extreme values (minimum and
maximum) of the simulated distributions as the envelope; this is the widest
and most conservative with respect to rejecting the null hypothesis of CSR.
Using a higher rank corresponds roughly to setting the one-sided α for a
t-test. In this case we have 99 simulations; so using nrank=2 is excluding
the single maximum and minimum at each point, thereby narrowing the
envelope. This is roughly equivalent to one-sided α = (1−(2/99)) = 0.9798,
i.e., two-sided α ≈ 96% confidence level considering both minimum and
maximum.

We try to simulate out to the radius where the empirical G(r) = 1. Also,
we use the set.seed function to initialize the random number generator, so
your results match ours. If we did not specify a large enough radius in the
previous step, the G function may not reach 1, so we specify a somewhat
smaller ending radius.

Note: The argument to set.seed is arbitrary, it has no meaning.

> set.seed(30)

> rmax.jap <- G$r[min(which(G$rs > 0.98))]

> r <- seq(0, rmax.jap, by = 0.005)

> envjap <- envelope(as(spjpines1, "ppp"), fun=Gest,

r=r, nrank=2, nsim=99, verbose=F)

> plot(envjap, xlim=c(0, rmax.jap),

main="Japanese pines, G-function envelope")
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Ĝlo(r)

Q12 : Is the empirical G function within the envelope throughout? Can we
reject the null hypothesis of CSR? Jump to A12 •

Task 8 : Compute and plot the G function envelopes for the other two
datasets. •

The maximum radius at which a point is encountered varies considerably;
here we show each one with its own maximum:

> rmax.red <- G.clust$r[min(which(G.clust$rs > 0.98))]

> r <- seq(0, rmax.red, by = 0.005)

> envred <- envelope(as(spred, "ppp"), fun = Gest, r = r,

nrank = 2, nsim = 99, verbose = F)

> rmax.cell <- G.disp$r[min(which(G.disp$rs > 0.98))]

> r <- seq(0, rmax.cell, by = 0.005)

> envcells <- envelope(as(spcells, "ppp"), fun = Gest,

r = r, nrank = 2, nsim = 99, verbose = F)

> par(mfrow=c(1,2))

> plot(envred, xlim=c(0, rmax.red),

main="Redwood trees, G-function envelope")

> plot(envcells, xlim=c(0, rmax.cell),

main="Cells, G-function envelope")

> par(mfrow=c(1,1))
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Q13 : Describe and interpret the differences between the envelopes for these
G functions and that for the Japanese pines. Jump to A13 •

3 Kernel density estimation

Supplementary reading:

� Bivand et al. [3, §7.4.1–3]: Statistical Analysis of Spatial Point Pro-
cesses

An important question is whether the stochastic point-process is homoge-
neous (the same across the whole area) or inhomogeneous. Equivalently, is
the intensity of the process the same everywhere? If not, we assume an in-
homogeneous Poisson process (IPP), so that a single intensity λ describing
the Poisson process is replaced by a spatial function λ(x), where x is the
spatial position. The question then arises: what is the spatial function of
the density?

Note: The assumption of homogeneity is often not realistic, from what
we know about the process. For example, environmental factors favour some
sub-areas over others for occurrence of a given tree species3, so that the point-
process by which a species is located can not be assumed to be homogeneous.
However, the other assumption of the Poisson process still holds: given an
intensity, events are independent and uniformly distributed.

Naturally, this depends on the scale at which we examine it. At broad scales,
all points are taken together and the process is by definition homogeneous;
at fine scales, very small neighbourhoods are considered and random fluc-
tuations can lead to different intensity estimates. In other words, a small
bandwidth will lead to a “spiky” map, whereas a large bandwidth will lead
to a smooth map – which one best represents the (in)homogeneity of the
point process? This is the bandwidth problem.

3 E.g., the eastern hemlock (Tsuga canadensis) grows by preference in moist, shallow soils
on hillsides, whereas beech (Fagus spp.) prefers well-drained hilltop positions
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Among the proposals for selecting a bandwidth, a simple and effective one
is from Berman and Diggle [2]. It is based on minimization of the mean
square error (MSE) of the kernel smoothing estimator when compared to
actual values, and has been implemented as function mse2d of the splancs

“Spatial and Space-Time Point Pattern Analysis” package by Rowlingson
and Diggle.

We apply this to the Redwood data, because we suspect from the previous
section that these trees are clumped, so we should get a different process
intensity over the area – some “holes” with low intensity, some “clumps”
with high.

Task 9 : Compute the optimal bandwidth for the kernel density estimator
for the Redwood dataset. •

The mse2d function expects a set of points, so we extract these from the sp

object with the coordinates method; this returns a list of (x,y) points.
This function takes as arguments (1) the points, (2) a bounding polygon,
(3) the number of steps at which to compute the MSE, (4) the maximum
bandwidth at which to compute the MSE. In this case we choose to compute
from [0 . . .0.1] (i.e., 1/10 of the bounding polygon in each dimension) in 100
steps.

> require(splancs)

> str(coordinates(spred))

num [1:195, 1:2] 0.931 0.939 0.935 0.98 0.787 ...

- attr(*, "dimnames")=List of 2

..$ : NULL

..$ : chr [1:2] "mx" "my"

> mse <- mse2d(pts=coordinates(spred),

poly=as.points(list(x=c(0,1,1,0),

y=c(0,0,1,1))),

nsmse=100,

range=0.1)

> (bw <- mse$h[which.min(mse$mse)])

[1] 0.04

Task 10 : Graph the MSE vs. bandwidth. •

> plot(mse$h, mse$mse, xlab = "Bandwidth", ylab = "MSE",

type = "l", ylim = c(-2, 30))

> grid()

> i <- which.min(mse$mse)

> points(mse$h[i], mse$mse[i], pch = 20, cex = 2)
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Note that the minimum value of MSE is on a very flat part of the MSE vs.
bandwidth curve, so the selected bandwidth is only barely “optimal”.

The next question is the shape of the kernel. This is a function of the
two coordinates, providing a smooth 2D surface with highest probability of
finding a point at the centre and smoothly decreasing probability away from
it. The default used by spkernel2d is the quartic kernel:

κ(u) =
{

3
π (1− ||u||2)2 if u ∈ (−1,1)

0 otherwise
(4)

where ||u||2 = u2
1 +u2

2, i.e., the squared norm, centred on the point to be
estimated. Thus there is an inverse-square decrease in density outward from
a point, to zero outside the unit circle; the “unit” is set by the bandwidth h,
hence its importance:

u = ||x − xi||/h (5)

Although the kernel conceptually is spatially continuous, in practice it is
computed at many points over a fine grid and displayed as a raster “image”.

Task 11 : Plot the kernel density of the Redwoods dataset with the selected
bandwidth. •

The kernel density, calculated by the spkernel2d function of the splancs

package, takes the following arguments:

1. an sp object from which points can be extracted by the coordinates

method;

2. one or more splancs polygons;

3. the bandwidth;

4. an object of class GridTopology; the kernel is evaluated at each grid
intersection.

It returns returns a vector of kernel values in the order required by the data

slot of a SpatialGridDataFrame object.
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In the present case we make a single polygon, from the boundary as a list of
coordinates (0,0), (0,1), (1,1), (1,0):

> poly <- as.points(list(x = c(0, 0, 1, 1), y = c(0, 1,

1, 0)))

Within this boundary we make a grid over which to apply the kernel, an
object of class GridTopology, using the GridTopology method:

> grd <- GridTopology(cellcentre.offset = rep(0.005, 2),

cellsize = rep(0.01, 2), cells.dim = rep(100, 2))

> str(grd)

Formal class 'GridTopology' [package "sp"] with 3 slots

..@ cellcentre.offset: num [1:2] 0.005 0.005

..@ cellsize : num [1:2] 0.01 0.01

..@ cells.dim : int [1:2] 100 100

Now we can compute the kernel with various bandwidths: the “optimum”
computed above and several multiples; we combine these as four fields of one
SpatialGridDataFrame.

> k0 <- spkernel2d(spred, poly, h0 = bw * 0.8, grd)

> k1 <- spkernel2d(spred, poly, h0 = bw, grd)

> k2 <- spkernel2d(spred, poly, h0 = bw * 1.2, grd)

> k3 <- spkernel2d(spred, poly, h0 = bw * 2, grd)

> kernels <- SpatialGridDataFrame(grd, data = data.frame(k0 = k0,

k1 = k1, k2 = k2, k3 = k3))

> summary(kernels)

Object of class SpatialGridDataFrame

Coordinates:

min max

[1,] 0 1

[2,] 0 1

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 0.005 0.01 100

2 0.005 0.01 100

Data attributes:

k0 k1 k2 k3

Min. : 0.0 Min. : 0.0 Min. : 0.0 Min. : 0.0

1st Qu.: 0.0 1st Qu.: 0.0 1st Qu.: 11.6 1st Qu.: 88.1

Median : 22.3 Median : 90.7 Median : 130.0 Median :165.1

Mean : 196.1 Mean : 196.5 Mean : 197.1 Mean :200.0

3rd Qu.: 284.0 3rd Qu.: 271.3 3rd Qu.: 263.2 3rd Qu.:256.2

Max. :2200.1 Max. :1750.9 Max. :1398.3 Max. :937.7

Q14 : What happens to the kernel density (intensity) statistics as the
bandwidth increases? Jump to A14 •
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Finally, these can all be graphed with the spplot method. We first visualize
as continuous fields:

> gp <- grey.colors(5, 0.9, 0.45, 2.2)

> print(spplot(kernels,

at=seq(0,max(k0,k1,k2,k3),length.out=22),

col.regions=colorRampPalette(gp)(21),

names.attr=c(

paste("Bandwidth=",bw*.8, " (optimum*.8)", sep="", collapse=""),

paste("Bandwidth=",bw, " (optimum)",sep="", collapse=""),

paste("Bandwidth=",bw*1.2, " (optimum*1.2)",sep="", collapse=""),

paste("Bandwidth=",bw*2, " (optimum*2)", sep="", collapse="")

)))

Bandwidth=0.032 (optimum*.8) Bandwidth=0.04 (optimum)

Bandwidth=0.048 (optimum*1.2) Bandwidth=0.08 (optimum*2)

0

500

1000

1500

2000

We can emphasize the pattern by adding contours at the same intervals as the
grey scale, using the optional contour argument to the spplot method. Af-
ter some experimentation we reduce the number of intervals from 22 (above)
to 12, to avoid too-dense contours:

> gp <- grey.colors(5, 0.9, 0.45, 2.2)

> print(spplot(kernels, at = seq(0, max(k0, k1, k2, k3),

length.out = 12), col.regions = colorRampPalette(gp)(11),

contour = T, names.attr = c(paste("Bandwidth=", bw *

0.8, " (optimum*.8)", sep = "", collapse = ""),

paste("Bandwidth=", bw, " (optimum)", sep = "",

collapse = ""), paste("Bandwidth=", bw *

1.2, " (optimum*1.2)", sep = "", collapse = ""),
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paste("Bandwidth=", bw * 2, " (optimum*2)", sep = "",

collapse = ""))))

Bandwidth=0.032 (optimum*.8) Bandwidth=0.04 (optimum)

Bandwidth=0.048 (optimum*1.2) Bandwidth=0.08 (optimum*2)

0

500

1000

1500

2000

Q15 : Describe the trend in kernel density as the bandwidth increases. Does
the “optimum” found by minimizing the MSE seems to give the “best” view
of the varying intensity of the point process that is assumed to be causing the
Redwood point pattern ? (Hint: compare with the point pattern). Jump
to A15 •

4 Second-order properties: the K function

Supplementary reading:

� Bivand et al. [3, §7.4.5]: Second-order properties

A second-order property of a point process refers to the interactions be-
tween points4. Examples are clustering (attraction) or competition (repul-
sion), with obvious ecological interest. Below (§6.2) we examine interactions
between two types of points; here we consider one type of points, but at any
distances. The F and G functions are “short-sighted”, they only consider
nearest neighbours to an arbitrary point or location, respectively. Here we
consider any radius from an arbitrary point.

4 Recall: the first-order property refers to properties at a single point, e.g., the intensity
of the process
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Ripley [12] proposed a K function for quantifying second-order properties
for a HPP. It counts the number of points within a given distance of a point,
and is defined as:

K(s) = λ−1E[N0(s)] (6)

where E[.] is the expectation and N0(s) is the number of points found within
radius s of point x0 (an arbitrary point of the point pattern). This expec-
tation is computed as:

K̂(s) = (n(n− 1))−1|A|
n∑
i=i

∑
j 6=i
w−1
ij · xj : d(xi, xj) ≤ s (7)

where the radius d(xi, xj) is the distance between two points, and the
weights wij are the proportion of the area inside region A, of size |A|, of the
circle centred on the target point xi. The term (n(n−1))−1 normalizes for
the total number of point-pairs.

For the HPP, we have K(s) = πs2, i.e., the area of a circle with radius s.
If K(s) is greater, this indicates clustering, i.e., more points than expected
with the radius; the inverse indicates a regular (dispersed) process.

Task 12 : Compute and graph the K function for the three example datasets.
•

We use the Kest function of the spatstat package:

> Kjap <- Kest(as(spjpines1, "ppp"))

> Kred <- Kest(as(spred, "ppp"))

> Kcells <- Kest(as(spcells, "ppp"))

> par(mfrow = c(1, 3))

> plot(Kjap, main = "Japanese pines")

> plot(Kred, main = "Redwoods")

> plot(Kcells, main = "Cells")

> par(mfrow = c(1, 1))
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As with the G function, there are several border corrections; see help(Kest)
for details.

Q16 : Do these graphs provide evidence of second-order CSR, clustering,
or dispersion? Jump to A16 •

We can also compute a simulation envelope for the K function, in the same
manner as for the G function.

Task 13 : Compute and graph simulation envelopes for the K function, for
the three example datasets. •

We choose to display these to a radius that is 1/3 across the diagonal of the
unit bounding box.

> r <- seq(0, sqrt(2)/6, by = 0.005)

> envjap <- envelope(as(spjpines1, "ppp"), fun = Kest,

r = r, nrank = 2, nsim = 99, verbose = F)

> envred <- envelope(as(spred, "ppp"), fun = Kest, r = r,

nrank = 2, nsim = 99, verbose = F)

> envcells <- envelope(as(spcells, "ppp"), fun = Kest,

r = r, nrank = 2, nsim = 99, verbose = F)

> par(mfrow = c(1, 3))

> plot(envjap, main = "Japanese pines, K-function envelope")

> plot(envred, main = "Redwood trees, K-function envelope")

> plot(envcells, main = "Cells, K-function envelope")

> par(mfrow = c(1, 1))
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These envelopes confirm the interpretations.

4.1 The L function: a linearized K function

A linear version of K may be easier to interpret; therefore Besag proposed a
function L(r) =

√
K(r)/π . All this does is linearize the expected value, so

it appears on the plot as a straight line,
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Task 14 : Compute and plot the L function and their envelopes for the
three patterns. •

> r <- seq(0, sqrt(2)/6, by = 0.005)

> envjap <- envelope(as(spjpines1, "ppp"), fun = Lest,

r = r, nrank = 2, nsim = 99, verbose = F)

> envred <- envelope(as(spred, "ppp"), fun = Lest, r = r,

nrank = 2, nsim = 99, verbose = F)

> envcells <- envelope(as(spcells, "ppp"), fun = Lest,

r = r, nrank = 2, nsim = 99, verbose = F)

> par(mfrow = c(1, 3))

> plot(envjap, main = "Japanese pines, L-function envelope")

> plot(envred, main = "Redwood trees, L-function envelope")

> plot(envcells, main = "Cells, L-function envelope")

> par(mfrow = c(1, 1))
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4.2 * Modifying the window

Recall that an object of class ppp includes a window of class owin, that
defines the window in which the point-pattern is evaluated. Suppose we
want to only evaluate the point-pattern in some smaller area. To do this, we
can create a new window with the owin function, and then use it to extract
just those points that fall in the window.

Task 15 : Create a window covering the upper left-hand (NW) quadrant of
the Japanese pines point-pattern. Extract just the Japanese pines points in
this window and plot them. •

We use the owin function to specify the new window, and then the inside.owin
logical function to determine which points are in the new window. We then
use the logical vector to select the points in the new window, and save these
as a new point pattern.

> str(japanesepines, max.level = 1)
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List of 5

$ window :List of 4

..- attr(*, "class")= chr "owin"

$ n : int 65

$ x : num [1:65] 0.09 0.29 0.38 0.39 0.48 0.59 0.65 0.67 0.73 0.79 ...

$ y : num [1:65] 0.09 0.02 0.03 0.18 0.03 0.02 0.16 0.13 0.13 0.03 ...

$ markformat: chr "none"

- attr(*, "class")= chr "ppp"

> print(japanesepines$window)

window: rectangle = [0, 1] x [0, 1] units (one unit = 5.7 metres)

> (window.nw <- owin(xrange = c(0, 0.5), yrange = c(0.5,

1)))

window: rectangle = [0, 0.5] x [0.5, 1] units

> table(is.in <- inside.owin(japanesepines, w = window.nw))

FALSE TRUE

43 22

> japanesepines.nw <- japanesepines[is.in]

We see only 22 of the 65 Japanese pines are in this window.

However, this selection does not change the window size. We can see this
with the Windowunction of the spatstat package:

> Window(japanesepines.nw)

window: rectangle = [0, 1] x [0, 1] units (one unit = 5.7 metres)

If we want to reduce the window size of the new point pattern, we again use
the Window function to set the window size:

> Window(japanesepines.nw) <- window.nw

> Window(japanesepines.nw)

window: rectangle = [0, 0.5] x [0.5, 1] units (one unit = 5.7 metres)

Now we can plot the reduced window and its points:

> plot(japanesepines.nw, main = "Japanese pines, NW quadrant")
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Task 16 : Compute and plot the G and L functions for this subset; compare
with these functions for the full set. Limit the plot radius to 0.10, i.e., the
close-range part of the function •

> par(mfrow = c(2, 2))

> G <- Gest(japanesepines.nw)

> plot(G, main = "G-function, Japanese pines, NW quadrant",

xlim = c(0, 0.1))

> G <- Gest(japanesepines)

> plot(G, main = "G-function, Japanese pines, all", xlim = c(0,

0.1))

> L <- Lest(japanesepines.nw)

> plot(L, main = "L-function, Japanese pines, NW quadrant",

xlim = c(0, 0.1))

> L <- Lest(japanesepines)

> plot(L, main = "L-function, Japanese pines, all", xlim = c(0,

0.1))

> par(mfrow = c(1, 1))

25



0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, Japanese pines, NW quadrant

r (one unit = 5.7 metres)

G
(r

)
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Ĝkm(r)
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It’s clear that the smaller window, with fewer points, results in a more
irregular function. The G-function is considerably different: for the quadrant
we see some dispersal around r = 0.05; this is not seen in the full point-
pattern.

5 The F function; non-rectangular windows

The G function explored in §2 is a point-related function, i.e., computed
from each point in the pattern. Another way to examine point distribution
is with a location-related function, i.e., computed from any location, whether
or not it is a point. This provides information about empty space. Such a
function developed from the theory of Poisson processes is the F “empty
space” function, which we examine in this section.

However, there is a complication. The above examples used rectangular
windows “filled” with the point pattern. The implicit assumption (which
we now make explicit) is that the data-generating process (i.e., process by
which the points were placed) operates over the whole window, and in some
border area outside the window. The process may not be homogeneous, as
we saw in the kernel density estimation (§3), but it does “fill” the window –
there is a probability that any location in the window could have a point.
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However, if the rectangular window includes areas that were not observed
or not part of the study, there will be “white space” which appears as part
of the pattern, but is not. In that case some statistics will be misleading,
in particular, the “empty space” F function, and any plots will include areas
that are not interesting.

Another issue is that we may be given a point-pattern that is clearly only
filling part of a map, and we want to extract that area. An example is the
point-pattern of trees from which we want to derive the boundary of a forest.
The spatstat package has several useful functions for that purpose.

We illustrate the process of specifying a window with the meuse example
dataset provided with the sp package. This is a set of observation points
in the river Maas (Meuse) floodplain near the village of Stein, Limburg
province, Netherlands.

Task 17 : Load the meuse example dataset, restrict it to just the Pb
content and flooding frequency attributes, convert to a spatial object of class
SpatialPointsDataFrame, make an equivalent point-pattern object of class
ppp, and plot as a marked point-pattern, marked by the flooding frequency
(field ffreq). •

Here we use the generic as method, specialized in the maptools pack-
age to convert from sp to ppp; the meuse data set is first converted to a
SpatialPointsDataFrame with the coordinates method.

> require(sp)

> data(meuse)

> meuse <- meuse[, c("x", "y", "lead", "ffreq")]

> coordinates(meuse) <- ~x + y

> meuse.ppp <- as(meuse, "ppp")

> str(meuse.ppp)

List of 6

$ window :List of 4

..$ type : chr "rectangle"

..$ xrange: num [1:2] 178605 181390

..$ yrange: num [1:2] 329714 333611

..$ units :List of 3

.. ..$ singular : chr "unit"

.. ..$ plural : chr "units"

.. ..$ multiplier: num 1

.. ..- attr(*, "class")= chr "unitname"

..- attr(*, "class")= chr "owin"

$ n : int 155

$ x : num [1:155] 181072 181025 181165 181298 181307 ...

$ y : num [1:155] 333611 333558 333537 333484 333330 ...

$ markformat: chr "dataframe"

$ marks :'data.frame': 155 obs. of 2 variables:

..$ lead : num [1:155] 299 277 199 116 117 137 132 150 133 80 ...

..$ ffreq: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "class")= chr "ppp"
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> tmp <- plot(meuse.ppp, use.marks = TRUE, cols = c("red",

"orange", "green"), chars = 16, which.marks = "ffreq",

maxsize = 100, main = "Meuse floodplain flood frequency class",

axes = T)

> grid()

> legend("left", pch = 16, col = c("red", "orange", "green"),

legend = c("Annually", "2-5 Years", "> 5 Years"))
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We can see that the point-pattern only partially fills the bounding rectangle.
By default, the type conversion to class ppp defines the window as the rect-
angular bounding box of the point-pattern; we can see this as the window

field of the ppp object:

> meuse.ppp$window

window: rectangle = [178605, 181390] x [329714, 333611] units

Task 18 : Compute a bounding window and replace the rectangular bound-
ary with it. •

We compute the window as the Ripley and Rasson [13] estimate of the spatial
domain. This is a clever way of expanding the convex hull (which contains
the outermost points) consistent with the intensity of the pattern.

We use the ripras “Ripley–Rasson forest edge” function to compute the
window; we plot this along with the convex hull computed by the convexhull
function.
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Note: Both ripras and convexhull return an object of class owin; this
includes the boundary in field bdry as a list of coördinate vectors.

To plot a point pattern we use the plot.ppp function, which is automatically
called by the generic plot method for an object of class ppp.

> meuse.ppp.r <- meuse.ppp

> (meuse.ppp.r$window <- ripras(meuse.ppp))

window: polygonal boundary

enclosing rectangle: [178544, 181443] x [329645, 333702] units

> tmp <- plot(meuse.ppp.r, use.marks = TRUE, cols = c("red",

"orange", "green"), chars = 16, which.marks = "ffreq",

maxsize = 100, main = "Meuse floodplain flood frequency class",

boundary = 2, axes = T)

> grid()

> legend("left", pch = 16, col = c("red", "orange", "green"),

legend = c("Annually", "2-5 Years", "> 5 Years"))

> ch <- convexhull(meuse.ppp)

> lines(ch$bdry[[1]]$x, ch$bdry[[1]]$y, lty = 2)

> legend("bottomright", lty = 1:2, legend = c("Ripley-Rasson",

"convex hull"))
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Q17 : Describe the polygonal window. Jump to A17 •

Q18 : How did changing the boundary affect the mean intensity of the
point process? Jump to A18 •
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The intensity function of the spatstat package computes the intensity
from the number of points and the window area:

> str(meuse.ppp)

List of 6

$ window :List of 4

..$ type : chr "rectangle"

..$ xrange: num [1:2] 178605 181390

..$ yrange: num [1:2] 329714 333611

..$ units :List of 3

.. ..$ singular : chr "unit"

.. ..$ plural : chr "units"

.. ..$ multiplier: num 1

.. ..- attr(*, "class")= chr "unitname"

..- attr(*, "class")= chr "owin"

$ n : int 155

$ x : num [1:155] 181072 181025 181165 181298 181307 ...

$ y : num [1:155] 333611 333558 333537 333484 333330 ...

$ markformat: chr "dataframe"

$ marks :'data.frame': 155 obs. of 2 variables:

..$ lead : num [1:155] 299 277 199 116 117 137 132 150 133 80 ...

..$ ffreq: Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "class")= chr "ppp"

> intensity(meuse.ppp)

[1] 1.4282e-05

> intensity(meuse.ppp.r)

[1] 2.6367e-05

> round(100 * intensity(meuse.ppp.r)/intensity(meuse.ppp))

[1] 185

Clearly, this is not a perfect boundary of the area from which the points
were taken; we know from the documentation that it is bounded by a large
meander of the river Maas (Meuse), and is limited on the east side by a canal
(the Julianakanaal) and steep cliff, so ideally we’d have a bounding polygon
of the actual study area. Absent this, the Ripley-Rasson method at least
restricts the area.

Note: See §A.2 for how to import a polygonal boundary in ESRI shapefile
format, and use it for the window.

A major effect of reducing the window to the actual area sampled is to
properly estimate the “empty space” function, i.e., average distance from an
arbitrary location in the window to the nearest point (event).

Task 19 : Compute and plot the “empty space” function F for the Meuse
point-pattern in the rectangular and polygonal windows. •

30



The GFest function of the spatstat package computes this function on an
object of class ppp. We specify the same x-axes to compare the functions
side-by-side:

> par(mfrow = c(1, 2))

> plot(Fest(meuse.ppp), main = "rectangular window", xlim = c(0,

550))

> plot(Fest(meuse.ppp.r), main = "polygonal window", xlim = c(0,

550))

> par(mfrow = c(1, 2))
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As with the G function, there are several cumulative functions; Fpois(r) is the
theoretical distribution in the case of CSR; Fbord(r) is the same corrected
for border effects; the estimates are marked F̂method(r) for Kaplan-Meier
(“km”), Chiu-Stoyan (“cs”). Note the different x-axis scales of the two plots.

Q19 : What proportion of space is expected to have at least one point
within 100 m for the rectangular and polygonal windows? Jump to A19 •

Q20 : Describe the agreement (or lack thereof) of the observed F̂km(r) with
the theoretical for CSR Fpois(r). Jump to A20 •

6 Marked point patterns

A marked point pattern is one where each point has some attribute; this can
be a continuous value (e.g., tree size) (§6.4) or a categorical attribute (e.g.,
tree species, tree size class) (§6.1).

6.1 Categorical marks

We first examine a point-pattern marked with a categorical attribute: the
“forest fires” dataset clmfires, supplied as an example in the spatstat

package. This is a record of forest fires (1998-2007) in the Castilla-La Mancha
region (E). For each fire there are four types of marks, i.e., attributes: cause,
date, day of year, and size.
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Task 20 : Load the clmfires dataset and display the locations of the fires,
along with their cause. •

> data(clmfires)

> plot(clmfires, which.marks = "cause", bg = 2:5, chars = 21:24,

cex = 0.5, axes = T, main = "Castilla-La Mancha forest fires")

> grid()

> legend("topleft", pch = 21:24, legend = levels(clmfires$marks$cause),

pt.bg = 2:5)
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Q21 : What do the marks represent? How many classes are there? Jump
to A21 •

Task 21 : Split the marked point-pattern and show the pattern for each
mark separately. •

The split.ppp method of the spatstat package specializes the generic
split method. Similarly, the plot.splitppp method of the spatstat pack-
age specializes the generic plot method
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Here we don’t need to plot any mark types, since we’ve already split on the
cause. So the use.marks argument to plot.splitppp is set to FALSE.

> clmfires.split <- split(clmfires)

> str(clmfires.split, max.level=1)

List of 4

$ lightning :List of 6

..- attr(*, "class")= chr "ppp"

$ accident :List of 6

..- attr(*, "class")= chr "ppp"

$ intentional:List of 6

..- attr(*, "class")= chr "ppp"

$ other :List of 6

..- attr(*, "class")= chr "ppp"

- attr(*, "class")= chr [1:4] "splitppp" "ppplist" "solist" "list"

- attr(*, "fsplit")= Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...

- attr(*, "fgroup")= Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...

> plot(clmfires.split, use.marks=FALSE,

main="Castilla-La Mancha forest fires",

pch=21, bg=2)
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Q22 : Do the fires with different causes appear to have different point
patterns? Jump to A22 •

We could compare the separate patterns with the usual G, F , J, K or L
functions and compare the function plots visually.

6.2 Interaction between point patterns: the cross-K function

Another question can be raised when there are several patterns covering the
same area: what is the interaction between them? That is, do occurrences
of one mark “attract” or “repel” those of other marks?

Note: The quotes for “attract” and “repel” remind us that we need meta-
statistical information to propose the causes of observed interactions.

We call such a process a multi-type process, that is, we assume that there
may be some interaction between the types. In the current example, we may
expect that an area burned with one kind of fire would not be susceptible
to another kind of fire, because the necessary fuel would have been removed
by the first fire. We assume that the multi-type process is stationary across
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the area.

The appropriate statistic to investigate this is a so-called “cross” point-
pattern function, from mark type i to mark type j or vice-versa. For ex-
ample, a crossed K function of a stationary multi-type point process with
intensity λj of point type j is defined so that λjKij(r) is the expected num-
ber of additional random points of type j within a distance r of a typical
point of type i.

The Kij(r) function plotted over a range of distances is used to form hy-
potheses about the multi-type point pattern. If the two point-processes are
independent, the expected value Kij(r) = πr2, that is, the number of ad-
ditional points just depends on the area of the circle centred on a source
point. If the empirical Kij function is above the theoretical function πr2

(i.e., a parabola), there are more points of type j near to the source points
of type i than expected; this suggest dependence between the processes. If
the empirical function is below the theoretical, this suggests repulsion or
avoidance.

Task 22 : Compute and plot the cross-K function for the relation between
intentional and lightning-induced fires. •

The Kcross function computes Ripley’s K, as for the univariate case (func-
tion Kest), but the measure is the number of neighbours of another pattern
within a radius of a given point5. However, this function works on an “multi-
type point-pattern” object, which is a point-pattern with a single mark. The
clmfires object has four kinds of marks:

> str(clmfires$marks)

'data.frame': 8488 obs. of 4 variables:

$ cause : Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...

$ burnt.area : num 0.4 0 0.4 0 1.05 3 0.1 0.02 0.4 2.85 ...

$ date : Date, format: "1998-01-07" ...

$ julian.date: num 6 6 6 6 6 7 7 7 8 8 ...

So, we make an object with just a single mark, i.e., the causes:

> clmfires.cause <- clmfires

> is.multitype(clmfires.cause)

[1] FALSE

> clmfires.cause$marks <- clmfires$marks$cause

> is.multitype(clmfires.cause)

[1] TRUE

Now we can compute the cross-K function, using Kcross. We specify the
‘translation’ edge correction, suitable for complex geometries such as the
province boundaries:

5 There are similar analogues of the L, G, and J functions, but not the F “empty space”
function.
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> Kcross.il <- Kcross(clmfires.cause, "intentional", "lightning",

correction = "translate")

> plot(Kcross.il)

> grid()
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Q23 : Is there evidence for interaction between the processes that produce
the intentional and accidental fires? Jump to A23 •

6.3 Combining point patterns

We may have two or more unmarked point patterns which represent different
types of points, which we want to combine into a marked point pattern. For
example, the redwoodfull and japanesepines point patterns represent two
kinds of trees as unmarked point patterns. If we suppose these two patterns
are from the same area6 we may ask what is the relation between them. We
can discover this with the cross-K function, if we can combine them into a
single multi-type marked point pattern.

Task 23 : Combine the redwoodfull and japanesepines point patterns
into a single multi-type marked point pattern. •

The superimpose function of the spatstat package superimpose several
point patterns. These can optionally be supplied with marks applied to all
points in each pattern.

> two.trees <- superimpose(rw = redwoodfull, jp = japanesepines)

> str(two.trees)

6 which is not true, but allows us to illustrate the techniques
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List of 6

$ window :List of 4

..$ type : chr "rectangle"

..$ xrange: num [1:2] 1e-09 1e+00

..$ yrange: num [1:2] 1e-09 1e+00

..$ units :List of 3

.. ..$ singular : chr "metre"

.. ..$ plural : chr "metres"

.. ..$ multiplier: num 5.7

.. ..- attr(*, "class")= chr "unitname"

..- attr(*, "class")= chr "owin"

$ n : int 260

$ x : num [1:260] 0.931 0.939 0.935 0.98 0.787 ...

$ y : num [1:260] 0.818 0.764 0.722 0.665 0.661 ...

$ markformat: chr "vector"

$ marks : Factor w/ 2 levels "rw","jp": 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "class")= chr "ppp"

> plot(two.trees, main = "Superimposed point patterns",

cols = c("green", "blue"))

  Superimposed point patterns
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In this case the windows had the same extent; by default a union of the win-
dows of the superimposed point patterns is used. The optional W “Window”
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argument provides several additional ways to specify a window.

Task 24 : Compute the crossed K-function for these two tree species. •

> Kcross.jp.rw <- Kcross(two.trees)

> plot(Kcross.jp.rw)

> grid()
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0.
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K
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iso
(r)

K̂rw, jp

t rans
(r)

K̂rw, jp

bord
(r)

Krw, jp
pois (r)

Q24 : Does there appear to be any interaction between the point processes
that produced these two tree species? Is this surprising? Jump to A24 •

6.4 Continuous marks

The marks on a point-pattern may be continuous variables rather than cate-
gories. An example is the longleaf dataset, which shows the locations and
diameters at breast height (DBH) of 584 longleaf pines (Pinus palustris) in
a 200 x 200 metre region in southern Georgia (USA)

Task 25 : Load and display this point pattern. Show the mature trees with
a red symbol, and saplings with a green symbol. •

The summary function summarizes the dataset. To just see the window size,
use the Window function (note the capital “W”).

> data(longleaf)

> summary(longleaf)

Marked planar point pattern: 584 points

Average intensity 0.0146 points per square metre
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Coordinates are given to 1 decimal place

i.e. rounded to the nearest multiple of 0.1 metres

marks are numeric, of type ‘Ă‘Ÿdouble‘Ă‘Ź

Summary:

Min. 1st Qu. Median Mean 3rd Qu. Max.

2.0 9.1 26.1 26.8 42.1 75.9

Window: rectangle = [0, 200] x [0, 200] metres

Window area = 40000 square metres

Unit of length: 1 metre

> Window(longleaf)

window: rectangle = [0, 200] x [0, 200] metres

> plot(longleaf, main = "Longleaf pines, location and DBH",

cols = function(x) ifelse(x < 30, "green", "red"))

> grid()

  Longleaf pines, location and DBH
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Q25 : Do the trees appear to be clustered, regularly-spaced, or randomly
placed? Do trees of similar size appear to be clustered? What appears to
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be the relation between mature trees and saplings? Jump to A25 •

Task 26 : Compute and plot the K function for the longleaf pines. •

Again the estimated K function is computed with Kest.

> K.long <- Kest(longleaf)

> plot(K.long, main = "K function, longleaf pines")
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00
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K function, longleaf pines

r (metres)

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

The trees clearly show some clustering at all distances to 50 m.

7 Models of spatial processes

Supplementary reading:

� Bivand et al. [3, §7.4.4]: Likelihood of an inhomogeneous Poisson pro-
cess

The observed point pattern is presumably the realization of some point pro-
cess, i.e., a spatial data generating process (sDGP) by which points, also
called “events”, are placed on the landscape. These could be completely ran-
dom with some intensity (a homogeneous Poisson process), random but with
varying intensity across the region (an inhomogeneous Poisson process), a
process depending on inter-point interactions, depending on a regional trend,
depending on environmental covariables, or any combination. If we can fit
a model to the observed process we can (1) infer the sDGP which generated
it; (2) map the results of the process.

The result of such models is a conditional intensity λ(u,x), a function of
the location u and the observed point pattern x. The units are the number
of points per unit area. In practice we compute this over some “small” cell.
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Baddeley and Turner [1] explain how to fit stochastic models to observed
point patterns with the versatile ppm function of the spatstat package. The
issue of modelling is quite deep and you are encouraged to read this paper
before building your own models; here we only show some possibilities.

The general formula for models that can be fit with ppm is [1, Eqn. (4)]:

λ(u,x) = exp
(
ψTB(u)+φTC(u,x)

)
(8)

where the two components are:

1. the spatial trend B(u) which depends only on location; this could also
include covariates at these locations;

2. the stochastic interactions C(u,x), i.e., the dependence between the
points of the point process.

The analyst specifies the forms of B and C and ppm estimates the coefficients
(ψ,φ).

We continue with the Castilla-La Mancha forest fires example of §6. In this
modelling exercise we subset the whole dataset to just one kind of fire; it
should be easier to interpret the model results.

Task 27 : Restrict the dataset to intentional fires. •

> clmfires.i <- split(clmfires, "cause")$intentional

> plot(clmfires.i, chars = 21, cex = 0.5, bg = 2, axes = T,

main = "Castilla-La Mancha intentional forest fires",

use.marks = FALSE)

> grid()
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Task 28 : Remove the marks from the point pattern. •

This is necessary because ppm is not yet implemented for marked patterns.
Here we remove the marks for the entire pattern; it would also be possible to
split the pattern according to a mark using the split.ppp function, remove
the marks from each of the sub-patterns and analyze each one.

> marks(clmfires.i) <- NULL

7.1 Null model

Task 29 : Model the forest fire incidence as a Poisson process, i.e., complete
spatial randomness (CSR). This is a “null” model because it is the simplest
hypothesis about how points are placed. •

This is the simplest conditional intensity: λ(u,x) = β, where β is a single
intensity of a (presumed) homogeneous Poisson process. In the terminology
of Eqn. (8), both B (trend) and C (interaction) are absent.

We specify this to ppm by setting the trend argument to ~1, i.e., the process
only has a mean intensity. We also specify the type of interaction between
points by setting the interaction argument to NULL7.

> print(m.pois <- ppm(clmfires.i, trend = ~1, interaction = NULL))

7 These are both defaults and so don’t have to be explicitly specified.

42



Stationary Poisson process

Intensity: 0.022507

Estimate S.E. CI95.lo CI95.hi Ztest Zval

log(lambda) -3.7939 0.023662 -3.8403 -3.7476 *** -160.34

> class(m.pois)

[1] "ppm"

> exp(coef(m.pois))

log(lambda)

0.022507

> intensity(clmfires.i)

[1] 0.022507

> (clmfires.i$n/summary(clmfires.i)$window$areas)

[1] 0.022507

A model fitted by ppm is of class ppm.

This is not a very interesting model, since we could get the same result
simply from the average intensity, using the intensity function or even
direct computation from the number of points and the window area. The
only complication is that ppm works with the logarithm of the parameters,
in this case just the Poisson intensity β. Notice however the standard error
and confidence intervals that are provided with the model summary.

7.2 Trend surface

A more complex model is λ(u,x) = β(u), where β(u) is a variable inten-
sity, dependent on the location u, of a (presumed) inhomogeneous Poisson
process. This is termed a trend, which may be a function of the coördinates
or of covariables. In the terminology of Eqn. (8), B (trend) is defined but C
(interaction) are absent. The form of B is a trend surface, i.e., a polynomial
function of the coördinates.

Q26 : Does there seem to be a regional trend in intentional forest fire
intensity? Jump to A26 •

Task 30 : Model the intentional forest fire incidence as first- and second-
order regional trend plus a Poisson process, i.e., complete spatial randomness
(CSR) after accounting for a trend. •

We specify the trend to ppm by setting the trend argument to a formula;
for example ~x+y for a first-order trend: the intensity changes linearly along
some plane to be computed. Here we use the polynom function to specify
both first- and second-order trend surface:
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> (m.ts1 <- ppm(clmfires.i, trend = ~polynom(x, y, 1),

interaction = NULL))

Nonstationary Poisson process

Log intensity: ~x + y

Fitted trend coefficients:

(Intercept) x y

-3.2878809 -0.0057327 0.0028847

Estimate S.E. CI95.lo CI95.hi Ztest Zval

(Intercept) -3.2878809 0.07317041 -3.4312923 -3.1444695 *** -44.935

x -0.0057327 0.00027073 -0.0062633 -0.0052021 *** -21.175

y 0.0028847 0.00030260 0.0022916 0.0034778 *** 9.533

> (m.ts2 <- ppm(clmfires.i, trend = ~polynom(x, y, 2),

interaction = NULL))

Nonstationary Poisson process

Log intensity: ~x + y + I(x^2) + I(x * y) + I(y^2)

Fitted trend coefficients:

(Intercept) x y I(x^2) I(x * y)

-5.2689e+00 1.2021e-02 9.5359e-03 -3.4094e-05 -2.9700e-05

I(y^2)

-2.2298e-06

Estimate S.E. CI95.lo CI95.hi Ztest

(Intercept) -5.2689e+00 2.5420e-01 -5.7671e+00 -4.7707e+00 ***

x 1.2021e-02 1.6868e-03 8.7148e-03 1.5327e-02 ***

y 9.5359e-03 1.6157e-03 6.3692e-03 1.2703e-02 ***

I(x^2) -3.4094e-05 3.5830e-06 -4.1116e-05 -2.7071e-05 ***

I(x * y) -2.9700e-05 4.6701e-06 -3.8853e-05 -2.0547e-05 ***

I(y^2) -2.2298e-06 3.5262e-06 -9.1410e-06 4.6813e-06

Zval

(Intercept) -20.72765

x 7.12658

y 5.90203

I(x^2) -9.51551

I(x * y) -6.35954

I(y^2) -0.63237

Now we see the fitted coefficients β; the intercept is the overall log-intensity
at (0,0) (the lower-left corner of the pattern) and the coefficients show
the change intensity in the x and y directions, along with their standard
errors and confidence intervals; recall these are logarithms, so we convert to
original units to interpret them. Here we see an increase in intensity towards
the WNW, almost equal in both axes. This accords with our visual estimate.

Task 31 : Plot the trend surfaces. •

The plot.ppm function calls predict.ppm (see below, §8) to compute the
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spatial trend and conditional intensity of the fitted point process model on
a grid, and then displays the result; by default the grid is 40 by 40 pixels
filling the bounding box.

We first visualize these by a colour ramp 2.5D plot; the how argument spec-
ifies the type of plot:

> par(mfrow = c(1, 2))

> plot.ppm(m.ts1, ngrid = c(80, 80), how = "image", superimpose = F,

trend = T, se = F, pause = F, main = "1st-order trend")

> plot.ppm(m.ts2, ngrid = c(80, 80), how = "image", superimpose = F,

trend = T, se = F, pause = F, main = "2nd-order trend")

> par(mfrow = c(1, 1))
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We can also see the trends as perspective plots:
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> par(mfrow = c(1, 2))

> plot.ppm(m.ts1, ngrid = c(80, 80), how = "persp", theta = -30,

phi = 30, trend = T, se = F, pause = F, main = "1st-order trend")

> plot.ppm(m.ts2, ngrid = c(80, 80), how = "persp", theta = -30,

phi = 30, trend = T, se = F, pause = F, main = "2nd-order trend")

> par(mfrow = c(1, 1))

x

y

trend

1st−order trend

x

y

trend

2nd−order trend

Task 32 : Compare the goodness-of-fit of the Poisson process and the trend
models. •

The anova.ppm function performs analysis of deviance for two or more fitted
models with Poisson interaction terms, i.e., independence:

> anova(m.ts2, m.ts1, m.pois)

Analysis of Deviance Table

Model 1: ~x + y + I(x^2) + I(x * y) + I(y^2) Poisson

Model 2: ~x + y Poisson

Model 3: ~1 Poisson

Npar Df Deviance

1 6

2 3 -3 -126

3 1 -2 -505

Here we see that the trend surfaces uses more degrees of freedom but both
reduce the residual deviance slightly, the second-order more than the first.

7.3 Strauss process

So far we’ve treated the observations as independent (a Poisson process),
possibly influenced by a regional trend in overall intensity. Another possibil-
ity is that fires are not independent. In the terminology of Eqn. (8), B (trend)
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is absent but C (interaction) is present; the analyst must define the form of
C. One way to model that is as a Strauss process: λ(u,x) = βγt(u,x),
where β is the overall homogeneous intensity and γ is an interaction pa-
rameter 0 ≤ γ ≤ 1 and t(u,x) is the number of points of the pattern x
closer than the interaction radius r of the location u. This has an interest-
ing interpretation: γ = 0 =⇒ λ = 0, that is, within the radius there is no
chance of finding another point, perhaps because of the intrinsic size of a
“point”. With γ < 1 the chance of a second point is reduced, at γ = 1 this
is equivalent to a Poisson process (no effect one way or the other).

Note: A Strauss process is an example of a so-called Gibbs process, derived
from physics to model repulsion; they include an intensity and an interaction
function.

Task 33 : Fit a homogeneous Strauss process model to the forest fire
incidence and plot the resulting surface. •

We must choose an interaction radius; this can be based on our hypothesis
of how fires interact. We investigate this with the K function. Above (§4)
we saw that this measures the number of points within a given radius of a
given point, as a function of radius.

> plot(Kest(clmfires.i, r = seq(0, 10, by = 0.2)))
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There seems to be an inflection point around 4 km, so we pick this as an
interaction radius.

> (m.strauss.4 <- ppm(clmfires.i, trend=~1,

interaction=Strauss(4)))

Stationary Strauss process

First order term: beta = 0.017687
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Interaction distance: 4

Fitted interaction parameter gamma: 1.07813

Relevant coefficients:

Interaction

0.075224

For standard errors, type coef(summary(x))

*** Model is not valid ***

*** Interaction parameters are outside valid range ***

> exp(coef(m.strauss.4))

(Intercept) Interaction

0.017687 1.078125

There are two fitted parameters: the overall log intensity β and the strength-
of-interaction parameter γ. This latter was fit as 1.0781, i.e., γ > 1, so there
is on average clustering.

Task 34 : Compare the likelihood of the several fitted models. •

The logLik function shows the log-likelihood of the fitted parameters:

> data.frame(

model=c("Poisson","1st order trend", "2nd order trend", "Strauss"),

likelihood=c(logLik(m.pois, warn=F),

logLik(m.ts1, warn=F),

logLik(m.ts2, warn=F),

logLik(m.strauss.4, warn=F)))

model likelihood

1 Poisson -8562.0

2 1st order trend -8306.8

3 2nd order trend -8243.5

4 Strauss -6776.1

Clearly the Strauss model is superior: there is local clustering, not CSR, and
this is a better fit to the observations than either trend surface.

7.4 Covariates

The observed point pattern may well depend on environmental factors. For
example, density of trees in a forest may depend on soil type, elevation,
temperature or rainfall. Baddeley and Turner [1, §7] explain how how to in-
clude covariates, such as environmental factors, in the model. The clmfires
dataset is accompanied by a raster dataset clmfires.extra, a list of two
objects of class im, also defined by spatstat, which is a matrix of images
(i.e., a layer stack); one of the objects in the list is clmcov200, a 200 x 200
pixels grid in the same coördinate system as clmfires, showing four possi-
ble covariates that might affect fire incidence: elevation, orientation (aspect),
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slope and landuse. The anova.ppm function uses this image to extract the
value of the covariable(s) at the locations of observed events (points).

Loading clmfires also loaded the covariate images as object clmfires.extra:

> names(clmfires.extra)

[1] "clmcov100" "clmcov200"

> names(clmfires.extra$clmcov200)

[1] "elevation" "orientation" "slope" "landuse"

> names(clmfires.extra$clmcov200$landuse)

[1] "v" "dim" "xrange" "yrange" "xstep" "ystep" "xcol"

[8] "yrow" "type" "units"

> names(clmfires.extra$clmcov200$landuse)

[1] "v" "dim" "xrange" "yrange" "xstep" "ystep" "xcol"

[8] "yrow" "type" "units"

> levels(clmfires.extra$clmcov200$landuse$v)

[1] "urban" "farm" "meadow" "denseforest"

[5] "conifer" "mixedforest" "grassland" "bush"

[9] "scrub" "artifgreen"

Task 35 : Display the covariate images. •

The generic plot method specializes to plot.im for objects of class im.

> plot(clmfires.extra$clmcov200, main = "200 m grid covariates")
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We can get a better view of the landuse classes by considering them as a
SpatialGridDataFrame and displaying the classes with spplot:

> clmfires.lu.grid <- as(clmfires.extra$clmcov200$landuse,

"SpatialGridDataFrame")

> summary(clmfires.lu.grid)

Object of class SpatialGridDataFrame

Coordinates:

min max

[1,] -1.125 398.88

[2,] -1.125 398.88

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 -0.125 2 200

2 -0.125 2 200

Data attributes:

v

farm :19457

bush : 4941

scrub : 4122
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conifer : 3472

meadow : 2302

grassland: 2039

(Other) : 3667

> spplot(clmfires.lu.grid)

artifgreen

bush

conifer

denseforest

farm

grassland

meadow

mixedforest

scrub

urban

An interesting question is whether different land uses have different forest
fire incidences.

Task 36 : Model the incidence of intentional forest fire as a function of the
“landuse” covariate, both by itself and also taking into account the presumed
Strauss interaction process. Compare the model fit with the null model. •

In the terminology of Eqn. (8), B (trend) depends on the covariates (not
the coördinates as in the trend surface), and C (interaction) is absent. The
analyst must define the form of B, here, a linear model of the covariate.

> levels(clmfires.extra$clmcov200$landuse)

[1] "urban" "farm" "meadow" "denseforest"

[5] "conifer" "mixedforest" "grassland" "bush"

[9] "scrub" "artifgreen"

> (m.lu <- ppm(clmfires.i, ~ landuse - 1,

covariates=clmfires.extra$clmcov200,

interaction=NULL))

Nonstationary Poisson process
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Log intensity: ~landuse - 1

Fitted trend coefficients:

landuseurban landusefarm landusemeadow

-4.2664 -3.7120 -4.1721

landusedenseforest landuseconifer landusemixedforest

-4.0006 -3.7163 -4.2117

landusegrassland landusebush landusescrub

-4.0030 -3.9672 -3.6268

landuseartifgreen

-15.3026

Estimate S.E. CI95.lo CI95.hi Ztest

landuseurban -4.2664 0.164399 -4.5886 -3.9442 ***

landusefarm -3.7120 0.032513 -3.7757 -3.6482 ***

landusemeadow -4.1721 0.137361 -4.4413 -3.9029 ***

landusedenseforest -4.0006 0.127000 -4.2496 -3.7517 ***

landuseconifer -3.7163 0.076696 -3.8667 -3.5660 ***

landusemixedforest -4.2117 0.196116 -4.5961 -3.8273 ***

landusegrassland -4.0030 0.117041 -4.2324 -3.7736 ***

landusebush -3.9672 0.078326 -4.1207 -3.8137 ***

landusescrub -3.6268 0.062500 -3.7493 -3.5043 ***

landuseartifgreen -15.3026 251.201020 -507.6475 477.0424

Zval

landuseurban -25.951557

landusefarm -114.168873

landusemeadow -30.373239

landusedenseforest -31.501106

landuseconifer -48.455254

landusemixedforest -21.475642

landusegrassland -34.202021

landusebush -50.649459

landusescrub -58.028362

landuseartifgreen -0.060918

> data.frame(model=c("Poisson", "Landuse"),

likelihood=c(logLik(m.pois),

logLik(m.lu, warn=F)))

model likelihood

1 Poisson -8562.0

2 Landuse -8533.1

Q27 : Does the landuse explain some of the intentional fire pattern? Which
land use classes are more prone to fire? Jump to A27 •

Task 37 : Model the incidence of intentional forest fire as a function of
the “landuse” covariate, also taking into account the presumed Strauss in-
teraction process. Compare the model fit with the null, landuse-only and
interaction-only models. •

In the terminology of Eqn. (8), B (trend) depends on the covariates (not
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the coördinates as in the trend surface), and C (interaction) is present. The
analyst must define the forms of both B (here, a linear model of the covariate)
and C (here the Strauss process).

> (m.lu.strauss.4 <- ppm(clmfires.i, ~ landuse,

covariates=clmfires.extra$clmcov200,

interaction=Strauss(4)))

Nonstationary Strauss process

Log trend: ~landuse

Fitted trend coefficients:

(Intercept) landusefarm landusemeadow

-4.42807 0.33941 0.29214

landusedenseforest landuseconifer landusemixedforest

0.46879 0.30725 0.21889

landusegrassland landusebush landusescrub

0.34572 0.42709 0.71876

landuseartifgreen

-10.87451

Interaction distance: 4

Fitted interaction parameter gamma: 1.0789

Relevant coefficients:

Interaction

0.075944

For standard errors, type coef(summary(x))

*** Model is not valid ***

*** Interaction parameters are outside valid range ***

> data.frame(

model=c("Poisson", "Landuse", "Strauss", "Landuse + Strauss"),

likelihood=c(logLik(m.pois),

logLik(m.lu, warn=F),

logLik(m.strauss.4, warn=F),

logLik(m.lu.strauss.4, warn=F)))

model likelihood

1 Poisson -8562.0

2 Landuse -8533.1

3 Strauss -6776.1

4 Landuse + Strauss -6757.8

Q28 : Which model is most likely, given the observations? What do you
conclude about the origin of intentionally-set fires? Jump to A28 •
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8 Prediction

The models fit with ppm can be used to predict the point-pattern intensity
over a study area. Obviously, they can not predict individual events (e.g.,
new forest firest) but they can predict the conditional intensity λ(u,x) of an
occurrence at each location over a grid. The predict.ppm function (called
just as predict on an object of class ppm, i.e., a “point pattern model”)
evaluates the intensity at each grid location.

Task 38 : Predict the conditional intensity of intentional fires using the
landuse as predictor and plot it. •

> pred.lu <- predict(m.lu, covariates = clmfires.extra$clmcov200)

> summary(pred.lu)

real-valued pixel image

128 x 128 pixel array (ny, nx)

enclosing rectangle: [4.1311, 391.38] x [18.565, 385.19] kilometres

dimensions of each pixel: 3.03 x 2.8642 kilometres

Image is defined on a subset of the rectangular grid

Subset area = 79462.0730449286 square kilometres

Subset area fraction = 0.56

Pixel values (inside window):

range = [2.2603e-07, 0.026602]

integral = 1787

mean = 0.022489

> image(pred.lu, main = "Fire intensity based on land use")
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Notice the default grid 128 x 128 pixels, and the automatic calculation of
the size of each grid cell. This can be changed with the optional ngrid ar-
gument. Intensity at any set of locations can be requested with the optional
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locations argument. See ?predict.ppm for details.

Q29 : What is the pattern of conditional intensities? How is this derived
from the model? Jump to A29 •

Another model was the trend surface; we already saw that prediction in the
previous section.

The best model of the previous section was landuse + Strauss (interaction
process).

Task 39 : Predict the conditional intensity of intentional fires using the
landuse + Strauss process as predictors. Compare the range and mean with
the land use-only model. •

> pred.lu.strauss <- predict(m.lu.strauss.4,

covariates=clmfires.extra$clmcov200)

> summary(pred.lu.strauss)

real-valued pixel image

128 x 128 pixel array (ny, nx)

enclosing rectangle: [4.1311, 391.38] x [18.565, 385.19] kilometres

dimensions of each pixel: 3.03 x 2.8642 kilometres

Image is defined on a subset of the rectangular grid

Subset area = 79462.0730449286 square kilometres

Subset area fraction = 0.56

Pixel values (inside window):

range = [2.2603e-07, 0.024494]

integral = 1402.8

mean = 0.017653

> range(pred.lu.strauss)

[1] 2.2603e-07 2.4494e-02

> range(pred.lu)

[1] 2.2603e-07 2.6602e-02

> mean(pred.lu.strauss)

[1] 0.017653

> mean(pred.lu)

[1] 0.022489

Q30 : Which model has the higher predicted mean intensity and wider
range? Jump to A30 •

Task 40 : Plot the two predicted maps with the same stretch. •
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> zlim=c(min(pred.lu, pred.lu.strauss),

max(pred.lu, pred.lu.strauss))

> image(pred.lu, zlim=zlim,

main="land use")
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> image(pred.lu.strauss, zlim=zlim,

main="land use + Strauss process")

> par(mfrow=c(1,2))

  land use + Strauss process
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9 * Spatio-temporal analysis

Point patterns can evolve over time. In this short section we introduce one
way to analyze these: by comparing time slices of a point pattern where
each point is associated with a time stamp, i.e., time of observation.
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The objective is to analyze point-patterns which may change over time, for
example:

� locations of live trees in a forest plot (some die, some new ones grow);

� locations of crime or disease incidences; these occur at known times.

There is a rich literature on spatio-temporal point process models, see Diggle
[6] and Taylor et al. [14]. Here we only show some visualizations and simple
analysis, without any attempt to build models.

We ask several questions about the point pattern:

1. Does the structure of the point-pattern change over time?

� Evaluate with intensity, kernel density, G, F, K, L functions.

2. Does the point-pattern at one time affect the pattern at a later time?

� Evaluate with the crossed K function.

And of course the aim is to interpret the answers in terms of the process
that produced the spatio-temporal point pattern.

We use an example of occurrences of foot-and-mouth disease of cattle from
North Cumbria (England), fmd, in the stpp “Spatio-temporal Point Pat-
terns” package.

Task 41 : Load the foot-and-mouth disease temporal point-pattern dataset,
and the study area boundary northcumbria. Summarize the dataset. •

> library("stpp")

> data("fmd")

> data("northcumbria")

> summary(fmd)

X Y ReportedDay

Min. :295580 Min. :494470 Min. : 28.0

1st Qu.:327742 1st Qu.:534362 1st Qu.: 51.0

Median :340625 Median :544235 Median : 60.5

Mean :340190 Mean :542980 Mean : 71.8

3rd Qu.:352670 3rd Qu.:553052 3rd Qu.: 76.0

Max. :384530 Max. :575320 Max. :198.0

> dim(fmd)

[1] 648 3

Task 42 : Examine the dataset description. •

> help(fmd)

Q31 : What are the three fields? How many cases of foot-and-mouth disease
were reported? Jump to A31 •
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Task 43 : Display a histogram of the occurrences over time. •

> hist(fmd[,"ReportedDay"], xlab="reported day",

main="Cases of Foot-and-mouth disease", breaks=16)

> rug(fmd[,"ReportedDay"])

Cases of Foot−and−mouth disease

reported day
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qu
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50 100 150 200

0
50
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0
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Q32 : Describe the temporal pattern of the epidemic. Jump to A32 •

Task 44 : Convert the point-pattern to an object of R class stpp “spatio-
temporal point pattern”. •

The function as.3dpoints performs this conversion:

> class(fmd)

[1] "matrix"

> fmd <- as.3dpoints(fmd)

> class(fmd)

[1] "stpp"

Task 45 : Plot the occurrence locations, with an indication of the data of
occurrence. •

We show the occurrence by the size of the symbol, stretched from mark.cexmin

to mark.cexmin:

> plot(fmd, s.region = northcumbria, pch = 21, mark = TRUE,

mark.col = 0, mark.cexmin = 0.2, mark.cexmax = 1.2,

col = "blue", bg = "red")
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For reference, here is the study area from Google Maps. Northern Cumbria
county does not include Windermere and further south.

Q33 : Describe the overall spatial point pattern, not considering time of
occurrence. Jump to A33 •
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Q34 : Describe the evolution of the spatial point pattern over time. Jump
to A34 •

Now for some analysis. We will compare the G and F functions for time-
slices of the point-pattern, and examine their interaction with the crossed
K function. The time slices discretize the continuous evolution of the epi-
demic. In practice these would be set by the epidemiologist according to the
presumed process; for convenience we chose 50-day time slices.

Note: You can experiment with different time slices.

Task 46 : Slice the data set into 50-day intervals; report the number of
cases in each slice. •

Slicing is with the [] selection operator and various logical operators, in-
cluding < and <=, to form logical conditions.

> dim(fmd)[1]

[1] 648

> fmd.1 <- as.3dpoints(fmd[fmd[, 3] <= 50, ])

> fmd.2 <- as.3dpoints(fmd[(fmd[, 3] > 50) & (fmd[, 3] <=

100), ])

> fmd.3 <- as.3dpoints(fmd[(fmd[, 3] > 100) & (fmd[, 3] <=

150), ])

> fmd.4 <- as.3dpoints(fmd[fmd[, 3] > 150, ])

> dim(fmd.1)[1]

[1] 156

> dim(fmd.2)[1]

[1] 404

> dim(fmd.3)[1]

[1] 40

> dim(fmd.4)[1]

[1] 48

Q35 : How many cases are in each slice? Jump to A35 •

Task 47 : Plot each slice’s point pattern. •

> plot(fmd.1, s.region = northcumbria, pch = 21, col = "blue",

bg = "red", mark = T, mark.col = 0, mark.cexmin = 1,

mark.cexmax = 1)

> title("Days 0-50")

> grid()
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> plot(fmd.2, s.region = northcumbria, pch = 21, col = "blue",

bg = "red", mark = T, mark.col = 0, mark.cexmin = 1,

mark.cexmax = 1)

> title("Days 51-100")

> grid()
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Days 51−100

> plot(fmd.3, s.region = northcumbria, pch = 21, col = "blue",

bg = "red", mark = T, mark.col = 0, mark.cexmin = 1,

mark.cexmax = 1)

> title("Days 101-150")

> grid()
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Days 101−150

> plot(fmd.4, s.region = northcumbria, pch = 21, col = "blue",

bg = "red", mark = T, mark.col = 0, mark.cexmin = 1,

mark.cexmax = 1)

> title("Days 151-200")

> grid()
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We see an obvious difference in location and clustering.

Task 48 : Compute an owin “point-pattern window” object, in order to
compute intensity, G, F and K functions. •

> w <- owin(poly = list(x = northcumbria[, 1], y = northcumbria[,

2]))
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Task 49 : Compute the point-pattern intensity within the window, expressed
as cases per km2. At the same time, make a class ppp object from the point-
pattern. •

> 1/(intensity(fmd.1.ppp <- ppp(fmd.1[, 1], fmd.1[, 2],

window = w)) * 10^6)

[1] 35.617

> 1/(intensity(fmd.2.ppp <- ppp(fmd.2[, 1], fmd.2[, 2],

window = w)) * 10^6)

[1] 13.753

> 1/(intensity(fmd.3.ppp <- ppp(fmd.3[, 1], fmd.3[, 2],

window = w)) * 10^6)

[1] 138.91

> 1/(intensity(fmd.4.ppp <- ppp(fmd.4[, 1], fmd.4[, 2],

window = w)) * 10^6)

[1] 115.76

As shown by the histogram, there is a big difference in intensity between the
time slices.

Task 50 : Compare the F “empty space” functions for the four time slices.
•

> par(mfrow = c(2, 2))

> plot(Fest(fmd.1.ppp), main = "Days 0-50")

> plot(Fest(fmd.2.ppp), main = "Days 51-100")

> plot(Fest(fmd.3.ppp), main = "Days 101-150")

> plot(Fest(fmd.4.ppp), main = "Days 151-200")

> par(mfrow = c(1, 1))
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Q36 : Describe the evolution of the F function over time. Jump to A36 •

Task 51 : Compare the G “closest point” functions for the four time slices.
•

> par(mfrow = c(2, 2))

> plot(Gest(fmd.1.ppp), main = "Days 0-50")

> plot(Gest(fmd.2.ppp), main = "Days 51-100")

> plot(Gest(fmd.3.ppp), main = "Days 101-150")

> plot(Gest(fmd.4.ppp), main = "Days 151-200")

> par(mfrow = c(1, 1))
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Q37 : Describe the evolution of the G function over time. Jump to A37 •

Now we want to evaluate the relation between time slices with the crossed
K function. This will reveal if there is any interaction (attraction, disper-
sion, independence) between patterns. This can then be interpreted by the
epidemiologist.

To compute the crossed K function the pattern must be marked.

Task 52 : Combine the four time slices into one marked point pattern. Plot
the marked point pattern. •

We do this with the superimpose function, and name the four slices.

> fmd.all.ppp <- superimpose(Q1 = fmd.1.ppp, Q2 = fmd.2.ppp,

Q3 = fmd.3.ppp, Q4 = fmd.4.ppp)

> plot(fmd.all.ppp, main = "2001 Foot-and-mouth disease, 50-day intervals",

cex = 0.9, pch = 21, col = 1, bg = 2:5)
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  2001 Foot−and−mouth disease, 50−day intervals
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Task 53 : Compute and display the crossed K function for each time step.
•

There are three of these.

> Kcross.1.2 <- Kcross(fmd.all.ppp, "Q1", "Q2")

> Kcross.2.3 <- Kcross(fmd.all.ppp, "Q2", "Q3")

> Kcross.3.4 <- Kcross(fmd.all.ppp, "Q3", "Q4")
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> par(mfrow = c(1, 3))

> plot(Kcross.1.2, main = "0-50 vs. 51-100")

> plot(Kcross.2.3, main = "51-100 vs. 101-150")

> plot(Kcross.3.4, main = "101-150 vs. 151-200")

> par(mfrow = c(1, 1))
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Q38 : What is the relation between the point-patterns in successive time
slices? Jump to A38 •

10 Further reading

Point-pattern analysis is based on theories of point processes. A modern
review article is by Møller and Waagepetersen [11]. The text of Diggle [5]
presents a detailed explanation and many worked examples of the concepts
presented here, and many more. Bivand et al. [3, Ch. 7] presents worked
examples of some of these questions; in particular §7.5 presents some ap-
plications in spatial epidemiology. Illian et al. [8] present a computational
framework for fitting complex spatial point process models using a recently-
developed methodology known as INLA. Spatio-temporal point pattern mod-
elling is covered by Diggle [6] and Taylor et al. [14].

11 Answers

A1 : 65 trees. Return to Q1 •

A2 : A square of 5.7 m x 5.7 m; the units have been normalized to [0 . . .1].
Return to Q2 •

A3 : The pattern looks completely random; we will investigate this statistically
later. Return to Q3 •
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A4 : They have been re-scaled from [0 . . .1] to the original coordinates, here
[0 . . .5.7] m. Note that although the ppp object stated that the units are metres,
that information has not been carried through to the sp object: it has an undefined
projection and hence units. Return to Q4 •

A5 : Yes, they are quite different. The Japanese pines appear to be completely
randomly distributed; the Redwoods clustered, the cells more or less regular (any-
way, dispersed). Return to Q5
•

A6 :

(a) The distance at which at least 95% of the points have a neighbour is 0.117 units.

(b) the proportion of points with a neighbour within 0.05 units is 0.388. Return
to Q6 •

A7 : They all match well, with very little difference between them. Only at the
furthest distance is the empirical function somewhat lower (fewer neighbours than
expected) than expected by CSR. Return to Q7 •

A8 : They match fairly well, again the discrepancy around G(r) = 0.8 where there
are fewer points with first nearest neighbour in that range than expected. Return
to Q8 •

A9 : For the Redwoods dataset the empirical G function is well above (greater
than) the theoretical after a radius of about 0.01 to about 0.05. This indicates strong
clustering: nearest neighbours are found at closer distances than expected by CSR.
An interesting feature is that there are no neighbours until 0.01 – a very short-range
repulsion probably due to the size of an individual tree, making it impossible for
two trees to be closer than the size of one tree. Return to Q9 •

A10 : For the Cells dataset the empirical G function is well below (less than)
the theoretical throughout the range. This indicates strong dispersion: nearest
neighbours are found at further distances than expected by CSR. There are no
neighbours until about 0.08, after which the function rises very steeply. This is
approaching a pure regular grid, in which the empirical G function is a backwards
”L” shape. Return to Q10 •

A11 : Low intensities lead to more sampling error, so high intensities would have
narrower envelopes. Return to Q11 •

A12 : With this simulation the empirical G function is almost completely within
the envelope throughout, so we can not reject the null hypothesis of CSR. The
anomaly near r = 0.1 is clear, indeed at one point of this simulation the empirical
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value is below the lower limit of the 96% confidence envelope. Return to Q12 •

A13 : The empirical G function for both are well outside the simulation envelope
for much of the radius range. The Redwood trees are almost surely clustered and
the cells almost surely dispersed. Return to Q13 •

A14 : As the bandwidth increases, the maximum intensity decreases: the “hot
spots” are not as “hot” (dense). The minimum intensity in all cases is zero, meaning
there are some regions with effectively no probability of a point occurrence. The
mean intensity is almost the same; theoretically it should be the same but there are
variable edge effects depending on bandwidth. The quartiles show a clear trend:
first quartile and median increasing with bandwidth, third quartile decreasing. The
intensities are concentrated below the mean at wider bandwidths. This is especially
clear with the maximum intensity, which decreases as the counts are averaged across
increasingly larger areas. Return to Q14 •

A15 : As the bandwidth increases, the density becomes more uniform . By twice
the optimum the density is almost homogeneous, at 80% of the optimum the density
there are spurious patches. The optimum seems to give a good representation.

Return to Q15 •

A16 : The K-function for the Japanese pines is quite close to the theoretical for
CSR, although slightly below (dispersed) for radiuses around 0.15. The K function
for the Redwood trees is consistently above (clustered) at all radii but especially
near zero-separation, except for the very close range. The K function for the cells
is well below the theoretical for separations to about 0.15; after this is conforms to
CSR, meaning that after the initial dispersion to that radius, the number of points
within the radius is as expected by CSR. This shows that the dispersion is not on
a regular grid. Return to Q16 •

A17 : The convex hull has expanded slightly outward, consistent with average
inter-point spacing. The point at the extreme SE controls the SSE and E bound-
aries, adding a large amount of unsampled area to the polygon. Return to Q17
•

A18 : The removal of extraneous “white space” increases the intensity by 185 %.
Return to Q18 •

A19 : For the rectangular window about 0.4; for the polygonal ≈ 0.55. This is
because of the smaller area of the rectangle with the same number of points, i.e.,
higher average intensity. Return to Q19 •

A20 : In the rectangular window the observed proportion matches the theoretical
under CSR up to about 80 m, after which the observed is much lower than the
theoretical, i.e., much of the area is further from a point than expected under CSR.
This is because of the large areas without any points in the rectangle. In the
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polygonal window the theoretical (under CSR) and actual match well till about
120 m, after which the observed is slightly lower than the theoretical, by about 0.1.
Thus there is less area far from the nearest point; this indicates some larger areas
of empty space compared to CSR; in this case these are the areas in the SSE and E
controlled by the south-easternmost point and not part of the study area. Return
to Q20 •

A21 : The marks are the cause of each forest fire; there are four classes (causes):
lightning, accidental, intentional, and other. Return to Q21 •

A22 : Yes; for example, the fires caused by lightning are heavily clustered in
the east, with a large space in the centre with almost no fires; by contrast, the
intentional fires are more prevalent in the NW. Return to Q22 •

A23 : Up to about 15 km distances the expected and observed numbers of ad-
ditional fires from the second process are almost the same; however, beyond that,
they are consistently fewer than would be expected by chance, indicating dispersion
of one process “caused by” the other. In this case the apparent dispersion may be
an artefact of non-stationary intensities of both processes. Return to Q23 •

A24 : The actual cross-K function is very close to the theoretical cross-K function
from two unrelated processes. This makes sense because these are two independent
patterns that we superimposed just to show that operation. Return to Q24 •

A25 : The trees appear to be clustered; there are some areas with no trees. In
some sections trees of similar size cluster together but there are also very small trees
near very large (see centre E). Return to Q25 •

A26 : Yes, it appears that there is trend from higher intensity in the NNW to
lower in the SSE. Return to Q26 •

A27 : The landuse is a somewhat more likely explanation for the observed pattern
of fires than the null model. Scrubland, coniferous forests, and farmland have higher
intensities of the Poisson process. Urban land has less. Return to Q27 •

A28 : The model with both land use and Strauss process (interaction) is the
most likely; the model with just land use is quite poor. The combined model is a
bit better than the interaction-only model. There is definitely interaction between
points, i.e., clustering within the 4 km radius. Fires are more likely on scrubland,
conifer forest, and dense forest, Return to Q28 •

A29 : The intensities follow the land use classes (compare with the figure of §7.4).
The lowest intensities are in the “urban” and “artificial green” areas (the “cold spot”
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in the lower-right), the highest in mixed forests. Return to Q29 •

A30 : The landuse-only model has both a higher mean and wider range. It is not
adjusted to account for inter-point interaction, which reduces the intensity. The
Strauss interaction coefficient was 0.76 > 0, indicating local clustering, accounting
for some of the intensity within the most susceptible land uses. Return to Q30 •

A31 : The three fields are x, y, and x. These are the east and north coördinates
in an unspecified CRS, and the reported time of occurrence of a case of foot-and-
mouth disease, in days from an unspecified 0 (maybe day of year 2001). Return
to Q31 •

A32 : There was a gradual start to the epidemic, then a very strong peak, and a
long tail with a few additional cases. Return to Q32 •

A33 : The cases form clear clusters, with a few scattered cases outside of these
(e.g., in the SW and NE). The pattern within the clusters seems random. Note that
the blank areas with no cases are probably because no cattle is raised there – the
large central area is the Lake District national park, and the eastern edge are the
North Pennine mountains. Return to Q33 •

A34 : The earliest cases (smallest symbols) are in the centre and NW, then there
are cases more towards the NW and W, and finally the most recent cases (largest
symbols) are concentrated in the SE. Return to Q34 •

A35 : 0-50 days: 156 cases; 51-100 days: 404 cases; 101-150 days: 40 cases; 151-
200 days: 48 cases. Return to Q35
•

A36 :

These all show a longer distance from an arbitrary location in the study area to the
nearest case than would be expected by chance. The pattern changes: increasingly
strong in the last time-slice, since most of the cases are found only in the SE of the
study area. Return to Q36 •

A37 : These all show strong clustering: the observed distance to nearest neighbour
is well above the theoretical line. Notice the different distance (r) scales. The
clustering is strongest for the 151-200 day slice: almost all points have a neighbour
within 2.2 km, whereas for the 101-150 time slice this is not reached until about
8 km. Return to Q37 •

A38 : There is a clear repulsion influence of the first slice (0-50 days) on the
second (51-100), and the third (101-150) on the fourth (151-200). That is, the
nearest point in one pattern is further than expected by chance from the point in
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the other pattern. The second and third time-slice patterns are almost independent.
Return to Q38 •
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12 Assignment

This is a small test of how well you mastered this exercise. You should be
able to complete the tasks and answer the questions with the knowledge you
have gained from the exercise.

We will use the “Lansing woods” dataset provided as an example with the
spatstat package.

Task 1 : Load the example dataset lansing which is provided with the
spatstat package and view its description (via the help system). •

Q1 : Where was the data collected? How large was the study area? What
is recorded, besides the location? What is its R class? •

Task 2 : Summarize the dataset. •

Q2 : How many black oaks were observed in the study area? What is the
intensity of the point-process for black oaks, in trees per unit area? Explain
why these are the same number. •

Task 3 : Display this marked point pattern (i.e., the occurrences are marked
by the species). •

Note: You might try improving the plot with some combination of cex

(zoom factor for plotting symbols), chars (plotting character), cols (plotting
colours).

It is very difficult to pick out the patterns for different species in this com-
bined graph. We can use the split.ppp function to divide the pattern by
the marks.

Task 4 : Split the Lansing woods data into an object with separate point-
pattern for each species. Display them in one graph with the default plot

method. •

Q3 : Which of the species appears to be most clustered? most dispersed?
most random? •

Task 5 : Compute and graph the G-function for the hickory trees. •

Note: You can access one of the unmarked point-patterns in the split object
with the $ syntax, e.g., if the split object is named lansing.split, access
the hickory point-pattern with lansing.split$hickory.
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Q4 : What is the interpretation of this G-function, with respect to the null
hypothesis of complete spatial randomess? •

Task 6 : Compute and graph a 99-simulation, 96% envelope for the hickory,
to a radius indicated by the G-function graph of the previous task. •

Q5 : Is the empirical G-function within the envelope throughout? Can we
reject the null hypothesis of CSR? •

Now we investigate if the process is homogeneous or not.

Task 7 : Compute the optimal bandwidth, and plot the kernel density of
the hickory trees with the selected bandwidth. •

Note: Recall that the mse2d function expects a set of points, so you will have
to (1) convert from ppp to sp; (2) rescale to the unit square with the elide

method of the maptools package, (3) extract the sp object’s coordinates with
the coordinates method.

Q6 : Does this plot provide evidence for an inhomogeneous point process?
Why or why not? •
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A Preparing data for point pattern analysis

As shown in §5, objects of class ppp can be converted from objects of class
SpatialPoints (point locations only) or SpatialPointsDataFrame (point
locations with attributes which can be used as marks) with the generic con-
version method as, specialized to convert from ppp to sp (and vice-versa)
by methods loaded with the spatstats package. The conversion to ppp is
done with the as.ppp function.

So, all that is required is to import point data (possibly with attributes)
into SpatialPoints or SpatialPointsDataFrame objects. There are two
common methods:

1. Directly from shapefiles of points, using the readOGR function of the
rgdal package (§A.1);

2. From data frames imported with the read.table function or its vari-
ants such as read.csv for comma-separated values (CSV) files (§A.2).

For records stored in Excel spreadsheets, see the R data import/export
FAQ8. The easiest way to import Excel spreadsheets is to first export the
sheet from Excel as a CSV file, and follow option (2) below (§A.2).

A.1 Shapefiles

A shapefile is a specification for geospatial data interchange among ESRI and
other information systems, and is one of the native formats used by ArcGIS.
It consists of three files with the same name and different file extensions:
(1) shp for the geometry; (2) shx for the spatial index; (3) dbf for the
attribute table. We illustrate how to read a shapefile for of the sample
datasets provided with the maptools package, using readOGR function to
read it.

> library(rgdal)

> library(maptools)

> tmp <- readOGR(system.file("shapes/baltim.shp", package = "maptools"))

OGR data source with driver: ESRI Shapefile

Source: "/Library/Frameworks/R.framework/Versions/3.6/Resources/library/maptools/shapes/baltim.shp", layer: "baltim"

with 211 features

It has 17 fields

> class(tmp)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

> proj4string(tmp)

[1] NA

8 http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-spreadsheets
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Note: Packages are stored in the directory found with the .libPaths func-
tion. The system.file function expands its argument with this, to give a
full path and file name.

This is a SpatialPointsDataFrame since it has attributes; these appear to
be information on house sales in Baltimore (USA) It does not have a defined
coördinate reference system; if the source shapefile has one, it is imported.

This is then easily converted to a ppp object with as:

> require(spatstat)

> tmp <- as(tmp, "ppp")

> op <- par(no.readonly = TRUE)

> par(mar=rep(0.5, 4))

> plot(tmp, which.marks="PRICE", axes=T,

main="Baltimore house sale prices, k$")

> par(op)
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The bounding box is set to the exact limits of the point data set.

Note: The par function retrieves and sets base graphics parameters. Here
we reduce the default margins, which are specified with the mar argument to
par.

A.2 Text files

A text file to be converted to a point pattern typically has one header line
giving the variable names, usually with the two coördinates as the first two
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columns. The following lines are one record per point, with a number of
fields. For a point pattern, at least two fields are needed, i.e., the coörd-
inates. Others (the attributes) are optional. In a CSV file, fields within
each record are separated by commas, and text is quoted. But this is only
one possible format; the many arguments to read.table (see its help) allow
almost any text file format to be read into a data frame. We use as an
example the Meuse dataset meuse of the sp package. We write it to a text
file using write.csv, examine its structure, and show how to import it using
read.csv.

First the export:

> require(sp)

> data(meuse)

> class(meuse)

[1] "data.frame"

> write.csv(meuse, file = "tmp.csv")

We examine its structure with file.show, but you can also view in any
plain-text editor.

> file.show("tmp.csv")

"","x","y","cadmium","copper","lead","zinc","elev","dist","om","ffreq","soil","lime","landuse","dist.m"

"1",181072,333611,11.7,85,299,1022,7.909,0.00135803,13.6,"1","1","1","Ah",50

"2",181025,333558,8.6,81,277,1141,6.983,0.0122243,14,"1","1","1","Ah",30

"3",181165,333537,6.5,68,199,640,7.8,0.103029,13,"1","1","1","Ah",150

"4",181298,333484,2.6,81,116,257,7.655,0.190094,8,"1","2","0","Ga",270

...

"164",180627,330190,2.7,27,124,375,8.261,0.0122243,5.5,"3","3","0","W",40

Then the import; although here we just duplicate what we already had in
the example data frame, for your own data this would be the point at which
you bring your data into R.

Notice that the CSV file has no information on data types; read.table

guesses but is not always right. Here it can not determine that ffreq, soil
and lime are classes, because they are coded as integer labels. So they must
be converted explicitly with as.factor.

> pp <- read.csv(file = "tmp.csv")

> class(pp)

[1] "data.frame"

> pp$ffreq <- as.factor(pp$ffreq)

> pp$soil <- as.factor(pp$soil)

> pp$lime <- as.factor(pp$lime)

> str(pp)

'data.frame': 155 obs. of 15 variables:

$ X : int 1 2 3 4 5 6 7 8 9 10 ...
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$ x : int 181072 181025 181165 181298 181307 181390 181165 181027 181060 181232 ...

$ y : int 333611 333558 333537 333484 333330 333260 333370 333363 333231 333168 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...

$ copper : int 85 81 68 81 48 61 31 29 37 24 ...

$ lead : int 299 277 199 116 117 137 132 150 133 80 ...

$ zinc : int 1022 1141 640 257 269 281 346 406 347 183 ...

$ elev : num 7.91 6.98 7.8 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...

$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...

$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...

$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...

$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...

$ dist.m : int 50 30 150 270 380 470 240 120 240 420 ...

Convert to a SpatialPointsDataFrame using the coordinates method:

> coordinates(pp) <- ~x + y

> class(pp)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

Finally, this can be converted to a point pattern:

> pp <- as(pp, "ppp")

> class(pp)

[1] "ppp"

> window(pp)

Marked planar point pattern: 6 points

Mark variables:

X cadmium copper lead zinc elev dist om ffreq soil lime landuse

dist.m

window: rectangle = [178605, 181390] x [329714, 333611] units

> op <- par(no.readonly = TRUE)

> par(mar=rep(0.5, 4))

> plot(pp, which.marks="soil", cols=c("red","blue","green"),

pch=20, main="Meuse soil types", axes=T)

> par(op)
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The window boundary can be limited as explained in §5. If a bounding
polygon is available, it can be imported and used as the window. I have
prepared a crude boundary for this area, by polygonizing the interpolation
grid meuse.grid supplied in the sp package, taking the union of the grid cell
polygons, and writing the result as a shapefile meuseBoundary. This should
have been supplied with this exercise, as a compressed folder with the four
files which together make up the ESRI shapefile format.

The readOGR function of the rgdal package can read ESRI shapefiles in to an
sp object. The dsn “data source name” argument to readOGR for a shapefile
is the folder name in which the shapefile is located; in the code below it is
given as ".", i.e., the current working directory9; you can change this as
you wish. The layer “layer name” argument is the name of the shapefile,
without extension.

> library(rgdal)

> meuseBoundary <- readOGR(dsn = ".", layer = "meuseBoundary")

> class(meuseBoundary)

OGR data source with driver: ESRI Shapefile

Source: "/Users/rossiter/data/edu/dgeostats/ex/ds/meuse", layer: "meuseBoundary"

with 1 features

It has 1 fields

[1] "SpatialPolygonsDataFrame"

9 You can see what this is with the getwd function.
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attr(,"package")

[1] "sp"

The polygon shapefile import creates a a SpatialPolygonsDataFrame ob-
ject, which can be converted to an owin “observation window” object with
the as.owin function of the spatstat package:

> (meuseBoundary.win <- as.owin(meuseBoundary))

window: polygonal boundary

enclosing rectangle: [178440, 181560] x [329600, 333760] units

Finally, this window can be substituted for the original rectangular window
by direct assignment to the window field of the ppp object:

> pp$window <- meuseBoundary.win

When this is plotted we see the study area window:

> op <- par(no.readonly = TRUE)

> par(mar=rep(0.5, 4))

> plot(pp, which.marks="soil", cols=c("red","blue","green"),

pch=20, main="Meuse soil types", axes=T)

> par(op)
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Challenge: Repeat the analysis of §5 (the F function) with this polygonal
window, and compare the results with those from the rectangular bounding
box and the window found by the Ripley-Rasson method.

Clean up from this section; this includes removing the temporary file with
the unlink function10:

> unlink("tmp.csv")

> rm(meuse, pp, meuseBoundary, meuseBoundary.win, op)

10 This name for file deletion is inherited from the Unix operating system.
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32

W argument (superimpose function), 36
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write.csv, 74

xyplot (lattice package), 4, 5

84


	1 Examining some point patterns
	2 Assessing complete spatial randomness: the G function
	3 Kernel density estimation
	4 Second-order properties: the K function
	4.1 The L function: a linearized K function
	4.2 * Modifying the window

	5 The F function; non-rectangular windows
	6 Marked point patterns
	6.1 Categorical marks
	6.2 Interaction between point patterns: the cross-K function
	6.3 Combining point patterns
	6.4 Continuous marks

	7 Models of spatial processes
	7.1 Null model
	7.2 Trend surface
	7.3 Strauss process
	7.4 Covariates

	8 Prediction
	9 * Spatio-temporal analysis
	10 Further reading
	11 Answers
	12 Assignment
	A Preparing data for point pattern analysis
	A.1 Shapefiles
	A.2 Text files

	References
	Index of R concepts

