
Exercise: Areal Data and Spatial Autocorrelation

D G Rossiter
Cornell University, Section of Soil & Crop Sciences

ISRIC–World Soil Information
W¬��'f0�ffb

March 6, 2019

Contents

1 Introduction 1

2 Example dataset 2

3 Spatial neighbours 6
3.1 Importing a neighbour list in GAL format 6

3.1.1 * Geographic setting . 12
3.2 Creating neighbours from polygons 12

3.2.1 Neighbours based on contiguity 14
3.2.2 Neighbours based on distance between centroids . . 15
3.2.3 Nearest neighbours based on distance 16

4 Spatial weights 18

5 Spatial autocorrelation 20
5.1 Global tests . 22

5.1.1 Effect of weights . 25
5.2 Local tests . 28

5.2.1 Local Moran’s I . 28
5.2.2 Getis-Ord local G statistics * 34

6 Spatial models 38

7 Autoregressive Models 43

Version 2.1 Copyright © 2012–9 D. G. Rossiter All rights reserved. Re-
production and dissemination of the work as a whole (not parts) freely
permitted if this original copyright notice is included. Sale or placement
on a web site where payment must be made to access this document
is strictly prohibited. To adapt or translate please contact the author
(http://www.css.cornell.edu/faculty/dgr2/).

http://www.css.cornell.edu/faculty/dgr2/

7.1 Spatial Error SAR model . 44
7.2 * Spatial Lag SAR model . 49
7.3 * Spatial Durbin SAR model . 51
7.4 * Comparison with point-based modelling 52

8 Answers 54

9 Assignment 60

References 63

Index of R concepts 64

ii

�
à¾��ê�	Ãº
“There are no difficult tasks, only fearful people” – Chinese

proverb

“No hay mujeres difíciles, solo hombres incapaces” –
Venezuelan proverb

1 Introduction

This tutorial gives an overview of spatial analysis of areal data, that is,
attributes of polygonal entities on a map. Typical examples are politi-
cal divisions, census tracts, and ownership or management parcels. The
attribute relates to the whole area of the polygon, and can not be fur-
ther localized. Often the data are aggregate measures, e.g., population
count; these may already be normalized to the area of the polygon, e.g.,
population density.

After completing this exercise you should be able to:

1. Find nearest-neighbours in a polygon map according to various cri-
teria (§3);

2. Compute spatial weights reflecting the strength of association ac-
cording to various criteria (§4);

3. Compute global and local Moran’s I as measures of spatial autocor-
relation (§5);

4. Build a spatial autotregressive model that combines feature-space
modelling (“regression”) with spatial autocorrelation (§6);

5. Relate these to hypotheses about spatial processes.

A major complication for data analysis is that the tesselation (division of
the study area) may have been done for a purpose not directly relevant
to the analysis. For example, crop yield statistics may be aggregated by
political division, but the crop yield may be better modelled by agro-
ecological zone, a different tesselation. A further problem is that the
analysis depends on the tesselation, and a different spatial scale, even of
the same criterion, may show different behaviour. This is the modifiable
areal unit problem. For example, crop statistics by county may show
strong spatial autocorrelation, which becomes much weaker at district
or state level, although the underlying process is the same.

This tutorial is based on Bivand et al. [1, Ch. 9], which has a more exten-
sive treatment, especially in the details of the R processing of this kind
of data. Some of the code here is adapted from that chapter; the sample
dataset from the Syracuse region is their adaptation of the dataset of
Waller and Gotway [5].

We eventually want to examine spatial dependence among polygonal ar-
eas; but to do that we first need to create spatial weights, i.e., the degree

1

of “neighbourliness” between areas; but to do that we first need to define
spatial neighbours. These are treated then in reverse order.

Note: The code in these exercises was tested with knitr package Ver-
sion: 1.21 [6] sp package Version: 1.3-1, spdep package Version: 1.0-2,
gstat package Version: 1.0-2 on R version 3.5.2 (2018-12-20), running
on Mac OS X 10.14.3. So, the text and graphical output you see here was
automatically generated and incorporated into LATEX by running the code
through R and its packages. Then the LATEX document was compiled into
the PDF version you are now reading. Your output may be slightly differ-
ent on different versions and on different platforms.

2 Example dataset

The sample data is 281 USA census tracts for eight central New York
State counties1 developed by Waller and Gotway [5] and adapted by Bi-
vand et al. [1]; the area is about 160 km N-S and 120 km E-W. The dataset
is provided at the ASDAR book website2 under the “Data sets download”
tab as “New York leukemia dataset”3.

Note: In the USA census tracts have 1 500–8 000 people (optimum size
4 000). They are designed to be socio-economically and demographically
fairly homogeneous. Each tract has several block groups; these are made
up of 20–40 individual blocks. The tract is usually large enough to com-
pile reliable statistics.

To orient you to this region, Figure 1 shows a map of the counties .

Task 1 : Locate this file, unpack it in a working directory, start R and
connect to that directory. •

After connecting to your working directory and unpacking NY_data.zip
to its own subdirectory, you should see the following files:
list.files("./NY_data")

[1] "NY_nb.gal" "NY8_utm18.dbf" "NY8_utm18.gal" "NY8_utm18.gwt"
[5] "NY8_utm18.prj" "NY8_utm18.shp" "NY8_utm18.shx" "NY8cities.dbf"
[9] "NY8cities.fix" "NY8cities.prj" "NY8cities.qix" "NY8cities.shp"
[13] "NY8cities.shx" "TCE.dbf" "TCE.prj" "TCE.shp"
[17] "TCE.shx"

Note: Path specification in R follows Unix conventions for a hierarchi-
cal file system: "." stands for the current directory4, "./" symbolizes
descent into a named sub-directory, here NY_data, and ".." symbolizes
ascent to the directory above the current one in the directory hierarchy.

The named subdirectory should have been created as NY_data.zip was
unpacked. If the data files are in a different directory, just substitute
its name, or if they are in the already-connected directory, leave off the
/NY_data.

1 Broome, Cayuga, Chenango, Cortland, Madison, Onondaga, Tioga, Tompkins
2 http://www.asdar-book.org/
3 NY_data.zip
4 which you can see with getwd() command

2

http://www.asdar-book.org/

77°W 76.5°W 76°W 75.5°W 75°W

42
°N

42
.5

°N
43

°N
43

.5
°N

Tompkins

Tioga

Onondaga

Madison

Cortland

Chenango

Cayuga

Broome

Central New York counties

Figure 1: Central New York State counties

You can change the working directory, i.e., the one symbolized by ".",
with the setwd function. This can be relative to the current working di-
rectory, e.g., setwd("../../ds/NY_data") to go up two levels and then
back down one level to a subdirectory named ds and then another level
down to a sub-subdirectory named NY_data. Or you can start at the root
of the file system for an absolute path name, by starting the path speci-
fication with /, e.g., setwd("/data"); you can also include a drive name
on Windows systems, e.g., setwd("D:/data").

Most of the analysis in this tutorial is carried out by functions in the
spdep “Spatial dependence” package from Roger Bivand. This depends
on the sp “spatial classes” package. We also use the rgdal “R interface
to GDAL” package to import the shapefiles in the dataset.

Task 2 : Load the required packages. •

We use the require function; this loads the package if it is not already
in the workspace:
require(sp)
require(rgdal)
require(spdep)

Task 3 : Import the polygon data into R, along with point files showing
cities. •

Polygon shapefiles can be imported to R with the readOGR function of the
rgdal package. We then examine the class of the imported object with

3

the class function, and see its slots with the str “structure” function.
NY8 <- readOGR("./NY_data", "NY8_utm18")
class(NY8)
str(NY8, max.level=2)
cities <- readOGR("./NY_data", "NY8cities")
class(cities)
str(cities, max.level=2)

OGR data source with driver: ESRI Shapefile
Source: "/Users/rossiter/data/edu/dgeostats/ex/ds/ASDAR/NY_data", layer: "NY8_utm18"
with 281 features
It has 17 fields
[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"
Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 281 obs. of 17 variables:
..@ polygons :List of 281
..@ plotOrder : int [1:281] 75 83 81 82 252 79 106 104 278 258 ...
..@ bbox : num [1:2, 1:2] 358242 4649755 480393 4808545
.. ..- attr(*, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

OGR data source with driver: ESRI Shapefile
Source: "/Users/rossiter/data/edu/dgeostats/ex/ds/ASDAR/NY_data", layer: "NY8cities"
with 6 features
It has 1 fields
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 6 obs. of 1 variable:
..@ coords.nrs : num(0)
..@ coords : num [1:6, 1:2] 424374 377506 403020 372237 406070 ...
.. ..- attr(*, "dimnames")=List of 2
..@ bbox : num [1:2, 1:2] 372237 4662141 445728 4771698
.. ..- attr(*, "dimnames")=List of 2
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

As you can see, readOGR reports the feature type of the source file, and
converts these to sp objects. @

Task 4 : Plot the polygons, with cities overlaid and labelled. •
plot(NY8, border="grey60", axes=TRUE, asp=1)
text(coordinates(cities), labels=as.character(cities$names), font=2, cex=0.75)
grid()

4

350000 400000 450000 500000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

Binghampton

Ithaca

Cortland

Auburn

Syracuse
Oneida

Note: Whoever compiled the data is obviously not a Central New Yorker;
only Long Islanders write “Binghampton”, by analogy with Easthampton
etc., rather than “Binghamton”, i.e., Bingham’s Town5. Although, the
“ham” in Bingham has the same meaning as the “hamp” in the various
Hamptons, deriving from Germanic root that is now German ‘heim’ and
English ‘home’.

Note: The discrepancy between this map and Figure 1 in the NW is
because the county map includes part of Lake Ontario to the Canadian
border in the middle of the lake.

Q1 : What is the georeference of this dataset? This is referred to as the
Coördinate Reference System (CRS). Jump to A1 •

The proj4string function extracts this information from objects of one
of the sp classes, here a SpatialPolygonsDataFrame:
proj4string(NY8)

[1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

proj4string(cities)

[1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

5 named for William Bingham, a Philadelphia politician and land speculator who
bought the land, then part of Tioga County, in 1792.

5

We first examine the spatial organization of the area data (“Spatial neigh-
bours”, §3) and how to weight the neighbourhood relations (“Spatial
weights”, §4). We then describe the attributes of each area and how
to discover the autocorrelation structure (“Spatial autocorrelation”, §5).

3 Spatial neighbours

Supplementary reading:

• Bivand et al. [1, §9.2]: Spatial neighbours & spatial weights

3.1 Importing a neighbour list in GAL format

The spdep package represents neighbour relationships by an object of
class nb; this stores a list of each polygon, each with a list of the in-
dex numbers of neighbours. These can be created from polygons as ex-
plained in §3.2, below, but here we have one already created for us and
provided with the NY_data dataset as file NY_nb.gal, in the so-called
“GAL lattice” format6.

Task 5 : Import the neighbour list and summarize it. •

The read.gal function imports GAL lattice files to nb objects. Here
we use the optional region.id argument to specify the labels for each
region. We get them in this case from the row.names of the NY8 object’s
data slot of the SpatialPolygonsDataFrame object, i.e., the data frame
with its attributes.
NY8_nb <- read.gal("./NY_data/NY_nb.gal", region.id=row.names(NY8@data))

summary(NY8_nb)

Neighbour list object:
Number of regions: 281
Number of nonzero links: 1522
Percentage nonzero weights: 1.927534
Average number of links: 5.41637
Link number distribution:

1 2 3 4 5 6 7 8 9 10 11
6 11 28 45 59 49 45 23 10 3 2
6 least connected regions:
55 97 100 101 244 245 with 1 link
2 most connected regions:
34 82 with 11 links

Q2 : How many links are there between regions? What is the average
number of links for an arbitrary polygon? How many polygons have only
one link to another polygon? Jump to A2 •

Task 6 : Plot the polygons with the links superimposed. •
6 These are Luc Anselin’s GeoDa files; see the help for read.gal for details

6

The generic plot method specializes to plot.nb when asked to plot
an object of class nb. Note the ADD=TRUE argument to add this to the
polygon plot.
plot(NY8, border="grey60", axes=TRUE)
plot(NY8_nb, coordinates(NY8), pch=19, cex=0.6, add=TRUE)
grid()

350000 400000 450000 500000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

●●●●●●●●●●●●●●●
●●●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●●

●
●

●
●●
●

●

●
●●●

●

●●●●

●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
● ●

●●
●

●

●

●●

●

●
●

●

●

●

●●

● ●
●

●

●●

●

●

●●
●

●
●

●

●●

●
●

●

●

●

●
●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●●●●●●●
●●●●

●

●

●

●●
●●●●●

●●●

●● ● ●

●

●●

●
●
●

●●

● ●
●
●
●●●

●
●

●●●●

●
●

●●●
●●●● ●

●

● ●

●

● ●
●

●●

●●

●

●●
●

●
●

●
●

●●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●●

●●

●
● ● ●

●●
●●●

● ● ●

●
●

●

●●

● ●

Q3 : How are these first-order (direct) links defined? Are they of ap-
proximately equal length? What accounts for the difference? Should all
neighbours be weighted equally when considering spatial influence be-
tween polygons? Jump to A3
•

This is a fairly large dataset; to make the analysis faster and the figures
easier to understand, we subset the data.

Q4 : What field in the dataframe of NY8 gives the geographic names?
How many are there? What is the factor name for Syracuse city? Jump
to A4 •

We can find the field names with the names function, and then the area

7

names with the levels function applied to the relevant field; to avoid
showing the list we use the tail function, since we know Syracuse is
probably towards the end of the list.
names(NY8)

[1] "AREANAME" "AREAKEY" "X" "Y" "POP8"
[6] "TRACTCAS" "PROPCAS" "PCTOWNHOME" "PCTAGE65P" "Z"
[11] "AVGIDIST" "PEXPOSURE" "Cases" "Xm" "Ym"
[16] "Xshift" "Yshift"

tail(levels(NY8$AREANAME))

[1] "Remainder of Van Bure" "Skaneateles village"
[3] "Solvay village" "Spafford town"
[5] "Syracuse city" "Vestal town"

Task 7 : Extract the subset of the data covering the city of Syracuse7

and plot it, along with its neighbour links. •

We subset the data with a logical expression to select matrix rows; this
works on the @data slot, but brings along all the polygon topology with
the selected records.
Syr <- NY8[NY8$AREANAME == "Syracuse city",]
summary(Syr)

Object of class SpatialPolygonsDataFrame
Coordinates:

min max
x 401899.8 412491.4
y 4759733.4 4771050.5
Is projected: TRUE
proj4string :
[+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs]
Data attributes:

AREANAME AREAKEY X
Syracuse city :63 36067000100: 1 Min. :-16.723
Auburn city : 0 36067000200: 1 1st Qu.:-14.032
Baldwinsville village: 0 36067000300: 1 Median :-12.852
Barker town : 0 36067000400: 1 Mean :-12.862
Bayberry-Lynelle Mead: 0 36067000500: 1 3rd Qu.:-11.663
Binghamton city : 0 36067000600: 1 Max. : -8.704
(Other) : 0 (Other) :57

Y POP8 TRACTCAS PROPCAS
Min. :31.78 Min. : 9 Min. :0.000 Min. :0.0000000
1st Qu.:36.22 1st Qu.:1696 1st Qu.:0.040 1st Qu.:0.0000150
Median :37.99 Median :2662 Median :1.040 Median :0.0005060
Mean :37.66 Mean :2700 Mean :1.675 Mean :0.0007322
3rd Qu.:39.40 3rd Qu.:3184 3rd Qu.:2.560 3rd Qu.:0.0010995
Max. :41.74 Max. :9393 Max. :7.090 Max. :0.0069930

PCTOWNHOME PCTAGE65P Z
Min. :0.0008224 Min. :0.004044 Min. :-1.44174
1st Qu.:0.1728601 1st Qu.:0.083726 1st Qu.:-0.57247
Median :0.3711340 Median :0.144109 Median :-0.06904
Mean :0.3746292 Mean :0.148330 Mean : 0.03775
3rd Qu.:0.5019480 3rd Qu.:0.175184 3rd Qu.: 0.43847
Max. :1.0000000 Max. :0.505050 Max. : 4.71053

AVGIDIST PEXPOSURE Cases
Min. :0.02447 Min. :0.8949 Min. :0.00014
1st Qu.:0.02663 1st Qu.:0.9793 1st Qu.:0.04514

7 http://www.syracuse.ny.us/

8

http://www.syracuse.ny.us/

Median :0.02761 Median :1.0154 Median :1.04486
Mean :0.02763 Mean :1.0148 Mean :1.67566
3rd Qu.:0.02868 3rd Qu.:1.0537 3rd Qu.:2.55945
Max. :0.03101 Max. :1.1318 Max. :7.08252

Xm Ym Xshift Yshift
Min. :-16723 Min. :31784 Min. :402599 Min. :4760639
1st Qu.:-14032 1st Qu.:36220 1st Qu.:405289 1st Qu.:4765075
Median :-12852 Median :37992 Median :406470 Median :4766847
Mean :-12862 Mean :37659 Mean :406460 Mean :4766514
3rd Qu.:-11663 3rd Qu.:39397 3rd Qu.:407658 3rd Qu.:4768253
Max. : -8704 Max. :41735 Max. :410617 Max. :4770591

Syr_nb <- subset(NY8_nb, NY8$AREANAME == "Syracuse city")
summary(Syr_nb)

Neighbour list object:
Number of regions: 63
Number of nonzero links: 346
Percentage nonzero weights: 8.717561
Average number of links: 5.492063
Link number distribution:

1 2 3 4 5 6 7 8 9
1 1 5 9 14 17 9 6 1
1 least connected region:
164 with 1 link
1 most connected region:
136 with 9 links

We have reduced the size of the dataset. Now the plot. Note the use
of the row.names function to extract the census tract numbers, and the
text function to place text on the plot.
plot(Syr, border="grey60", axes=TRUE)
title("Syracuse city census tracts, showing neighbours")
plot(Syr_nb, coordinates(Syr), pch=19, cex=0.6, add=TRUE)
text(coordinates(Syr), row.names(Syr))
grid()

9

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city census tracts, showing neighbours

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

109
110

111
112

113
114115116 117

118

119
120121

122
123
124 125

126127 128
129

130 131
132 133

134
135

136 137138139140141142
143

144

145
146 147

148
149150151152153

154

155 156157
158

159 160

161
162

163

164165
166

167

168

169

170
171

Task 8 : Display the distribution of the number of links. •

We apply the length “length of vector” function across the list of points;
this returns the number of neighbours of the point; then convert the list
to a vector with the unlist function. Then the table function shows
the number of census tracts with each number of neighbours.
(n.nb <- unlist(lapply(Syr_nb, length)))

[1] 5 5 2 7 7 5 4 5 7 5 5 7 5 7 6 6 6 6 6 4 4 7 6 8 4 3 3 9 6 8 6 6 6
[34] 8 6 4 4 8 6 6 7 5 7 6 4 5 3 5 6 4 6 7 4 8 5 1 5 8 5 5 6 3 3

table(n.nb)

n.nb
1 2 3 4 5 6 7 8 9
1 1 5 9 14 17 9 6 1

Q5 : What is the most common number of neighbours? Jump to A5 •

Task 9 : Identify a polygon with only one neighbour, and one with a
large number of neighbours; we will use these for comparing how spatial
weights are computed in the next section. •

We find the polygons with the minimum and maximum number of neigh-
bours with the which function and a logical condition using either min or
max and the == “is equal to” operator, and then display their information
in the polygon object by row selection.

10

min(n.nb); max(n.nb)

[1] 1
[1] 9

(ix.min <- which(n.nb==min(n.nb)))

[1] 56

Syr@data[ix.min,]

AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
164 Syracuse city 36067005602 -10.5923 34.676 2720 0.04 1.5e-05

PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases
164 0.00082237 0.00404412 -0.96141 0.0267115 0.982509 0.04104

Xm Ym Xshift Yshift
164 -10592.3 34676 408729.3 4763531

(ix.max <- which(n.nb==max(n.nb)))

[1] 28

Syr@data[ix.max,]

AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
136 Syracuse city 36067002900 -15.4437 38.02805 1189 0.01 8e-06

PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases
136 0.3841699 0.1488646 -0.16316 0.0294166 1.078974 0.01794

Xm Ym Xshift Yshift
136 -15443.7 38028.05 403877.9 4766883

In this case there is only one polygon with minimum and maximum
neighbours.

Q6 : How many polygons have only one neighbour? What is the maxi-
mum number of neighbours for any polygon? What are their indices in
the list of polygons for Syracuse? What are their census codes (see field
AREAKEY)? What are their indices in the 8-county dataset (these are the
row.names)? Jump to A6 •

We plot the locations of these two polygons:
plot(Syr, border="grey60", axes=TRUE)
title("Syracuse city census tracts, max/min neighbours")
plot(Syr[ix.min,], border="black", col=grey(.9), lwd=2, add=T)
plot(Syr[ix.max,], border="black", col=grey(.3), lwd=2, add=T)
plot(Syr_nb, coordinates(Syr), pch=19, cex=0.6, add=TRUE)
grid()

11

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city census tracts, max/min neighbours

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

3.1.1 * Geographic setting

It always helps understanding to see the geographic setting of a dataset;
in this optional sectio we show how to display the Syracuse census tracts
on Google Earth.

Task 10 : Export the Syracuse polygons in KML format and display in
Google Earth. •

The writeOGR function of the rgdal package exports in many formats.
For display in Google Earth, coordinates must be in Longitude/Latitude
on the WGS84 ellipsoid; we use the spTransform method to transform
from the original UTM to this system, defined with the CRS function to
specify the @proj4string field.
Syr.ll <- spTransform(Syr, CRS("+proj=longlat +ellps=WGS84"))
writeOGR(Syr.ll, dsn="./Syr.kml", layer="Syracuse", driver="KML", overwrite_layer=TRUE)

Warning in fld_names == attr(res, "ofld_nms"): longer object length is not a multiple
of shorter object length

Opening the KML in Google Earth and adjusting the symbology, we see
Figure 2.

3.2 Creating neighbours from polygons

In this example a neighbour list was provided, but in many situations
we have the polygons but must create our own neighbour list. This also
gives flexibility in defining what is a “neighbour”.

12

Figure 2: Syracuse census tracts

13

3.2.1 Neighbours based on contiguity

The poly2nb function of the spdep package takes a SpatialPolygons
or SpatialPolygonsDataFrame object and finds neighbours, returning
a neighbours list of class nb. This function defines a “neighbour” as
a polygon that shares a boundary (“rook” and “queen” neighbour) or
boundary point (“queen” neighbour with the target polygon.

Task 11 : Compute a neighbours list for Syracuse. •

We check whether this list matches the imported GAL file with the all.equal
“are all equal?” function:
Syr_nb2 <- poly2nb(Syr)
all.equal(Syr_nb, Syr_nb2, check.attributes = F)

[1] TRUE

This gives the identical list. However, poly2nb has two optional argu-
ments that can greatly affect the list:

• snap: boundary points less than a “snap” distance apart are con-
sidered to be contiguous; default a very small machine-dependent
quantity, effectively zero.

• queen: a single shared boundary point meets the contiguity condi-
tion (so, in chess, the queen could move between the polygons, but
a rook could not); default TRUE.

The snap argument is useful for (1) poorly-digitized maps; (2) to skip
over small polygons, e.g., a small river or highway that is given as a
separate polygon. Setting the queen argument to FALSE reduces the
number of neighbours and requires a shared boundary line.

Task 12 : Compute the neighbour list with rook (not queen) contiguity;
plot the polygon map with the rook links in black and the deleted queen
links in red. •
Syr_nb2 <- poly2nb(Syr, queen=FALSE)
summary(Syr_nb2)

Neighbour list object:
Number of regions: 63
Number of nonzero links: 308
Percentage nonzero weights: 7.760141
Average number of links: 4.888889
Link number distribution:

1 2 3 4 5 6 7 8
1 1 7 18 15 11 9 1
1 least connected region:
164 with 1 link
1 most connected region:
162 with 8 links

plot(Syr, border="grey60", axes=TRUE)
title("Syracuse city census tracts, queen and rook neighbours")
plot(Syr_nb, coordinates(Syr), pch=19, cex=0.6, add=TRUE, col="red")

14

plot(Syr_nb2, coordinates(Syr), pch=19, cex=0.6, add=TRUE)
legend(411000, 4771000, c("rook","queen"), lty=1, col=c("black","red"))
grid()

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city census tracts, queen and rook neighbours

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

rook
queen

Q7 : How many links were deleted? Which set of links more realistically
represents the concept of “neighbour” in a city? Jump to A7 •

3.2.2 Neighbours based on distance between centroids

There are other concepts of neighbours. One is by distance: a “neigh-
bour” polygon is not necessarily contiguous with the target polygon, but
whose centroid is within a given distance band of the target polygon’s
centroid, will be considered a neighbour.

This is appropriate if the spatial process is hypothesized to depend on
distance rather than contiguity, and there is a radius over which the
process is hypothesized to operate.

Task 13 : Find the neighbours of each polygon within 1.2 km. •

The dnearneigh function computes this, using a point set as the target.
These can be arbitrary points, but here we want the centroids of the tar-
get polygons. The coordinates method applied to a SpatialPolygons
object returns the polygon centroids.
Syr_nb_d <- dnearneigh(coordinates(Syr), d1=0, d2=1200,

row.names=row.names(Syr))
Syr_nb_d

15

Neighbour list object:
Number of regions: 63
Number of nonzero links: 252
Percentage nonzero weights: 6.349206
Average number of links: 4
2 regions with no links:
154 168

There is no requirement that the d1 “closest distance” be zero; this func-
tion can be used to find “neighbours” in any distance band.

Task 14 : Plot the polygon map with these neighbour links. •
plot(Syr, border="grey60", axes=TRUE)
title("Syracuse city census tracts, 1.2 km centroid neighbours")
plot(Syr_nb_d, coordinates(Syr), pch=19, cex=0.6, col="blue", add=TRUE)
text(coordinates(Syr), row.names(Syr))
grid()

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city census tracts, 1.2 km centroid neighbours

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

109
110

111
112

113
114115116 117

118

119
120121

122
123
124 125

126127 128
129

130 131
132 133

134
135

136 137138139140141142
143

144

145
146 147

148
149150151152153

154

155 156157
158

159 160

161
162

163

164165
166

167

168

169

170
171

3.2.3 Nearest neighbours based on distance

Another possibility is to define a fixed number of nearest neighbours,
again based on centroid distance.

This is a appropriate if the spatial process is hypothesized to depend on
a fixed set of nearest neighbours, no matter their distances.

Task 15 : Create a neighbours list including the three nearest neigh-
bours of each polygon. •

16

The knearneigh function finds the nearest neighbours as a matrix, then
the knn2nb function converts this to a neighbours list.
knn3 <- knearneigh(coordinates(Syr), k=3)
str(knn3$nn)

int [1:63, 1:3] 11 6 4 8 6 7 6 7 8 19 ...

knn3$nn[1:3,]

[,1] [,2] [,3]
[1,] 11 5 2
[2,] 6 5 3
[3,] 4 2 6

Syr_nb_3nn <- knn2nb(knn3, row.names=row.names(Syr))
Syr_nb_3nn

Neighbour list object:
Number of regions: 63
Number of nonzero links: 189
Percentage nonzero weights: 4.761905
Average number of links: 3
Non-symmetric neighbours list

Task 16 : Plot the polygon map with these neighbour links. •
plot(Syr, border="grey60", axes=TRUE)
title("Syracuse city census tracts, 3 nearest neighbours")
plot(Syr_nb_3nn, coordinates(Syr), pch=19, cex=0.6, col="blue", add=TRUE)
text(coordinates(Syr), row.names(Syr))
grid()

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city census tracts, 3 nearest neighbours

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●

●
●

●
●

●
● ●

●

●

●

● ●

●

●
● ●

●
●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

109
110

111
112

113
114115116 117

118

119
120121

122
123
124 125

126127 128
129

130 131
132 133

134
135

136 137138139140141142
143

144

145
146 147

148
149150151152153

154

155 156157
158

159 160

161
162

163

164165
166

167

168

169

170
171

17

4 Spatial weights

Supplementary reading:

• Bivand et al. [1, §9.2]: Spatial neighbours & spatial weights

Spatial weights extend the list of neighbours for a point, by assigning
some value between 0 (no relation) and 1 (full relation). In the simplest
case we have only 0’s and 1’s: a neighbour of a point is either influen-
tial (1) or not (0), and all influential neighbours are equally influential
in the process we are modelling. This simple view can be modified by
assigning different weights to each relationship, but of course we must
have knowledge of the underlying process to deviate from the simple
0/1 model.

For example, a weight might be proportional to the distance between
polygon centroids (spatial diffusion process) or length of shared bound-
ary (migration process) or size of the neighbour polygon (pressure pro-
cess) – in this last case, the weights would be asymmetric.

Spatial weights are represented in spdep as a list of lists: (1) points,
(2) neighbours of that point, with weights on [0 . . .1]. They can also be
represented as a matrix: rows for the source point and columns for the
target. An entry of 0 means the points are not neighbours.

Task 17 : Create a weights object for the Syracuse polygons, with the
default (queen’s) neighbour list. •

The nb2listw function of the spdep package converts a neighbours list
object (class nb) to a weights object (class listw, an extension of nb).

There are various conversion styles as an optional argument; the default
is style="W", in which the weights for each areal entity must sum to
unity along rows of the weights matrix; this is the inverse of the number
of neighbours. This may give a false impression at the edges of the
study area, where fewer neighbours are expected. We discuss some other
spatial weight styles in §5.1.1.

We create the weights object, summarize it, and examine its structure:
Syr_lw_W <- nb2listw(Syr_nb)
print(Syr_lw_W)

Characteristics of weights list object:
Neighbour list object:
Number of regions: 63
Number of nonzero links: 346
Percentage nonzero weights: 8.717561
Average number of links: 5.492063

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 63 3969 63 24.78291 258.564

str(Syr_lw_W, max.level=1)

18

List of 3
$ style : chr "W"
$ neighbours:List of 63
..- attr(*, "region.id")= chr [1:63] "109" "110" "111" "112" ...
..- attr(*, "class")= chr "nb"
..- attr(*, "GeoDa")=List of 2
..- attr(*, "gal")= logi TRUE
..- attr(*, "call")= logi TRUE
..- attr(*, "sym")= logi TRUE
$ weights :List of 63
..- attr(*, "mode")= chr "binary"
..- attr(*, "W")= logi TRUE
..- attr(*, "comp")=List of 1
- attr(*, "class")= chr [1:2] "listw" "nb"
- attr(*, "region.id")= chr [1:63] "109" "110" "111" "112" ...
- attr(*, "call")= language nb2listw(neighbours = Syr_nb)
- attr(*, "GeoDa")=List of 2

print(Syr_lw_W$neighbours[[1]])

[1] 2 5 11 21 22

print(Syr_lw_W$weights[[1]])

[1] 0.2 0.2 0.2 0.2 0.2

The object is composed of three lists:

1. the weights style style, here style="W";

2. a list of the regions, each having a vector of its neighbours’ region
numbers;

3. a list of the regions, each having a vector of the weights given to
each neighbouring region.

In the above code, we see that region 1 has five neighbouring regions
(2, 5, 11, 21, 22), and each has equal weight 1/5 = 0.2. To extract
these, we used the [[]] list extraction operator.

Q8 : What are the weights of each link for the one-neighbour polygon?
for the nine-neighbour polygon? Jump to A8 •

These are the respective lists for the two identified polygons:
Syr_lw_W$weights[[ix.min]]

[1] 1

Syr_lw_W$weights[[ix.max]]

[1] 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111
[7] 0.1111111 0.1111111 0.1111111

The weights are stored in list format because so many of them will be
zero, i.e., a full matrix is sparse. However, it is possible to “unwrap” the
list into a full matrix.

Task 18 : Optional: Convert the weights into a full matrix and display
the upper 9 x 9 corner, i.e., the weights between the first ten regions. •

19

We write a small function to do the conversion from an object of class
nb; we can use this with any neighbour list.

Note: To make the result more interpretable, we format the matrix as
a data.frame, and name the rows and columns of the data frame using
the row.names and colnames functions (yes, one has a . and one does
not . . .). The polygon names are found in the region.id attribute of
the neighbours object; we extract these with the attr “get attributes”
function.

build.wts.matrix <- function(wts.list) {
set up a matrix to receive the weights, initially all 0
len <- length(wts.list$weights)
wts.matrix <- as.data.frame(matrix(0, nrow=len, ncol=len))
row.names(wts.matrix) <- attr(wts.list$neighbours, "region.id")
colnames(wts.matrix) <- attr(wts.list$neighbours, "region.id")
for (i in 1:len) { # each item in the weights list

nl <- wts.list$neighbours[[i]] ## one row's neighbours
wl <- wts.list$weights[[i]] ## one row's weights
if (nl[1] != 0) { # empty neighbour lists have a single `0' element

fill in this row of the weights matrix
for (j in 1:length(nl)) wts.matrix[i, nl[j]] <- wl[j]
}

}
return(wts.matrix)

}
tmp <- build.wts.matrix(Syr_lw_W)
tmp[1,]

109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
109 0 0.2 0 0 0.2 0 0 0 0 0 0.2 0 0 0 0 0

125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140
109 0 0 0 0 0.2 0.2 0 0 0 0 0 0 0 0 0 0

141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
109 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

round(tmp[1:9,1:9], 4)

109 110 111 112 113 114 115 116 117
109 0.0000 0.2000 0.0000 0.0000 0.2 0.0000 0.0000 0.0000 0.0000
110 0.2000 0.0000 0.2000 0.2000 0.2 0.2000 0.0000 0.0000 0.0000
111 0.0000 0.5000 0.0000 0.5000 0.0 0.0000 0.0000 0.0000 0.0000
112 0.0000 0.1429 0.1429 0.0000 0.0 0.1429 0.1429 0.1429 0.1429
113 0.1429 0.1429 0.0000 0.0000 0.0 0.1429 0.0000 0.0000 0.0000
114 0.0000 0.2000 0.0000 0.2000 0.2 0.0000 0.2000 0.0000 0.0000
115 0.0000 0.0000 0.0000 0.2500 0.0 0.2500 0.0000 0.2500 0.0000
116 0.0000 0.0000 0.0000 0.2000 0.0 0.0000 0.2000 0.0000 0.2000
117 0.0000 0.0000 0.0000 0.1429 0.0 0.0000 0.0000 0.1429 0.0000

rm(tmp)

Notice that the full weights matrix for weights style W is not symmetric;
the number of neighbours of a target polygon is not the same as the
number of other polygons with which this one shares influence on a
different target.

Note that the analyst can directly create a weights matrix based on knowl-
edge of the assumed data generating process.

5 Spatial autocorrelation

Supplementary reading:

20

• Bivand et al. [1, §9.3]: Testing for spatial autocorrelation’

Now that we have neighbours and their weights, we can determine whether
there is any spatial autocorrelation: are attribute values in neighbouring
polygons (suitably weighted) similar? Note we are not yet trying to deter-
mine causes, although the results of this step may motivate a hypothesis.
For example, neighbouring polygons could influence each other; alter-
nately, a geographic factor common to adjacent areas could influence
them both.

However, we first need to describe the feature-space attributes of each
area. These are all reported on the basis of 1980 census tracts.

Cases : the number of leukaemia cases 1978–1982; some cases had insuf-
ficient georeference, these were added proportionally to tracts, so
some “counts” are not integers.

Z : log-transformed rate, i.e., normalized by census tract population:
Zi = log(1000[Cases+ 1]/n)

PEXPOSURE : “potential exposure”, computed as the logarithm of 100 times the
inverse of the distance between a census tract centroid and the
nearest TCE8-producing site9;

PCTAGE65P : percent older than 65 years; this could represent long-term expo-
sure to any environmental factor;

PCTOWNHOME : percent home ownership; this could indicate lifestyle or economic
level.

In this section we examine spatial autocorrelation of the transformed
disease incidence, attribute Z. Among the various metrics of spatial as-
sociation, we choose Moran’s I [3]. In all such tests, we make several
implicit assumptions:

• we assume that there is no spatial patterning due to some underly-
ing but un-modelled factor;

• we assume that the assigned spatial weights (previous §) are those
that generated the autocorrelation.

As examples of these:

• If assessing spatial correlation of disease incidence, we assume
there are no environmental factors that are spatially-distributed,
e.g., industry or different water sources.

• Equal spatial weights of 1/n from each of n neighbours assumes
that each neighbour is equally influential in the modelled process.
If the process depends for example on the “pressure” due to popu-
lation or area of a polygon, this is unlikely to be true.

8 Trichloroethylene, an industrial solvent often found in groundwater
9 see ?NY_data

21

So tests such as Moran’s I should ideally be applied to residuals after
removing known spatial patterning, and with weights based on the as-
sumed process that gave rise to autocorrelation. What is left can then
be tested to see if there is a real effect of spatial correlation, not one
brought on by a “lurking variable”.

As an example, we might hypothesize that the crime rate in a city is (at
least in part) related to low incomes, low employment, low home owner-
ship, and number of abandoned houses. If we can build a model (non-
spatial) relating these factors to crime rate, any apparent spatial correla-
tion in crime rate may disappear in the residuals, because the predictive
factors share the same spatial patterning, i.e., the mean model is not a
null (average) model but instead has spatially-pattered predictors.

However, in some data sets we don’t have the spatially-patterned covari-
ables; or, we want to test if there is any spatial patterning, not consider-
ing the cause (perhaps to see if there is any cause); then Moran’s I and
similar tests can be applied to the variable without attempting to model
it with covariables.

Moran’s I is defined as:

I = n∑
i
∑
jwij

∑
i
∑
jwij(yi − ȳ)(yj − ȳ)∑

i(yi − ȳ)2
(1)

where yi is the ith of n polygon, ȳ is its global mean, and wij is the
spatial weight of the link between polygons i and j, as discussed in the
previous section. The first term normalizes by the sum of all weights, so
the test is comparable among datasets with different numbers of poly-
gons. The denominator of the second term centres on the mean.

5.1 Global tests

A global test summarizes the spatial correlation of an entire map: is
there evidence of spatial correlation, on average? We consider the inci-
dence of leukemia, presented as a log-transformed rate Z [1, p. 291]:

Zi = log
1000(Yi + 1)

ni
(2)

where Yi is the count of cases in a census tract and ni is its population.
This is presented as field Z. We refer to this as leukemia incidence.
summary(Syr$Z)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.44174 -0.57247 -0.06904 0.03775 0.43847 4.71053

Task 19 : Test the assumption that leukemia cases incidence is spatially
independent (randomly distributed among census tracts). •

We first visualize the spatial relation with several grey-scale plots. The
first is the rank of the leukemia incidence in each census tract, from

22

lowest (lightest shade of grey) to highest (darkest). The grey.colors
function produces a colour ramp of gray shades with equal perceptive
intervals.
n <- length(Syr$Z)
shade <- rank(Syr$Z)
plot(Syr, border="grey60",axes=TRUE,

col=grey.colors(n, start=0.9, end=0.1, gamma=2.2)[shade])
title("Syracuse city, rank of Leukemia incidence")
text(coordinates(Syr), paste0(row.names(Syr),"[", 1:n, "]"),

col="red", cex=0.5)

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city, rank of Leukemia incidence

109[1]

110[2]

111[3]

112[4]

113[5]

114[6]115[7]116[8] 117[9]

118[10]

119[11]

120[12]
121[13]

122[14]
123[15]

124[16] 125[17]
126[18]

127[19] 128[20]

129[21]

130[22] 131[23]

132[24]
133[25]

134[26]

135[27]
136[28]

137[29]
138[30]

139[31]
140[32]141[33]142[34]

143[35]
144[36]

145[37]

146[38] 147[39]

148[40]

149[41]150[42]151[43]
152[44]

153[45]

154[46]

155[47]
156[48]157[49]

158[50]

159[51] 160[52]

161[53]

162[54]

163[55]

164[56]
165[57]

166[58]

167[59]

168[60]

169[61]

170[62]

171[63]

Another view is the relative intensity of incidence, shown with the same
grey scale, but with the intensity of the grey proportional to the maxi-
mum proportion of cases.

Note: The -min(Syr$Z) in the numerator and denominator is to re-scale
from zero for grey-shading. Note that field Z has some negative numbers;
if all were positive the expression Syr$Z/max(Syr$Z) would also give a
proper sequential gray scale.

Note: The pmax “parallel maximum” function ensures that the lowest
incidence uses the first grey in the scale, i.e., the lightest; if this were
omitted the index would be 0 and give no corresponding colour.

The polygons are labelled with their row number and the relative risk,
where 1 is the highest.
rel.risk <- ((Syr$Z-min(Syr$Z))/(max(Syr$Z)-min(Syr$Z)))
shade <- pmax(ceiling(n*rel.risk), 1)
plot(Syr, border="grey60", axes=TRUE,

col=grey.colors(n, start=0.9, end=0.1, gamma=2.2)[shade])
title("Syracuse city, relative Leukemia incidence")
text(coordinates(Syr),

23

paste0(row.names(Syr), "[", round(rel.risk,2), "]"),
cex=0.5, col="red")

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

Syracuse city, relative Leukemia incidence

109[1]

110[0.29]

111[0.15]

112[0.23]

113[0.29]

114[0.22]115[0.16]116[0.34]117[0.19]

118[0.31]

119[0.66]

120[0.61]
121[0.17]

122[0.3]
123[0.34]

124[0.28]125[0.37]
126[0.17]

127[0.05] 128[0.1]

129[0.26]

130[0.35]131[0.38]

132[0.2]
133[0.11]

134[0.33]

135[0.1]
136[0.21]

137[0.26]
138[0.43]

139[0.18]
140[0.2]141[0.18]142[0.22]

143[0.26]
144[0.1]

145[0.46]

146[0.18] 147[0.13]

148[0.1]

149[0.4]150[0.26]151[0.14]
152[0.29]

153[0]

154[0.3]

155[0.23]
156[0.16]157[0.05]

158[0.23]

159[0.15]160[0.06]

161[0.01]

162[0.07]

163[0.26]

164[0.08]
165[0.37]

166[0.31]

167[0.06]

168[0.18]

169[0.25]

170[0.36]

171[0.06]

Q9 : Does leukemia incidence appear to be spatially autocorrelated?
Jump to A9 •

Now we make the formal test, using the moran.test function. We accept
the default alternative="greater" argument (so, no need to write it
explicitly in the command), because we are not interested in determin-
ing whether the leukemia incidence is more spatially dispersed than by
chance, only if it is more spatially clustered10.
(moran.z <- moran.test(Syr$Z, Syr_lw_W))

Moran I test under randomisation

data: Syr$Z
weights: Syr_lw_W

Moran I statistic standard deviate = 3.1394, p-value =
0.0008466
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.207583627 -0.016129032 0.005078063

Q10 : Is leukemia incidence provably spatially autocorrelated with this

10 The other choices are "less" and "two-sided", see help(moran.test)

24

weighting? Jump to A10 •

5.1.1 Effect of weights

The above results are for the default weighting: inversely by number of
neighbours. Other reasonable weightings would be by inverse distance
of the centroids, or by population, or by area, or by shared border length,
depending on the process being modelled.

The nb2listw function has several options for the style optional argu-
ment Bivand et al. [1, §9.2.2]:

W : explained above: inversely proportional to the number of neigh-
bours;

B : binary: 1 for a neighbour, 0 otherwise;

C : globally standardized: inversely proportional to the total number
of links; that is, all non-zero links get the same weight;

U : C divided by the number of neighbours.

Row-standardisation (style W) favours observations with few neighbours,
whereas the other styles favour observations with many neighbours. We
can see this by comparing weights for few- and many-neighbour entries
in the neighbour list:
Syr_lw_W <- nb2listw(Syr_nb)
Syr_lw_W$weights[[ix.min]]

[1] 1

Syr_lw_W$weights[[ix.max]]

[1] 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111
[7] 0.1111111 0.1111111 0.1111111

Syr_lw_B <- nb2listw(Syr_nb, style="B")
Syr_lw_B$weights[[ix.min]]

[1] 1

Syr_lw_B$weights[[ix.max]]

[1] 1 1 1 1 1 1 1 1 1

Syr_lw_C <- nb2listw(Syr_nb, style="C")
Syr_lw_C$weights[[ix.min]]

[1] 0.1820809

Syr_lw_C$weights[[ix.max]]

[1] 0.1820809 0.1820809 0.1820809 0.1820809 0.1820809 0.1820809
[7] 0.1820809 0.1820809 0.1820809

Syr_lw_U <- nb2listw(Syr_nb, style="U")
Syr_lw_U$weights[[ix.min]]

[1] 0.002890173

Syr_lw_U$weights[[ix.max]]

25

[1] 0.002890173 0.002890173 0.002890173 0.002890173 0.002890173
[6] 0.002890173 0.002890173 0.002890173 0.002890173

We can also compute weights based on any criterion that seems appro-
priate to the process. One obvious possibility is inverse distance (per-
haps to some power) of the area centroids: the further the centroids, the
less influence. This is well-established for many processes originating at
points, e.g., inverse-square light or sound intensity from point sources.
It may be applicable to social processes as well.

Q11 : Considering the leukemia incidence, why or why not would the
inverse-distance weighting represent the underlying process? Jump to
A11 •

Task 20 : Compute a weights matrix based on inverse distance of the
centroids. •

We use nbdists to calculate the distances for an object of class nb,
from the centroid coordinates of the polygon object returned by the
coordinates method, then lapply to invert the distances; this lapply
takes an argument of class function, which in this case we build our-
selves, since there is no “invert” function for vectors. Finally, we pass
these to the weight-generating function nb2listw with the optional glist
“general list” argument – this must be a list of lists, one for each area.

We illustrate the calculation with the first-listed polygon, 109, while ap-
plying it to the whole dataset with the lapply “list apply” function.
row.names(Syr@data[1,])

[1] "109"

Syr_nb[[1]]

[1] 2 5 11 21 22

dsts <- nbdists(Syr_nb, coordinates(Syr))
dsts[1]

[[1]]
[1] 1656.873 1514.638 1098.564 1944.120 1871.600

idw <- lapply(dsts, function(x) 1/(x/1000))
idw[1]

[[1]]
[1] 0.6035465 0.6602238 0.9102789 0.5143715 0.5343021

Syr_lw_idwB <- nb2listw(Syr_nb, glist=idw, style="B")
Syr_lw_idwB$weights[[1]]

[1] 0.6035465 0.6602238 0.9102789 0.5143715 0.5343021

Here is the summary of the weights:
summary(unlist(Syr_lw_idwB$weights))

26

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.3886 0.7374 0.9259 0.9963 1.1910 2.5274

And here is the summary of the sums of weights per polygon:
summary(sapply(Syr_lw_idwB$weights, sum))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.304 3.986 5.869 5.471 6.737 9.435

There is a wide range of total weights assigned to a polygon, very unlike
the “W” style weights.

Task 21 : Re-compute Moran’s I with this weighting. •

Again we use the moran.test function, with the new weights matrices:
(moran.z.idwB <- moran.test(Syr$Z, Syr_lw_idwB))

Moran I test under randomisation

data: Syr$Z
weights: Syr_lw_idwB

Moran I statistic standard deviate = 2.9147, p-value = 0.00178
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.195554357 -0.016129032 0.005274558

(moran.pctage65p.idwB <- moran.test(Syr$PCTAGE65P, Syr_lw_idwB))

Q12 : How did the probabilities of Type I error to reject the null hypoth-
esis of no association change with this weighting? Jump to A12
•

Task 22 : Optional: Compare the weights matrices of the different
weighting styles. •
tmp <- build.wts.matrix(Syr_lw_W)
round(tmp[1:9,1:9],4)

109 110 111 112 113 114 115 116 117
109 0.0000 0.2000 0.0000 0.0000 0.2 0.0000 0.0000 0.0000 0.0000
110 0.2000 0.0000 0.2000 0.2000 0.2 0.2000 0.0000 0.0000 0.0000
111 0.0000 0.5000 0.0000 0.5000 0.0 0.0000 0.0000 0.0000 0.0000
112 0.0000 0.1429 0.1429 0.0000 0.0 0.1429 0.1429 0.1429 0.1429
113 0.1429 0.1429 0.0000 0.0000 0.0 0.1429 0.0000 0.0000 0.0000
114 0.0000 0.2000 0.0000 0.2000 0.2 0.0000 0.2000 0.0000 0.0000
115 0.0000 0.0000 0.0000 0.2500 0.0 0.2500 0.0000 0.2500 0.0000
116 0.0000 0.0000 0.0000 0.2000 0.0 0.0000 0.2000 0.0000 0.2000
117 0.0000 0.0000 0.0000 0.1429 0.0 0.0000 0.0000 0.1429 0.0000

tmp <- build.wts.matrix(Syr_lw_B)
round(tmp[1:9,1:9], 4)

109 110 111 112 113 114 115 116 117
109 0 1 0 0 1 0 0 0 0
110 1 0 1 1 1 1 0 0 0
111 0 1 0 1 0 0 0 0 0

27

112 0 1 1 0 0 1 1 1 1
113 1 1 0 0 0 1 0 0 0
114 0 1 0 1 1 0 1 0 0
115 0 0 0 1 0 1 0 1 0
116 0 0 0 1 0 0 1 0 1
117 0 0 0 1 0 0 0 1 0

tmp <- build.wts.matrix(Syr_lw_C)
round(tmp[1:9,1:9], 4)

109 110 111 112 113 114 115 116 117
109 0.0000 0.1821 0.0000 0.0000 0.1821 0.0000 0.0000 0.0000 0.0000
110 0.1821 0.0000 0.1821 0.1821 0.1821 0.1821 0.0000 0.0000 0.0000
111 0.0000 0.1821 0.0000 0.1821 0.0000 0.0000 0.0000 0.0000 0.0000
112 0.0000 0.1821 0.1821 0.0000 0.0000 0.1821 0.1821 0.1821 0.1821
113 0.1821 0.1821 0.0000 0.0000 0.0000 0.1821 0.0000 0.0000 0.0000
114 0.0000 0.1821 0.0000 0.1821 0.1821 0.0000 0.1821 0.0000 0.0000
115 0.0000 0.0000 0.0000 0.1821 0.0000 0.1821 0.0000 0.1821 0.0000
116 0.0000 0.0000 0.0000 0.1821 0.0000 0.0000 0.1821 0.0000 0.1821
117 0.0000 0.0000 0.0000 0.1821 0.0000 0.0000 0.0000 0.1821 0.0000

tmp <- build.wts.matrix(Syr_lw_U)
round(tmp[1:9,1:9], 4)

109 110 111 112 113 114 115 116 117
109 0.0000 0.0029 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000
110 0.0029 0.0000 0.0029 0.0029 0.0029 0.0029 0.0000 0.0000 0.0000
111 0.0000 0.0029 0.0000 0.0029 0.0000 0.0000 0.0000 0.0000 0.0000
112 0.0000 0.0029 0.0029 0.0000 0.0000 0.0029 0.0029 0.0029 0.0029
113 0.0029 0.0029 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000
114 0.0000 0.0029 0.0000 0.0029 0.0029 0.0000 0.0029 0.0000 0.0000
115 0.0000 0.0000 0.0000 0.0029 0.0000 0.0029 0.0000 0.0029 0.0000
116 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0029 0.0000 0.0029
117 0.0000 0.0000 0.0000 0.0029 0.0000 0.0000 0.0000 0.0029 0.0000

tmp <- build.wts.matrix(Syr_lw_idwB)
round(tmp[1:9,1:9], 4)

109 110 111 112 113 114 115 116 117
109 0.0000 0.6035 0.0000 0.0000 0.6602 0.0000 0.0000 0.0000 0.0000
110 0.6035 0.0000 0.9265 0.5963 1.0111 1.4139 0.0000 0.0000 0.0000
111 0.0000 0.9265 0.0000 0.9858 0.0000 0.0000 0.0000 0.0000 0.0000
112 0.0000 0.5963 0.9858 0.0000 0.0000 0.7191 1.0020 1.1118 0.7829
113 0.6602 1.0111 0.0000 0.0000 0.0000 1.3676 0.0000 0.0000 0.0000
114 0.0000 1.4139 0.0000 0.7191 1.3676 0.0000 1.7476 0.0000 0.0000
115 0.0000 0.0000 0.0000 1.0020 0.0000 1.7476 0.0000 1.7162 0.0000
116 0.0000 0.0000 0.0000 1.1118 0.0000 0.0000 1.7162 0.0000 1.0592
117 0.0000 0.0000 0.0000 0.7829 0.0000 0.0000 0.0000 1.0592 0.0000

5.2 Local tests

Global tests for spatial autocorrelation are aggregated from local rela-
tionships (see the formula for Moran’s I). This local information can be
aggregated locally, rather than over the whole map, to detect “hotspots”
where there is strong autocorrelation of high values, and “cold spots”
where there is strong autocorrelation of low values. In geostatistical
terms, the spatial process may not be stationary.

5.2.1 Local Moran’s I

One good way to visualize the relation between the global and local mea-
sures is to plot a so-called Moran scatterplot: the target variable on the

28

x-axis, and the (spatially-weighted) sum of neighbouring values on the
y-axis; these are called the spatially lagged values.

Task 23 : Plot the local Moran’s I scatterplot for the Syracuse leukemia
incidence, with the default W weighting. •

The moran.plot function takes two arguments: the vector of values and
the neighbour list with weights:
mp <- moran.plot(Syr$Z, Syr_lw_W, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia incidence",

sub="weights style `W'")

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

−1 0 1 2 3 4

−
0.

5
0.

0
0.

5
1.

0
1.

5

Z

av
er

ag
e

ne
ig

hb
ou

r
Z

109

113

119

120

129
130

Moran scatterplot, Syracuse leukemia incidence

weights style ‘W'

The regression line is the global Moran’s I. Points with high influence
are identified by a special symbol and their row number in the original
(8-county) dataset.

Task 24 : Identify the high-influence areas; find their neighbour rela-
tions. •

The is.inf “is influential” field in the list resulting from the moran.plot
function gives six measures of each observation’s influence on the plot-
ted regression line; these are computed by the influence.measures
method, which is often applied to linear models. The any logical func-
tion returns TRUE if any of the six measures for an observation are TRUE;
we use the apply function to apply this function row-wise (as shown by
the MARGIN=1 argument), resulting in an array of logical values: TRUE if
the observation is influential by any measure.
ix <- which(infl <- apply(mp$is.inf, MARGIN=1, any))
cbind(Syr@data[ix,c("AREAKEY","Z")],ix)

AREAKEY Z ix

29

109 36067000100 4.71053 1
113 36067000500 0.36591 5
119 36067001100 2.63806 11
120 36067001200 2.31264 12
129 36067002000 0.16464 21
130 36067002100 0.70212 22

Syr_lw_W$neighbours[ix]

[[1]]
[1] 2 5 11 21 22

[[2]]
[1] 1 2 6 11 12 13 14

[[3]]
[1] 1 5 12 22 23

[[4]]
[1] 5 11 13 22 23 24 30

[[5]]
[1] 1 22 26 28

[[6]]
[1] 1 11 12 21 23 28 29

Syr@data[Syr_lw_W$neighbours[ix][[1]],c("AREAKEY","Z")]

AREAKEY Z
110 36067000200 0.31195
113 36067000500 0.36591
119 36067001100 2.63806
129 36067002000 0.16464
130 36067002100 0.70212

Q13 : Which areas strongly influenced the global Moran’s I line? Are
these high-influence area neighbours? Jump to A13 •

Task 25 : Plot these as shaded polygons, with a four-way legend: no
influence, high proportion with low proportion neighbours (“HL”), the
reverse (“LH”), and both high (“HH”). We define the break between “low”
and “high” as the third quartile. The cut function slices the incidence
and lagged incidence into high and low, and then the interaction func-
tion makes a crossed factor of these two. •

Note: The lag method applied to an object of class listw, i.e., a neigh-
bour weight list, specialized to the spdep function lag.listw. This takes
the neighbour weight list and an attribute (here, the leukemia incidence)
and returns an attribute vector, but with the original attribute values re-
placed with those from the weighted neighbours. It is the function used
to position points on the local Moran’s I plot shown just above. Here we
use it to find the relation between leukemia incidence in one district and
its neighbours.

x <- Syr$Z
lhx <- cut(x, breaks=c(min(x), quantile(x,.75), max(x)),

labels=c("L", "H"), include.lowest=TRUE)
wx <- lag(Syr_lw_W, Syr$Z)
print(paste("Z in district ", row.names(Syr)[1], ": ",

30

round(Syr$Z[1],3), sep=""))

[1] "Z in district 109: 4.711"

print(paste("Weighted average Z of district ",
row.names(Syr)[1], " neighbours: ",
round(wx[1],3), sep=""))

[1] "Weighted average Z of district 109 neighbours: 0.837"

lhwx <- cut(wx, breaks=c(min(wx), quantile(wx,.75), max(wx)),
labels=c("L", "H"), include.lowest=TRUE)

mean(wx)
lhlh <- interaction(lhx, lhwx, infl, drop=TRUE)
cols <- rep(1, length(lhlh))
cols[lhlh == "L.L.TRUE"] <- 2
cols[lhlh == "L.H.TRUE"] <- 3
cols[lhlh == "H.L.TRUE"] <- 4
cols[lhlh == "H.H.TRUE"] <- 5
plot(Syr, col=grey.colors(5, 0.98, 0.38, 2.2)[cols], axes=T)
text(coordinates(Syr), row.names(Syr), col="darkgray")
legend("topright", legend=c("None", "LL", "LH", "HL", "HH"),

fill=grey.colors(5, 0.98, 0.38, 2.2), bty="n",
cex=0.8, y.intersp=0.8)

title("Tracts with influence")

402000 406000 410000 414000

47
60

00
0

47
64

00
0

47
68

00
0

109
110

111
112

113
114115116 117

118

119
120121

122
123
124 125

126127 128
129

130 131
132 133

134
135

136 137138139140141142
143

144

145
146 147

148
149150151152153

154

155 156157
158

159 160

161
162

163

164165
166

167

168

169

170
171

None
LL
LH
HL
HH

Tracts with influence

Q14 : How does this figure change your interpretation of the spatial
autocorrelation of leukemia incidence as expressed by the global Moran’s
I and corresponding figure? Jump to A14 •

Task 26 : Compute the local Moran’s I for the leukemia incidence. •

31

Local Moran’s I is defined for each area i as:

Ii =
(yi − ȳ) ·

∑
j(yj − ȳ)

1/n ·
∑
i(yi − ȳ)2

(3)

where the symbols are defined as in Equation 1. The two expressions
in the numerator define a point in the Moran scatterplot, above. The
denominator standardizes the local Moran’s I so that

∑
i Ii = I. Again,

we are looking for the probability that rejecting the null hypothesis of
no spatial autocorrelation would be a Type I error.

This test is computed by the localmoran function.
lm1 <- localmoran(Syr$Z, Syr_lw_W)
class(lm1)

[1] "localmoran" "matrix"

summary(lm1)

Ii E.Ii Var.Ii
Min. :-0.521426 Min. :-0.01613 Min. :0.08548
1st Qu.:-0.132169 1st Qu.:-0.01613 1st Qu.:0.12377
Median : 0.005406 Median :-0.01613 Median :0.13421
Mean : 0.207584 Mean :-0.01613 Mean :0.17176
3rd Qu.: 0.266861 3rd Qu.:-0.01613 3rd Qu.:0.18538
Max. : 4.617088 Max. :-0.01613 Max. :0.86517

Z.Ii Pr(z > 0)
Min. :-1.04174 Min. :0.0000
1st Qu.:-0.25548 1st Qu.:0.2236
Median : 0.05174 Median :0.4794
Mean : 0.60598 Mean :0.4322
3rd Qu.: 0.76014 3rd Qu.:0.6008
Max. :11.46006 Max. :0.8512

ix <- which(lm1[,"Pr(z > 0)"] < 0.05)
cbind(Syr@data[ix,c("AREAKEY","POP8","Z")],ix)

AREAKEY POP8 Z ix
109 36067000100 9 4.71053 1
119 36067001100 143 2.63806 11
120 36067001200 99 2.31264 12
130 36067002100 1997 0.70212 22
131 36067002200 1211 0.91381 23
161 36067005400 4144 -1.35400 53

Q15 : Is there evidence of local clustering? Could you interpret this
from the Moran scatterplot? Jump to A15 •

Task 27 : Optional: Repeat the above plots and analysis for other
weighting styles. •

We have the already computed the required weight matrices (§5.1.1), so
we just use these in the call to moran.plot. For example, using binary
and inverse-distance weightings and comparing with style W:

32

par(mfrow=c(1,3))
mp <- moran.plot(Syr$Z, Syr_lw_W, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `W'")
mp <- moran.plot(Syr$Z, Syr_lw_B, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `B' (binary)")
mp <- moran.plot(Syr$Z, Syr_lw_idwB, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `I' (inverse distance)")
par(mfrow=c(1,1))

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●

−1 0 1 2 3 4

−
0.

5
0.

0
0.

5
1.

0
1.

5

Z

av
er

ag
e

ne
ig

hb
ou

r
Z

109

113

119

120

129
130

Moran scatterplot, Syracuse leukemia

weights style ‘W'

●
●

● ●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ● ●

●

●

●

●

●

●
●

●

−1 0 1 2 3 4

−
4

−
2

0
2

4
6

8
10

Z

av
er

ag
e

ne
ig

hb
ou

r
Z

109

113

119

120

130

Moran scatterplot, Syracuse leukemia

weights style ‘B' (binary)

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

−1 0 1 2 3 4

−
4

−
2

0
2

4
6

8
Z

av
er

ag
e

ne
ig

hb
ou

r
Z

109

113 119

120

130131

Moran scatterplot, Syracuse leukemia

weights style ‘I' (inverse distance)

Now the overall test and the influential observations:
##
moran.test(Syr$Z, Syr_lw_W)

Moran I test under randomisation

data: Syr$Z
weights: Syr_lw_W

Moran I statistic standard deviate = 3.1394, p-value =
0.0008466
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.207583627 -0.016129032 0.005078063

lm1 <- localmoran(Syr$Z, Syr_lw_W)
summary(lm1[,"Ii"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.521426 -0.132169 0.005406 0.207584 0.266861 4.617088

(ix <- which(lm1[,"Pr(z > 0)"] < 0.05))

109 119 120 130 131 161
1 11 12 22 23 53

##
moran.test(Syr$Z, Syr_lw_B)

Moran I test under randomisation

33

data: Syr$Z
weights: Syr_lw_B

Moran I statistic standard deviate = 3.5397, p-value =
0.0002003
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.224450751 -0.016129032 0.004619419

lm1 <- localmoran(Syr$Z, Syr_lw_B)
summary(lm1[,"Ii"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.37565 -0.51602 0.02162 1.23270 1.31989 23.08544

(ix <- which(lm1[,"Pr(z > 0)"] < 0.05))

109 119 120 130 131 161
1 11 12 22 23 53

##
moran.test(Syr$Z, Syr_lw_idwB)

Moran I test under randomisation

data: Syr$Z
weights: Syr_lw_idwB

Moran I statistic standard deviate = 2.9147, p-value = 0.00178
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

0.195554357 -0.016129032 0.005274558

lm1 <- localmoran(Syr$Z, Syr_lw_idwB)
summary(lm1[,"Ii"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.7109 -0.5859 0.0236 1.0700 1.1088 22.1691

(ix <- which(lm1[,"Pr(z > 0)"] < 0.05))

109 119 120 130 131 161 162
1 11 12 22 23 53 54

##

Q16 : What are the principal differences between the global Moran’s I,
the local Moran’s I plots, and the influential observations, for these three
neighbour weightings? Jump to A16 •

5.2.2 Getis-Ord local G statistics *

Another way to visualize “hot” and “cold” spots is local association statis-
tics developed by Ord and Getis [4]. These are symbolized as Gi and
G∗i ; the subscript i emphasizes that they are computed separately for
each area. These statistics do not attempt to characterize overall spatial
dependency; rather, they help identify local areas where there may be
dependency. In this it is similar to local Moran’s I.

34

“These statistics are especially useful in cases where global
statistics may fail to alert the researcher to significant pockets
of clustering.” – [4, p. 287]

There are two variants: Gi and G∗i , where the ‘starred’ variant includes
the self-weights wii of each target polygon The first variant Gi shows
whether an area is within a surrounding hot or cold spot; the second
variant G∗i shows whether the area itself is part of such a spot.

The G∗i statistic is:

G∗i =
∑n
j=1wi,jxj − x̄

∑n
j=1wi,j

s · ([n
∑n
j=1w

2
i,j − (

∑n
j=1wi,j)2]/[n− 1])1/2

(4)

It may be interpreted as a Z-score, i.e., a normal variate, where 0 is the
global mean of the target variable. Positive Z-scores show clusters of
high values, negative Z-scores show clusters of low values.

Note: In Getis and Ord’s original formulation Gi depends on a distance
band; this more general formulation includes that special case, because
the weights matrix W can be constructed by distance or by steps to neigh-
bours.

Task 28 : Compute and summarize the Gi statistics for the Syracuse
leukemia incidence, using the default neighbour weighting. •

The weighting matrices constructed in §4 did not include self-weights,
so the statistic computed by the localG function, using these weights,
is Gi:
summary(gi <- localG(Syr$Z, Syr_lw_W))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.5352 -0.8659 -0.1081 0.0927 0.4274 4.4059

Task 29 : Plot these as coloured polygons, with the red correspond to
the positive clusters and blue to the negative ones. •

A colour ramp can be constructed with the colorRampPalette function,
specifying a range of colours, which will be interpolated into a ramp. We
can then select the correct shade out of the ramp for each polygon.

Note: Note the +1, otherwise there would be a shade 0.

shade <- as.numeric(round(n*((gi-min(gi))/
(max(gi)-min(gi)))))+1

sort(shade)

[1] 1 1 3 3 4 4 4 5 5 6 6 6 7 7 8 8 8 9 9 9 10 10
[23] 10 10 10 10 10 12 12 14 14 16 16 17 17 18 18 19 19 19 19 19 20 20
[45] 20 21 21 22 23 23 26 28 29 31 33 38 40 44 48 48 58 62 64

colfunc <- colorRampPalette(c("blue", "green", "yellow", "red"))
ramp <- colfunc(n+1)

35

plot(Syr, border="grey60", axes=TRUE,
col=ramp[shade],
main="Getis-Ord Gi, Syracuse leukemia incidence")

grid()
text(coordinates(Syr), as.character(round(gi,2)), col="black")

402000 404000 406000 408000 410000 412000

47
60

00
0

47
62

00
0

47
64

00
0

47
66

00
0

47
68

00
0

47
70

00
0

Getis−Ord Gi, Syracuse leukemia incidence

2.51

1.98

0.13

−0.05

3.84
0.170.370.07 0.85

−1.27

4.41
2.16

1.51
0.12

0.11
−0.08 −0.73

−0.11−0.79 −0.78

2.91
4.19 2.85

1.33
0.18

−0.52

0.98
0.55 0.53

1.140.46
−0.96−0.33−0.71

−1.3
−0.84

−0.7

−0.78 −1.11

0.39
−0.90.01 −1.13

−1.490.29
−1.01

0.26 −0.7−0.66
−0.27

−0.69 −0.89

−1.54
−1.2

−1.33

0.13
−0.72

−1.39
−1.1

−0.45

−1.05

−1.23

0.24

Q17 : Where are the clusters? How does this map compare to the local
Moran’s I map? Jump to A17 •

Task 30 : Compute and summarize the G∗i statistics for the Syracuse
leukemia incidence, using the default neighbour weighting. •

To compute G∗i we need to create a weights matrix including each target
area with a weight. We first add each area’s index to its own neighbour
list, and then convert these to weights using the nb2listw function:
Syr_nbi <- Syr_nb
add the index its own list
for (i in 1:length(Syr_nb)) {

Syr_nbi[[i]] <- sort(c(Syr_nbi[[i]], i))
}
convert to weights
Syr_lw_Wi <- nb2listw(Syr_nbi)
print(Syr_lw_W)

Characteristics of weights list object:
Neighbour list object:
Number of regions: 63

36

Number of nonzero links: 346
Percentage nonzero weights: 8.717561
Average number of links: 5.492063

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 63 3969 63 24.78291 258.564

print(Syr_lw_W$weights[[1]])

[1] 0.2 0.2 0.2 0.2 0.2

print(Syr_lw_Wi)

Characteristics of weights list object:
Neighbour list object:
Number of regions: 63
Number of nonzero links: 409
Percentage nonzero weights: 10.30486
Average number of links: 6.492063

Weights style: W
Weights constants summary:

n nn S0 S1 S2
W 63 3969 63 20.52886 254.7581

print(Syr_lw_Wi$weights[[1]])

[1] 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667 0.1666667

Q18 : What is the difference between the weights list with and without
including the target area? Jump to A18 •

Now we can compute and plot G∗i :
summary(gi.star <- localG(Syr$Z, Syr_lw_Wi))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.04689 -0.96436 -0.26810 0.08543 0.33077 5.24567

summary(gi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.5352 -0.8659 -0.1081 0.0927 0.4274 4.4059

summary(gi.star-gi)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.763982 -0.281350 -0.059567 -0.007265 0.190800 2.309034

Q19 : What are the differences between G∗i (including the target area’s
value in the index) and Gi (not)? Jump to A19 •
shade <- as.numeric(round(n*((gi.star-min(gi.star))/

(max(gi.star)-min(gi.star)))))+1
plot(Syr, border="grey60", axes=TRUE,

col=ramp[shade],
main="Getis-Ord Gi*, Syracuse leukemia incidence")

grid()
text(coordinates(Syr), as.character(round(gi.star,2)), col="black")

37

402000 404000 406000 408000 410000 412000

47
60

00
0

47
62

00
0

47
64

00
0

47
66

00
0

47
68

00
0

47
70

00
0

Getis−Ord Gi*, Syracuse leukemia incidence

4.81

1.94

−0.22

−0.08

3.75
0.110.10.32 0.7

−0.98

5.25
2.94

1.21
0.24

0.35
0.02 −0.36

−0.27−1.2 −1.11

2.69
4.21 3.02

1.17
−0.22

−0.16

0.42
0.46 0.54

1.510.29
−1 −0.46−0.72

−1.17
−1.16

0

−0.88 −1.31

0.01
−0.470.07 −1.31

−1.28−0.44
−0.78

0.21 −0.87−1.09
−0.26

−0.88 −1.28

−2.05
−1.54

−1.17

−0.63
−0.33

−1.16
−1.51

−0.56

−0.95

−0.69

−0.38

Q20 : What are the differences between the Gi and G∗i maps? Jump to
A20 •

6 Spatial models

Supplementary reading:

• Bivand et al. [1, §9.4] Fitting models of areal data

“Finding spatial autocorrelation is not a goal in itself, be it
local or global, but rather just one step in a process leading
to a proper model.”

–Bivand et al. [1, §9.4]

What does it all mean? What is (are) the process(es) which give rise to
the observations? Apparent autocorrelation, such as found in the pre-
vious sections, may instead be caused by some underlying factor(s), i.e.,
the assumed zero-mean model is not correct. This is called model mis-
specification. It can arise from a poorly-distributed response variable
(e.g., unequal variance across the map) or a wrong (or missing) func-
tional form from (partially) deterministic factors that are also spatially-

38

distributed.

Q21 : What could be some spatially-distributed causes of leukemia?
Jump to A21 •

The aim is to return to a zero-mean model, by removing any feature-
space predictors, in this case other variables collected per census tract.
Any kind of model can be used; we illustrate this with a linear model:

y = XTβ+ ε (5)

where Y is the response vector (one element per area), X is the model
matrix, β are the model coefficients (fitted from the data), and ε is the
random error vector, for now considered to be identically normally and
independently distributed, with zero mean and variance V . We do not
yet consider spatial autocorrelation of the residuals.

The database has three possible co-variables (predictors): PEXPOSURE,
PCTAGE65P, and PCTOWNHOME; see the beginning of this §5 for details.
We are most interested in whether TCE exposure is a risk factor for can-
cer, if so we should promote cleanup of TCE sites. But cancers may be
positively associated with old age, which implies long-term exposure to
any environmental factor as well as life style, and negatively with home
ownership, which implies a higher economic level and perhaps a health-
ier lifestyle.

We return to the full 8-county area, because the TCE sources are spread
throughout; Syracuse city is too small to have substantially different dis-
tance to TCE sources.

Task 31 : Import the map of TCE sources and display them on the
8-county census tracts, shaded by the exposure potential. •

Again we use readOGR to import the points shapefile:
TCE <- readOGR("./NY_data", "TCE")

shade <- round(n*NY8$PEXPOSURE/max(NY8$PEXPOSURE))
plot(NY8, border="grey60", col=grey.colors(n, 0.9, 0.1, 2.2)[shade],

axes=TRUE, asp=1)
points(coordinates(TCE), cex=.5, pch=19)
text(coordinates(TCE), labels=as.character(TCE$name), cex=0.7,
font=1, pos=c(4,1,4,1,4,4,4,2,3,4,2), offset=0.3, col="white")
grid()
title("8 counties, TCE sources")

39

350000 400000 450000 500000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

●●

●

●

●

●

●

● ●

●

●

Monarch Chemicals
IBM Endicott Singer

Nesco

GE Auburn

Solvent Savers

Smith Corona

Victory Plaza
Hadco

Morse Chain

Groton

8 counties, TCE sources

We see that Syracuse is far from these sources; however Syracuse is an
industrial city, so there may be exposure to other chemicals.

Task 32 : Model the 8-county leukemia incidences by an additive model
of three predictors: TCE exposure, proportion of population older than
65 years, and proportion of home ownership. •

To set a baseline, we use the Ordinary Least Squares (OLS) estimate pro-
vided by the standard lm function.
m.z.ppp <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=NY8@data)
summary(m.z.ppp)

Call:
lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8@data)

Residuals:
Min 1Q Median 3Q Max

-1.7417 -0.3957 -0.0326 0.3353 4.1398

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.51728 0.15856 -3.262 0.00124 **
PEXPOSURE 0.04884 0.03506 1.393 0.16480
PCTAGE65P 3.95089 0.60550 6.525 3.22e-10 ***
PCTOWNHOME -0.56004 0.17031 -3.288 0.00114 **

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.6571 on 277 degrees of freedom

40

Multiple R-squared: 0.1932,Adjusted R-squared: 0.1844
F-statistic: 22.1 on 3 and 277 DF, p-value: 7.306e-13

Q22 : How much of the variability between census tracts in leukemia
incidence is explained by this model? Which factors are significant in the
linear model? Was the zero-model assumed in previous sections valid?
Can you interpret these as possible processes? Jump to A22 •

Task 33 : Plot a histogram of the residuals; identify the extreme outlier
and display its database entry. •

The residuals function extracts a vector of residuals from a lm object:
hist(residuals(m.z.ppp))
rug(residuals(m.z.ppp))
ix <- which.max(residuals(m.z.ppp))
NY8@data[ix,]

AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
109 Syracuse city 36067000100 -15.3264 40.5083 9 0 0

PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases Xm
109 0.5 0.3333333 4.71053 0.0284377 1.045131 0.00014 -15326.4

Ym Xshift Yshift
109 40508.3 403995.2 4769363

Histogram of residuals(m.z.ppp)

residuals(m.z.ppp)

F
re

qu
en

cy

−2 −1 0 1 2 3 4

0
20

40
60

80

This is our old friend, tract 109.

Q23 : Why is this residual so extreme? Jump to A23 •

Now we can check this model for spatial correlation of the residuals,
with the lm.morantest function. This requires a model (which we just
built) and a weights list (see §4).

Task 34 : Build a weights list, from the default (queen’s) neighbour
list, using binary weights. Apply the Moran’s test of the residuals, using
these weights. •

41

NY8listwB <- nb2listw(NY8_nb, style = "B")
(m.z.ppp.moran.test <- lm.morantest(m.z.ppp, NY8listwB))

Global Moran I for regression residuals

data:
model: lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
data = NY8@data)
weights: NY8listwB

Moran I statistic standard deviate = 2.638, p-value = 0.004169
alternative hypothesis: greater
sample estimates:
Observed Moran I Expectation Variance

0.083090278 -0.009891282 0.001242320

Q24 : Is there evidence that the residuals are spatially correlated? Jump
to A24 •

Task 35 : Visualize the regression residuals as a map of the census
tracts, with the residuals represented by a grey scale. •

We add the residuals to the data frame (i.e., attribute table) of the poly-
gons, then map these. Residuals are defined as (actual - modelled), so
darker greys are larger under-predictions.

Note: For a better visualization, we set the upper end of the scale at the
99% quantile, to exclude tract 109 from the stretch.

NY8$lmresid <- residuals(m.z.ppp)
summary(NY8$lmresid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.74174 -0.39572 -0.03258 0.00000 0.33527 4.13982

shade <- round(n*(NY8$lmresid-min(NY8$lmresid))/
(quantile(NY8$lmresid,.99)-min(NY8$lmresid)))

plot(NY8, border="grey60",
col=grey.colors(n, 0.9, 0.1, 2.2)[shade], axes=TRUE, asp=1)

points(coordinates(TCE), cex=.5, pch=19)
grid()
title("Leukemia incidence, linear model residuals",

"points are TCE sites")

42

350000 400000 450000 500000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

●●

●

●

●

●

●

●●

●

●

Leukemia incidence, linear model residuals

points are TCE sites

Q25 : Is there visual evidence that the residuals are spatially correlated?
What does this suggest about our model? Jump to A25 •

7 Autoregressive Models

Supplementary reading:

• Bivand et al. [1, §9.4.1]: Spatial statistics approaches

In the linear model of the previous section we did not account for spatial
autocorrelation of the residuals, which indeed was present. So the linear
model violated one of its assumptions, i.e., independent residuals. To
account for this, we should refit the model as an autoregressive mode
which accounts for spatial autocorrelation.

There are three main forms of Simultaneous Autoregressive (SAR) mod-
els, with different explanations on the source of the autocorrelation of
the OLS residuals:

spatial error : These imply that there are underlying spatially-correlated predic-
tors which are not included in the linear model predictor list. Either
we don’t suspect they are present, or else we have not measured
them.

43

For example, leukemia incidence has been suspected to have some
relation to extremely low frequency electromagnetic energy. This
would be a predictor similar to TCE exposure, which is included
in our model, and would be similar spatially-concentrated. This
suspected predictor is not included in our model, since we have no
information on its sources in the study area.

spatial lag : These imply that the response variable is influenced by the same
response variable in neighbouring areas.

In this example it would mean that leukemia incidence in one area
is influenced by incidence in nearby areas. This makes sense for in-
fectious diseases, for example, feline leukemia, which can be trans-
mitted between cats by saliva or nasal secretions, and the local na-
ture of cat-to-cat interactions suggests that such “spillover” would
occur between neighbouring areas. However, human leukemia is
not known to be infectious, so this model is difficult to justify here.

spatial Durbin : These imply that the response variable is influenced both by the
target variable and by the feature-space predictors in the model
specification not only within each area separately, but also by the
same predictors from neighbouring areas.

In this example it’s hard to imagine how home ownership or pro-
portion of older people or TCE exposure in neighbouring tracts
could affect leukemia in a target tract.

Note: “Durbin” models are named for the British statistician James
Durbin, following his formulation of autoregressive time series mod-
els [2].

We now see how these model specifications can be applied to our exam-
ple.

7.1 Spatial Error SAR model

We start with the spatial error SAR model.

The concept here is that the linear model residuals are no longer con-
sidered independent, instead they are modelled by a regression on the
residuals from adjacent areas:

ei =
m∑
i=1

bijei + εi (6)

where the εi are the independent N ∼ (0,1) errors; these have a diago-
nal covariance matrix (so no interactions) Σε with elements σ2

ei , which are
often considered identical. The b values express the spatial dependence;
note that bii É 0 – an area can not depends on itself.

This formulation then adds a term to the linear model, to account for
the autoregression of Equation 6:

44

y = XTβ+ (λW)(y− XTβ)+ ε (7)

where λ is the strength of this autoregression term and W is a weights
matrix. This is the same kind of list, of class listw we’ve created in §4.
This depends on the neighbour list and a weighting model; we have al-
ready build one using binary weights as NY8listwB. The autoregression
term (λW) multiples the linear model residuals (y− XTβ).

This formula shows why a SAR model is called “simultaneous”. We can’t
solve for λ (strength of correlation of the residuals) without first com-
puting the coefficients β, but we can’t compute the β without knowing
λ. However by assuming that the covariance matrix of the spatially-
correlated errors is diagonal Σε = σ2I, i.e., no correlation between these
errors with equal variance, the variance of the response variable Y can
be written:

Var(y) = σ2(I− λW)−1)(I − λWT)−1 (8)

and this can be used to find an optimal λ by maximum likelihood, which
then allows solution of Equation 7 by generalized least squares (GLS).

Note: See [1, §9.4.1.1] for derivation of the maximum-likelihood esti-
mation of the regression coefficients for these models and how these are
solved numerically.

Package spdep provides function spautolm to compute according to
these formulas.

Task 36 : Recompute the linear model of the previous section, taking
into account spatial autocorrelation of the residuals in a spatial error
SAR model. •
m.z.ppp.sar <- spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB)
summary(m.z.ppp.sar)

Call:
spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NY8listwB)

Residuals:
Min 1Q Median 3Q Max

-1.56754 -0.38239 -0.02643 0.33109 4.01219

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.618193 0.176784 -3.4969 0.0004707
PEXPOSURE 0.071014 0.042051 1.6888 0.0912635
PCTAGE65P 3.754200 0.624722 6.0094 1.862e-09
PCTOWNHOME -0.419890 0.191329 -2.1946 0.0281930

Lambda: 0.040487 LR test value: 5.2438 p-value: 0.022026
Numerical Hessian standard error of lambda: 0.017199

Log likelihood: -276.1069
ML residual variance (sigma squared): 0.41388, (sigma: 0.64333)
Number of observations: 281
Number of parameters estimated: 6
AIC: 564.21

45

An important information in this summary is the likelihood ratio test,
marked LR test value in the summary output. This compares the
models with and without spatial autocorrelation: the likelihood of the
observed values of the response variable, given the values of the pre-
dictor, with and without taking into account spatial correlation of the
residuals. The p-value is as usual the probability that rejecting the null
hypothesis that the two models are equally likely, given the data, would
be a Type I error. Here the p-value is low, so we confirm the impression
from the map of the residuals that indeed they are spatially autocorre-
lated.

Q26 : How did the coefficients for the three predictive factors, and their
significance, change from the model that did not include simultaneous
autoregression? Jump to A26 •

We can display these in compact form as fields in the model summaries:

round(summary(m.z.ppp)$coefficients[,c(1,4)],4)

Estimate Pr(>|t|)
(Intercept) -0.5173 0.0012
PEXPOSURE 0.0488 0.1648
PCTAGE65P 3.9509 0.0000
PCTOWNHOME -0.5600 0.0011

round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

Estimate Pr(>|z|)
(Intercept) -0.6182 0.0005
PEXPOSURE 0.0710 0.0913
PCTAGE65P 3.7542 0.0000
PCTOWNHOME -0.4199 0.0282

Task 37 : Plot these residuals; compute their global Moran’s I. •
NY8$sarresid <- residuals(m.z.ppp.sar)
summary(NY8$sarresid)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.567536 -0.382389 -0.026430 0.002157 0.331094 4.012191

shade <- round(n*(NY8$sarresid-min(NY8$sarresid))
/(quantile(NY8$sarresid,.99)-min(NY8$sarresid)))

plot(NY8, border="grey60",
col=grey.colors(n, 0.9, 0.1, 2.2)[shade],
axes=TRUE, asp=1)

points(coordinates(TCE), cex=.5, pch=19)
grid()
title("Leukemia incidence, SAR error model residuals",

"points are TCE sites")

46

350000 400000 450000 500000

46
50

00
0

47
00

00
0

47
50

00
0

48
00

00
0

●●

●

●

●

●

●

●●

●

●

Leukemia incidence, SAR error model residuals

points are TCE sites

Since spautolm does not produce a lm object, we can not use lm.morantest;
instead we use the moran.test function directly on the residuals:
moran.test(NY8$sarresid, NY8listwB)

Moran I test under randomisation

data: NY8$sarresid
weights: NY8listwB

Moran I statistic standard deviate = -0.098152, p-value =
0.5391
alternative hypothesis: greater
sample estimates:
Moran I statistic Expectation Variance

-0.007052982 -0.003571429 0.001258203

Q27 : Did the simultaneous autoregressive model account for all the
spatial autocorrelation in leukemia incidence? Jump to A27 •

We can also see where the residuals changed, and by how much:
NY8$resid.change <- (NY8$sarresid - NY8$lmresid)
summary(NY8$resid.change)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.312032 -0.030174 0.004200 0.002157 0.042937 0.237350

spplot(NY8, zcol="resid.change",
main="SAR error model residuals - linear model residuals")

47

SAR error model residuals − linear model residuals

−0.3

−0.2

−0.1

0.0

0.1

0.2

The modelled autocorrelation of the residuals was removed in the SAR
model; we see some large decreases in the model residuals in the Onondaga
Lake lakefront areas in Syracuse, and large increases in the northeast
suburbs of Syracuse. The largest positive residual appears to be in the
town of Moravia; this was slightly increased in the SAR model.

We can gain further insight into the model by decomposing the predic-
tion into the trend and stochastic components according to the model
formula of Equation 7, which we repeat here for convenience:

y = XTβ+ (λW)(y− Xβ)+ ε (9)

where the first term is the linear model and the second the correction
due to spatial autocorrelation of the linear model residuals. Recall that
λ gives the strength of this; λ = 0 implies no correction.

The fitted model is of class spautolm. This includes a fit field, which
itself has two fields, one for each of these components of the fit. So we
can just extract these two and plot them.

Task 38 : Plot the leukemia incidence fit by the model, split into the
two components, trend (based on feature space predictors) and spatially-
correlated stochastic residuals. •

Following the nice Fig. 9.11 of [1], we use a colour palette provided by the
RColorBrewer package and built with the colorRampPalette function.
class(m.z.ppp.sar)

[1] "spautolm"

NY8$sar_trend <- m.z.ppp.sar$fit$signal_trend

48

NY8$sar_stochastic <- m.z.ppp.sarfitsignal_stochastic
library(RColorBrewer)
rds <- colorRampPalette(brewer.pal(8, "RdBu"))
tr_at <- seq(-1, 1.3, length.out=21)
tr_rds <- rds(sum(tr_at >= 0)*2)[-(1:(sum(tr_at >= 0)-sum(tr_at < 0)))]
tr_pl <- spplot(NY8, c("sar_trend"), at=tr_at, col="transparent",

col.regions=tr_rds, main=list(label="Trend", cex=0.8))
st_at <- seq(-0.16, 0.39, length.out=21)
st_rds <- rds(sum(st_at >= 0)*2)[-(1:(sum(st_at >= 0)-sum(st_at < 0)))]
st_pl <- spplot(NY8, c("sar_stochastic"), at=st_at, col="transparent",

col.regions=st_rds, main=list(label="Stochastic", cex=0.8))
plot(tr_pl, split=c(1,1,2,1), more=TRUE)
plot(st_pl, split=c(2,1,2,1), more=FALSE)

Trend

−1.0

−0.5

0.0

0.5

1.0

Stochastic

−0.1

0.0

0.1

0.2

0.3

Q28 : Which of the two components (trend and stochastic residual)
gives more information on the predicted leukemia incidence? Jump to
A28 •

Q29 : Where is the stochastic residual component most influential in
adjusting the trend? Jump to A29 •

7.2 * Spatial Lag SAR model

Supplementary reading:

• Bivand et al. [1, §9.4.2]: Spatial econometrics approaches

The spatial lag model implies that the response variable is influenced by
the same response variable in neighbouring areas. Its formula is:

y = XTβ+ ρWy+ ε (10)

The parameter ρ controls the degree of autocorrelation of the response
variable.

49

Although it’s difficult to imagine how this model could apply to leukemia
incidence, to illustrate how this model works we fit and interpret it. The
lagsarlm function of the spdep package fits this model.

Task 39 : Fit a spatial lag SAR model of leukemia incidence predicted by
TCE exposure, proportion of home ownership, and proportion of older
people, with the neighbour weights as in the previous models. •
m.z.ppp.lagsar <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB)
summary(m.z.ppp.lagsar)

Call:
lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NY8listwB)

Residuals:
Min 1Q Median 3Q Max

-1.586752 -0.391580 -0.022469 0.338017 4.029430

Type: lag
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.514495 0.156154 -3.2948 0.000985
PEXPOSURE 0.047627 0.034509 1.3801 0.167542
PCTAGE65P 3.648198 0.599046 6.0900 1.129e-09
PCTOWNHOME -0.414601 0.169554 -2.4453 0.014475

Rho: 0.038893, LR test value: 6.9683, p-value: 0.0082967
Asymptotic standard error: 0.015053

z-value: 2.5837, p-value: 0.0097755
Wald statistic: 6.6754, p-value: 0.0097755

Log likelihood: -275.2447 for lag model
ML residual variance (sigma squared): 0.41166, (sigma: 0.6416)
Number of observations: 281
Number of parameters estimated: 6
AIC: 562.49, (AIC for lm: 567.46)
LM test for residual autocorrelation
test value: 1.4633, p-value: 0.22641

Q30 : What was the strength of the autocorrelation parameter? Is this
model better than one without the spatial lag term? Jump to A30 •

Q31 : Which predictors are now significant? Compare to the SAR error
model. Jump to A31 •
round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

Estimate Pr(>|z|)
(Intercept) -0.6182 0.0005
PEXPOSURE 0.0710 0.0913
PCTAGE65P 3.7542 0.0000
PCTOWNHOME -0.4199 0.0282

round(summary(m.z.ppp.lagsar)$Coef[,c(1,4)],4)

Estimate Pr(>|z|)
(Intercept) -0.5145 0.0010

50

PEXPOSURE 0.0476 0.1675
PCTAGE65P 3.6482 0.0000
PCTOWNHOME -0.4146 0.0145

7.3 * Spatial Durbin SAR model

The spatial Durbin model is:

y = XTβ+ ρWy+WXγ + ε (11)

This adds another spatial covariance parameter, γ, which controls the
degree of influence of the spatial lag of the covariates (predictors).

Task 40 : Fit a spatial Durbin SAR model of leukemia incidence pre-
dicted by TCE exposure, proportion of home ownership, and proportion
of older people, also with the effect of predictor variables in neighbour-
ing areas, with the neighbour weights as in the previous models. •

The lagsarlm function of the spdep package also fits this model, if the
type optional argument is specified as "mixed":
m.z.ppp.durbin <- lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB, type="mixed")
summary(m.z.ppp.durbin)

Call:
lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8,

listw = NY8listwB, type = "mixed")

Residuals:
Min 1Q Median 3Q Max

-1.799308 -0.390125 -0.021371 0.346128 3.965251

Type: mixed
Coefficients: (asymptotic standard errors)

Estimate Std. Error z value Pr(>|z|)
(Intercept) -1.131233 0.249631 -4.5316 5.853e-06
PEXPOSURE 0.218364 0.079301 2.7536 0.005894
PCTAGE65P 3.361158 0.654123 5.1384 2.771e-07
PCTOWNHOME 0.071903 0.253967 0.2831 0.777085
lag.(Intercept) 0.132544 0.056175 2.3595 0.018300
lag.PEXPOSURE -0.035239 0.015536 -2.2681 0.023322
lag.PCTAGE65P 0.161685 0.223690 0.7228 0.469798
lag.PCTOWNHOME -0.140681 0.058529 -2.4036 0.016234

Rho: 0.026981, LR test value: 2.558, p-value: 0.10974
Asymptotic standard error: 0.016766

z-value: 1.6093, p-value: 0.10755
Wald statistic: 2.5899, p-value: 0.10755

Log likelihood: -269.1031 for mixed model
ML residual variance (sigma squared): 0.39587, (sigma: 0.62918)
Number of observations: 281
Number of parameters estimated: 10
AIC: 558.21, (AIC for lm: 558.76)
LM test for residual autocorrelation
test value: 4.908, p-value: 0.026732

This model summary shows the coefficients of the three predictors, and

51

also coefficients for their lagged effect, i.e., the effect of the neighbours’
values of the predictors.

Q32 : What was the strength of the autocorrelation parameter? Is this
model better than one without the spatial lag term? Jump to A32 •

Q33 : Which predictors are now significant? Compare to the SAR error
model. Are any of the the neighbour effects significant? How do these
affect the other coefficients? Jump to A33 •
round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

Estimate Pr(>|z|)
(Intercept) -0.6182 0.0005
PEXPOSURE 0.0710 0.0913
PCTAGE65P 3.7542 0.0000
PCTOWNHOME -0.4199 0.0282

round(summary(m.z.ppp.durbin)$Coef[,c(1,4)],4)

Estimate Pr(>|z|)
(Intercept) -1.1312 0.0000
PEXPOSURE 0.2184 0.0059
PCTAGE65P 3.3612 0.0000
PCTOWNHOME 0.0719 0.7771
lag.(Intercept) 0.1325 0.0183
lag.PEXPOSURE -0.0352 0.0233
lag.PCTAGE65P 0.1617 0.4698
lag.PCTOWNHOME -0.1407 0.0162

7.4 * Comparison with point-based modelling

Another way to model polygon data is to consider all attributes to be
concentrated at the centroids, and use point-based geostatistical mod-
els. Another exercise in this series11 covers this extensively. Here we
compare the coefficients of the OLS linear model based on centroids with
that based on polygons – these should be the same. We then examine the
spatial dependence of the OLS model residuals; this is the same idea as
Moran’s I, but based only on distances between centroids. If there is de-
pendence, we then model it and use it to fit coefficients, and re-estimate
the spatial correlation structure, using Generalized Least Squares (GLS).
We can then compare the GLS coefficients with those from the SAR model
from the previous section.

Task 41 : Make a SpatialPointsDataFrame object from the centroids
of the polygons and their attributes. •
NY8.pts <- SpatialPointsDataFrame(coordinates(NY8), data=NY8@data)

Task 42 : Model the 8-county leukemia incidences by an additive model

11 exRKGLS.pdf

52

of the same three factors as in the spatial model of polygons, i.e., expo-
sure potential, percent older than 65 years, and percent home owner-
ship. •

This uses the same non-spatial attributes, and so will have exactly the
same coefficients and goodness-of-fit.
m.z.ppp.pts <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8.pts@data)
coefficients(m.z.ppp.pts)

(Intercept) PEXPOSURE PCTAGE65P PCTOWNHOME
-0.51727634 0.04883627 3.95088956 -0.56004134

summary(m.z.ppp.pts)$adj.r.squared

[1] 0.1844222

This fit assumes independence among model residuals. For a spatial
points dataset, we use the variogram of the model residuals to check
for this. First, however, we view the a bubble plot to visually assess the
spatial correlation.

Task 43 : Display a bubble plot of the model residuals. •
NY8.pts$lm.resid <- residuals(m.z.ppp.pts)
bubble(NY8.pts, zcol="lm.resid", pch=1,

main="Leukemia incidence, OLS residuals, points")

Leukemia incidence, OLS residuals, points

●●●●
●●●●●●●●●●●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●●

●
●

●●●●●

●
●●●●

●●●●
●

●●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●●

●

●
●

●

●

●

●●

● ●
●

●

●●

●

●

●●
●

●
●

●

●●

●●

●

●

●

●
●

●

●●●●

●●●

●

●

●
●●

●●●●●
●●●

●●● ●

●
●●

●
●
●
●●

● ●
●

●

●●●

●
●

●●
● ●

●
●

●
●●

●●●●●
●

● ●

●
● ●

●

●●
●●
●

●●
●

●●
●

● ●●
●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●●

●●
● ●●●

●●●●●● ●●
●●

●

●●

●●

●
●

●

●

●

−1.742
−0.396
−0.033
0.335
4.14

Q34 : Does there appear to be spatial dependence among the residuals?
Jump to A34 •

53

Task 44 : Examine the variogram of the model residuals. •
require(gstat)
vr <- variogram(lm.resid ~ 1, loc=NY8.pts)
plot(vr, plot.numbers=T)

distance

se
m

iv
ar

ia
nc

e

0.1

0.2

0.3

0.4

0.5

0.6

10000 20000 30000 40000 50000

● ●

●

●

●

● ●

●

●

●

●

●
●

●

●

16812542

2326
1993

1530

12511116
1047

1089

1151

1086
10441107

1127

1181

Q35 : Does the variogram support the assumption of spatial depen-
dence among the residuals? Jump to A35
•

We conclude that if we consider space as centroids the OLS fit to a linear
model is justified.

8 Answers

A1 : The proj4string slot of the imported objects is:

+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs

This refers to the PROJ4 format12. This one is easy enough to read: UTM
projection from the WGS84 ellipsoid, coordinate system UTM in zone 18N.

Return to Q1 •

A2 : There are 1522 total links among the 281 polygons; the average number
of links is 5.4; and only six of the polygons have only one link – these must be
on the periphery of the area. Return to Q2 •

A3 : (1) The first-order (direct) links are defined by polygon adjacency: if two
polygons share any border, or even meet at a single point (see: Newfield and
Spencer, lower left corner) they are considered neighbours. The link is drawn
between polygon centroids. (2) The link lengths are quite different: very short

12 http://trac.osgeo.org/proj/

54

http://trac.osgeo.org/proj/

to very long. (3) This is mainly because of polygon size: centroids of large
polygons are further apart than for small ones – compare inside the cities (e.g.,
Syracuse) with rural counties (e.g., Chenango, middle-right of figure). (4) Intu-
itively, it seems that some neighbours should be weighted more than others
when considering spatial influence between polygons, because they are closer.
Note, we are not yet considering attributes (e.g., rural vs. urban areas, popula-
tion density) because we don’t know what attributes is being analyzed. Return
to Q3 •

A4 : Field AREANAME, with 64 names; "Syracuse city" is the factor name for
Syracuse. Return to Q4 •

A5 : The most common number of links is 6; there are 17 census districts
with this number of neighbours. Return to Q5 •

A6 : There is one polygon with only one neighbour within the city: 3606700290013;
there is one with nine neighbours: 3606700560214. These have indices 28 and
56, respectively, and in the 8-county dataset they have row names 136 and 164,
respectively. Return to Q6 •

A7 : The number of links is reduced from 346 to 308, i.e., a loss of 38 or
12.34%. There is no “correct” answer to the second part of this question, it
depends on the process being modelled. Return to Q7 •

A8 : 1, 1/9. Return to Q8 •

A9 : Yes, several high incidences are in the NW (Lakefront neighbourhood and
near Westside). Return to Q9 •

A10 : The expectation of Moran’s I is −1/(n − 1) = −1/62 = −0.0161290;
the actual value is of opposite sign and much larger in absolute value; this
is quite unlikely to be equal to the expectation of no spatial association. The
probability of incorrectly rejecting the null hypothesis of no association (Type
I error) is 8.47× 10−4. Return to Q10 •

A11 : Hypothesized process: there are environmental causes of the leukemia
(e.g, industrial pollution) and close-by neighbourhoods have similar distances
to these sources. For example, referring to Figure 2, we see the Lakeside
neighbourhood (with high incidence) appears to be mostly an industrial area
fronting Onondaga Lake. Return to Q11 •

A12 : The probability increased, i.e., the evidence is less strong to reject
the null hypothesis. For leukemia incidence, the probability increased from

13 Skytop
14 west part of Near Westside

55

8.47× 10−4 to 0.00178. However, with both weightings the evidence is strong,
and we reach the same conclusion. Return to Q12 •

A13 : The highest-leverage area is marked on the graph as original row 109; it
has the highest incidence (4.71053) and a moderately-high weighted spatially-
lagged proportion; this supports the hypothesis of autocorrelation. The area
with row number 109 is adjacent to areas with row numbers 110, 113, 119,
129 and 130 (2, 5, 11, 21 and 22 in the neighbours list); of these 119 also has a
high proportion. Areas 113, 129, and 130 have moderately low incidence, but
high spatially-lagged proportion; these are the low-incidence neighbourhoods
adjacent to high-incidence neighbourhoods. However they have little influence
on the slope, because they are almost directly above the centroid. Return to
Q13 •

A14 : From this figure it is clear that most of the global Moran’s I significance
comes from the local Moran’s I from high incidence associated with high inci-
dence, in the Lakefront (NW) area near Onondaga Lake. Return to Q14
•

A15 : Yes, clear evidence; there are 7 areas with local Moran’s I sufficiently
high to reject the null hypothesis with less than a 5% chance of Type I error.
Some of these (areas 109, 119, 120, 130) are highlighted in the Moran scatter-
plot, but others (131, 161) are not – these do not greatly influence the global
Moran’s I but are locally-clustered. An interesting case is area 161 (northern
part of Brighton), with a very low incidence (Z = -1.354) and low-incidence
neighbours. Return to Q15 •

A16 : The global Moran’s I are all close to 0.2±0.005 and are highly significant;
there is not much variability. Note that the expected value is the same because
this just depends on the number of observations, not on the weighting. The
influential observations are the same five, except for inverse-distance which
adds district 162. Looking at the local Moran’s I plots, there is some difference
in the positions of the influential observations on the y-axis (weighted average
neighbour Z); note that the x-axis is the same because this is just the observed
Z value in each district. Also, note the different scales of the y-axis because of
the different weights; however the position of the horizontal line showing the
expected value is the same. Return to Q16 •

A17 : Clusters of high leukemia incidence are in the NW, between Onondaga
Lake and downtown. There are a few very high Z-scores, indicating a high
probability of clustering. Clusters of low incidence are in the centre of the
map, but these Z-scores are much lower, so the apparent clustering is likely not
statistically significant. The local Moran’s I plot identifies the high incidence
clusters in the same area. Return to Q17 •

A18 : G∗i has a wider range than Gi, because the value in the target area is
included in the weighted sum for each area. However, on average in this case

56

G∗i < Gi, because of the negative values of the index. Return to Q18 •

A19 : The weights are now distributed across one more polygon for each
polygon’s weights; this is the target polygon. So, there are more weights and a
larger sum of weights. Return to Q19 •

A20 : Including the target area’s value emphasizes the hotspots with extreme
values of the target variable. In particular the lakeside area now has a much
higher Z-score than in the Gi plot. Return to Q20 •

A21 : Leukemia is a form of cancer; its causes are obscure, but seem to include
genetic, demographic and environmental factors.

For the genetic factors, one could think of the ethnic composition of census
tracts; this would certainly be true for sickle-cell anaemia, which occurs largely
in people with recent west African ancestors.

For the demographic factors, as with almost all cancers leukemia is more
prevalent with increasing age, explained by more time to allow something to
wrong with cell renewal.

For the environmental factors, industrial chemicals, especially petrochemicals,
may increase the risk of leukemia. Smoking may also increase the risk. In
both cases, the older a person, the more years they have been exposed to
the environmental factor, increasing the natural effect of age just mentioned..

Return to Q21 •

A22 : 18.4%, i.e., about one-fifth. This is significantly different from zero,
so the zero-mean model was not justified. The most significant factor is a
positive relation with the proportion of older people (suggesting perhaps a
link to smoking? or general increased cancer risk with age?) and negative
relation with home ownership (suggesting perhaps a higher living standard
and healthier lifestyle??); surprisingly, the positive relation with log-distance
to TCE source is not significant. Return to Q22 •

A23 : Tract 109 has a very high log-incidence (field Z), because although it
has few cases, the population is only 9 people – look at Figure 2: this area is
mostly industrial, with almost no homes. This nicely illustrates the modifiable
area problem: if this tract were included in a neighbouring tract with a more
typical population (several hundred to several thousands), the extreme inci-
dence would disappear or at least be diluted. Return to Q23
•

A24 : Yes, the probability that we would be wrong to reject the null hypothesis
of no spatial correlation is only 0.0042. Return to Q24 •

A25 : Yes. Although there are scattered highs and lows, there seems to be
a cluster of high residuals (under-predictions) near Ithaca (Morse Chain TCE

57

site), another in and around Binghamton and Johnson City (many TCE sites),
and another near the Smith-Corona factory in Cortland.

The most under-predicted area is one we’ve seen before, the Onondaga lake-
front industrial area in Syracuse. Perhaps this is a TCE source that was not
mapped? Or it produces a different petrochemical linked to leukemia? Hint:
what is its population?

There are several areas of near-zero clusters, e.g., in southern Chenango and
northern Broome counties (SE corner of the map). The north of Cayuga county
(far N) has quite similar moderately positive residuals. All these similar values
(whether high, zero or low) contribute to the observed Moran’s test value. The
inference is that the model is not complete: either there are other spatially-
distributed predictive factors (i.e., more information about the census tracts)
or that there is really a spatial process independent of predictive factors.

For leukemia, this latter is hard to imagine. But for an insect-borne disease
(e.g., a plant virus) spreading through an area by diffusion, this could well be
the principal process.

Finally, since the high residuals seem to be linked with TCE sites, perhaps the
log-inverse distance weighting was not the most appropriate to represent this
process. Return to Q25 •

A26 : The positive coefficient for “exposure potential” increased at the ex-
pense of the other two factors. It is now significant at the p < 0.1 level. The
other two factors remain dominant, especially age. Thus by building the SAR
model we have more evidence that TCE exposure may be an important factor
related to leukemia incidence. Return to Q26 •

A27 : Yes, the p-value of the global Moran’s test is quite high; we have no
evidence to reject the null hypothesis of no residual autocorrelation; thus the
autocorrelation in the linear model residuals has been accounted for. Return
to Q27 •

A28 : The trend is much more influential, ranging from about -1 to +1 in
normalized incidence (variable Z). Return to Q28 •

A29 : In Syracuse city and in a band from SE Onondaga county through most
of Cortland county the effect of accounting for spatial correlation of the resid-
uals increases the predicted incidence. There is not much negative influence,
only in the SW Town of Ithaca, some tracts in Binghamton city, and in the
Cicero game management area in the centre N; this area has a very small pop-
ulation. Return to Q29
•

A30 : The strength of spatial association among predictors is ρ = 0.039. The
LR test shows that there is less than a 1% chance that rejecting the null hypoth-
esis of no improvement from the OLS model due to including autocorrelation
in the model would be wrong. This is strong evidence that there is autocorre-
lation in the response variable, which is accounted for by the SAR lag model.

58

Return to Q30 •

A31 : As in the SAR error model, the proportion of older people is dominant
(positive association), and the proportion of homeowners somewhat less so
(negative). The coefficients are quite close to those for the SAR error mode but
all somewhat closer to zero; thus the predictive factors are somewhat less pre-
dictive once the residual autocorrelation of the response variable is accounted
for. Return to Q31 •

A32 : The strength of spatial association among predictors is ρ = 0.027.
According to the LR-test we can not reject the null hypothesis that the spatial
Durbin SAR model is not superior to the OLS model. Return to Q32 •

A33 : The non-lagged coefficients are noticeably different from those in the
SAR error model; the sign for PCTOWNHOME is flipped from negative (as ex-
pected) to slightly positive. These changes can be explained by the lagged
coefficients. The model proposes that home ownership in neighbouring areas
is predictive of leukemia in a target area! TCE exposure becomes significant at
the 1–2% level for both the target and neighbouring areas.

This model is difficult to justify; in fact the LR-test suggests that this model
should not be used in preference to the SAR error model. Return to Q33 •

A34 : No, the red and green circles seem to be intermixed. Return to Q34 •

A35 : There is less spatial correlation at close range (e.g., within Syracuse and
the smaller cities) than at longer range. So there is no spatial dependence to
be removed from the model. Return to Q35 •

59

9 Assignment

This is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise.

We turn to another USA city: Columbus, Ohio; the data is from Anselin15,
formatted by him and provided as an example in the spData package, as
a shapefile16

Task 1 : Read the example dataset from a shapefile into a sp object,
with the readOGR function of the rgdal package.

require(rgdal); require(spData)
columbus <- readOGR(system.file("shapes/columbus.shp",

package="spData")[1])

•

Task 2 : View its description (via the help system) and field definitions.
•

Q1 : Which field in the attribute table represents residential burglaries
and vehicle thefts per thousand households in the neighborhood? •

Task 3 : Read the prepared neighbour list columbus.gal into an nb
“neighbours” object and summarize it. This list is also stored in the
spData package. •

The full file name, with path to the place in the R installation where it is
stored, can be retrieved with the system.file function:

system.file("weights/columbus.gal", package="spData")

Q2 : How many polygons? How many total links? •

Task 4 : Plot the polygons with the links superimposed, coordinate
axes, map aspect, and the neighbourhood ID as a label. •

Q3 : Can these polygons be easily converted to a KML overlay? Why or
why not? •
15 Anselin, L. (1988). Spatial econometrics: methods and models. Boston: Kluwer Aca-

demic
16 also available from the GeoDa project, at https://geodacenter.github.io/
data-and-lab//columbus/

60

https://geodacenter.github.io/data-and-lab//columbus/
https://geodacenter.github.io/data-and-lab//columbus/

We will analyze the spatial structure of residential burglaries and vehicle
thefts per thousand households in the neighborhood (“crime” for short).

Q4 : Which neighbourhoods have the highest and lowest incidences of
residential crime? What are these rates? •

Task 5 : Plot the neighbourhoods with the crime frequency represented
by a grey scale. •

Note: Use the ceiling function on the crime frequency, normalized by
the maximum frequency, to ensure that the lowest-crime neighbourhood
plots with grey scale 1 and the highest-crime with the maximum.

Q5 : Is there visual evidence for spatial autocorrelation of the crime
rate? Cite some specific evidence. •

Q6 : Is the default weighting (inverse of the number of neighbours from
a source, style “W”) appropriate for this attribute? Why or why not? •

Task 6 : Create a binary weighting for this attribute. •

Q7 : What hypothesis about spatial influence does a binary weighting
imply? •

Task 7 : Compute the global Moran’s I statistic for this attribute. •

Q8 : Is there evidence for spatial dependence of crime rate? •

Task 8 : Plot the Moran’s scatterplot for the crime attribute. •

Q9 : What is the overall pattern of spatial association? Which districts
most influence the significant test result? •

Q10 : Which of the other attributes might be correlated with (“explain”)
the crime rate? •

Task 9 : Build a simultaneous autoregressive model to explain crime

61

from one or more of these factors. •

Q11 :

(1) Which factors in your model were most important?

(2) Were the residuals of the ordinary linear model (without accounting
for spatial correlation) spatially-autocorrelated? Was it necessary to in-
clude the autocorrelation in the model? •

62

References

[1] Roger S. Bivand, Edzer J. Pebesma, and V. Gómez-Rubio. Applied
Spatial Data Analysis with R. Springer, 2nd edition, 2013. ISBN
978-1-4614-7617-7; 978-1-4614-7618-4 (e-book). URL http://www.
asdar-book.org/. 1, 2, 6, 18, 21, 22, 25, 38, 43, 45, 48, 49

[2] James Durbin. Estimation of parameters in time-series regression-
models. Journal of the Royal Statistical Society Series B, 22(1):139–
153, 1960. 44

[3] P. A. P. Moran. Notes on continuous stochastic phenomena.
Biometrika, 37(1/2):17–23, 1950. doi: 10.2307/2332142. 21

[4] J. K. Ord and Arthur Getis. Local spatial autocorrelation statistics:
distributional issues and an application. Geographical Analysis, 27
(4):286–306, 1995. doi: 10.1111/j.1538-4632.1995.tb00912.x. 34, 35

[5] L. A. Waller and C. A. Gotway. Applied spatial statistics for public
health data. Wiley-Interscience, Hoboken, N.J., 2004. 1, 2

[6] Yihui Xie. knitr: Elegant, flexible and fast dynamic report generation
with R, 2011. URL http://yihui.name/knitr/. Accessed 04-Mar-
2016. 2

63

http://www.asdar-book.org/
http://www.asdar-book.org/
http://yihui.name/knitr/

Index of R Concepts

== operator, 10
[[]] operator, 19

all.equal, 13
any, 29
apply, 29
attr, 19

ceiling, 61
class, 4
colnames, 19
colorRampPalette, 35
colorRampPalette (RColorBrewer pack-

age), 48
coordinates (sp package), 15, 26
CRS (sp package), 12
cut, 30

d1 argument (dnearneigh function), 15
data slot (SpatialPolygonsDataFrame class),

6
data.frame class, 19
dnearneigh (spdep package), 15

function, 19
function class, 26

getwd, 2
grey.colors, 22
gstat package, 2

influence.measures, 29
interaction, 30

knearneigh argument (spdep function),
16

knitr package, 2
knn2nb argument (spdep function), 16

lag, 30
lag.listw (spdep package), 30
lagsarlm (spdep package), 50, 51
lapply, 26
length, 10
levels, 7
listw class, 18, 30, 45
lm, 40
lm class, 41, 47
lm.morantest (spdep package), 41, 47

localG (spdep package), 35
localmoran (spdep package), 32

matrix class, 19
max, 10
min, 10
moran.plot (spdep package), 29, 32
moran.test (spdep package), 24, 27, 47

names, 7
nb class, 6, 7, 13, 18, 19, 26, 60
nb2listw (spdep package), 18, 25, 26, 36
nbdists (spdep package), 26

plot, 7
plot.nb (spdep package), 7
pmax, 23
poly2nb (spdep package), 13
proj4string (sp package), 5

queen argument (poly2nb function), 13

RColorBrewer package, 48
read.gal (spdep package), 6
readOGR (rgdal package), 3, 4, 39, 60
region.id argument (read.gal function),

6
require, 3
residuals, 41
rgdal package, 3, 11, 60
row.names, 6, 9, 11, 19

setwd, 3
snap argument (poly2nb function), 13
sp class, 60
sp package, 2–5
SpatialPointsDataFrame (sp class), 52
SpatialPolygons (sp class), 13
SpatialPolygons class, 15
SpatialPolygonsDataFrame (sp class), 13
SpatialPolygonsDataFrame class, 5, 6
spautolm (spdep package), 45, 47
spautolm class, 48
spData package, 60
spdep class, 6
spdep package, 2, 3, 13, 17, 18, 30, 45, 50,

51
spTransform (sp package), 12
str, 4

64

system.file, 60

table, 10
tail, 7
text, 9
type argument (lagsarlm function), 51

unlist, 10

which, 10
writeOGR (rgdal package), 11

65

	1 Introduction
	2 Example dataset
	3 Spatial neighbours
	3.1 Importing a neighbour list in GAL format
	3.1.1 * Geographic setting

	3.2 Creating neighbours from polygons
	3.2.1 Neighbours based on contiguity
	3.2.2 Neighbours based on distance between centroids
	3.2.3 Nearest neighbours based on distance

	4 Spatial weights
	5 Spatial autocorrelation
	5.1 Global tests
	5.1.1 Effect of weights

	5.2 Local tests
	5.2.1 Local Moran's I
	5.2.2 Getis-Ord local G statistics *

	6 Spatial models
	7 Autoregressive Models
	7.1 Spatial Error SAR model
	7.2 * Spatial Lag SAR model
	7.3 * Spatial Durbin SAR model
	7.4 * Comparison with point-based modelling

	8 Answers
	9 Assignment
	References
	Index of R concepts

