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AL, TRHA, W, BUEANH, AERRF, ZUNH
“To know that one does not know is best; not to know but to
believe one knows is a disease. Sages are free of this disease
because they recognize it for what it is.”

~ f#iE % (DeDaoJing 71)

After completing this exercise you should be able to:

1. Transform a composition into additive-log-ratio form;
2. Analyze the spatial structure of a composition;

3. Interpolate the composition by Ordinary Kriging and Ordinary Cok-
riging.

1 Compositional variables

Certain (geo)statistical variables, when considered as a group, are not in-
dependent in feature space, because they are constrained to sum to some
constant; the set of these is called a composition. Well-known examples in-
clude particle-size distribution of the fine earth (<2 mm diameter) mineral
soil (e.g., sand, silt and clay)', and the basic cations (e.g. Kt, Nat, Catt,
Mg*) in a total element analysis of a rock sample. If these are expressed
as a percent, they must sum to 100%; if as a proportion, to 1.

Note: Note that the constituents of a composition can often be expressed as
absolute values, e.g., the actual weight of a particle-size separate in a sample
(say, 10 g clay in a 20 g soil sample). The composition can be derived from
these values by dividing the absolute value by the sum of the values, but the
reverse is not possible unless the total is known, which is rarely the case.
Indeed, the main interest of most compositions is usually in the relative
amounts.

Because a composition is constrained, any random variate composition that
appears to be of a given dimension in RP-space is in fact drawn from the
simplex .4, where d = D — 1, embedded in this space?. A well-known
example is the triangular ternary diagram, showing three particle-size sepa-
rates (sand, silt, clay), which are apparently three variables and thus define a
point in R3-space on a two-dimensional graph, i.e., a simplex .#?. Knowing
two of the separates, the third is determined — this is why we can visualize
three variables in two dimensions in a ternary diagram, where any two axes
determines the third.

Note: The soiltexture R package, part of the “Soil Texture Wizard”
project® from Julien Moeys, plots a wide variety of ternary diagrams repre-
senting soil particle-size composition. Figure 1 shows an example.

This invalidates the assumption of independence between the 1 members of
a composition; in fact, there must be spurious negative correlations between

! these may be further subdivided, e.g., into very fine, fine, medium, coarse and very
coarse sand

2 The notation is from Aitchison [2]

3http://soiltexture.r-forge.r-project.org/
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Texture triangle: Bodenkundliche Kartieranleitung 1994 (DE)
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Figure 1: Example of a ternary diagram produced by the soiltexture
package: German soil texture classification

the variables, as first pointed out by Pearson in 1897. Thus conventional mul-
tivariate analysis techniques (e.g., partial correlation matrices, multivariate
regression) fail when applied to compositional variables.

These issues are comprehensively dealt with by Aitchison [2]*; further, a R
package compositions written by van den Boogaart and Tolosana-Delgado
[9] is available to implement a proper analysis; these authors have also writ-
ten a textbook in the UseR! series [10].

From a geostatistical perspective there is another issue: if the n members
are modelled and interpolated separately (e.g., by kriging) in general they
will not sum properly; see for example Odeh et al. [7]. A naive solution is to
predict m — 1 components and derive the remaining one by subtraction from
the constant, but the result depends on which components are selected — a
troubling inconsistency.

Further, it may be expected that the spatial structure of the elements of
a composition may be similar, allowing a co-kriging approach to increase
precision of the kriged estimate.

Pawlowsky-Glahn and Olea [8] devoted an entire book to the topic of geo-
statistical analysis of compositional data; this work has been refined by Lark
and Bishop [5].

4 an updated version of Aitchison [1]



2 An example of compositional data

We begin by illustrating some of the issues with compositional data.

Task 1 : If you do not already have the required package compositions on
your system, install it. o

The install.packages function retrieves a named package and any depen-
dencies. You must first have specified a mirror, i.e., the site from which
you will download packages; do this with the chooseCRANmirror interactive
function.

> chooseCRANmirror ()
> install.packages("compositions")

Task 2 : Load the compositions package. o

The require function loads a package:

> require(compositions)

Note: The help text for this package includes this interesting disclaimer:
“The mere fact that the package computes something does not imply that
this is reasonable.” Words of wisdom indeed, that can applied to any com-
putation!

We use a dataset from a transect near Sandford-on-Thames (Oxfordshire,
England), originally reported by Webster and Cuanalo [12], and also used
by Davis [3, Example 4.12]. The soil was sampled at three depth intervals
(5-6 cm thick, centred on 8, 30, 65 cm depth) by augering every 10 m along
a regular transect, resulting in 321 sites.

Task 3 : Load the example dataset and examine its structure. .

This dataset was provided by Richard Webster to Murray Lark®, who for-
matted it for easier processing. He in turn kindly provided it to us as file
sandford. txt.

Task 4 : Examine the text file structure in a text editor. .

> file.show("sandford.txt")

The first few lines are:

Top 2 3

Clay Silt Clay Silt Clay Silt
1 70 15 85 10 84 14
2 65 20 75 15 85 10
3 65 20 75 10 70 20

Shttp://www.bgs.ac.uk/staff/profiles/40081.html
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The meaning here is clear: each row (after the headers) is an observation
number (in sequence along the transect), followed by the silt and clay in
layers 1, 2 and 3 respectively. It’s easiest to read this in without the header
lines, and add our own column labels.

Task 5 : Read the text file into a data frame and assign field names. .

The read.table is the generic function to read text files; in this case the
only non-default setting is the skip argument to skip the first two lines.

We name the data frame (unimaginatively) ds:

> ds <- read.table("sandford.txt", skip = 2)

To illustrate composite variables, we add variables for sand content, taken
to be the complement of clay + silt.

Note: In soils lab. practice, it is common to adjust the separates to sum
to 100% before publishing the results. This can be by only analysing two
separates and assuming the other to be the complement, or by adjusting all
separates.

Task 6 : Add fields for the sand content of the three layers. .

> ds$sandl <- 100 - (ds$clayl + ds$siltl)
> ds$sand2 <- 100 - (ds$clay2 + ds$silt2)
> ds$sand3 <- 100 - (ds$clay3 + ds$silt3)

2.1 Visualizing the transect

Task 7 : Display the particle-size fractions along the transect for the second
layer. .



> plot(ds$clay2, type = "1", ylim = c(0, 100), xlim = c(0,
+ 360), main = "Layer 2", xlab = "Station on transect",
+ ylab = "weight %")
> lines(ds$silt2, 1ty = 2, col = "blue")
> lines(ds$sand2, 1ty = 3, col = "red")
> legend (330, 100, c("clay", "silt", "sand"), lty = 1:3,
+ col = c("black", "blue", "red"))
> grid()
Layer 2
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Station on transect

This transect is quite variable and shows some clear boundaries, but also
smooth transition zones.

Q1 : Describe the pattern of spatial dependence in the sand-size fraction.
Jump to Al e

2.2 Splitting the dataset

Following Lark and Bishop [5], we remove every third datum (i.e., the ob-
servations at sites 3, 6, 9, ...) into a separate evaluation dataset. This will
be used to compare interpolation methods.

Task 8 : Remove every third observation from the modelling set and move
it into a evaluation set. .

We first create a vector of the indices to remove with the seq function, then
use these indices to select; note the use of the — subscript operator to exclude
rows. Finally we check the dimensions of the resulting data frames.

> valid.ix <- seq(from = 3, to = length(ds$seq), by = 3)
> head(valid.ix)



[1] 3 6 9 12 15 18
> tail(valid.ix)
[1] 306 309 312 315 318 321

> ds.val <- ds[valid.ix, ]
> ds.cal <- ds[-valid.ix, 1]
> dim(ds.val)

[1] 107 10
> dim(ds.cal)

[1] 214 10

2.3 Target composition

Following Lark and Bishop [5] we will model the particle size fractions for
the depth interval centred on 30 cm, i.e., layer 2.

Task 9 : Create a list with the field names of the particle-size composition
of layer 2 and show the summary of these fields in the calibration set. .

Since the summary method does not include the standard deviation, we use
the sapply function to apply the sd function over the columns:

> names.2 <- c("sand2", "silt2", "clay2")
> summary(ds.cal[, names.2])

sand2 silt2 clay2
Min. : 3.0 Min. 2 Min. : 2.0
1st Qu.:15.0 1st Qu.:10 1st Qu.:15.0
Median :25.0 Median :20 Median :35.0
Mean :40.2 Mean :25 Mean :34.8
3rd Qu.:70.0 3rd Qu.:35 3rd Qu.:53.8
Max. :96.0 Max. 175 Max. :90.0

> sapply(ds.call, names.2], sd)

sand2 silt2 clay2
31.108 17.685 24.040

Q2 : Describe the feature-space variability of this layer. Jump to A2 e

2.4 Choosing a composition geometry

There are four kinds of compositions, depending on the answers to two ques-
tions [9, Table 1]:

1. Is the total sum (also called the size) of the composition meaningful,
or is it a side effect (artefact) of the measurement procedure?

2. Is the scale of distance between compositions absolute or relative?



These dictate which geometry is appropriate for the analysis.

For question (1), we can measure particle-size fractions as weights of sand,
silt and clay in a given soil volume; these can be added to give the size of
the sample in absolute terms. If we are interested in the absolute amount of
some pollutant that could be absorbed onto clay particles, we would want
to know absolute amount of that fraction. It is more common to measure
these weights in the lab. based on a soil weight; then the absolute weights
of the fractions are not meaningful, only their proportion of the weight®.

The answer to this question determines whether the data are considered
open, i.e., all positive but not constrained to sum to a constant) or closed,
i.e., must sum to a constant.

For question (2), we need to decide if the measurement scale is intrinsically
linear. Does an increase in clay content from 2% to 5% have the same signifi-
cance as an increase from 32% to 35% and from from 92% to 95%? For most
interpretations they are not the same; at low clay contents a few percent
increase has much more effect on soil behaviour than at high clay contents,
so we prefer a relative scale.

The answer to this question determines whether the “distance” between ob-
servations (in feature space) are computed by their absolute difference or as
a quotient; this second case requires a logarithmic transformation, so data
must all be strictly positive (no zeroes)”.

The compositions package defines classes and functions for these four situ-
ations:

rplus : for meaningful size and absolute scale;
rcomp : for meaningful size and relative scale;
aplus : for proportions and absolute scale; and

acomp : for proportions and relative scale.

Q3 : Which geometry is appropriate for particle-size fractions?  Jump to
A3 e

Task 10 : Convert the particle-size fractions of the second layer into an
additive log-ratio composition. .

This is class acomp, also known the Aitchison log-ratio class.

Package compositions provides a function acomp for creating a composition
of class acomp from a list of variables in a dataframe.

6 To answer questions about absolute amounts in a given volume of soil, the fraction is
converted to an absolute amount by the soil bulk density

71In practice, these can be avoided by replacing zeroes with some small number, conven-
tionally half the minimum value



Note: The acomp function does not change any numbers, it just lets other
operations know how to interpret them.

> comp.2 <- acomp(ds.call, names.2], total = 100)
> class(comp.2)

[1] "acomp"
> str(comp.2)

acomp [1:214, 1:3] 5 10 10 5 25 15 30 25 20 25 ...
- attr(*, "dimnames")=List of 2

..$ @ chr [1:214] "in "2n ugn vge

..$ : chr [1:3] "sand2" "silt2" "clay2"

The second step is to convert this composition of class acomp, which is just
a wrapper for the original variables, into a compositional variable of class
rmult, composed of ratios rather than original variables. Before doing this,
we explain the mathematics,

The additive log-ratio transformation has the form:

Z1 Z2 zp-11T
x = |log—,log—,...,lo 1
| log 25108 i | (1)
where z; is the ith element of the vector z of the D variables for one obser-
vation:

zZ=1[z1,22,...,zp1" (2)

Note that the transformed vector X has one less dimension than the original
vector X, and the first (D — 1) variables are standardized by the final one.
Note also that the log-ratio transformation maps from the simplex (where
the values must be on 0...100) to the entire real line — this is a major
benefit, because it allows us to work in real-space geometry, e.g., with normal
multivariate analysis.

The choice of standardising variable is mathematically arbitrary, and is usu-
ally dictated by the application. In this case we will use the last-named (clay
proportion) as the normalising variable.

Task 11 : Transform the composition by the additive log-ratio transforma-
tion. o

The alr function builds a composition by this transformation:
> str(alr2 <- alr(comp.2))

rmult [1:214, 1:2] -2.833 -2.015 -1.872 -2.833 -0.956 ...
- attr(*, "dimnames")=List of 2

..$ : chr [1:214] "qim n2n ngn ngn

..$ : chr [1:2] "sand2" "silt2"

> summary (alr2)



sand2 silt2
Min. -3.040 -2.890
1st Qu. -1.180 -0.847
Median -0.134 -0.168

Mean 0.181 -0.288
3rd Qu. 1.430 0.118
Max. 3.870 2.010

attr(,"class")
[1] "summary.rmult" "matrix"

The inverse transformation is:

eYi

zZi =
D-1 ;
>.i-1 e

(3)

Task 12 : Check that the inverse transformation recovers the original data.

The alrInv command inverts the transformation. It can not recover the
name of the third variable unless the optional orig argument names an ob-
ject which structure should be mimicked. Note also the back-transformation
is to proportions, since there is no way to recover the original size from the
log-ratios. We check the difference, allowing for small rounding errors.

> str(tmp <- alrInv(alr2, orig = comp.2))

acomp [1:214, 1:3] 0.05 0.1 0.1 0.05 0.25 0.15 0.3 0.25 0.2 0.25 ...

- attr(*, "dimnames")=List of 2
. '$ : Chr [1:214] |l1l| |l2l| |l4l| |l5l|
..$ : chr [1:3] "sand2" "silt2" "clay2"

> sum((comp.2[, "sand2"] - tmp[, "sand2"] * 100) + (comp.2[,
+ "silt2"] - tmp[, "silt2"] * 100) + (comp.2[, "clay2"] -
+ tmp[, "clay2"] * 100))

[1] -4.8228e-13

Apart from small rounding errors the reverse transformation is exact.

2.5 Exploring the composition

2.5.1 Numerical

We now look at the composition in feature space, both numerically and
graphically.

Task 13 : Summarize the composition in the transformed feature space. e

In R we generally use the summary method to summarize an object. In the
case of compositions, the summaries must be presented for each component
or pair-wise ratio of these in the selected geometry. So each aspect of the
usual summary (e.g., minimum, maximum, mean, quantiles, variances) is



presented as an vector or matrix of log-ratios. We can see the various aspects
with the names function and then extract the results we want with the $ fields
selection operator. There are also convenience methods such as the familiar
mean, which specialise according to the geometry of the object.

> names (summary (comp.2))

[1] "mean" "mean.ratio" ‘"variation"  "expsd"
[5] "invexpsd" "min" ||q1|| "med"
[9] "q3" "max" "missingness"

First, the means. For class acomp these are geometric means, rather than
arithmetic means. This is because the geometry is relative. Thus there is
a difference between the naive means of the proportions as presented in the
dataset (computed with mean on the original data, or the meanCol method
on the composition object), and the mean of the compositional variable
(computed with meanCol, for means of the columns of a dataframe, on the
compositional variable):

> summary (comp.2) $mean

sand2 silt2 clay2
0.40657 0.25423 0.33920
attr(,"class")
[1] acomp

> colMeans(ds.cal[, names.2])/100

sand?2 silt2 clay?2
0.40164 0.25037 0.34799

> meanCol (comp.2)/100

sand?2 silt2 clay?2
0.40164 0.25037 0.34799

For this dataset, since the means are close to the centre of the simplex, there
is not much difference.

To summarize the variances, we use a so-called variation matrix. This is not
the variance of any component, rather it is variances of all possible log-ratios
among components. This is reported by the variation method applied to
a composition; it is also the var field of the summary.

Note: The standard variance-covariance matrix computed with var on the
composition is not so meaningful.

> variation(comp.2)

sand2 silt2 clay2
sand2 0.0000 2.70469 3.39560
silt2 2.7047 0.00000 0.72289
clay2 3.3956 0.72289 0.00000

> summary (comp.2)$var

10



2.5.2  Graphical

sand2 silt2 clay2
sand2 0.0000 2.70469 3.39560
silt2 2.7047 0.00000 0.72289
clay2 3.3956 0.72289 0.00000

Q4 :  Which two components have the least variation in their log ratio?
What is the interpretation? Jump to A4 e

In §2.1 we visualized the proportions along the transect; we can also visualize
the additive log-ratios.

Task 14 : Visualize the log-ratios along the transect .

Note: This code makes clever use of the setdiff function to set the x-axis
points to 1,2,4,5,7,8... by removing every third station number, since the
composition is only computed for 2/3 of the points along the transect, yet
we want to see the correct station.

11



vV + VvV VYV + + V + VvV

ratio of weight %

xpts <- setdiff(l:length(ds$seq), seq(3, length(ds$seq),

by = 3))
plot(alr2[, "sand2"] ~ xpts, type = "1", xlim = c(O,
360), main = "Layer 2 additive log-ratios", xlab = "Station on transect",

ylab = "ratio of weight %")
lines(alr2[, "silt2"] ~ xpts, lty = 2, col = "blue")
abline(h = 0, 1ty = 2)
legend (300, 3.5, c("sand/clay", "silt/clay"), lty = 1:2,
col = c("black", "blue"))
grid

Layer 2 additive log-ratios

™ —— sand/clay
---- silt/clay

0 50 100 150 200 250 300 350

Station on transect

Q5 : Describe the spatial variability of the ratios, compared to the untrans-
formed particle-size fractions. Jump to A5

Another way to visualize the variability of a composition is by a boxplot
of all the ratios; the generic boxplot method is adapted appropriately for
compositions. This can be visualized untransformed or on a log-scale:

> boxplot(comp.2, log = F)

12



— —
S : g !
gl ! 3 !

sand?2 | ! o :
! Q !
: :
ol : e :
(=] : o :
L 2
.
S ! =
; silt2
wn - : n _;_
! !
.

— o —_—

o —r ol

Q . B

!
9 ! o 4
!
o | | ol . clay2
! —
wn - : w| - :
> boxplot(comp.2, log = T)
o o
=i — S —_
e . S .
] ! !
sl : S '
n n
sand2 ]
3| 3
o 1 (=] T
i : ,
] —_ '
8| 1 8 e

o (=] °

i ' s —=

2 4 silt2 pd ;

g ] . = .

S ! S N

S —_ &

o o

— . -

g ] ! g|] -

w0 L m_ '

g - =l E clay2

o o 1

g , o[ ] :

d_ : o'_

8 L g |

o (=]

The boxplots will have different scales, depending on the value range, so you

must look at the numbers to answer the following question.

13



A ternary diagram is the familiar representation of a 3-component compo-
sition in a 2-D simplex.

Task 15 : Display a ternary diagram of the layer 2 particle-size distribution.

The plot method specializes to plot.acomp when called to plot an object
of class acomp. In the case of a composition that can be projected on a 2-D
simplex, the plot is a ternary diagram.

We also plot the mean (“barycentre”); note this is at coordinates which we
discovered with the mean method.

plot(comp.2, axes = T)
plot(mean(comp.2), add = T, col = "red", pch = 20, cex = 2)
straight (rcomp(c(0, 0, 0)), rcomp(mean(comp.2)))
ellipses(mean(comp.2), var(comp.2), col = "red", r = 2)
straight (mean(comp.2), princomp(comp.2)$Loadings[1, 1)
straight (mean(comp.2), princomp(comp.2)$Loadings[2, ],

1ty = 2)

+ V V V V Vv VvV

sand2 silt2

The red curve on the ternary graph, drawn with the ellipses function,
shows the variance of the dataset around the mean, represented by the large
red dot.

The black curves on the ternary graph, drawn with the straight function,
are the two principal component axes of the three variables (note that the
system is rank deficient, since it is a composition); the solid line is component
1 and the dashed line component 2. These are straight lines in the simplex
but display as curves on the ternary diagram.

Q6 : Are the observations equally distributed in this simplex? If not, where

14



are they concentrated? Jump to A6 e

Q7 : How does this diagram prove that the three variables are not inde-
pendent in feature-space? Jump to A7

3 Kriging compositional variables

In this section we will examine how to analyze the spatial structure of a
composition, and use this for kriging interpolation. We will compare several
approaches:

1. Naive analysis: each component of the composition is modelled and
kriged independently (§3.2);

2. Co-kriging of two components, estimation of the third by subtraction

(§3.3);
3. Kriging of compositional variables (§3.4);

4. Co-kriging of compositional variables (§3.5).

We will compare all these by validating against the one-third of the known
observations that were held out for evaluation (§2.2); in §4 we will compare
them against each other.

3.1 Spatial objects

To use the gstat package for spatial analysis, we must first create a spatial
object acceptable to the sp package.

Task 16 : Convert the calibration dataset into a spatial object. .

We use the sp package for spatially-explicit data. This requires at least two
dimensions, so we assume a constant value (0) for the second dimension, and
use the sequence number as the first dimension.

The coordinates method assigns coordinates, in this case the sequence
number along the transect and a constant; note that the actual length of the
transect is ten times this.

require(sp)

require(gstat)

ds.cal.sp <- cbind(ds.cal, y = 0)
coordinates(ds.cal.sp) <- “seq + ¥y
str(ds.cal.sp)

V V V VvV V

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..0 data :'data.frame': 214 obs. of 9 variables:
..$ clayl: int [1:214] 70 65 70 80 70 65 40 45 25 30 ...

..$ siltl: int [1:214] 15 20 10 10 10 15 40 25 40 50 ...

..$ clay2: int [1:214] 85 75 65 85 65 70 60 50 40 60 ...

15



..$ silt2: int [1:
..$ clay3: num [1:
..$ silt3: num [1:
..$ sandl: num [1:
..$ sand2: num [1:
. ..$ sand3: num [1:
..0 coords.nrs : int
..Q@ coords : num
..$ : NULL
.. ..$ : chr [1:2]
..Q@ bbox
..$ : chr [1:2]
..$ : chr [1:2]

214] 10 15 25 10 10 15 10 25 40 15 ...
214] 84 85 65 80 25 80 25 35 50 10 ...
214] 14 10 10 15 15 10 25 25 30 80 ...
214] 15 15 20 10 20 20 20 30 35 20 ...

214] 5 10 10 5 25 15 30 25 20 25 ...

214] 2 5 25 5 60 10 50 40 20 10 ...

[(1:2] 1 11

[1:214, 1:2] 1 2457 8 10 11 13 14 ...
..— attr(x*, "dimnames")=List of 2

"SGq y

: num [1:2, 1:2] 1 0 320 O
..— attr(x, "dimnames")=List of 2

"Seq" lIyll

Ilminll l|maxl|

..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

3.2 Ordinary kriging of particle-size fractions

The naive way to produce maps of the particle-size fractions is to model and
interpolate each one separately. We will see the difficulties this causes.

Task 17 : Compute variograms for the layer 2 particle-size fractions. Plot

them on the same scale.

We are only interested in the short-range structure, since kriging interpola-
tion weights will be insignificant at longer separations. So we limit the range
to 30 units (each representing 10 m).

vV V V V

v.sand <- variogram(sand2 ~ 1, loc
v.silt <- variogram(silt2 ~ 1, loc
v.clay <- variogram(clay2 ~ 1, loc
sv.max <- max(v.sand$gamma, v.silt$gamma, v.clay$gamma)

ds.cal.sp, cutoff
ds.cal.sp, cutoff
ds.cal.sp, cutoff

= 36)

36)
36)
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separates. Are these similar?

> pl <- plot(v.sand, plot.numbers = T, main = "Sand %",
+ ylim = c(0, sv.max))
> p2 <- plot(v.silt, plot.numbers = T, main = "Silt %",
+ ylim = c(0, sv.max))
> p3 <- plot(v.clay, plot.numbers = T, main = "Clay %",
+ ylim = c(0, sv.max))
> print(pl, split = c(1, 1, 3, 1), more = T)
> print(p2, split = c(2, 1, 3, 1), more = T)
> print(p3, split = c(3, 1, 3, 1), more = F)
Sand % Silt % Clay %
1 1 1 - 1 1 1 1 1 1
600 — 8§88 - 600 — r 600 — -
ao4o?
500 300 - 500 — - 500 — -
404 50893%4
S 400 306 o8 400 o 8 00 o 3080 5 -
g 205 g 3 205
© A L © A g © A
2 300 31;13 2 300 foégﬂmsggﬁ 2 300 21413
) @ 40 ) 420
? 200 F @ 200 A 6 + ? 200
420 8151% 18
42
100318 + 100 4 318 - 100 4 913
T T T T T T T T T
10 20 30 10 20 30 10 20 30
distance distance distance
: escribe the spatial structure (range, sill, nugget, form) o e three
8 D be the spatial struct ge, sill, nugget, fa f the th

Jump to A8 e

Task

18 :

Model each variogram separately.

We start with visual estimates specified with the vgm function, and then fit
with the fit.variogram function, using the default weighted least squares
(WLS) fit:

> (vm.sand <- fit.variogram(v.sand, vgm(1400, "Sph", 100,

+

100)))

model psill range
Nug 21.02 0.00
Sph 607.38 35.68

1
2

> (vm.silt <- fit.variogram(v.silt, vgm(300, "Sph", 50,

+

model psill

1
2

100)))

range

Nug 52.84 0.000
Sph 241.69 31.666

> (vm.clay <- fit.variogram(v.clay, vgm(425, "Sph", 40,

+

model

100)))

psill

range
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1
2

Nug 53.767 0.000
Sph 379.004 21.951

Task 19 : Plot the empirical variograms and the fitted models on one graph.

We first compute a common scale from the maximum semivariances, then
use the plot method to draw the first scatterplot, followed by lines and
points functions to build up the final figure.

> sv.max <- max(v.sand$gamma, v.silt$gamma, v.clay$gamma) *
+ 1.05
> plot(v.sand$gamma ~ v.sand$dist, xlim = c(0, 36), ylim = c(O,
+ sv.max), ylab = "Semivariance", xlab = "Separation",
+ main = "Fitted variograms, particle-size fractions",
+ col = "red", pch = 20)
> lines(variogramLine(vm.sand, maxdist = 36), 1ty = 3,
+ col = "red")
> points(v.silt$gamma ~ v.silt$dist, ylim = c(0, sv.max),
+ col = "blue", pch = 20)
> lines(variogramLine(vm.silt, maxdist = 36), 1ty = 2,
+ col = "blue")
> points(v.clay$gamma ~ v.clay$dist, ylim = c(0, sv.max),
+ col = "black", pch = 20)
> lines(variogramLine(vm.clay, maxdist = 36), lty = 1,
+ col = "black")
> legend(3, sv.max * 0.9, c("sand", "silt", "clay"), lty = 3:1,
+ col = c("red", "blue", "black"))
> grid(
Fitted variograms, particle-size fractions
o I sand |
silt
S — clay
s
g
gEegd A
[42]
° T T T T T T T T
0 5 10 15 20 25 30 35
Separation
Q9 : How similar are the spatial structures? How do you explain the

different ranges, structural sills, and nuggets, in terms of physical processes?
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Jump to A9 e

Task 20 : Predict at the evaluation locations. .

First we must make a spatial version of the evaluation set. Because there are
many points, it is both computationally-efficient and justified by theory of
local dependence to limit the maximum distance of points to use to compute
weights to the range of each variable.

> ds.val.sp <- cbind(ds.val, y = 0)

> coordinates(ds.val.sp) <- “seq + y

> k.sand <- krige(sand2 ~ 1, loc = ds.cal.sp, newdata = ds.val.sp,
+ model = vm.sand, maxdist = vm.sand[2, "range"])

[using ordinary kriging]

> k.silt <- krige(silt2 ~ 1, loc = ds.cal.sp, newdata = ds.val.sp,
+ model = vm.silt, maxdist = vm.silt[2, "range"])

[using ordinary kriging]

> k.clay <- krige(clay2 ~ 1, loc = ds.cal.sp, newdata = ds.val.sp,
+ model = vm.clay, maxdist = vm.clay[2, "range"])

[using ordinary kriging]

Task 21 : Sum the three predictions and compare to the required 100%. e

> summary(diff <- 100 -
+ (k.sand$varl.pred + k.silt$varl.pred + k.clay$varl.pred))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-5.4100 -0.9590 -0.1100 -0.0261 1.0900 4.5800

> plot(diff ~ coordinates(ds.val.sp)[,1],

+ ylab="100 - (sand + silt + clay)",

+ xlab="station", type="h",

+ main="Difference between 1007 and the sum of components")
> abline (h=0)

> grid()
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Difference between 100% and the sum of components

100 - (sand + silt + clay)
-2

station

Q10 : Do the separately-predicted values sum to 100%? Characterise the
error. Is there any spatial pattern? Jump to A10 e

Clearly, this is not satisfactory.

3.2.1 Evaluation of the OK of particle-size fractions approach

Task 22 : Compute the bias and RMSE of the actual vs. predicted values
of the three fractions. .

An easy way to compute the bias is to use the summary method; for a vector
this reports the mean as part of the summary. We can also see the extremes,
the IQR, and the median.

> summary (diff.k.sand <- (k.sand$varl.pred - ds.val.sp$sand2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-40.500 -4.360 -0.529 -0.738 2.750 35.500

> (rmse.k.sand <- sqrt(sum(diff.k.sand"2)/length(diff.k.sand)))
[1] 9.2043
> summary (diff.k.silt <- (k.silt$varl.pred - ds.val.sp$silt2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-20.800 -5.160 0.802 0.248 5.360 23.000

> (rmse.k.silt <- sqrt(sum(diff.k.silt"2)/length(diff.k.silt)))
[1] 7.6755
> summary (diff.k.clay <- (k.clay$varl.pred - ds.val.sp$clay2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-29.900 -3.640 1.030 0.516 4.620 29.500

> (rmse.k.clay <- sqrt(sum(diff.k.clay~2)/length(diff.k.clay)))
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[1] 9.1903

Q11 : Describe the biases and RMSE. In general, how is the quality of this
prediction? Jump to All e

Task 23 : Display 1:1 plots of the actual vs. predicted for the three elements
of the evaluation composition for the separate fractions OK approach. .

These are correctly displayed against a 1:1 line (i.e., predicted equals actual).

par (mfrow=c(1,3))

plot(ds.val[,"sand2"] ~ k.sand$varl.pred,
ylab="Actual", xlab="Predicted", main="Sand",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.vall,"silt2"] ~ k.silt$varl.pred,
ylab="Actual", xlab="Predicted", main="Silt",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid(Q)

plot(ds.vall,"clay2"] ~ k.clay$varl.pred,
ylab="Actual", xlab="Predicted", main="Clay",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

par (mfrow=c(1,1))

vVV+ +VV + 4+ VYV + + VYV

Sand Silt Clay

Actual
a0 6
H 0
o T.
Actual
40 6
6
Actual
40 [

Task 24 : Show the actual vs. predicted for sand along the transect for the
evaluation points. o
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> plot(ds.val$sand2 ~ ds.val$seq, type = "1", ylim = c(O,
+ 100), xlim = c(0, 330), main = "Actual vs. predicted sand proportion (OK)",
+ xlab = "Station on transect", ylab = "weight %",
+ cex = 0.6, pch = 20)
> lines(k.sand$varl.pred ~ coordinates(ds.val.sp)[, 1],
+ col = "red", type = "1", cex = 0.6)
> legend(250, 90, c("actual", "predicted"), lty = 1, col = c("black",
+ ||red||))
> grid(
Actual vs. predicted sand proportion (OK)
o
8
o | — actual
@© —— predicted
SR
=
2
£ 9 4
g ] . -
o
T T T T T T T
0 50 100 150 200 250 300

Station on transect

Q12 : Where are the largest errors? Describe the overall effect of kriging
interpolation. Jump to A12 e

3.2.2 Recreating a composition

The evaluation of the previous section were of each particle-size fraction sep-
arately; each was predicted with its own variogram and so may be “optimal”
if only that fraction is needed. But if we want to produce kriging predictions
of all three fractions, the individual results can not be used, since they do
not sum to 100%, i.e., the total of the composition.

Task 25 : Create a composition from the three independent OK predictions.

Since we know the total, we can create a compositional variable with the
acomp function; this automatically adjusts each prediction to its proportion
of 100%. We illustrate this with the first few sand contents:

> tmp <- data.frame(sand2 = k.sand$varl.pred, silt2 = k.silt$varl.pred,
+ clay2 = k.clay$varl.pred)
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> comp.2.ssc.ok <- acomp(tmp, total = 100)
> head(tmp[, "sand2"])

[1] 9.1355 14.6561 22.7077 23.5829 28.1034 30.8962
> head(comp.2.ssc.ok[, "sand2"])
[1] 9.1902 14.5127 22.3930 24.0509 27.8826 30.9464

> rm(tmp)

Note how some sand contents have increased and some decreased by the
normalization; this is because of their relative proportions of the different
totals.

The components of this composition can now be evaluated and compared to
the next three compositional approaches, in which the total composition is
correctly constrained.

Task 26 : Re-compute the evaluation statistics. .

> summary(diff.k.sand <- (comp.2.ssc.ok[, "sand2"] - ds.val.sp$sand2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-40.500 -4.510 -0.602 -0.816 2.570 35.500

> (rmse.k.sand <- sqrt(sum(diff.k.sand"2)/length(diff.k.sand)))

[1] 9.1282

> summary (diff.k.silt <- (comp.2.ssc.ok[, "silt2"] - ds.val.sp$silt2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-20.300 -4.610 0.789 0.318 5.240 22.400

> (rmse.k.silt <- sqrt(sum(diff.k.silt"2)/length(diff.k.silt)))

[1] 7.5632

> summary (diff.k.clay <- (comp.2.ssc.ok[, "clay2"] - ds.val.sp$clay2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-29.900 -3.720 0.991 0.498 4.600 29.400

> (rmse.k.clay <- sqrt(sum(diff.k.clay~2)/length(diff.k.clay)))

[1] 9.2956
Q13 : How do the evaluation statistics for the composition compare to
those for each component separately? Jump to A13 e
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3.3 Co-krige independent variables

Another approach is to co-krige the variables and predict them together.
This should improve precision if (1) there is good correlation among the
variables both at single points and spatially, (2) the spatial structures of the
variables are similar.

It is not possible to model all three together, since they are linearly depen-
dent. So we have to pick two, model and predict with these, and obtain the
third separate by subtraction. This has the obvious problem that the the
final result depends on which two are selected.

Since in the additive log-ratio we selected clay as the normalising variable
(§2.4), we will omit clay here and select sand and silt as the two fractions to
co-krige.

For cokriging there are no simple gstat functions; we have to use the general
gstat method.

Task 27 : Build a gstat structure to represent the variables to model. e

The first time an object of class gstat is defined with the gstat method,
we must give it a name as the left-hand side of the assignment and give the
name NULL as the first argument to the gstat method. In subsequent calls to
this method we give the same name but also announce that we’re updating
an existing object by naming the existing object as the first argument.

> (g <- gstat(NULL, id = "sand2", form = sand2 ~ 1, data = ds.cal.sp))

data:
sand?2 : formula = sand2™""1 ; data dim = 214 x 9

> (g <- gstat(g, id = "silt2", form = silt2 ~ 1, data = ds.cal.sp))

data:
sand?2 : formula = sand2™""1 ; data dim = 214 x 9
silt2 : formula = silt2 "1 ; data dim = 214 x 9
Task 28 : Compute and display the direct and cross-variograms. .

As a cutoff we use the known shorter range of the direct variables, in this
case, the silt proportion.

> vm.silt[2, "range"]
[1] 31.666
> v.cross <- variogram(g, cutoff = vm.silt[2, "range"],

+ width = 3)
> str(v.cross)

Classes 'gstatVariogram' and 'data.frame': 33 obs. of 6 variables:
$ np : num 850 842 834 826 818 810 802 794 786 778 ...
$ dist :num 2.25 5.25 8.25 11.25 14.25 ...
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$ gamma : num -21.6 -34.9 -54.9 -83.2 -106.3 ...

$ dir.hor: num 0000000000 ...

$ dir.ver: num 0000 0000O00O0 ...

$ id : Factor w/ 3 levels "sand2.silt2",..: 1 111111111

- attr(*, "direct")='data.frame': 3 obs. of 2 variables:
..$ id : Factor w/ 3 levels "sand2","sand2.silt2",..: 2 3 1
..$ is.direct: logi FALSE TRUE TRUE

- attr(*, "boundaries")=num 0 3 6 9 12 15 18 21 24 27 ...

- attr(*, "pseudo")= num 0

- attr(*, "what")= chr "semivariance"

> print(plot(v.cross, pl = T))
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Task 29 : Display the direct and cross-variograms on one graph. .
> sv.max <- max(v.cross$gamma)
> sv.min <- min(v.cross$gamma)
> plot(v.cross$gamma ~ v.cross$dist, ylim=c(sv.min,sv.max),
+ ylab="Semivariance", xlab="Separation",
+ main="Empirical direct and cross variograms, particle-size fractions",
+ typ e="n" )
> for (i in 1:3) {
+  tmp <- subset(v.cross, as.numeric(v.cross$id) == i)
+ lines(tmp$gamma ~ tmp$dist, col=i, type="b", lty=i)
+ 3}
> grid(
> abline(h=0, 1lty=2)
> legend(2,sv.max*.95, levels(v.cross$id), 1lty=1:3, col=1:3)
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Empirical direct and cross variograms, particle-size fractions
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Q14 :  Describe the structure of the direct and cross-variograms. How
similar are they? Jump to Al4 e

The simplest way to model a set of variograms together is the linear model
of co-regionalization (LMC); this is limited in that the ranges must be the
same, but it ensures positive-definiteness.

Task 30 : Fill the variogram models with an initial guess. .

To fit the linear model of co-regionalization, we must first establish a starting
point for all the variogram models. The LMC requires a single range and
structure. By filling all the frames with one model (using the fill.all = T
argument), these conditions are automatically met.

We pick one of the direct variograms and model it by eye, adding the same
model to all the others; the important point for them is the range and
structure, since sills will be adjusted later.

The several variograms appear to have similar different ranges. Since we are
most interested in the short-range structure, and there are plenty of points
in the transect, we choose the shortest-range variogram (here, the variogram
for silt) as the basis for the LMC, even though the longer-range structure of
the other variograms will be ignored.

We could estimate the variogram parameters for silt by eye, but we’ve already
fit that direct variogram, so we can use that as the starting point.

> vm.silt

model psill range
1 Nug 52.84 0.000
2 Sph 241.69 31.666

> g <- gstat(g, id = "silt2", model = vm.silt, fill.all = T)
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We fit all three variograms together, ensuring they lead to a positive definite
co-kriging system. For this we use the fit.1lmc method (“fit linear model of
co-regionalization”). This takes the initial estimate, fits all the variograms,
and then each of the partial sills is adjusted (by least squares) to the closest
value that will result in a positive definite matrices.

Task 31 : Fit the variograms. o
> (g <~ fit.lmc(v.cross, g))

data:
sand2 : formula = sand2” "1 ; data dim = 214 x 9
silt2 : formula = silt2° "1 ; data dim = 214 x 9

variograms:

model psill range
sand2[1] Nug 16.57606 0.000
sand2[2] Sph 565.76189 31.666
silt2[1] Nug 55.97140 0.000
silt2[2] Sph  232.99559 31.666

sand2.silt2[1] Nug -0.63118 0.000
sand2.silt2[2] Sph -176.66398 31.666

> print(plot(variogram(g, cutoff = 30), model = g$model))
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semivariance
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distance
> plot(v.cross$gamma ~ v.cross$dist, x1lim=c(0,30), ylim=c(sv.min,sv.max),
+ ylab="Semivariance", xlab="Separation",
+ main="Modelled direct and cross variograms, particle-size fractioms",
+ type="p", col=as.numeric(v.cross$id))
> g$model
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$sand2

model psill range
1 Nug 16.576 0.000
2  Sph 565.762 31.666

$sand2.silt2

model psill range
1 Nug -0.63118 0.000
2 Sph -176.66398 31.666

$silt2

model psill range
1 Nug 55.971 0.000
2 Sph 232.996 31.666

$silt2.NA

model psill range
1 Nug 52.84 0.000
2 Sph 241.69 31.666

$silt2.s11t2

model psill range
1 Nug 52.84 0.000
2 Sph 241.69 31.666

> for (i in 1:3) {

+ tmp <- c("sand2.silt2","silt2","sand2") [i]

+ lines(variogramLine(g$model [[tmp]], maxdist=30), col=i, 1lty=i)
+ )

> grid()

> abline(h=0, lty=2)

> legend(1l,sv.max*.95, levels(v.cross$id), lty=1:3, col=1:3)

Modelled direct and cross variograms, particle-size fractions

— sand2silt2
---- silt2
sand2

Semivariance

Separation

Q15 :  How appropriate is the linear model of co-regionalization here?
In other words, how valid is the assumption of same model form (here,
spherical) and the same range? Jump to Al5 e
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Task 32 : Interpolate by co-kriging. .

The predict.gstat function is used to predict from an object of class gstat;
if that object is properly set up with direct and cross-variograms, this will
be by cokriging;:

> k.c <- predict.gstat(g, ds.val.sp)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

> summary (k.c)

Object of class SpatialPointsDataFrame
Coordinates:
min max
seq 3 321
y 0 O
Is projected: NA
proj4string : [NA]
Number of points: 107
Data attributes:

sand2.pred sand2.var silt2.pred silt2.var

Min. : 5.79 Min. :50.0 Min. 1 2.57 Min. 1 79.8
1st Qu.:15.22 1st Qu.:50.0 1st Qu.:13.77 1st Qu.: 79.8
Median :25.46 Median :50.0 Median :24.15 Median : 79.8
Mean :40.21 Mean :50.3 Mean :25.05 Mean : 80.1
3rd Qu.:69.49 3rd Qu.:50.0 3rd Qu.:36.01 3rd Qu.: 79.8
Max. :95.17 Max. :81.0 Max. :65.33 Max. :100.5
cov.sand2.silt2

Min. :-19.1

1st Qu.:-10.1

Median :-10.1

Mean :-10.2

3rd Qu.:-10.1

Max. :-10.0

The two particle-size fractions, their prediction variances, the cross-variances,
and the prediction covariances of these, are all predicted by the co-kriging
system.

Q16 : Look at the maxima and minima for the particle-size fractions. Are
they within the required range (0 —100%)? Is this guaranteed when kriging?
Jump to Al6 e

Task 33 : Predict clay as the complement of silt + sand. .

> k.c$clay2.pred <- 100 - (k.c$sand2.pred + k.c$silt2.pred)
> summary (k.c$sand2.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
5.79 15.20 25.50 40.20 69.50 95.20
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We hope this is also in the required range 0 . ..100%.

3.3.1 Evaluation of the cokriging original variables approach

Task 34 : Compute the bias and RMSE of the actual vs. predicted values.

[ ]
> summary (diff.kc.sand <- (k.c$sand2.pred - ds.val.sp$sand2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-40.300 -4.590 -0.509 -0.735 3.030 35.800

> (rmse.kc.sand <- sqrt(sum(diff.kc.sand"2)/length(diff.kc.sand)))
(1] 9.2811
> summary (diff.kc.silt <- (k.c$silt2.pred - ds.val.sp$silt2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-20.800 -5.170 0.560 0.224 4.820 24.800

> (rmse.kc.silt <- sqrt(sum(diff.kc.silt"2)/length(diff.kc.silt)))
[1] 7.8753
> summary (diff.kc.clay <- (k.c$clay2.pred - ds.val.sp$clay2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-30.000 -3.980 0.912 0.511 5.090 28.900

> (rmse.kc.clay <- sqrt(sum(diff.kc.clay~2)/length(diff.kc.clay)))

[1] 9.6983

Q17 :  How do these compare with the bias and RMSE of the fractions
predicted separately? Jump to A17 e

When comparing the RMSE, we expect co-kriging to be more accurate and
precise, so we express the differences as the presumed improvement by co-
kriging, i.e., the values for OK less those for CK, which (we hope) are posi-
tive:

> mean(diff.k.sand) - mean(diff.kc.sand)
[1] -0.081116

> mean(diff.k.silt) - mean(diff.kc.silt)
[1] 0.094019

> mean(diff.k.clay) - mean(diff.kc.clay)
[1] -0.012903

> rmse.k.sand - rmse.kc.sand
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[1] -0.15294
> rmse.k.silt - rmse.kc.silt
[1] -0.31204
> rmse.k.clay - rmse.kc.clay
[1] -0.40274
Task 35 : Display 1:1 plots of the actual vs. predicted for the three elements

of the evaluation composition for the separate fractions CK approach. o

> par(mfrow=c(1,3))

> plot(ds.vall,"sand2"] ~ k.c$sand2.pred,
ylab="Actual", xlab="Predicted", main="Sand",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.val[,"silt2"] ~ k.c$silt2.pred,
ylab="Actual", xlab="Predicted", main="Silt",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.val[,"clay2"] ~ k.c$clay2.pred,
ylab="Actual", xlab="Predicted", main="Clay",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid(Q)

par (mfrow=c(1,1))
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Task 36 :
true values, for the CK approach.

Show the prediction of sand along the transect, along with the
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> plot(ds.val$sand2 ~ ds.val$seq, type = "1", ylim = c(O,
+ 100), xlim = c(0, 330), main = "Actual vs. predicted sand proportion (CK)",
+ xlab = "Station on transect", ylab = "sand, weight %",
+ cex = 0.6)
> lines(k.c$sand2.pred ~ coordinates(ds.val.sp)[, 1], col = "red",
+ type = "1", cex = 0.6)
> grid()
> legend (240, 98, c("actual", "predicted CK"), 1ty = 1,
+ col = c("black", "red"))
Actual vs. predicted sand proportion (CK)
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Challenge: In this approach two components must be chosen to model and
interpolate, and the third determined by subtraction. We chose to model
sand and silt, and determined clay by subtraction. Repeat the analysis for
the other two pairs: sand and clay, and silt and clay. Compare the results —
in principle they should be identical. What does this imply for this method
of geostatistical analysis of compositional variables?

3.4 Ordinary kriging ALR variables

Our first attempt with the ALR-transformed compositional variables is to
consider each one separately, and back-transform the resulting composition
to the three particle-size fractions. Below (§3.5) we will co-krige them.

Recall, we computed the ALR-transform of the calibration observations in
§2.4:

> summary (alr2)

sand2 silt2
Min. -3.040 -2.890
1st Qu. -1.180 -0.847
Median -0.134 -0.168
Mean 0.181 -0.288
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3rd Qu. 1.430 0.118

Max. 3.870 2.010
attr(,"class")

[1] "summary.rmult" "matrix"

Task 37 : Add spatial reference to these variables. .

To work with these as spatial variables, we first add the transformed vari-
ables to the spatial object. Although they have no explicit reference, their
sequence is the same as the spatial object of the calibration observations, so
they can just be added as a field with the same sequence:

> ds.cal.sp$alr.1 <- alr2[, 1]
> ds.cal.sp$alr.2 <- alr2[, 2]

Task 38 : Compute and display the variograms for the two ALR-transformed

variables. .
> v.alr.1l <- variogram(alr.l ~ 1, loc = ds.cal.sp, cutoff = 30)
> v.alr.2 <- variogram(alr.2 ~ 1, loc = ds.cal.sp, cutoff = 30)

sv.max <- max(v.alr.l$gamma, v.alr.2$gamma)*1.05
plot(v.alr.1$gamma ~ v.alr.1$dist, ylim=c(0,sv.max),
ylab="Semivariance", xlab="Separation",
main="Empirical variograms, ALR variables",
type="b", col="red")
lines(v.alr.2$gamma ~ v.alr.2$dist, type="b", lty=2, col="blue")
grid(
legend(2,sv.max*.95, c("ln(sand/clay)","ln(silt/clay)"),
lty=2:1, col=c("red","blue"))

+ VVV + + + V V

Empirical variograms, ALR variables
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Q18 : Describe the spatial structure of the two components. Jump to
Al8 e

Task 39 : Model the variograms and display the fitted model on the empir-
ical variograms. .

\4

(vm.alr.1 <- fit.variogram(v.alr.1, vgm(2, "Sph", 25,
0.4)))

+

model psill range

1 Nug 0.1820 0.000
2 Sph 2.1202 29.083
> (vm.alr.2 <- fit.variogram(v.alr.2, vgm(l, "Sph", 25,

+

0.4)))

model psill range

1 Nug 0.24175 0.000

2 Sph 0.52981 21.228

> plot(v.alr.1$gamma ~ v.alr.1$dist, ylim = c(0, sv.max),

+ ylab = "Semivariance", xlab = "Separation", xlim = c(O0,

+ 30), main = "Fitted variograms, ALR-transformed components",
+ col = "red", pch = 20)

> lines(variogramLine(vm.alr.1l, maxdist = 100), 1ty = 1,

+ col = "red")

> points(v.alr.2$gamma ~ v.alr.2$dist, col = "blue", pch = 20)
> lines(variogramLine(vm.alr.2, maxdist = 100), 1ty = 2,

+ col = "blue")

> legend(2, sv.max * 0.95, c("ln(clay/sand)", "ln(silt/sand)"),
+ lty = 2:1, col = c("blue", "red"))

> grid(O

Fitted variograms, ALR-transformed components
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Task 40 : Predict the composition components at the evaluation locations.

> k.alr.1 <- krige(alr.1 ~ 1, loc
+ model = vm.alr.2)

ds.cal.sp, newdata ds.val.sp,

[using ordinary kriging]

> k.alr.2 <- krige(alr.2 ~ 1, loc = ds.cal.sp, newdata = ds.val.sp,
+ model = vm.alr.2)

[using ordinary kriging]

3.4.1 Evaluation of the OK ALR variables approach

For ease of interpretation and to compare with non-compositional approaches,
we want to evaluate in the space of the original variables, i.e., the back-
transformed predictions, not in the space of the kriged estimates, i.e., the
additive log-ratios. Unfortunately, the back-transform is biased; intuitively,
this is because we’ve obtained the interpolated values by a weighted aver-
age of log-ratios, and addition of logarithms is equivalent to multiplication
of original values. Further, these are ratios. The problem is explained and
solved by Lark and Bishop [5], resulting in their equation (6). However, in
practice the bias of the ALR back-transform, while unknown, is small, so we
will ignore it here.

Task 41 : Back-transform the interpolated log-ratios to the original com-
position variables, and use these to evaluate the interpolation. o

To apply the inverse transformation, we must first prepare a dataframe with
the two kriging predictions and then back-transform it with the alrInv
function. After back-transforming, we convert the object to a composition
with the known total (here, 100%) to recover percentages (the original size),
using the acomp function:

> k.alr.comp <- data.frame(alr.l = k.alr.1$varl.pred,
+ alr.2 = k.alr.2$varl.pred)
> comp.2.0k <- acomp(as.data.frame(alrInv(k.alr.comp,
+
>

orig=comp.2)),total=100)
str(comp.2.0k)

acomp [1:107, 1:3] 10 13.4 21 24.9 28.4 ...
- attr(*, "dimnames")=List of 2

..$ : NULL

..$ : chr [1:3] "sand2" "silt2" "clay2"

By definition the compositions sum to the composition’s size; we can check
this with the apply function to apply the sum function to the rows (i.e.,
observations); the second argument to apply is the array margin to sum
over, here 1 for rows.

> summary (apply(comp.2.0k, 1, sum))
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Min. 1st Qu. Median Mean 3rd Qu. Max.
100 100 100 100 100 100

Task 42 : Compute the bias and RMSE of the actual vs. predicted values.

[ ]
> summary(diff.ka.sand <- (comp.2.o0k[, "sand2"] - ds.val.sp$sand2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-40.800 -3.500 -0.584 -0.551 4.200 33.400

> (rmse.ka.sand <- sqrt(sum(diff.ka.sand"2)/length(diff.ka.sand)))
[1] 9.0655
> summary(diff.ka.silt <- (comp.2.ok[, "silt2"] - ds.val.sp$silt2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-21.700 -5.130 0.812 0.115 4.910 23.800

> (rmse.ka.silt <- sqrt(sum(diff.ka.silt"2)/length(diff.ka.silt)))
[1] 7.7842
> summary (diff.ka.clay <- (comp.2.0k[, "clay2"] - ds.val.sp$clay2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-28.200 -4.130 0.703 0.436 5.050 32.100

> (rmse.ka.clay <- sqrt(sum(diff.ka.clay~2)/length(diff.ka.clay)))

[1] 9.3731

Q19 : How do these evaluation statistics compare to those from the direct
approaches? Jump to A19 e

Since OK was superior to CK, we only need to compare this to the direct
OK. We might expect OK of the ALR variables to be more accurate and
precise, so express the differences as the presumed improvement by kriging
the ALR-transformed variables instead of the untransformed variables:

> mean(diff.k.sand) - mean(diff.ka.sand)
[1] -0.26512

> mean(diff.k.silt) - mean(diff.ka.silt)
[1] 0.20288

> mean(diff.k.clay) - mean(diff.ka.clay)
[1] 0.062241

> rmse.k.sand - rmse.ka.sand

[1] 0.062652
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> rmse.k.silt - rmse.ka.silt
[1] -0.22097
> rmse.k.clay - rmse.ka.clay

[1] -0.077539

Task 43 : Display 1:1 plots of the actual vs. predicted for the three elements
of the evaluation composition from the ALR OK approach. o

> par(mfrow=c(1,3))

> plot(ds.vall,"sand2"] ~ comp.2.0k[,"sand2"],
ylab="Actual", xlab="Predicted", main="Sand",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.vall,"silt2"] ~ comp.2.0k[,"silt2"],
ylab="Actual", xlab="Predicted", main="Silt",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid(Q)

plot(ds.vall,"clay2"] ~ comp.2.0k[,"clay2"],
ylab="Actual", xlab="Predicted", main="Clay",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

par (mfrow=c(1,1))
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Task 44 : Show the actual vs. predicted for sand along the transect from
the ALR OK approach, for the evaluation points. .
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> plot(ds.val$sand2 ~ ds.val$seq, type = "1", ylim = c(O,
+ 100), xlim = c(0, 330), main = "Actual vs. predicted sand proportion (ALR 0K)",
+ xlab = "Station on transect", ylab = "weight %",
+ cex = 0.6)
> lines(comp.2.0k[, "sand2"] ~ coordinates(ds.val.sp) [,
+ 1], col = "red", type = "1", cex = 0.6)
> grid()
> legend (200, 98, c("actual", "predicted ALR O0K"), 1ty = 1,
+ col = c("black", "red"))
Actual vs. predicted sand proportion (ALR OK)
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Challenge: In this approach we had to choose one components to nor-
malise the other two, i.e., as denominator of the log-ratio. We chose clay.
Repeat the analysis with the other two possibilities, i.e., sand and silt as
normalising components. Compare the results — in principle they should be
identical. What does this imply for this method of geostatistical analysis of
compositional variables?

3.5 Co-kriging ALR variables

The final approach is to co-krige the ALR-transformed variables. If these
have a cross-correlated spatial structure which can be represented by a linear
model of co-regionalization, we can hope for a more precise estimate. We
repeat the procedures of §3.3, but with the two ALR-transformed variables.

Task 45 : Build a gstat structure to represent the variables to model. e

> (gc <- gstat(NULL, id = "sand.clay", form = alr.1 ~ 1,
+ data = ds.cal.sp))

data:
sand.clay : formula = alr.1°""1 ; data dim = 214 x 11
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> (gc <- gstat(gc, id = "silt.clay", form = alr.2 ~ 1,

+ data = ds.cal.sp))
data:
sand.clay : formula = alr.1°""1 ; data dim = 214 x 11
silt.clay : formula = alr.2"""1 ; data dim = 214 x 11
Task 46 : Compute and display the direct and cross-variograms. .

> v.cross <- variogram(gc, cutoff = 30, width = 3)

Task 47 : Display the direct and cross-variograms on one graph. .
> sv.max <- max(v.cross$gamma)
> sv.min <- min(v.cross$gamma)
> plot(v.cross$gamma ~ v.cross$dist, ylim=c(sv.min,sv.max),
+ ylab="Semivariance", xlab="Separation",
+ main="Empirical direct and cross variograms, ALR-transformed fractiomns",
+  type="n"
> for (i in 1:3) {
+  tmp <- subset(v.cross, as.numeric(v.cross$id) == i)
+ lines(tmp$gamma ~ tmp$dist, col=i, type="b", lty=i)
+ %
> grid()
> abline(h=0, lty=2)
> legend(2,sv.max*.95, levels(v.cross$id), lty=1:3, col=1:3)

Empirical direct and cross variograms, ALR-transformed fractions
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Q20 : Why does the cross-variogram here have a positive sill, whereas the
cross-variogram between sand and silt had a negative sill? Jump to A20 e
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Task 48 : Fill the variogram models with an initial guess. .

Again we use the shorter-range of the fitted direct variograms from the
previous section.

> gc <- gstat(gc, id = "silt.clay", model = vm.alr.2, fill.all = T)

Task 49 : Fit the variograms with the linear model of co-regionalization
and display them on the empirical variogram. .

> (gc <- fit.lmc(v.cross, gc))

data:
sand.clay : formula = alr.1°""1 ; data dim = 214 x 11
silt.clay : formula = alr.2°""1 ; data dim = 214 x 11
variograms:

model psill range
sand.clay[1] Nug 0.13475 0.000
sand.clay[2] Sph 1.80399 21.228
silt.clay[1] Nug 0.24639 0.000
silt.clay[2] Sph 0.51823 21.228
sand.clay.silt.clay[1] Nug 0.15247 0.000
sand.clay.silt.clay[2] Sph 0.51399 21.228

> plot(v.cross$gamma ~ v.cross$dist, ylim=c(sv.min,sv.max),

+ x1im=c(0,max(v.cross$dist)),

+ ylab="Semivariance", xlab="Separation",

+ main="Modelled direct and cross variograms, particle-size fractioms",
+ type="p",

+ col=as.numeric(v.cross$id), pch=20)

> for (i in 1:3) {

+ tmp <- c("sand.clay.silt.clay","silt.clay","sand.clay") [i]

+  lines(variogramLine(gc$model[[tmpl], maxdist=30), col=i, lty=i)
+ }

> grid(O

> abline(h=0, 1lty=2)

> legend(1,sv.max*.95, levels(v.cross$id), 1lty=1:3, col=1:3)
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Q21 : How appropriate is the linear model of co-regionalization here?
In other words, how valid is the assumption of same model form (here,
spherical) and the same range? Jump to A21 e

Task 50 : Interpolate by co-kriging. .

The general predict.gstat must be used to predict in the cokriging system.

> k.c.c <- predict.gstat(gc, ds.val.sp)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

> summary(k.c.c)

Object of class SpatialPointsDataFrame
Coordinates:
min max
seq 3 321
y 0 O
Is projected: NA
proj4string : [NA]
Number of points: 107
Data attributes:

sand.clay.pred sand.clay.var silt.clay.pred silt.clay.var
Min. :-2.639  Min. :0.302  Min. :-1.65610  Min. :0.338
1st Qu.:-1.214 1st Qu.:0.302 1st Qu.:-0.52246 1st Qu.:0.338
Median :-0.301 Median :0.302 Median :-0.21877 Median :0.338
Mean : 0.187 Mean :0.303 Mean :-0.28590 Mean :0.338
3rd Qu.: 1.531 3rd Qu.:0.302 3rd Qu.: 0.00156 3rd Qu.:0.338
Max. : 3.661 Max. :0.448  Max. : 1.35279  Max. :0.407
cov.sand.clay.silt.clay

Min. :0.224
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1st Qu.:0.224
Median :0.224
Mean :0.224
3rd Qu.:0.224
Max. :0.281

3.5.1 Evaluation of the CK ALR variables approach

Task 51 : Back-transform the interpolated log-ratios to the original com-
position variables, and use these to evaluate the interpolation. o

> kc.alr.comp <- data.frame(alr.l = k.c.c$sand.clay.pred,

+ alr.2 = k.c.c$silt.clay.pred)

> comp.2.ck <- acomp(as.data.frame(alrInv(kc.alr.comp,

+ orig=comp.2)), total=100)
> str(comp.2.ck)

acomp [1:107, 1:3] 8.68 13.37 23.97 21.92 30.17 ...
- attr(*, "dimnames")=List of 2

..$ : NULL

..$ : chr [1:3] "sand2" "silt2" "clay2"

Again, by definition the compositions sum to the composition’s size.

Task 52 : Compute the bias and RMSE of the actual vs. predicted values.

> summary (diff.kca.sand <- (comp.2.ck[, "sand2"] - ds.val.sp$sand2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-41.400 -4.970 -0.091 -0.501 2.990 34.000

> (rmse.kca.sand <- sqrt(sum(diff.kca.sand"2)/length(diff.kca.sand)))
[1] 9.4599
> summary (diff.kca.silt <- (comp.2.ck[, "silt2"] - ds.val.sp$silt2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-21.1000 -4.4800 0.7630 -0.0225 4.7500 24.0000

> (rmse.kca.silt <- sqrt(sum(diff.kca.silt"2)/length(diff.kca.silt)))
[1] 7.7644
> summary (diff.kca.clay <- (comp.2.ck[, "clay2"] - ds.val.sp$clay2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-26.400 -4.300 0.647 0.523 5.440 31.700

> (rmse.kca.clay <- sqrt(sum(diff.kca.clay~2)/length(diff.kca.clay)))

[1] 9.5597
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Task 53 : Display 1:1 plots of the actual vs. predicted for the three elements
of the evaluation composition and the ALR CK approach. .

> par(mfrow=c(1,3))

> plot(ds.vall,"sand2"] ~ comp.2.ck[,"sand2"],
ylab="Actual", xlab="Predicted", main="Sand",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.val[,"silt2"] ~ comp.2.ck[,"silt2"],
ylab="Actual", xlab="Predicted", main="Silt",
x1im=c(0,100), ylim=c(0,100))

abline(0,1); grid()

plot(ds.vall,"clay2"] ~ comp.2.ck[,"clay2"],
ylab="Actual", xlab="Predicted", main="Clay",
x1lim=c(0,100), ylim=c(0,100))

abline(0,1); grid()

par (mfrow=c(1,1))
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Task 54 : Show the actual vs. predicted for sand along the transect from
the ALR CK approach, for the evaluation points. J
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> plot(ds.val$sand2 ~ ds.val$seq, type = "1", ylim = c(O,
+ 100), xlim = c(0, 330), main = "Actual vs. predicted sand proportion (ALR CK)",
+ xlab = "Station on transect", ylab = "weight %",
+ cex = 0.6)
> lines(comp.2.ck[, "sand2"] ~ coordinates(ds.val.sp) [,
+ 1], col = "red", type = "1", cex = 0.6)
> grid()
> legend (200, 98, c("actual", "predicted ALR CK"), 1ty = 1,
+ col = c("black", "red"))
Actual vs. predicted sand proportion (ALR CK)
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Challenge: The variogram fit was not particularly good. Since there are so
many known points near any point to be predicted, maybe there would be
a better linear model of co-regionalization if the variogram were computed
and fit only out to the first “sill” at 12 stations. Try this.

Challenge: As in ALR-OK, here we had to choose one components to
normalise the other two, i.e., as denominator of the log-ratio. We chose clay.
Repeat the analysis with the other two possibilities, i.e., sand and silt as
normalising components. Compare the results — in principle they should be
identical. What does this imply for this method of geostatistical analysis of
compositional variables?

4 Comparing kriging approaches

We compare the success of the four kriging approaches two ways: (1) how
well they predict each component of the composition (§4.1); (2) composite
measures of success over the whole composition (§4.2).
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4.1 Reproducing components of the evaluation composition

Task 55 : Build a table to compare the evaluation statistics of the four
approaches (§3.2.1, §3.3, §3.5, §3.5: their biases (mean errors), precision
(RMSE), and the RMSE averaged over the composition. .

Note that the evaluation statistics for the “OK of separate variables” ap-
proach uses the composition created from the separates in §3.2.2 since we
are comparing compositions.

> compare <- data.frame(me.sand = O, me.silt = 0, me.clay = 0,

+ rmse.sand = 0, rmse.silt = 0, rmse.clay = 0)

> compare[l, ] <- c(mean(diff.k.sand), mean(diff.k.silt),

+ mean(diff.k.clay), rmse.k.sand, rmse.k.silt, rmse.k.clay)

> compare[2, ] <- c(mean(diff.kc.sand), mean(diff.kc.silt),

+ mean(diff.kc.clay), rmse.kc.sand, rmse.kc.silt, rmse.kc.clay)
> compare[3, ] <- c(mean(diff.ka.sand), mean(diff.ka.silt),

+ mean(diff.ka.clay), rmse.ka.sand, rmse.ka.silt, rmse.ka.clay)
> compare[4, ] <- c(mean(diff.kca.sand), mean(diff.kca.silt),

+ mean(diff.kca.clay), rmse.kca.sand, rmse.kca.silt,

+ rmse.kca.clay)

> compare <- cbind(compare, mean.me = round(as.vector (apply(comparel[,
+ 1:3], 1, sum)/3), 5))

> compare <- cbind(compare, mean.rmse = as.vector (apply(comparel,

+ 4:6], 1, sum)/3))

> rownames (compare) <- c("OK", "CK", "ALR-OK", "ALR-CK")

> print(compare)

me.sand me.silt me.clay rmse.sand rmse.silt rmse.clay
0K -0.81613 0.318231 0.49789 9.1282 7.5632 9.2956
CK -0.73501 0.224212 0.51080 9.2811 7.8753 9.6983
ALR-0K -0.55100 0.115349 0.43565 9.0655 7.7842 9.3731
ALR-CK -0.50080 -0.022544 0.52334 9.4599 7.7644 9.5597
mean.me mean.rmse

0K 0 8.6623
CK 0 8.9516
ALR-0K 0 8.7410
ALR-CK 0 8.9280

Q22 : Which approach gave the best results in this case? Jump to A22 e

Task 56 : Plot the actual values of sand content, and the four predictions,
over the whole evaluation transect. o

We show all points for the actual transect, but only the evaluation points
for the four interpolations.
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weight %

+ 4+ 4+ VV 4+ 4+ V A+ A+ VAV A+ VAtV

plot(ds$sand2 ~ ds$seq, type="1", ylim=c(0,100),
x1im=c(0,330),
main="Actual vs. predicted sand proportion",
xlab="Station on transect",
ylab="weight %", cex=0.6)
lines(comp.2.ssc.ok[,"sand2"]
coordinates(ds.val.sp) [,1], col="red",
type="1", cex=0.6)
lines(k.c$sand2.pred
coordinates(ds.val.sp) [,1], col="blue",
type="1", cex=0.6)
lines(comp.2.0k[, "sand2"]
coordinates(ds.val.sp) [,1], col="darkgreen",
type="1", cex=0.6)
lines(comp.2.ck[,"sand2"]
coordinates(ds.val.sp)[,1], col="brown",
type="1", cex=0.6)
grid()
legend (200,100,
c("actual","OK","CK","ALR-0K","ALR-CK"),
1ty=1,
col=c("black","red","blue","darkgreen", "brown"))

Actual vs. predicted sand proportion
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It’s difficult to evaluate the whole transect together.

Task 57 : Plot the actual values of sand content, and the four predictions,
at one window in the evaluation transect. o

> plot(ds$sand2 ~ ds$seq, type = "1", ylim = c(0, 100),

+ xlim = c(200, 260), main = "Actual vs. predicted sand proportion",
+ xlab = "Station on transect", ylab = "weight %",
+ cex = 0.6)
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lines(comp.2.ssc.ok[, "sand2"] ~ coordinates(ds.val.sp)[,
1], col = "red", type = "1", cex = 0.6)
lines(k.c$sand2.pred ~ coordinates(ds.val.sp)[, 1], col = "blue",
type = "1", cex = 0.6)
lines(comp.2.0k[, "sand2"] ~ coordinates(ds.val.sp) [,
1], col = "darkgreen", type = "1", cex = 0.6)
lines(comp.2.ck[, "sand2"] ~ coordinates(ds.val.sp) [,
1], col = "brown", type = "1", cex = 0.6)
grid()
legend (200, 100, c("actual", "OK", "CK", "ALR-OK", "ALR-CK"),
lty = 1, col = c("black", "red", "blue", "darkgreen",
"brown"))

+ + VvVV+V +V 4+ V +V

Actual vs. predicted sand proportion

weight %

Station on transect

Q23 : In this window, what might explain the similarities and differences
between the different interpolation methods? Jump to A23 e

Challenge: Repeat the transect evaluation, for silt and clay.

4.2 Overall evaluation of a kriged composition

In the previous sections we evaluated the kriging prediction of each compo-
nent. One overall measure of evaluation is the distance in composition space
(e.g., in the ternary diagram) between the actual and kriged values at the
evaluation points.

Task 58 : Display a ternary diagram of the evaluation composition, with
the four predictions superimposed. J

Recall, the plot method, when when called to plot an object of class acomp,
uses the plot.acomp to plot a ternary diagram. Several point sets can
be plotted together, using the add=T argument to when called to plot an
object of class acomp. So first we have to convert the evaluation set and all
the predictions to objects of class acomp, using the acomp function. Note
that the OK and CK approaches with ALR variables, and the separate OK
approach, are already in this form.
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>

class(comp.2.0k)

[1] "acomp"

>

class(comp.2.ck)

[1] "acomp"

>

class(comp.2.ssc.ok)

[1] "acomp"

+ VvV V

VV +V + YV 4+ V V V.YV

comp.2.val <- acomp(ds.val[, names.2], total = 100)
comp.2.ssc.ck <- acomp(data.frame(sand = k.c$sand2.pred,
silt = k.c$silt2.pred, clay = k.c$clay2.pred), total =

opar <- par(no.readonly = T)

par(pch = 20, cex = 0
plot(comp.2.val, axes

plot(acomp(comp.2.ssc.

add = T)

plot(acomp(comp.2.ssc.

add = T)
plot(acomp(comp.2. 0k,

add = T)
plot(acomp(comp.2.ck,
par (opar)

.8)

= T, col = "black", pch = 1)
ok, total = 100), col = "blue",

ck, total = 100), col = "red",

total 100), col "darkgreen",

total 100), col "brown", add = T)

100)
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silt2

This distance is not directly interpretable. Another way to compare compo-
sitions is to see the 1:1 evaluation plots for each component separately.

Task 59 : Display 1:1 plots of the actual vs. predicted for the three elements
of the evaluation composition for all approaches. .

These are correctly displayed against a 1:1 line (i.e., predicted equals actual);
we use the plot method to display the first result, and then the points
method to add the others in contrasting colours.
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VVVVYV + +V +VVVVYV+ +VVVVVYV 4+ + YV VVYV

opar <- par(no.readonly = T)

par (mfrow=c(1,3))

par (pch=20, cex=.8)

plot(ds.vall,"sand2"] ~ k.sand$varl.pred, col="red",
ylab="Actual", xlab="Predicted", main="Sand",
x1im=c(0,100), ylim=c(0,100))

points(ds.vall[,"sand2"] ~ k.c$sand2.pred, col="blue")

points(ds.vall[,"sand2"] ~ comp.2.0k[,"sand2"], col="darkgreen")

points(ds.vall,"sand2"] comp.2.ck[,"sand2"], col="brown")

#

abline(0,1); grid()

plot(ds.vall[,"silt2"] ~ k.silt$varl.pred, col="red",
ylab="Actual", xlab="Predicted", main="Silt",
x1lim=c(0,100), ylim=c(0,100))

points(ds.vall,"silt2"] ~ k.c$silt2.pred, col="blue")

points(ds.vall,"silt2"] ~ comp.2.0k[,"silt2"], col="darkgreen")

points(ds.vall[,"silt2"] ~ comp.2.ck[,"silt2"], col="brown")

abline(0,1); grid(Q)

legend (0,100, c("OK","CK","ALR-OK","ALR-CK"), pch=20,

col=c("red","blue","darkgreen", "brown"))

plot(ds.vall,"clay2"] ~ k.clay$varl.pred, col="red",
ylab="Actual", xlab="Predicted", main="Clay",
x1im=c(0,100), ylim=c(0,100))

points(ds.vall[,"clay2"] ~ k.c$clay2.pred, col="blue")

points(ds.vall,"clay2"] ~ comp.2.0k[,"clay2"], col="darkgreen")

points(ds.vall,"clay2"] ~ comp.2.ck[,"clay2"], col="brown")

abline(0,1); grid()

par (opar)
Sand Silt Clay
8 8 8
— -, — —
o - oK
-7 - CK
& . 8 |+ ALrR-0K 2 e
7 ALR-CK -— - = X
- . - - - o - ovee TET
g E S E -
< . . - < 7 v o < 7] ST
- o ol - “ee —— - onag
Q o e = 8 el S R £ A
o - o - - o -
T T T T T T T T T T T T T T T T T T
0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
Predicted Predicted Predicted
Q24 : Which approach, if any, appears to predict better overall? Jump to
A24 o

Another feature of a composition is its overall variability.

Pawlowsky-Glahn and Olea [8] use a multivariate measure known as STRESS
(standarized residual sum of squares) to measure the overall similarity of the
predictions and the evaluation data; this is explained by Lark and Bishop
[5, Eqn. (7)], following Martin-Fernandez et al. [6, Eqn. (11)]:
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(80— 8121
Si<j(8ij—67)) } W

2i<j(0ij)?

where 6 ; is a distance measure between two observed compositions y; and
yj, and 6 f ] is the same, but for the compositions projected into a sub-space.
In geostatistical applications, Lark and Bishop [5] consider the smoothed
space produced by kriging to be the sub-space, because it in general occupies
a smaller hypervolume of the D-dimensional space formed by the composi-
tional variables. In this case STRESS measures how well the variations of
the kriged estimates match the variations of the observations. The distances
are summed over all point-pairs in each set® and then normalized by the sum
in the original (higher-dimension) set. If the lower-dimensional observations
(in this case the kriged estimates) match the true values, STRESS is 0; at
the other extreme the kriged observations would all be the same no matter
what the true values, and STRESS is 1. Clearly, the lower the STRESS,
the more successfully the kriging reproduces the variability of the evaluation
data set.

STRESS = {

There are various ways to measure distance between two vectors, in this case
two compositions. Following [5, Eqn. (8)], we use the Aitchison distance,
which is the Euclidean distance between the centred log-ratio transform of
the compositions:

clr(x) = [ln%,...,lnx;] (5)

where Z is the geometric mean of the the D-dimensional composition:

D 1/D
7= (n Zi) (6)
i=1

This transformation transforms all the elements of the composition’ so is
permutation-invariant. The reason for not just using the Euclidean distance
in the original space is to account for the constant-sum constraint.

We illustrate this approach with the ALR-OK approach of §3.4.

Task 60 : Compute the centred log-ratio transform of the actual and ALR-
OK kriged evaluation compositions and summarize their difference. .

This uses the clr function:

> c.k <= clr(comp.2.0k)
> c.o <= clr(comp.2.val)
> summary(c.k) - summary(c.o)

8 this is the meaning of the Ziq in Equation 4
9 unlike the additive log-ratio transform, which uses one as a denominator
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sand2 silt2 clay2

Min. 0.450 0.280 0.1200
1st Qu. -0.100 0.089 0.0870
Median -0.055 0.064 0.0763
Mean -0.038 0.032 0.0069
3rd Qu. -0.039 -0.006 -0.0310
Max. -0.240 -0.289 -0.6500

attr(,"class")
[1] "summary.rmult" "matrix"

Task 61 : Compute the distances between all observations in the evaluation
set; do the same for all kriged estimates of the evaluation set. .

The dist function returns a distance matrix of size [n - (n — 1)]/2, by
default using the Euclidean distance, between the rows of a data matrix,
i.e., the observations. Since we apply it to the CLR-transformed matrices,
these are Aitchison distances as required by Equation 4.

> dk <- dist(c.k)
> do <- dist(c.o)

Task 62 : Compute the STRESS of the evaluation for ALR-OK. .
> sqrt(sum((do - dk)~2)/sum(do”2))

[1] 0.27131

Q25 : Evaluate this STRESS value: how well does the kriging prediction
reproduce the variability of the original evaluation composition? Recall:
STRESS=0 means a perfect reproduction, STRESS=1 is when all kriging
predictions are the same (smoothing to the spatial mean). Jump to A25 e

The above steps can be combined in a function, which can then be used to
evaluate any prediction.

Task 63 : Write a function to compute the STRESS from two compositions.

The function function is used to defined a function in the workspace:

> stress <- function(vl, v2)

+ o

+ dl <- dist(clr(vl)); d2 <- dist(clr(v2))
+ return(sqrt (sum((d2 - d1)°2)/sum(d1°2)))
+ )

Note that the reference composition (denominator in STRESS) is listed first.
Test that it gives the same result for OK:
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> print(stress(ds.val[, names.2], comp.2.0k))

[1] 0.27131

Task 64 : Compute the STRESS for the other three approaches. .
> stress(comp.2.val, comp.2.ssc.ok)
[1] 0.26708
> stress(comp.2.val, comp.2.ssc.ck)
(1] 0.274
> stress(comp.2.val, comp.2.0k)
[1] 0.27131
> stress(comp.2.val, comp.2.ck)

[1] 0.26921

Q26 : Which approach best reproduces the variability of the evaluation
composition? Jump to A26 e

5 Compositional kriging

6 Conclusions

Walvoort and de Gruijter [11] developed another approach to spatial inter-
polation of compositional data, called “compositional kriging”; it has been
applied to soil particle-size distribution by these authors and Odeh et al. [7],
and to fuzzy memberships (which must sum to 1) by de Gruijter et al. [4]. In
this approach the compositional variables, transformed by the ALR trans-
form, are modelled independently, without considering cross-correlations.
This avoids the restriction to the linear model of co-regionalization.

The kriging system is further restricted such that (1) the prediction of each
ratio of the composition is unbiased (as in OK); (2) all predictions of the
ratios are non-negative; (3) the predictions sum to a constant 1 at each
prediction location.

A future version of these notes may include this approach.

In this case study we went to a lot of work to explain and use compositions,
rather than naively work with the original particle-size fractions. The results
were disappointing, in the sense that the prediction accuracy and precision
were not improved; as it turned out, the compositional variable created from
the three separate predictions by OK performed best. This composition was
a simple solution to the fact that OK of the separates will not in general
result in a sum to the original composition size (here, 100%). Surprisingly,
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ordinary co-kriging of the composition (not transformed) did not improve
predictions, perhaps because the linear model of co-regionalization imposed
unrealistic restrictions on the prediction.

Lark and Bishop [5] obtained a similar result, and explain it by the good
distribution of the Sandford observations within the simplex. They conclude:

“We conjecture that the practical advantages of the [ALR] method
over ordinary cokriging of the raw compositions would be much
larger than seen here in a study area where the size fractions are
centred near a vertex of the simplex.”

This would be the case if, for example, the soils were all coarse-textured
(sands, sandy loams, loamy sands).

As a final note, our results are somewhat poorer (higher RMSE and STRESS)
than those of Lark and Bishop [5] on the same dataset and with the same
evaluation points; compare their Table 2 with our evaluation results in §4.1.
The only possible source of the discrepancy is the different fitting of the
variograms. These authors used a simulated annealing program, while we
used the gstat package’s automatic fit. This shows clearly the importance
of fitting a model of spatial covariance (e.g., a variogram) from the presumed
spatial stochastic process that gave rise to the data, from a single realization
(i.e., nature) and a limited sample.
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7 Answers

A1 : There are clear regions of high and low sand (e.g., high between stations 50
and 150), but there a high local variability at some groups of stations. Return to
QI e

A2 : The feature-space variability is quite high: all fractions range from almost
none to very high (almost 100% for clay); the inter-quartile ranges are also wide.
Return to Q2 e

A3 : The acomp geometry, because particle-size fraction percentages are pro-
portions of a total, and the scale is relative: there is no absolute meaning to a
percentage. Return to Q3

A4 :  The silt/clay log ratio is the smallest, thus it varies the least along the
transect. Return to Q4 e

A5 : The sand/clay ratio has as much or more variability than any of the untrans-
formed fractions, but the silt/clay ratio is much less variable. Notice especially the
portion from stations 50 — 100. Return to Q5 e

A6 : No, there are very few observations at the extreme silt corner (no pure silts;
recall the maximum silt was only about 75%), and few at sand/clay near 0.5 and
clay/silt near 0.5. Return to Q6

A7 : A ternary diagram shows that knowing any two variables the other is auto-
matically determined. Return to Q7

A8 : The sills correspond to the total variability, much less for silt than for sand;
clay is intermediate. All three nuggets are low and about the same. The range
for clay is about 22, but for silt and sand it seems the sill is not reached by the
variogram limit of 35 stations separation. All seem to show a double structure: at
shorter ranges a steeply-increasing variogram, then much less steeply increasing, for
clay even decreasing. Return to Q8 e

A9 : The structures are not similar. Sand is most variable (higher sill) and has
a long range; silt is least variable (lowest sill) but with a long range; clay has an
intermediate sill and the shortest range. The different nuggets might be explained
by the higher laboratory precision for sand (if determined by sieving) than silt and
clay (if determined by sedimentation). The shorter range for clay might be because
of clay neoformation, but this is difficult to interpret. Return to Q9 e

A10: No, there is a discrepancy of up to ~ +4%. But, there appears to be little
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spatial pattern. Only around stations 120-150 does there appear to be consistently
low discrepancies. High and low discrepancies show no pattern. Return to Q10 e

A11 : There is a slight negative overall bias (over-prediction) of the sand fraction,
but less than 1% sand; this is compensated by slight overall under-predictions of
silt and clay. The RMSE seem high, about 7.5-9.2%. Return to Q11 e

A12: The largest errors are where the actual values make sharp jumps, e.g., near
station 220. Kriging smooths away local fluctuations (e.g., near stations 160-200)
and misses local extremes. Return to Q12

A13 : The biases are slightly more extreme, and the RMSE are slightly higher
(worse) than for the separately-interpolated fractions. Return to Q13 e

A14 : All three variograms have good structure; the sills are different (sand much
higher than silt); the cross-variogram is negative as expected. Return to Q14

A15: The LMC seems quite appropriate here, all three variograms are reasonably
well fit. Return to Q15

A16 : All predictions are within the required range [0...100]; this is not guar-
anteed when co-kriging (it is not a convex predictor). Return to Q16

A17 : The biases are slightly more extreme, and the RMSE are slightly higher
(worse) than for the separately-interpolated fractions. The statistics are quite close
to those from ordinary kriging of the composition. Return to Q17 e

A18: The sand/clay log ratio is much more variable than the silt/clay log ratio,
and also seems to have a longer range. The nuggets are the same. Return to Q18

A19 : The biases are slightly less but the RMSE quite similar to the other ap-
proaches. Return to Q19

A20 : Both variables are log ratios with the same denominator (clay). So, when
clay decreases both of these increase, and vice-versa. Return to Q20

A21: The LMC is not so appropriate here because it can not reproduce the longer
range of the sand/clay log-ratio. However at short ranges the model fits fairly well.

56



Return to Q21 e

A22 : There is no clear winner. ALR-CK has the lowest biases for sand and silt,
but the highest for clay. The mean RMSE is best for OK but all are very close, and
disappointingly high (near 9%). Return to Q22

A23 : There is not much difference, but the OK of the single target fraction, as
well as the CK of this fraction with the others, comes closer to the sharp transitions.
The ALR-OK is smoothest. Return to Q23 e

A24 : 1t is difficult to interpret such “busy” plots. There is very little difference
for silt, somewhat for sand, but large differences for clay. The two ALR approaches
seem to be somewhat better than OK and CK. Return to Q24 e

A25: The STRESS is much closer to 0 than to 1, so the predictions reproduce
much of the variability. Return to Q25 e

A26 : All four are quite close; the “winner” is OK. Return to Q26
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