
Applied geostatistics
Exercise 10: Change of support

D G Rossiter
University of Twente, Faculty of Geo-Information Science & Earth

Observation (ITC)

January 6, 2014

Contents

1 Introduction 1

2 The regularized variable 1

3 Dispersion variance 2

4 Computing dispersion variances 4
4.1 Simulating a random field . 4
4.2 Dispersion variances in the random field 7

5 Effect of support 16
5.1 Effect of support on non-spatial statistics 21
5.2 Effect of support on spatial statistics 23

6 Variogram regularization 26
6.1 Computing the dispersion variance within a block 27
6.2 Computing the dispersion variance from the variogram 32

References 37

Index of R concepts 39

Version 0.95 Copyright © 2012, 2014 University of Twente All rights re-
served. Reproduction and dissemination of the work as a whole (not parts)
freely permitted if this original copyright notice is included. Sale or place-
ment on a web site where payment must be made to access this docu-
ment is strictly prohibited. To adapt or translate please contact the author
(http://www.itc.nl/personal/rossiter).

http://www.itc.nl/personal/rossiter

ß
Y'CÁ(w)
“If, due to carelessness, a person is not taught, his nature will

deteriorate.”
– 	WÏ (“Three-character classic”, 1)

1 Introduction

All geographical measurements are made on some support, that is, an in-
terval (1-D), area (2-D) or volume (3-D) of some finite size. As long as the
measurements, interpretations, and predictions all refer to the same sup-
port, techniques that treat the support as a 0-D point are satisfactory. But
if measurements and predictions are made on different supports, the rela-
tion between them must be determined and used to adjust the geostatistical
analysis.

The issue of geostatistical support is discussed in many texts, e.g. Isaaks
and Srivastava [5, §19] and Bivand et al. [1, §5.1], especially those aimed
at mining geostatistics, e.g. Rendu [9, §5]. The treatment here uses the
notation of Webster and Oliver [14, §4.8].

After completing this exercise you should be able to:

1. Determine the dispersion variance at different supports;

2. Adjust variograms from one support to another.

Note: This text is not complete (hence the version number < 1); in partic-
ular, no answers to questions have been written.

2 The regularized variable

The concept underlying change of support is the so-called regularized spatial
variable [3]. This is the average value of a variable x over some physical
volume B. This is easily defined as:

x(B) = 1
|B|

∫
B

x(s)ds (1)

where s is conceptually a 0-dimensional point. However, the actual integra-
tion is not straightforward, because:

1. The conceptually infinite block B must be discretized;

2. There is generally spatial structure within the block: points are not
independent, but rather spatially auto-correlated, as revealed by vari-
ogram or correlogram analysis;

3. The actual supports of the measurements to be integrated may be too
large to be considered approximations to 0-dimensional points, relative
to the scale of integration (the volume B).

A special case of change of support, avoiding problem (3) of the above list,
is block kriging, covered in Exercise 5 of this series. This is when the sample

1

support is small enough, relative to the block size, to be considered as punc-
tual (a 0-dimensional point), but the prediction is needed for larger supports,
called blocks. In this case the variogram for a punctual support is used to
integrate a spatially-averaged prediction for each block. This is a common
technique for upscaling (e.g., [10, 11]).

However, this is not satisfactory if the sample support is an appreciable
fraction of the target block size, so that the sample can not be considered
punctual. It is also not applicable for the reverse case, i.e. downscaling,
where geostatistical predictions are needed for smaller areas than the sample
support.

As will be shown below (§5), changing the support of a variable through
regularization creates a new and different variable, which thus has different
non-spatial and spatial statistics.

Note: In geostatistics, the blocks generally form a regular tesselation of
the study area. In geography, arbitrary polygons may be formed to group
observations. This is called the Modifiable Areal Unit Problem [1, 7] and is
discussesed by Gotway Crawford and Young [3] as part of the concept of
support in a wider context than geostatistics.

3 Dispersion variance

As preparation for understanding how support affects (geo-)statistical analy-
sis, we first must understand how the variance of a random function changes
with support within a finite region. The technical term used is dispersion
variance; is defined as ([14, §4.8]):

Dispersion
variance σ2

R = γ(R,R) =
1

|R|2
∫
R

∫
R
γ(x− x′)dxdx′ (2)

where R represents the entire region. This formula expresses that every point
in the region is compared to every other point, and their semivariances are
averaged. Of course, in practice the region is discretized into some number
of points, and the double integral is replaced by a double summation.

Q1 : Under what circumstances is this the same as average variance of all
the discretization points? Why is it not always the same? Jump to A1 •

This σ2
R is the upper limit of variance across a region. The lower limit is

the dispersion variance of the sampling support, i.e. the size of the physical
entity that is actually sampled. These discretize the region R into nbR cells;
for example, counts of a given plant species in a 1x1 m square (the support)
discretize a hectare study area into 10 000 cells. Given a study area and
support size, we can count the possible supports that cover the area and
determine their variance within R:

Dispersion
variance of
a region s2(b ∈ R) = 1

nbR

nbR∑
i=1

[zR − zbi]2 (3)

2

where zR is the mean of the zbi , i.e. of the value of the target variable av-
eraged over cell i. The latter is the value that is obtained by sampling and
measuring at the sampling support. This dispersion variance is necessar-
ily smaller than the theoretical dispersion variance of the region, because
the portion of the variance within the cells has been removed by sampling
and measuring at points that are, by necessity, of some physical size (finite
support), not 0-dimensional points.

We may be interested in blocks larger than the sampling support, e.g., for
prediction of averages in blocks of this size. Each of these has the same
(finite) number of cells, nbB. First, we consider the variance of the cells
within one of these blocks B. This is in principle computable, by exhaustively
sampling a block. By analogy to Equation 3:

Dispersion
variance within
a block s2(b ∈ B) = 1

nbB

nbB∑
j=1

[zB − zbj]2 (4)

where zB is the within-block average of the nbB cells within the block, and
zbj is the value of the target variable in cell j. If we do this for all the k
blocks in the region, their within-block variances, as computed by Equation
4, can be averaged:

Average
dispersion
variance within
blocks

s2(b ∈ B) =
nBR∑
k=1

s2(b ∈ Bk) (5)

This is the average dispersion variance of a block of support B, discretized
into cells of sampling supports b, and is an estimate of the dispersion variance
between these two supports.

Finally, consider the blocks within the region. Their within-block averages
also have a variance, again by analogy to Equation 3:

Dispersion
variance of
blocks
in a region

s2(B ∈ R) = 1

nBR

nBR∑
k=1

[zR − zBk]2 (6)

where here zR is the mean of the zBk , which are the values of the target
variable averaged over one of the nBR blocks in the region.

All of this prepares us for the partitioning of variance by Krige’s relation:

s2(b ∈ R) = s2(B ∈ R)+ s2(b ∈ B) (7)

which just says that the overall dispersion variance of the block size of in-
terest is the sum of two nested components: the blocks within the region,
and the average, over all blocks, of the cells within these blocks. This rela-
tion can be used to understand scales of variation, and to convert between
supports, as shown later.

How can these relations be computed, short of exhaustive sampling? The key
is the model of spatial dependence. The expected values of these variances

3

are all directly related to the variogram:

σ2(b ∈ R) = γ(R,R)− γ(b, b) (8)

σ2(B ∈ R) = γ(R,R)− γ(B, B) (9)

σ2(b ∈ B) = γ(B, B)− γ(b, b) (10)

Note that in these equations the theoretical variance σ2, based on the as-
sumed random field (as expressed in the variogram model), replaces the
empirical variance s2. So if we have a variogram model of the random field
that is assumed to model the variable’s spatial dependence, we can compute
the required semivariances by integrating over the required support. In prac-
tice, this is done by discretizing the support into a “large” number of points,
and computing the average semivariance between all of these, according to
the variogram model.

For example, the within-block semivariance γ(b, b) is estimated by analogy
to Equation 14 as:

γ(b, b) = 1

|b|2
∫
b

∫
b
γ(x− x′)dxdx′ (11)

This could be discretized by computing punctual semivariances between all
pairs of n points in the block:

γ(b, b) ≈ 1
n2

n∑
i=1

n∑
j=1

γ(xi,xj) (12)

The semivariance is of course a function of the separation (and perhaps
azimuth) between discretizing points. In practice, a fairly small number of
points (9, 16, or 25) arranged on a regular grid (rectangular or hexaogonal)
sufficies to reliabily approximate the average.

4 Computing dispersion variances

To see how the above relations work, we compute them on a known random
field. This has the advantage that we know exactly what the relations should
be, from the known model of spatial dependence.

4.1 Simulating a random field

The known random field is created by stochastic simulation from a known
model of spatial dependence [1, §8.7].

The first step is to create a regular grid, over which the random field will be
simulated.

Task 1 : Create a 128x128 grid of unit cells. •

The GridTopology method is used to define the coordinates of a grid, and
the SpatialGrid method to create an object of class SpatialGrid with grid
topology.

4

> grid.128 <- SpatialGrid(GridTopology(cellcentre.offset = c(0.5,

+ 0.5), cellsize = c(1, 1), cells.dim = c(128, 128)))

> str(grid.128)

Formal class 'SpatialGrid' [package "sp"] with 3 slots

..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots

..@ cellcentre.offset: num [1:2] 0.5 0.5

..@ cellsize : num [1:2] 1 1

..@ cells.dim : int [1:2] 128 128

..@ bbox : num [1:2, 1:2] 0 0 128 128

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr NA

Second, specify a variogram model.

Task 2 : Select a variogram model to represent the spatially-correlated
random function for simulation. •

We choose a simple exponential model with unit total sill (the units are
arbitrary) and range parameter 8, i.e. an effective range of 3 × 8 = 24,
which is about 1/5 of each dimension of the grid. This shows good spatial
dependence while still allowing for variation across the grid. We also include
a nugget effect of 1/5 of the total sill, to simulate a variable with some
variability within the support; later we’ll see the effect of increasing support.

> vm <- vgm(psill = 0.8, , model = "Exp", range = 8, nugget = 0.2)

Third, simulate a realization of the random field.

Task 3 : Simulate a random field with the selected variogram model. •

We use the krige comman with parameter loc=NULL to specify an uncon-
ditional simulated field, with known structure given by a variogram model,
specified with vgm. The set.seed command specifies a starting point for
the random number generator so that your results match those shown here.
In addition, the optional maxdist “maximum distance” argument limits the
simulation to this radius; otherwise even for this 128x128 = 16 384 cell field
the simulation is extremely slow. We select maxdist to cover the effective
range of the variogram, i.e. 24 cells.

Note: This simulation may take some time; we check it with the sys-

tem.time function.

> set.seed(621)

> system.time(

+ k.e8.128 <- krige(z~1, loc=NULL,

+ newdata=grid.128,

+ model=vm, beta=0,

+ dummy=T, nsim=1,

5

+ maxdist=24)

+)

> names(k.e8.128) <- "z"

[using unconditional Gaussian simulation]

user system elapsed

7356.148 66.185 13731.566

On my system this took 3 hr 49 min. If your system is slow or if you
are impatient, you can reduce maxdist but will not reproduce the known
variogram at longer ranges (§5.2).

Task 4 : Summarize and visualize the simulated random field. •

> summary(k.e8.128)

Object of class SpatialGridDataFrame

Coordinates:

min max

s1 0 128

s2 0 128

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

s1 0.5 1 128

s2 0.5 1 128

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-5.000 -0.914 -0.239 -0.230 0.441 4.400

> sim.plot.128 <- spplot(k.e8.128, col.regions = bpy.colors(64),

+ main = "Simulated field, vgm(0.8,\"Exp\",8,0.2), 128x=128")

> print(sim.plot.128)

Simulated field, vgm(0.8,"Exp",8,0.2), 128x=128

−4

−2

0

2

4

6

4.2 Dispersion variances in the random field

Before considering dispersion variance, we first compute the näıve variance,
i.e. not taking into account spatial structure, to compare with the dispersion
variances of various-size subregions.

Q2 : What is the näıve variance of this simulated field? Jump to A2 •

> var(k.e8.128$z)

[1] 1.0404

We consider the sampling support (1 x 1) to be effectively punctual, and
so do not consider the dispersion variance within these small supports. In
practice these are the the sampling units.

Note: If we analyze the spatial dependence of a set of observations on this
support, and use this to predict at other points with the same support (for
example, by punctual Ordinary Kriging, OK), or block averages at a larger
support (by Block Ordinary Kriging, BOK), there is no issue with support:
everything is on the same support. Although the prediction blocks are larger
than the point support, BOK predicts at “all” points (in practice, some dis-
cretization) in the block by punctual OK, and then averages these. The
prediction variance is, however, lowered by the dispersion variance within
the block, γ(b, b) from Equation 8.

For some computations it is convenient to also have this object as class
SpatialPointsDataFrame, i.e. separate points instead of a grid.

Task 5 : Convert the simulated field to a spatial points data frame. •

> k.e8.128.pts <- SpatialPointsDataFrame(SpatialPoints(k.e8.128),

+ data = k.e8.128@data)

> str(k.e8.128.pts)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 16384 obs. of 1 variable:

.. ..$ z: num [1:16384] 0.974 0.987 0.556 0.539 -0.697 ...

..@ coords.nrs : num(0)

..@ coords : num [1:16384, 1:2] 0.5 1.5 2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5 ...

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "s1" "s2"

..@ bbox : num [1:2, 1:2] 0.5 0.5 127.5 127.5

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "s1" "s2"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

..@ projargs: chr NA

4.2.1 Dispersion variance of 2 x 2 blocks

We start with the smallest block larger than the sampling support.

7

Task 6 : Compute and summarize the dispersion variance at the smallest
block support, i.e. 2 x 2. •

The variogram method, with the cloud=T optional argument, returns the
semivariance of all point-pairs within the cutoff, specified with the optional
cutoff argument.

We extract windows from the whole area with the subset command, specify-
ing the coordinates to be selected with the %in% set operator, and combining
the criteria for the two coordinate dimensions with the & logical operator.

For example, the upper-left 2 x 2 block is:

> (block <- subset(k.e8.128.pts, (coordinates(k.e8.128.pts)[,

+ 1] %in% c(0.5, 1.5)) & (coordinates(k.e8.128.pts)[,

+ 2] %in% c(0.5, 1.5))))

coordinates z

16129 (0.5, 1.5) 1.45655

16130 (1.5, 1.5) 1.40355

16257 (0.5, 0.5) 0.98993

16258 (1.5, 0.5) 0.72709

Its variogram cloud is:

> (vc <- variogram(z ~ 1, loc = block, cutoff = sqrt(2),

+ cloud = T))

dist gamma dir.hor dir.ver id left right

1 1.0000 0.0014045 0 0 var1 2 1

2 1.0000 0.1088663 0 0 var1 3 1

3 1.4142 0.0855397 0 0 var1 3 2

4 1.4142 0.2660533 0 0 var1 4 1

5 1.0000 0.2287961 0 0 var1 4 2

6 1.0000 0.0345419 0 0 var1 4 3

Note: The optional cutoff argument was necessary because by default
variogram sets the cutoff to 1/3 of the distance across the bounding box;
instead we set it to the diagonal across the box,

√
2.

Q3 : How many point-pairs are there in this 2 x 2 block? What are the
separations, and how many point-pairs have each separation? Jump to A3
•

The dispersion variance can be directly computed from this as the average
of the individual semivariances:

> mean(vc$gamma)

[1] 0.12087

The same figure can be arrived at with the empirical averaged semivari-
ogram, as the weighted average of the bins, taking advantage of R’s vector-
ized operators:

8

> (v <- variogram(z ~ 1, loc = block, cutoff = 2 * sqrt(2)))

np dist gamma dir.hor dir.ver id

1 4 1.0000 0.093402 0 0 var1

2 2 1.4142 0.175796 0 0 var1

> sum(v$np * v$gamma)/sum(v$np)

[1] 0.12087

The dispersion variances for this support are in general different for each
2 x 2 block. We can compute the variances for all possible 2 x 2 blocks
and summarize, using the for looping operator. It’s not necessary to do
this for the full area, since a representative sub-area covering the variogram
range will give almost identical summary statistics. We choose the upper-left
corner, to the effective variogram range (24 units); this contains 12× 12 =
144 non-overlapping 2 x 2 blocks, each of which dispersion variance must
be calculated from its empirical variogram.

> bbox(k.e8.128.pts)

min max

s1 0.5 127.5

s2 0.5 127.5

> dv.2 <- vector(mode = "numeric", length = 12^2)

> i <- 1

> for (x in seq(0.5, 23.5, by = 2)) {

+ for (y in seq(0.5, 23.5, by = 2)) {

+ block <- subset(k.e8.128.pts, (coordinates(k.e8.128.pts)[,

+ 1] %in% c(x, x + 1)) & (coordinates(k.e8.128.pts)[,

+ 2] %in% c(y, y + 1)))

+ v <- variogram(z ~ 1, loc = block, cutoff = 2 *

+ sqrt(2))

+ dv.2[i] <- sum(v$np * v$gamma)/sum(v$np)

+ i <- i + 1

+ }

+ }

> length(dv.2)

[1] 144

> head(dv.2)

[1] 0.12087 0.32007 0.21180 0.74266 0.25091 0.34509

Note: The vector function was used to initialize the results vector; the
computation is faster when the result of one loop is placed in an existing
vector slot, rather than when a vector is extended with the c function.

We summarize the dispersion variances on this support, and display as a
histogram:

> summary(dv.2)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.00325 0.13200 0.24500 0.32100 0.43600 1.29000

9

> hist(

+ dv.2,

+ main="Dispersion variances of 2 x 2 blocks, upper-left 24 x 24 block",

+ xlab="Dispersion variance", breaks=seq(0,1.6,by=.05))

Dispersion variances of 2 x 2 blocks, upper−left 24 x 24 block

Dispersion variance

F
re

qu
en

cy

0.0 0.5 1.0 1.5

0
5

10
15

The average dispersion variance at this support is shown in the summary as
0.3206.

Q4 : What is the distribution of the dispersion variances of the 2 x 2 blocks?
Jump to A4 •

Clearly the distribution is strongly right-skewed, with a few unfortunate high
variances and many low, which is to be expected with only 4 points per block
and strong spatial dependence.

4.2.2 Dispersion variance of 3 x 3 blocks

The next larger square block is 3 x 3; we repeat the procedure from the
previous section, looping over the same number (144) of non-adjacent 3 x 3
blocks in the upper-left quadrant; this is of course a larger total area, but
using the same number gives similar statistics for the distribution of the
dispersion variance at the different supports.

The set of coordinates in each dimension has three values; the looping is
by three in each dimension; and the variogram has five bins, at separa-
tions 1,

√
2,2,

√
1+ 22 =

√
5,
√

22 + 22 =
√

8, defined by the straight-line
distances between the cell centres.

> dv.3 <- vector(mode = "numeric", length = 12^2)

> i <- 1

> for (x in seq(0.5, 34.5, by = 3)) {

+ for (y in seq(0.5, 34.5, by = 3)) {

10

+ block <- subset(k.e8.128.pts, (coordinates(k.e8.128.pts)[,

+ 1] %in% c(x, x + 1, x + 2)) & (coordinates(k.e8.128.pts)[,

+ 2] %in% c(y, y + 1, y + 2)))

+ v <- variogram(z ~ 1, loc = block, cutoff = 2 *

+ sqrt(2))

+ dv.3[i] <- sum(v$np * v$gamma)/sum(v$np)

+ i <- i + 1

+ }

+ }

We again summarize the dispersion variances on this support, and display
as a histogram:

> summary(dv.3)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0751 0.2440 0.3490 0.3810 0.5120 1.0700

> hist(

+ dv.3,

+ main="Dispersion variances of 3 x 3 blocks, upper-left 36x36 block",

+ xlab="Dispersion variance", breaks=seq(0,1.4,by=.05))

Dispersion variances of 3 x 3 blocks, upper−left 36x36 block

Dispersion variance

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
5

10
15

20

The average dispersion variance at this support is shown in the summary as
0.3808.

Q5 : How does the dispersion variance change with increasing support,
from 2 x 2 to 3 x 3 blocks? Explain why. Jump to A5 •

4.2.3 Dispersion variance of 4 x 4 blocks

We now increase the size of the block to 4 x 4.

11

Task 7 : Compute and summarize the dispersion variance at 4 x 4 block
support. •

The set of coordinates in each dimension has four values; the looping is
by four in each dimension; and the variogram has nine bins, at separa-
tions 1,2,3,

√
2,
√

1+ 22 =
√

5,
√

22 + 22 =
√

8,
√

1+ 32 =
√

10,
√

22 + 32 =√
13, and

√
32 + 32 =

√
18, defined by the straight-line distances between

the cell centres.

Loop over the same number (144) of non-adjacent 4 x 4 blocks in the upper-
left quadrant:

> dv.4 <- vector(mode = "numeric", length = 12^2)

> i <- 1

> for (x in seq(0.5, 45.5, by = 4)) {

+ for (y in seq(0.5, 45.5, by = 4)) {

+ block <- subset(k.e8.128.pts, (coordinates(k.e8.128.pts)[,

+ 1] %in% c(x, x + 1, x + 2, x + 3)) & (coordinates(k.e8.128.pts)[,

+ 2] %in% c(y, y + 1, y + 2, y + 3)))

+ v <- variogram(z ~ 1, loc = block, cutoff = 4 *

+ sqrt(2), width = 0.1)

+ dv.4[i] <- sum(v$np * v$gamma)/sum(v$np)

+ i <- i + 1

+ }

+ }

> summary(dv.4)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0959 0.3020 0.3840 0.4150 0.5170 1.2500

> hist(

+ dv.4,

+ main="Dispersion variances of 4 x 4 blocks, upper-left 48x48 block",

+ xlab="Dispersion variance", breaks=seq(0,1.4,by=.05))

12

Dispersion variances of 4 x 4 blocks, upper−left 48x48 block

Dispersion variance

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0
5

10
15

20

Q6 : How does the dispersion variance change with increasing support from
3 x 3 to 4 x 4 blocks? Jump to A6 •

4.2.4 Dispersion variance of 8 x 8 blocks

Finally, we double the size of the block to 8 x 8, using non-adjacent 8 x 8
blocks in the upper-left quadrant (now, 96 x 96):

> dv.8 <- vector(mode = "numeric", length = 12^2)

> i <- 1

> for (x in seq(0.5, 88.5, by = 8)) {

+ for (y in seq(0.5, 88.5, by = 8)) {

+ block <- subset(k.e8.128.pts, (coordinates(k.e8.128.pts)[,

+ 1] %in% c(x, x + 1, x + 2, x + 3, x + 4,

+ x + 5, x + 6, x + 7)) & (coordinates(k.e8.128.pts)[,

+ 2] %in% c(y, y + 1, y + 2, y + 3, y + 4,

+ y + 5, y + 6, y + 7)))

+ v <- variogram(z ~ 1, loc = block, cutoff = 8 *

+ sqrt(2), width = 0.1)

+ dv.8[i] <- sum(v$np * v$gamma)/sum(v$np)

+ i <- i + 1

+ }

+ }

> summary(dv.8)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.283 0.435 0.511 0.552 0.623 1.800

> hist(

+ dv.8,

+ main="Dispersion variances of 8 x 8 blocks, upper-left 96 x 96 block",

+ xlab="Dispersion variance", breaks=seq(0,2,by=.05))

13

Dispersion variances of 8 x 8 blocks, upper−left 96 x 96 block

Dispersion variance

F
re

qu
en

cy

0.0 0.5 1.0 1.5 2.0

0
5

10
15

20

4.2.5 Change of dispersion variance with support

We’ve now computed dispersion variances for 2 x 2, 3 x 3, 4 x 4, and 8 x 8
supports. This allows us to examine the trend of dispersion variance with
increasing support size. However, the supports have different numbers of
cells, so it is also interesting to see the mean dispersion variance per cell.

Task 8 : Compare the means, and also the mean standardized by number
of cells in the support. •

> dv.means <- rbind(`2x2` = mean(dv.2), `3x3` = mean(dv.3),

+ `4x4` = mean(dv.4), `8x8` = mean(dv.8))

> dv.means.cells <- c(2^2, 3^2, 4^2, 8^2)

> dv.means.std <- dv.means/dv.means.cells

> data.frame(means = dv.means, `std means` = dv.means.std)

means std.means

2x2 0.32060 0.0801508

3x3 0.38082 0.0423134

4x4 0.41518 0.0259489

8x8 0.55243 0.0086317

> par(mfrow = c(1, 2))

> plot(dv.means ~ dv.means.cells, type = "b", main = "",

+ xlab = "Number of cells", ylab = "Mean dispersion variance")

> plot(dv.means.std ~ dv.means.cells, type = "b", main = "",

+ xlab = "Number of cells", ylab = "Standardized dispersion variance")

> par(mfrow = c(1, 2))

14

●

●

●

●

10 20 30 40 50 60

0.
35

0.
40

0.
45

0.
50

0.
55

Number of cells

M
ea

n
di

sp
er

si
on

 v
ar

ia
nc

e

●

●

●

●

10 20 30 40 50 60

0.
01

0.
03

0.
05

0.
07

Number of cells

S
ta

nd
ar

di
ze

d
di

sp
er

si
on

 v
ar

ia
nc

e

Q7 : What is the trend of the mean dispersion variance with increasing
with increasing support, from 2 x 2 through 8 x 8 cells? Jump to A7 •

Task 9 : Compare the histograms of the dispersion variances, on the same
scale. •

We also plot the mean value as a vertical red bar. Note the use of the freq

optional argument to specify that we want a density histogram (freq=FALSE)
rather than the actual counts of cells; this allows us to compare the distri-
butions on the same scale.

> par(mfrow = c(2, 2))

> hist(dv.2, freq = F, main = "Dispersion variances of 2 x 2 blocks",

+ xlab = "Dispersion variance", breaks = seq(0, 1.9,

+ by = 0.05), ylim = c(0, 5))

> abline(v = mean(dv.2), col = "red")

> hist(dv.3, freq = F, main = "Dispersion variances of 3 x 3 blocks",

+ xlab = "Dispersion variance", breaks = seq(0, 1.9,

+ by = 0.05), ylim = c(0, 5))

> abline(v = mean(dv.3), col = "red")

> hist(dv.4, freq = F, main = "Dispersion variances of 4 x 4 blocks",

+ xlab = "Dispersion variance", breaks = seq(0, 1.9,

+ by = 0.05), ylim = c(0, 5))

> abline(v = mean(dv.4), col = "red")

> hist(dv.8, freq = F, main = "Dispersion variances of 8 x 8 blocks",

+ xlab = "Dispersion variance", breaks = seq(0, 1.9,

+ by = 0.05), ylim = c(0, 5))

> abline(v = mean(dv.8), col = "red")

> par(mfrow = c(1, 1))

15

Dispersion variances of 2 x 2 blocks

Dispersion variance

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Dispersion variances of 3 x 3 blocks

Dispersion variance

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Dispersion variances of 4 x 4 blocks

Dispersion variance

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Dispersion variances of 8 x 8 blocks

Dispersion variance

D
en

si
ty

0.0 0.5 1.0 1.5

0
1

2
3

4
5

Q8 : How does the distribution of the dispersion variance change with
increasing support, from 2 x 2 through 8 x 8 cells? Jump to A8 •

Challenge: Compute the dispersion variances for some other block sizes
(e.g. 5x5, 6x6, 12x12) and re-create the graph of mean variance vs. block
size including these sizes.

5 Effect of support

In this section we investigate how change of support affects summary statis-
tics and variograms. This will then lead to methods to change support.

Task 10 : Create three grids of increasingly-coarse resolution, with the same
bounding box as the 128x128 grid created in §4. •

We create the grid topologies with GridTopology and use these to build a
spatial grid with SpatialGrid. The trick here is to specify the grid resolution
with the second argument (cellsize) so that this, multiplied by the cell
dimension, specified with the third argument (cells.dim), are the same

16

as the original grid, i.e. 128. The centre of the first cell (first argument,
cellcentre.offset) must also be moved to the centre of the cell.

> grid.64 <- SpatialGrid(GridTopology(cellcentre.offset = c(2,

+ 2), cellsize = c(4, 4), cells.dim = c(32, 32)))

> grid.32 <- SpatialGrid(GridTopology(cellcentre.offset = c(4,

+ 4), cellsize = c(8, 8), cells.dim = c(16, 16)))

> grid.16 <- SpatialGrid(GridTopology(cellcentre.offset = c(8,

+ 8), cellsize = c(16, 16), cells.dim = c(8, 8)))

> summary(grid.128)

Object of class SpatialGrid

Coordinates:

min max

[1,] 0 128

[2,] 0 128

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 0.5 1 128

2 0.5 1 128

> summary(grid.64)

Object of class SpatialGrid

Coordinates:

min max

[1,] 0 128

[2,] 0 128

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 2 4 32

2 2 4 32

> summary(grid.32)

Object of class SpatialGrid

Coordinates:

min max

[1,] 0 128

[2,] 0 128

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 4 8 16

2 4 8 16

> summary(grid.16)

Object of class SpatialGrid

Coordinates:

min max

17

[1,] 0 128

[2,] 0 128

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 8 16 8

2 8 16 8

Note that these all have the same bounding box (minimum and maximum
coördinates) but different numbers of cells, different cell size, and therefore
different offsets to the cell centre from the grid edge.

Task 11 : Aggregate the data values from the 128 x 128 grid into increasingly-
coarser grids. •

It may help your understanding to visualize this example as a satellite image
of different resolutions, where the digital numbers (radiances) of the coarser-
resolution pixels are averages of a square of finer-resolution pixels; this is the
image resulting from physical integration, i.e. one sensor capturing energy
from a larger area (coarse resolution) which could also be sensed by an array
of sensors each capturing energy from a smaller area (fine resolution). Here
we use mathemetical integration (averaging) to simulate physical integration
(larger sensor field of view).

We have the three coarser grids, with the same bounding box as the fine grid.
Values of the target variable can be computed for each grid cell using the idw
“Inverse-Distance Weighted” method, with zero-power (i.e. all neighbours
are weighted the same, no distance decay) specified with the idp “inverse
distance power” argument, and the required number of neighbours from the
fine grid, specified with the nmax argument. For the 64 x 64 grid, this is 4
(i.e. four cells are aggregated into one, halving the resolution); for the 32 x 32
grid, this is 16; and for the 16 x 16 grid, this is 32 cells into one.

> k.e8.64 <- idw(z ~ 1, loc = k.e8.128, newdata = grid.64,

+ idp = 0, nmax = 4)

[inverse distance weighted interpolation]

> names(k.e8.64) <- c("z", "nr")

> k.e8.32 <- idw(z ~ 1, loc = k.e8.128, newdata = grid.32,

+ idp = 0, nmax = 16)

[inverse distance weighted interpolation]

> names(k.e8.32) <- c("z", "nr")

> k.e8.16 <- idw(z ~ 1, loc = k.e8.128, newdata = grid.16,

+ idp = 0, nmax = 32)

[inverse distance weighted interpolation]

> names(k.e8.16) <- c("z", "nr")

18

Note: This series of grids could also be computed (within rounding error)
stepwise, with each coarser grid being aggregated from the next-finer res-
olution, always with 4 neighbours. For example, the 64x64 grid could be
aggregated from the 128x128 grid, using the four nearest neighbours, i.e., a
2 x 2 grid at 128x128 is aggregated into one cell at 64x64.

> tmp <- idw(z ~ 1, loc = k.e8.128, newdata = grid.64,

+ idp = 0, nmax = 4)

[inverse distance weighted interpolation]

> summary(tmp$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.460 -0.809 -0.271 -0.230 0.329 3.030

> summary(k.e8.64$z)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-3.460 -0.809 -0.271 -0.230 0.329 3.030

> rm(tmp)

The summary statistics are identical.

Task 12 : Display the spatial fields at the four aggregation levels on the
same plot. •

> z.at <- seq(-4.4, 4.4, by = 0.2)

> sim.plot.128 <- spplot(k.e8.128, zcol = "z", col.regions = bpy.colors(64),

+ main = "Simulated field, vgm(1,\"Exp\",8,0), 128x128",

+ at = z.at)

> sim.plot.64 <- spplot(k.e8.64, zcol = "z", col.regions = bpy.colors(64),

+ main = "Simulated field, vgm(1,\"Exp\",8,0), 64x64",

+ at = z.at)

> sim.plot.32 <- spplot(k.e8.32, zcol = "z", col.regions = bpy.colors(64),

+ main = "Simulated field, vgm(1,\"Exp\",8,0), 32x32",

+ at = z.at)

> sim.plot.16 <- spplot(k.e8.16, zcol = "z", col.regions = bpy.colors(64),

+ main = "Simulated field, vgm(1,\"Exp\",8,0), 16x16",

+ at = z.at)

19

> print(sim.plot.128, split = c(1, 1, 2, 2), more = T)

> print(sim.plot.64, split = c(2, 1, 2, 2), more = T)

> print(sim.plot.32, split = c(1, 2, 2, 2), more = T)

> print(sim.plot.16, split = c(2, 2, 2, 2), more = F)

Simulated field, vgm(1,"Exp",8,0), 128x128

−4

−3

−2

−1

0

1

2

3

4

Simulated field, vgm(1,"Exp",8,0), 64x64

−4

−3

−2

−1

0

1

2

3

4

Simulated field, vgm(1,"Exp",8,0), 32x32

−4

−3

−2

−1

0

1

2

3

4

Simulated field, vgm(1,"Exp",8,0), 16x16

−4

−3

−2

−1

0

1

2

3

4

Q9 : How does the spatial field change as aggregation level is increased?
Jump to A9 •

20

5.1 Effect of support on non-spatial statistics

Task 13 : Compare summary statistics for the four levels of aggregation,
including the näıve variances. •

To display these as a nice table, we first stack the rows of the summary
vectors using rbind “row bind”, and then add another column to the table
with cbind “column bind”; this column is a vector of the variances, created
with the c “catenate” function.

> cbind(rbind(summary(k.e8.128$z),

+ summary(k.e8.64$z),

+ summary(k.e8.32$z),

+ summary(k.e8.16$z)),

+ "Var."=c(

+ var(k.e8.128$z),

+ var(k.e8.64$z),

+ var(k.e8.32$z),

+ var(k.e8.16$z)))

Min. 1st Qu. Median Mean 3rd Qu. Max. Var.

[1,] -5.00 -0.914 -0.239 -0.230 0.441 4.40 1.04044

[2,] -3.46 -0.809 -0.271 -0.230 0.329 3.03 0.78204

[3,] -2.63 -0.798 -0.256 -0.233 0.231 2.55 0.65752

[4,] -1.57 -0.553 -0.235 -0.147 0.322 1.63 0.51671

Q10 : How does aggregation level affect the univariate distributions of the
simulated variable? Jump to A10 •

Task 14 : Compare the histograms and boxplots for the four levels of
aggregation. •

> par(mfrow = c(2, 2))

> hist(k.e8.128$z, xlim = c(-4.5, 4.5), main = "128 x 128")

> hist(k.e8.64$z, xlim = c(-4.5, 4.5), main = "64 x 64")

> hist(k.e8.32$z, xlim = c(-4.5, 4.5), main = "32 x 32")

> hist(k.e8.16$z, xlim = c(-4.5, 4.5), main = "16 x 16")

> par(mfrow = c(1, 1))

21

128 x 128

k.e8.128$z

F
re

qu
en

cy

−4 −2 0 2 4

0
10

00
25

00

64 x 64

k.e8.64$z

F
re

qu
en

cy

−4 −2 0 2 4

0
50

15
0

32 x 32

k.e8.32$z

F
re

qu
en

cy

−4 −2 0 2 4

0
20

40
60

16 x 16

k.e8.16$z

F
re

qu
en

cy

−4 −2 0 2 4

0
5

10
15

20

To produce a single boxplot with the four aggregation levels, we create a
data frame, using the data.frame function, with one named field per level,
and pass this data frame to boxplot.

> boxplot(data.frame(res.128=k.e8.128$z,

+ res.64=k.e8.64$z,

+ res.32=k.e8.32$z,

+ res.16=k.e8.16$z),

+ main="Four aggregation levels",

+ horizontal=T, boxwex=.5, cex=.6)

22

●●●●● ● ●●●●● ● ●● ● ●● ●● ●● ●● ●●● ●● ●● ●●●● ●●●● ●● ●●● ●●● ●●●●● ●● ● ●●● ●●● ●● ●●●● ●●● ●● ● ●● ●●● ●● ●● ● ●●●● ●●● ●●● ●●● ●● ●● ●● ●● ●● ● ●●● ●●●●●● ●●●● ●● ●●●● ● ●● ●● ● ●● ●●●●

● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ● ● ●●● ●● ●●●●●●● ●

●●●●● ●●●●●

re
s.

12
8

re
s.

64
re

s.
32

re
s.

16

−4 −2 0 2 4

Four aggregation levels

Q11 : How does aggregation level affect (1) the summary statistics; (2) the
näıve variances; (3) the univariate distributions of the simulated variable?

Jump to A11 •

5.2 Effect of support on spatial statistics

The coarse random fields of §5 have spatial structure, because they were
constructed from the known structure at the sampling support. How is this
structure affected by aggregation?

Task 15 : Compare the variograms from the four levels; with the known
model (used to create the finest-resolution field) superimposed. •

We use the variogram function to compute the empirical variogram out to
a cutoff 1.5 times the known effective range of 24. Since we only used this
range in the simulation, we expect that the variogram at larger separation
will be flatter (lower than) the model.

Note: To visualize the variogram, we change the lattice graphics param-
eters, to get a darker-blue, filled dots. The named colour is one of the 657
fixed colours given by the colors function. The simpleTheme function is an
easy way to store a list of the basic plot parameters.

The trellis.par.set.function changes the graphics parameters. Since each
figure in this document is a separate PDF, each time these new parame-
ters should be used in a lattice graph, they must be specified with trel-

lis.par.set.

23

More complicated manipulations of the lattice graphics paramters require
that the old parameters be retrieved with trellis.par.get, changed with
regular assignment statements, and re-written with trellis.par.set.

> v.128 <- variogram(z ~ 1, loc = k.e8.128, cutoff = 32)

> v.64 <- variogram(z ~ 1, loc = k.e8.64, cutoff = 32)

> v.32 <- variogram(z ~ 1, loc = k.e8.32, cutoff = 32)

> v.16 <- variogram(z ~ 1, loc = k.e8.16, cutoff = 32)

> myTheme <- simpleTheme(col = "slateblue4", pch = 20,

+ cex = 0.9)

> v.128.pl <- plot(v.128, ylim = c(0, 1), pl = F, model = vm,

+ main = "128x128")

> v.64.pl <- plot(v.64, ylim = c(0, 1), pl = F, model = vm,

+ main = "64x64")

> v.32.pl <- plot(v.32, ylim = c(0, 1), pl = F, model = vm,

+ main = "32x32")

> v.16.pl <- plot(v.16, ylim = c(0, 1), pl = F, model = vm,

+ main = "16x16")

> trellis.par.set(myTheme)

> print(v.128.pl, split = c(1, 1, 2, 2), more = T)

> print(v.64.pl, split = c(2, 1, 2, 2), more = T)

> print(v.32.pl, split = c(1, 2, 2, 2), more = T)

> print(v.16.pl, split = c(2, 2, 2, 2), more = F)

128x128

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

64x64

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

● ●

●
●

● ●

●
●

●

32x32

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

●

● ●

16x16

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

24

Q12 : What happens to the experimental variogram as aggregation in-
creases? How well do these fit the known model? Jump to A12
•

Although the parameters change with increased aggregation, the model form
should not (the underlying process should be the same). So an exponential
model should fit all of them.

Task 16 : Attempt to fit these empirical variograms starting from the known
model. •

We use the fit.variogram function, with default fitting method, and dis-
play the fit.

> (vmf.128 <- fit.variogram(v.128, vm))

model psill range

1 Nug 0.22719 0.0000

2 Exp 0.77288 7.2819

> (vmf.64 <- fit.variogram(v.64, vm))

model psill range

1 Nug 0.037907 0.0000

2 Exp 0.731472 8.3157

> (vmf.32 <- fit.variogram(v.32, vm))

model psill range

1 Nug 0.00000 0.0000

2 Exp 0.62903 9.8195

> (vmf.16 <- fit.variogram(v.16, vm))

model psill range

1 Nug 0.00000 0.000

2 Exp 0.58686 15.107

> v.128.pl <- plot(v.128, ylim = c(0, 1), pl = F, model = vmf.128,

+ main = "128x128")

> v.64.pl <- plot(v.64, ylim = c(0, 1), pl = F, model = vmf.64,

+ main = "64x64")

> v.32.pl <- plot(v.32, ylim = c(0, 1), pl = F, model = vmf.32,

+ main = "32x32")

> v.16.pl <- plot(v.16, ylim = c(0, 1), pl = F, model = vmf.16,

+ main = "16x16")

> trellis.par.set(myTheme)

> print(v.128.pl, split = c(1, 1, 2, 2), more = T)

> print(v.64.pl, split = c(2, 1, 2, 2), more = T)

> print(v.32.pl, split = c(1, 2, 2, 2), more = T)

> print(v.16.pl, split = c(2, 2, 2, 2), more = F)

25

128x128

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

64x64

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

● ●

●
●

● ●

●
●

●

32x32

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

●

●

●

● ●

16x16

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

5 10 15 20 25 30

●

●

●

Q13 : Was the automatic fitting method able adjust the parameters? What
happens to the variogram parameters with increasing aggregation? How well
does this model form fit the variograms? Jump to A13 •

6 Variogram regularization

The term regularization, applied to variograms, refers to the process by
which a variogram at one support is related to that at another.

We first consider going from a punctual to a block support. A practical
application is when we have a variogram from punctual support, but the
further work will be on a larger support, and we need to estimate the vari-
ogram at that support to plan sampling. An example would be a variogram
of soil properties of individual soil cores (approximately 10 cm diameter),
where further sampling will be by composite sampling from farmers’ fields
of 1 ha (100 x 100 m), because whatever intervention is planned will be at
that support.

Suppose the punctual support is b. We refer to the larger support as B. The
variogram on support B can often be related to that on support b by:

26

γB(h) ≈ γb(h)− γ(B, B) (13)

where h is the separation vector, here between centroids of the larger support
B, and γ(B, B) is the average semivariance within the support B, i.e. the dis-
persion variance as explained in §3. In words, the variogram at block support
is translated downward from the punctual semivariogram by γ(B, B).

In addition, the range is automatically increased by the diameter of the
larger support.

Note: This approximation only holds when |h| >>
√
|B|. At shorter ranges

the variogram at large support is not just a translation downwards of the
punctual variogram; it is concave. This is logical, because at a certain sepra-
tion the downward translation would result in a negative nugget, which is
not possible.

See [9, §5 & 6] for details of this calculation.

6.1 Computing the dispersion variance within a block

To use this approximation, we need to compute the dispersion variance
within the block, i.e. γ(B, B) of Equation 13. One method is to discretize the
block and compute the variogram cloud on a simulated field of that block
size, as in §4.2.

Of course, there are an infinity of 0-dimensional points in any block; and
even considering a finite point support of one grid cell in this simulated
field, there are 16384 supports in 1 ha. How many are necessary to get a
satisfactory discretization?

We break this task down into steps:

1. Specify a variogram model – we use the one that was used to simu-
late the field, i.e., exponential with partial sill 0.8, nugget 0.2, range
parameter 8 so effective range 24;

2. Simulate a field with this model over the block size – we use the
128 x 128 field already simulated;

3. Select points from the field, at increasingly-fine discretizations;

4. Compute the dispersion variances;

5. Determine how fine a discretization is needed to approximate the “in-
finite” dispersion variance.

Task 17 : Create the variogram model as specified above. •

> vm <- vgm(psill = 0.8, , model = "Exp", range = 8, nugget = 0.2)

Task 18 : Considering the 128 x 128 grid of §4.1 as the block, compute
the dispersion variance within this block, from point support with a known
punctual variogram, at a 4 x 4 discretization. •

27

The aim is to see how fine a discretization is necessary to accurately compute
the dispersion variance. We will try increasingly-fine discretizations. We first
illustrate the procedure with a 4 x 4 grid of points, regularly spaced.

Task 19 : Create sampling points, on a regular grid within this block, of
24 = 16 points. •

An interesting way to get a regular grid is to use k-means clustering to
achieve a spatial coverage sample. This is explained briefly by Walvoort
et al. [12] and more completely by de Gruijter et al. [2, §8.3.3]. These
authors have prepared an R package spcosa [13].

The simplest method is to minimize the mean squared shortest distance
(MSSD) from the sample to the grid nodes. Considering N points indexed
by i, and the grid as a set of points indexed by j:

1
N

N∑
i

min
j (D2

ij) (14)

This can be minimized by k-means algorithm on the discretization grid,
resulting in a set of cluster centroids. All we need to do is to specify the
number of points and their coordinates.

Note: Note that if the study area is not convex, the resulting centroid is
not restricted to the study area; it may be that the maximum information is
found by sampling outside.

A simple approach is to use the kmeans function with the default value of
the algorithm argument, i.e, Hartigan-Wong [4]. This partitions the points
into a user-specified number (referred to as“k”) groups, to mimimize the sum
of squares from points to the assigned cluster centres. This is best-known
in feature (multivariate) space, but there is no reason it can’t be applied in
geographic space, with the coordinates as the multi-variables. In this case
the points are centroids of Theissen polygons.

Again, we use set.seed so that your results will match these notes; we
specify 16 groups, i.e., 16 cluster centres:

> set.seed(316318)

> scheme <- data.frame(round(kmeans(x=coordinates(grid.128),centers=2^4,

+ iter.max=1000,nstart=2^4,

+ algorithm="Hartigan-Wong")$centers))

> names(scheme) <- c("x","y"); coordinates(scheme) <- ~x + y;

> pts.z <- overlay(k.e8.128, scheme)

> summary(pts.z)

Object of class SpatialPointsDataFrame

Coordinates:

min max

x 16 112

y 14 114

Is projected: NA

28

proj4string : [NA]

Number of points: 16

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.310 -0.431 -0.295 -0.263 0.179 0.809

Task 20 : Plot the block and the discretization points. •

> layout.2 <- list("sp.points", pts.z, pch = 21, cex = 1.5,

+ col = "black", fill = "white")

> print(spplot(k.e8.128, col.regions = bpy.colors(64),

+ sp.layout = list(layout.2)))

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

−4

−2

0

2

4

Task 21 : Compute the dispersion variance of this set of points from the
variogram cloud. Plot the cloud with all point-pairs. •

The variogram cloud is computed with variogram, with the cloud=T op-
tional argument; the dispersion variance is the mean of the point-pair semi-
variances. To show all the point-pairs, we must specify the cutoff argument
to variogram; by default it is 1/3 the maximum separation. The diagonal
distance across the grid is 128

√
2.

> vc <- variogram(z ~ 1, data=pts.z, cloud=T,

+ cutoff=128*sqrt(2))

> mean(vc$gamma)

[1] 0.5329

> trellis.par.set(myTheme)

> print(plot(

+ vc,

+ main="Variogram cloud, 16 grid points in 128 x 128 grid",

+ model=vm))

29

Variogram cloud, 16 grid points in 128 x 128 grid

distance

se
m

iv
ar

ia
nc

e

1

2

3

4

20 40 60 80 100 120

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●

● ●●●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●● ●

●

●

●

●

●

● ●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●●●
● ●●

●

●

●
●●

●

●

Q14 : What are the main features of the variogram cloud at this discretiza-
tion? Jump to A14
•

Of course, different discretizations (selection of points) will give different
dispersion variances; how big is this effect?

Task 22 : Compute the dispersion variance for several different 4 x 4 dis-
cretizations; summarize the statistics. •

For this we use the spsample method to place points on a grid (or within a
polygon); if used with the "regular" type parameter, it selects a random
starting point and then creates a regular grid.

> set.seed(1768)

> dv <- vector(mode="numeric", length=128)

> for (i in 1:128) {

+ pts <- spsample(k.e8.128, 4^2, type="regular")

+ pts.z <- overlay(k.e8.128, pts)

+ dv[i] <- mean(variogram(z ~ 1, data=pts.z,

+ cutoff=128*sqrt(2),

+ cloud=T)$gamma)

+ }

> summary(dv)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.325 0.673 0.953 1.020 1.290 2.280

> hist(

+ dv,

+ main="Dispersion variances for different 4 x 4 discretizations")

> print(paste("Naive variance:",

+ round(var(k.e8.128$z),4)))

[1] "Naive variance: 1.0404"

30

Dispersion variances for different 4 x 4 discretizations

dv

F
re

qu
en

cy

0.5 1.0 1.5 2.0

0
5

10
15

20

Q15 : How much variability is there between these different discretizations?
Is the 4 x 4 discretization a reliable estimate of the dispersion variance?

Jump to A15 •

6.1.1 Comparing dispersion variance of 4 x 4 . . . 16x16 points

We now compute dispersion variances for various sizes and collect into an
array to see the trend. In place of the variogram cloud we use the averaged
variogram with narrow bins, since the larger grids have a large number of
point-pairs1.

Initialize the results array:

> dv <- matrix(0, nrow = 128, ncol = 6)

> colnames(dv) <- c("4x4", "6x6", "8x8", "10x10", "12x12",

+ "16x16")

Now repeat the computation of dispersion variance for each of these dis-
cretizations, 128 times each, and review the summary statistics:

> set.seed(1814)

> n <- c(4^2, 6^2, 8^2, 10^2, 12^2, 16^2)

> for (p in 1:6) {

+ for (i in 1:128) {

+ pts <- spsample(k.e8.128, n[p], type = "regular")

+ pts.z <- overlay(k.e8.128, pts)

+ v <- variogram(z ~ 1, data = pts.z, width = 1,

+ cutoff = 128 * sqrt(2))

+ dv[i, p] <- sum(v$np * v$gamma)/sum(v$np)

+ }

1 e.g. the 10x10 grid has (100× 99)/2 = 4950 pairs

31

+ }

> summary(dv)

4x4 6x6 8x8 10x10

Min. :0.289 Min. :0.440 Min. :0.707 Min. :0.686

1st Qu.:0.734 1st Qu.:0.843 1st Qu.:0.921 1st Qu.:0.948

Median :0.984 Median :1.004 Median :1.076 Median :1.057

Mean :1.060 Mean :1.021 Mean :1.068 Mean :1.055

3rd Qu.:1.286 3rd Qu.:1.160 3rd Qu.:1.207 3rd Qu.:1.153

Max. :2.220 Max. :1.789 Max. :1.564 Max. :1.433

12x12 16x16

Min. :0.807 Min. :0.886

1st Qu.:0.945 1st Qu.:0.992

Median :1.032 Median :1.043

Mean :1.042 Mean :1.045

3rd Qu.:1.137 3rd Qu.:1.089

Max. :1.389 Max. :1.193

> apply(dv, 2, sd)

4x4 6x6 8x8 10x10 12x12 16x16

0.422318 0.244965 0.176287 0.151172 0.115838 0.067696

> apply(dv, 2, function(x) 100 * sd(x)/mean(x))

4x4 6x6 8x8 10x10 12x12 16x16

39.8225 23.9951 16.5083 14.3340 11.1223 6.4759

The last computation is the coefficient of variation (CV%).

Q16 : (1) What is the trend of the mean dispersion variance as the dis-
cretization level increases? (2) What is the trend of the range and standard
deviation of different discretizations at the same level of detail? Jump to
A16 •

Q17 : So, what is an acceptable discretization for this 128 x 128 block and
variogram with effective range 24? What proportion of the points is this?

Jump to A17 •

6.2 Computing the dispersion variance from the variogram

In practice we do not know the spatial structure of the presumed random
field; all we have is a single empirical variogram from the punctual sampling.
We can use this to estimate the within-block semivariance γ(B, B) from the
short-range portion of the fitted variogram model.

For example, consider the model used to create the simulated 128 x 128
field, and one realization of an empirical variogram. Sampling to establish
the (unknown) spatial structure is often by means of a nested design [15];
there are many other approaches, e.g. [6, 8]. Here we just use a random
sample (to ensure many different spacings) on a small portion of the grid.

32

For this we need to know the approximate range of spatial dependence; we
suppose that is known from field experience.

Task 23 : Simulate a random sample of 128 points on a 64 x 64 window of the
128 x 128 simulated field; compute and model the empirical semivariogram;
compare to the known variogram model. •

To window a spatial grid, simply subscript by grid row and column, as if
the object were a matrix. For example, to extract the upper-left 64 x 64
window:

> bbox(k.e8.128)

min max

s1 0 128

s2 0 128

> k.e8.64 <- k.e8.128[1:64, 1:64]

> bbox(k.e8.64)

min max

s1 0 64

s2 64 128

Note the reduced bounding box.

We use the spsample with the "random" type parameter:

> set.seed(250)

> repeat {

+ try(scheme <- spsample(k.e8.64, n = 128, type = "random"),

+ silent = T)

+ if (class(.Last.value) != "try-error")

+ break

+ }

> plot(coordinates(scheme))

> grid()

Now extract the data values at these points with overlay:

> pts.z <- overlay(k.e8.128, scheme)

> summary(pts.z)

Object of class SpatialPointsDataFrame

Coordinates:

min max

s1 0.57376 63.677

s2 64.78434 127.435

Is projected: NA

proj4string : [NA]

Number of points: 128

Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8300 -0.6840 0.0438 0.0780 0.8000 3.1900

33

Compute and plot the empirical variogram; superimpose the known model:

> v.e <- variogram(z ~ 1, pts.z)

> print(plot(v.e, pl = T, model = vm))

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

26

61

106

150

180
239

209

264

305

330

301

356

376
391 380

Q18 : How well does this empirical variogram match the known model,
according to visual evidence? Jump to A18 •

Of course, if this were a real sample, we would not know the variogram
model.

Model the empirical variogram, starting from an eyeball fit:

> print(vm)

model psill range

1 Nug 0.2 0

2 Exp 0.8 8

> (v.emf <- fit.variogram(v.e, model = vgm(1, "Exp", 15/3,

+ 0.2)))

model psill range

1 Nug 0.047925 0.0000

2 Exp 1.130032 6.3868

> print(plot(v.e, pl = T, model = v.emf))

34

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

0.8

1.0

1.2

5 10 15 20 25

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

26

61

106

150

180
239

209

264

305

330

301

356

376
391 380

Q19 : How well does this empirical variogram match the known model,
according to the fit? Jump to A19 •

We can assume |h| >>
√
|B|, so by the relation above, we need to determine

the semi-variance at the block size, and reduce the sill accordingly.

Suppose we now decide to regularize this variogram for a larger support,
8 x 8. Following the procedure of §6.1, this can be estimated directly from
the empirical variogram, with the appropriate cutoff.

Task 24 : Compute the dispersion variance for 8 x 8 blocks. •

> (dv <- mean(variogram(z ~ 1, data = pts.z, cutoff = 8 *

+ sqrt(2), cloud = T)$gamma))

[1] 0.83757

Task 25 : Regularize the empirical variogram model. •

This has two steps: (1) reduce the total sill (first taking out the nugget), (2)
increase the range by the block size. Recall that for the exponential model
the effective range is thrice the range parameter. So here the block size is
8 x 8, and the corresponding range parameter is 8/3.

> (v.emf.reg <- v.emf)

model psill range

1 Nug 0.047925 0.0000

2 Exp 1.130032 6.3868

35

> v.emf.reg[1, "psill"] <- 0

> v.emf.reg[2, "psill"] <- v.emf[2, "psill"] - dv + v.emf[1,

+ "psill"]

> v.emf.reg[2, "range"] <- v.emf.reg[2, "range"] + (8/3)

> print(v.emf.reg)

model psill range

1 Nug 0.00000 0.0000

2 Exp 0.34038 9.0534

This is now the expected variogram for further sampling and prediction on
8 x 8 blocks.

Task 26 : Compare this regularized variogram model with the variogram
model computed from the 8 x 8 block size, i.e., the 16x16 grid covering the
original 128 x 128 grid. •

This was computed above, as part of the series of increasingly-coarse grids:

> print(vmf.16)

model psill range

1 Nug 0.00000 0.000

2 Exp 0.58686 15.107

Q20 : How well does the regularized model match the model fitted to the
16 x 16 grid? Jump to A20 •

36

References

[1] R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio. Applied Spatial Data
Analysis with R. UseR! Springer, 2008. http://www.asdar-book.org/.
1, 2, 4

[2] J de Gruijter, D J Brus, M F P Bierkens, and M Knotters. Sampling
for Natural Resource Monitoring. Springer, 2006. 28

[3] C Gotway Crawford and L Young. Change of support: an inter-
disciplinary challenge. In Philippe Renard, Hélène Demougeot-Renard,
and Roland Froidevaux, editors, Geostatistics for Environmental Appli-
cations: Proceedings of the Fifth European Conference on Geostatistics
for Environmental Applications, pages 1–13. Springer, 2005. 1, 2

[4] J. A. Hartigan and M. A. Wong. Algorithm AS136: A K-means cluster-
ing algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 28(1):100–108, 1979. 28

[5] E H Isaaks and R M Srivastava. An introduction to applied geostatistics.
Oxford University Press, New York, 1990. 1

[6] R M Lark. Optimized spatial sampling of soil for estimation of the
variogram by maximum likelihood. Geoderma, 105(1-2):49–80, 2002.
32

[7] S. Openshaw. The modifiable areal unit problem. Concepts and tech-
niques in modern geography,. Geo Books, Norwich, 1983. 2

[8] A. N. Pettitt and A. B. McBratney. Sampling designs for estimating
spatial variance components. Applied Statistics, 42(1):185–209, 1993.
32

[9] J-M Rendu. An introduction to geostatistical methods of mineral evalua-
tion. Geostatistics, 2. South African Institute of Mining and Metallurgy,
Johannesburg, 1978. 1, 27

[10] M. Van Meirvenne, T. Meklit, S. Verstraete, M. De Boever, and F. Tack.
Could shelling in the first world war have increased copper concentra-
tions in the soil around Ypres? European Journal of Soil Science, 59
(2):372–379, 2008. 2

[11] G. M. Vasques, S. Grunwald, N. B. Comerford, and J. O. Sickman. Re-
gional modelling of soil carbon at multiple depths within a subtropical
watershed. Geoderma, 156(3-4):326–336, 2010. 2

[12] D. Walvoort, D. Brus, and J. de Gruijter. Spatial coverage sampling on
various spatial scales. Pedometron, 26:20–22, 2009. 28

[13] D. J. J. Walvoort, D. J. Brus, and J. J. de Gruijter. An R package
for spatial coverage sampling and random sampling from compact geo-
graphical strata by k-means. Computers & Geosciences, 36(10):1261–
1267, 2010. 28

[14] R. Webster and M. A. Oliver. Geostatistics for environmental scientists.
Wiley & Sons, Chichester, 2001. 1, 2

37

http://www.asdar-book.org/

[15] R. Webster, S. J. Welham, J. M. Potts, and M. A. Oliver. Estimating the
spatial scales of regionalized variables by nested sampling, hierarchical
analysis of variance and residual maximum likelihood. Computers &
Geosciences, 32(9):1320–1333, 2006. 32

38

Index of R Concepts

%in% operator, 8
& operator, 8

algorithm function argument, 28

boxplot, 22

c, 9, 21
cbind, 21
cloud=T gstat argument, 8, 29
colors, 23
cutoff gstat argument, 8, 29

data.frame, 22

fit.variogram (package:gstat), 25
for operator, 9
freq graphics argument, 15

GridTopology (package:sp), 4, 16

idw (package:gstat), 18

kmeans, 28
krige (package:gstat), 5

lattice package, 23, 24

maxdist gstat argument, 5

overlay (package:sp), 33

rbind, 21

set.seed, 5, 28
simpleTheme (package:lattice), 23
SpatialGrid (package:sp), 4, 16
SpatialGrid (sp class), 4
SpatialPointsDataFrame (sp class), 7
spcosa package, 28
spsample (package:sp), 30, 33
subset, 8
system.time, 5

trellis.par.get (package:lattice), 24
trellis.par.set (package:lattice), 23,

24
type sp argument, 30, 33

variogram (package:gstat), 8, 23, 29
vector, 9
vgm (package:gstat), 5

39

	1 Introduction
	2 The regularized variable
	3 Dispersion variance
	4 Computing dispersion variances
	4.1 Simulating a random field
	4.2 Dispersion variances in the random field

	5 Effect of support
	5.1 Effect of support on non-spatial statistics
	5.2 Effect of support on spatial statistics

	6 Variogram regularization
	6.1 Computing the dispersion variance within a block
	6.2 Computing the dispersion variance from the variogram

	References
	Index of R concepts

