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1 Introduction

This tutorial presents a data analysis sequence which may be applied to en-
vironmental datasets, using a small but typical data set of multivariate point
observations. It is aimed at students in geo-information application fields who
have some experience with basic statistics, but not necessarily with statistical
computing. Five aspects are emphasised:

1. Placing statistical analysis in the framework of research questions;

2. Moving from simple to complex methods: first exploration, then selection
of promising modelling approaches;

3. Visualising as well as computing;

4. Making correct inferences;

5. Statistical computation and visualization.

The analysis is carried out in the R environment for statistical computing and
visualisation [16], which is an open-source dialect of the S statistical computing
language. It is free, runs on most computing platforms, and contains contribu-
tions from top computational statisticians. If you are unfamiliar with R, see the
monograph “Introduction to the R Project for Statistical Computing for use at
ITC” [30], the R Project’s introduction to R [28], or one of the many tutorials
available via the R web page1.

On-line help is available for all R methods using the ?method syntax at the
command prompt; for example ?lm opens a window with help for the lm (fit
linear models) method.

Note: These notes use R rather than one of the many commercial statistics
programs because R is a complete statistical computing environment, based on
a modern computing language (accessible to the user), and with packages con-
tributed by leading computational statisticians. R allows unlimited flexibility and
sophistication. “Press the button and fill in the box” is certainly faster – but as
with Windows word processors, “what you see is all you get”. With R it may be
a bit harder at first to do simple things, but you are not limited. R is completely
free, can be freely-distributed, runs on all desktop computing platforms, is regu-
larly updated, is well-documented both by the developers and users, is the subject
of several good statistical computing texts, and has an active user group.

An introductory textbook with similar intent to these notes, but with a wider set
of examples, is by Dalgaard [7]. A more advanced text, with many interesting
applications, is by Venables and Ripley [35]. Fox [12] is an extensive explanation
of regression modelling; the companion Fox and Weisberg [14] shows how to use
R for this, mostly with social sciences datasets.

This tutorial follows a data analysis problem typical of earth sciences, natural and
water resources, and agriculture, proceeding from visualisation and exploration
through univariate point estimation, bivariate correlation and regression analysis,
multivariate factor analysis, analysis of variance, and finally some geostatistics.

1 http://www.r-project.org/

1

http://www.r-project.org/


In each section, there are some tasks, for which a possible solution is shown as
some R code to be typed at the console (or cut-and-pasted from the PDF version
of this document, or loaded from the accompanying .R R code files). Then there
are some questions to answer, based on the output of the task. Sample answers
are found at the end of each section.

Some readers may want to skip more advanced sections or those that explain
the mathematics behind the methods in more detail; these are marked with anOptional

sections asterisk ‘*’ in the section title and in the table of contents.

These notes only scratch the surface of R’s capabilities. In particular, the reader isGoing
further encouraged to consult the on-line help as necessary to understand all the options

of the methods used. Neither do these notes pretend to teach statistical inference;
the reader should refer to a statistics reference as necessary; some good choices,
depending on your background and the application, are Brownlee [3], Bulmer
[4], Dalgaard [7] (general); Davis [9] (geology),Wilks [39] (meteorology); Snedecor
and Cochran [31], Steel et al. [34] (agriculture); Legendre and Legendre [17]
(ecology); and Webster and Oliver [38] (soil science).

See also §10, “Going further”, at the end of the tutorial.

2 Example Data Set

This data set, fully described in Yemefack [40] and summarized in Yemefack et al.
[41], contains 147 soil profile observations from the research area of the Tropen-
bos Cameroon Programme (TCP), representative of the humid forest region of
southwestern Cameroon and adjacent areas of Equatorial Guinea and Gabon.

Three fixed soil layers (0–10 cm, 10–20 cm, and 30–50 cm) were sampled. The
data set is from two sources. First, 45 representative soil profiles were described
and sampled by genetic horizon. Soil characteristics for each of the three fixed lay-
ers were computed as weighted averages using genetic horizon thickness. Second,
102 plots from various land use/land cover types were sampled at the three fixed
depths. Each of these samples was a bulked composite of five sub-samples taken
with an auger in a plot diagonal basis. For both data sets, samples were located
purposively and subjectively to represent soil and land use types. Laboratory
analysis was by standard local methods [23].

For this exercise, we have selected three soil properties:

1. Clay content (code Clay), weight % of the mineral fine earth (< 2 mm);

2. Cation exchange capacity (code CEC), cmol+ (kg soil)-1

3. Organic carbon (code OC), volume % of the fine earth.

These three variables are related; in particular we know from theory and many
detailed studies that the CEC of a soil depends on reactive sites, either on clay
colloids or on organic complexes such as humus, where cations (such as K+ and
Ca++) can be easily adsorbed and desorbed [22, 32].

The CEC is important for soil management, since it controls how
much added artificial or natural fertiliser or liming materials will be
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retained by the soil for a long-lasting effect on crop growth. Heavy
doses of fertiliser on soils with low CEC will be wasted, since the extra
nutrients will leach.

In addition, for each observation the following site information was recorded:

� East and North Coordinates, UTM Zone 32N, WGS84 datum, in meters
(codes e and n)

� Elevation in meters above sea level (code elev)

� Agro-ecological zone, arbitrary code (code zone)

� Reference soil group, arbitrary code (code wrb1)

� Land cover type (code LC)

The soil group codes refer to Reference Groups of the World Reference Base for
Soil Resources (WRB) , the international soil classification system [11]. These
are presented in the text file as integer codes which correspond to three of the
31 Reference Groups identified worldwide, and which differ substantially in their
properties and response to management [10]:

1. Acrisols (from the Haplic, Ferralic, and Plinthic subgroups)

2. Cambisols (from the Ferralic subgroup)

3. Ferralsols (from the Acri-ferric and Xanthic subgroups )

2.1 Loading the dataset

Note: The code in these exercises was tested with Sweave [18, 19] on R version
3.3.2 (2016-10-31), sp package Version: 1.2-4, gstat package Version: 1.1-5, and
lattice package Version: 0.20-35 running on Mac OS X 10.6.3. So, the text
and graphical output you see here was automatically generated and incorporated
into LATEX by running actual code through R and its packages. Then the LATEX
document was compiled into the PDF version you are now reading. Your output
may be slightly different on different versions and on different platforms.

The dataset was originally prepared in a spreadsheet and exported as a text
“comma-separated value”(CSV) file named obs.csv. This is a typical spreadsheet
product with several inadequacies for processing in R, which we will fix up as we
go along. This a tedious but necessary step for almost every dataset; so the
techniques shown here should be useful in your own projects.

Task 1 : Start the R program and switch to the directory where the dataset is
stored. •

Task 2 : Examine the contents of the CSV file. •

You can do this with a plain-text editor (not a spreadsheet) such as (in Windows)
Notepad or Wordpad or (on Mac OS) TextEdit. We can also examine a file from
within R, with the file.show method:
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> file.show("obs.csv")

"e","n","elev","zone","wrb1","LC","Clay1","Clay2","Clay5","CEC1","CEC2","CEC5","OC1","OC2","OC5"

"1",702638,326959, 657,"2","3","FF",72,74,78,13.6,10.1, 7.1, 5.500,3.100,1.500

"2",701659,326772, 628,"2","3","FF",71,75,80,12.6, 8.2, 7.4, 3.200,1.700,1.000

"3",703488,322133, 840,"1","3","FV",61,59,66,21.7,10.2, 6.6, 6.980,2.400,1.300

...

"146",686534,339916, 445,"3","3","CF",34,40,45,13.2,12.2,11.7, 3.600,2.000,1.000

"147",688608,339579, 435,"3","3","BF",30,38,46, 6.9, 4.7, 2.9, 2.700,1.600,0.750

Q1 : What is the format of the first line? What does it represent? Jump to
A1 •

Q2 : What is the format of the following lines? What do they represent? Jump
to A2 •

Task 3 : Load the dataset into R using the read.csv method2 and examine its
structure. Identify each variable from the list above. Note its data type and (if
applicable) numerical precision. •

> obs <- read.csv("obs.csv")

> str(obs)

'data.frame': 147 obs. of 15 variables:

$ e : int 702638 701659 703488 703421 703358 702334 681328 681508 681230 683989 ...

$ n : int 326959 326772 322133 322508 322846 324551 311602 311295 311053 311685 ...

$ elev : int 657 628 840 707 670 780 720 657 600 720 ...

$ zone : int 2 2 1 1 2 1 1 2 2 1 ...

$ wrb1 : int 3 3 3 3 3 3 3 3 3 3 ...

$ LC : Factor w/ 8 levels "BF","CF","FF",..: 3 3 4 4 4 4 3 3 4 4 ...

$ Clay1: int 72 71 61 55 47 49 63 59 46 62 ...

$ Clay2: int 74 75 59 62 56 53 66 66 56 63 ...

$ Clay5: int 78 80 66 61 53 57 70 72 70 62 ...

$ CEC1 : num 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9 ...

$ CEC2 : num 10.1 8.2 10.2 8.4 9.2 11.6 7.4 7.1 5.7 6.8 ...

$ CEC5 : num 7.1 7.4 6.6 8 8.5 6.2 5.4 7 4.5 6 ...

$ OC1 : num 5.5 3.2 6.98 3.19 4.4 5.31 4.55 4.5 2.3 7.34 ...

$ OC2 : num 3.1 1.7 2.4 1.5 1.2 3.2 2.15 1.42 1.36 2.54 ...

$ OC5 : num 1.5 1 1.3 1.26 0.8 ...

> row.names(obs)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

[11] "11" "12" "13" "14" "15" "16" "17" "18" "19" "20"

[21] "21" "22" "23" "24" "25" "26" "27" "28" "29" "30"

[31] "31" "32" "33" "34" "35" "36" "37" "38" "39" "40"

[41] "41" "42" "43" "44" "45" "46" "47" "48" "49" "50"

[51] "51" "52" "53" "54" "55" "56" "57" "58" "59" "60"

2 a wrapper for the very general read.table method
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[61] "61" "62" "63" "64" "65" "66" "67" "68" "69" "70"

[71] "71" "72" "73" "74" "75" "76" "77" "78" "79" "80"

[81] "81" "82" "83" "84" "85" "86" "87" "88" "89" "90"

[91] "91" "92" "93" "94" "95" "96" "97" "98" "99" "100"

[101] "101" "102" "103" "104" "105" "106" "107" "108" "109" "110"

[111] "111" "112" "113" "114" "115" "116" "117" "118" "119" "120"

[121] "121" "122" "123" "124" "125" "126" "127" "128" "129" "130"

[131] "131" "132" "133" "134" "135" "136" "137" "138" "139" "140"

[141] "141" "142" "143" "144" "145" "146" "147"

Each variable has a name, which the import method read.csv reads from the
first line of the CSV file; by default the first field (here, the observation number)
is used as the row name (which can be accessed with the row.names method) and
is not listed as a variable. The suffixes 1, 2, and 5 on the variable name roots
Clay, CEC, and OC refer to the lower boundary of three depths, in dm; e.g. OC5 is
the organic C content of the 30–50 cm (3–5 dm) layer.

Each variable also has a data type. The import method attempts to infer the
data type from the format of the data. In this case it correctly found that LC is
a factor, i.e. has fixed set of codes. But it identified zone and wrb1 as integers,
when in fact these are coded factors. That is, the ‘numbers’ 1, 2, . . . are just
codes. R should be informed of their correct data type, which is important in
linear models (§5.5) and analysis of variance (§6). In the case of the soils, we can
also change the uninformative integers to more meaningful abbrevations, namely
the first letter of the Reference Group name:

> obs$zone <- as.factor(obs$zone)

> obs$wrb1 <- factor(obs$wrb1, labels=c("a", "c", "f"))

Q3 : What are the names, data types and numerical precision of the clay contents
at the three depths? Jump to A3 •

Q4 : What are the names, data types and numerical precision of the cation
exchange capacities at the three depths? Jump to A4 •

You can save this as an R data object, so it can be read directly by R (not
imported) with the load method; this will preserve the corrected data types.

> save(obs, file="obs.RData")

You can recover this dataset in another R session with the command:

> load(file="obs.RData")

2.2 A normalized database structure*

If you are familiar with relational database theory, the structure of our dataset
may have bothered you, because it mixes the sample depth with the variable. For
example, there are three fields for clay content (Clay1, Clay2, and Clay5), and
similarly for organic C and CEC. How could we plot, for example, clay against
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CEC for all the horizons together? There are several shortcuts but the most
general solution is to change the database structure into a normalized set of
relational tables:

1. The observation points, with a primary key that uniquely identifies the
observation , with attributes that apply to the whole observation, namely:

(a) the coordinates e and n

(b) the elevation elev

(c) the agro-ecological zone zone

(d) the soil group wrb1

(e) the land cover class LC

2. The layers, with a primary key made up of the primary key from the first
table and the layer identification (1, 2, or 5), with attributes that apply to
the horizon, namely:

(a) Clay

(b) CEC

(c) OC

Note that the first field of this primary key is also the foreign key into the
first table.

For convenience we will also keep the original database structure for many of the
analyses in this note.

There are several ways to do this in R; we will use the very flexible reshape

method.

However, we first need to assign an observation ID to each record in the original
table to use as the primary key. Here we can just use the row number:

> plot.id <- 1:dim(obs)[1]

Now we make the first table from those attributes of the observations that do not
vary with layer:

> t.obs <- cbind(plot.id, obs[, 1:6])

> str(t.obs)

'data.frame': 147 obs. of 7 variables:

$ plot.id: int 1 2 3 4 5 6 7 8 9 10 ...

$ e : int 702638 701659 703488 703421 703358 702334 681328 681508 681230 683989 ...

$ n : int 326959 326772 322133 322508 322846 324551 311602 311295 311053 311685 ...

$ elev : int 657 628 840 707 670 780 720 657 600 720 ...

$ zone : Factor w/ 4 levels "1","2","3","4": 2 2 1 1 2 1 1 2 2 1 ...

$ wrb1 : Factor w/ 3 levels "a","c","f": 3 3 3 3 3 3 3 3 3 3 ...

$ LC : Factor w/ 8 levels "BF","CF","FF",..: 3 3 4 4 4 4 3 3 4 4 ...
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Now we reshape the remainder of the fields into “long” format, beginning the plot
ID (which is repeated three times, once for each layer), and dropping the fields
that do not apply to the layers:

> t.layers <- cbind(plot.id = rep(plot.id, 3),

+ reshape(obs, direction="long",

+ drop=c("e", "n", "elev", "zone", "wrb1", "LC"),

+ varying=list(c("Clay1","Clay2","Clay5"),

+ c("CEC1", "CEC2", "CEC5"), c("OC1", "OC2", "OC5")),

+ times=c("1", "2", "5")))

> names(t.layers)[2:5] <- c("layer", "Clay", "CEC", "OC")

> t.layers$layer <- as.factor(t.layers$layer)

> str(t.layers)

'data.frame': 441 obs. of 6 variables:

$ plot.id: int 1 2 3 4 5 6 7 8 9 10 ...

$ layer : Factor w/ 3 levels "1","2","5": 1 1 1 1 1 1 1 1 1 1 ...

$ Clay : int 72 71 61 55 47 49 63 59 46 62 ...

$ CEC : num 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9 ...

$ OC : num 5.5 3.2 6.98 3.19 4.4 5.31 4.55 4.5 2.3 7.34 ...

$ id : int 1 2 3 4 5 6 7 8 9 10 ...

The reshape method automatically created a new field id to uniquely identify
the sample in the “long” format; there are 441 of these. It also created a field
times to identify the vector from which each sample originated; this name due
to reshape’s primary use with time series data. We renamed this field layer.

We now have a relational database structure, from which we can build temporary
dataframes for a variety of queries.

Finally, we remove the temporary variable, and save the normalized data to a file
as an R object:

> rm(plot.id)

> save(t.obs, t.layers, file="t.RData")

Answers

A1 : The first line is a list of quoted field (variable) names, separated by commas. For
example, the first field is named "e". There are 15 field names. Return to Q1 •

A2 : The other lines are the observations (1 . . .147); each observation is a list of values,
one per field. There are 16 fields; the first is the observation ID, which has no name on
the first line. Return to Q2 •

A3 : The clay contents are Clay1, Clay2, and Clay5; these are integers (type int);
their precision is 1%, i.e. they are specified to the nearest integer percent. Return to
Q3 •

A4 : The cation exchange capacities are CEC1, CEC2, and CEC5; these are floating-point
numbers (type num); their precision is 0.1 cmol+ (kg soil)-1 . Return to Q4 •
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3 Research questions

A statistical analysis may be descriptive, simply reporting, visualizing and sum-
marizing a data set, but usually it is also inferential ; that is, statistical proce-
dures are used as evidence to answer research questions. The most important of
these are generally formulated by the researcher before data collection; indeed
the sampling plan (number, location, strata, physical size) and data items should
be motivated by the research questions. Of course, during field work or analysis
other questions may suggest themselves from the data.

The data set for this case study was intended to answer at least the following
research questions:

1. What are the values of soil properties important for agricultural production
and soil ecology in the study area? In particular, the organic matter content
(OM), proportion of clay vs. sand and silt (Clay), and the cation exchange
capacity (CEC) in the upper 50 cm of the soil.3

� OM promotes good soil structure, easy tillage, rapid infiltration and
reduced runoff (hence less soil loss by surface water erosion); it also
adsorbs nutrient cations and is a direct source of Nitrogen;

� The proportion of clay has a major influence on soil structure, hard-
ness, infiltration vs. runoff; almost all the nutrient cations not adsorbed
on the OM are exchanged via the clay;

� CEC is a direct measure of how well the soil can adsorb added cations
from burned ash, natural animal and green manures, and artificial
fertilizers.

2. What is the inter-relation (association, correlation) between these three
variables? How much total information do they provide?

3. How well can CEC be predicted by OM, Clay, or both?

4. What is the depth profile of these variables? Are they constant over the
first 50 cm depth; if not, how do they vary with depth?

5. Four agro-ecological zones and three major soil groups have been identified
by previous mapping. Do the soil properties differ among these? If so, how
much? Can the zones or soils groups be grouped or are they all different?

6. Each observation is located geographically. Is there a trend in any of the
properties across the region? If so, how much variation does it explain, in
which direction is it, and how rapidly does the property vary with distance?

7. Before or after taking any trend into account, is there any local spatial
dependence in any of the variables?

These statistical question can then be used with knowledge of processes and
causes to answer another set of research questions, more closely related to prac-
tical concerns or scientific knowledge:

3 Note that the original data set included many more soil properties.
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8. Is it necessary to do the (expensive) lab. procedure for CEC, or can it be
predicted satisfactorily from the cheaper determinations for Clay and OM
(or just one of these)?

9. Is it necessary to sample at depth, or can the values at depth be calculated
from the values in the surface layer? If so, the cost of soil sampling could
be greatly reduced.

10. Are the agro-ecological zones and/or soil maps a useful basis for predicting
soil behaviour, and therefore a useful stratification for recommendations?

11. What soil-forming factor explains any regional trend?

12. What soil-forming factor explains any local spatial dependence?

Finally, the statistical questions can be used to predict :

13. How well can CEC be predicted by OM, Clay, or both?

14. What are the expected values of the soil properties, and the uncertainties
of these predictions, at unvisited locations in the study area?

The last question can be answered by a predictive map.

4 Univariarte Analysis

Here we consider each variable separately.

4.1 Univariarte Exploratory Data Analysis

Task 4 : Summarise the clay contents at the three depths. •

To save typing, we first attach the obs data frame; this makes the field names
in the data frame visible in the outer R environment; e.g. when we type Clay1,
this field of the attached frame is accessed; otherwise we would have had to type
obs$Clay1.

> attach(obs)

> summary(Clay1); summary(Clay2); summary(Clay5)

Min. 1st Qu. Median Mean 3rd Qu. Max.

10.0 21.0 30.0 31.3 39.0 72.0

Min. 1st Qu. Median Mean 3rd Qu. Max.

8.0 27.0 36.0 36.7 47.0 75.0

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.0 36.5 44.0 44.7 54.0 80.0

Q5 : What does the summary say about the trend of clay content with depth?
Jump to A5 •
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Q6 : What evidence does the summary give that the distribution is somewhat
symmetric? Jump to A6 •

Task 5 : Visualise the distribution of the topsoil clay content with a stem-and-leaf
plot and a histogram. •

> stem(Clay1); hist(Clay1)

The decimal point is 1 digit(s) to the right of the |

1 | 000222233333444

1 | 55555567788889999

2 | 000011112222233344444

2 | 555555555566788999

3 | 0000000112222333333334444

3 | 556666677889999

4 | 022233334

4 | 55555667899

5 | 02334

5 | 55689

6 | 123

6 | 7

7 | 12

> hist(Clay1)

Histogram of Clay1
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Q7 : Does the distribution look symmetric? skewed? peaked? Jump to A7 •

It’s easy to produce a much nicer and informative histogram:
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All R graphics, including histograms, can be enhanced. Here we change the break
points with the breaks argument, the colour of the bars with the col argument,
the colour of the border with the border argument, and supply a title with the
main argument; we then add a rug plot (with, what else?, the rug method) along
the x-axis to show the actual observations.

> hist(Clay1, breaks=seq(0, 96, by=8), col="darkgray", border="black",

+ main="Clay proportion in surface soil, weight %")

> rug(Clay1)

Clay proportion in surface soil, weight %
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Note the use of the seq (“sequence”) method to make a list of break points. The
main= argument is used to specify the main title; there is also a sub= argument
for a subtitle.

Note: To see the list of named colours, use the colors command with no argu-
ment: colors(). There are many other ways to specify colours; see Rossiter [30,
§5.5] and ?colors.

Finally, we display a histogram with the actual counts. We first compute the
histogram but don’t plot it (plot=F argument), then draw it with the plot com-
mand, specifying a colour ramp, which uses the computed counts, and a title.
Then the text command adds text to the plot at (x, y) positions computed
from the class mid-points and counts; the pos=3 argument puts the text on top
of the bar.

> h <- hist(Clay1, breaks=seq(0, 96, by=8), plot=F)

> str(h)

List of 6

$ breaks : num [1:13] 0 8 16 24 32 40 48 56 64 72 ...

$ counts : int [1:12] 0 22 31 31 28 17 10 5 3 0 ...

$ density : num [1:12] 0 0.0187 0.0264 0.0264 0.0238 ...

$ mids : num [1:12] 4 12 20 28 36 44 52 60 68 76 ...
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$ xname : chr "Clay1"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

> plot(h, col = heat.colors(length(h$mids))[length(h$count)-rank(h$count)+1],

+ ylim = c(0, max(h$count)+5),

+ main="Clay proportion in surface soil, weight %",

+ sub="Counts shown above bar, actual values shown with rug plot")

> rug(Clay1)

> text(h$mids, h$count, h$count, pos=3)

> rm(h)

Clay proportion in surface soil, weight %

Counts shown above bar, actual values shown with rug plot
Clay1
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We can see that there are a few unusually high values. The record for these
should be examined to see if there is anything unusual about it.

Task 6 : Display the entire record for observations with clay content of the
topsoil over 65%. •

There are (at least) two ways to do this. First we show the easy way, with a
condition to select rows:

> obs[Clay1 > 65, ]

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

1 702638 326959 657 2 f FF 72 74 78 13.6 10.1 7.1

2 701659 326772 628 2 f FF 71 75 80 12.6 8.2 7.4

106 696707 327780 623 2 f FV 67 70 73 22.0 13.0 11.0

OC1 OC2 OC5

1 5.5 3.1 1.5

2 3.2 1.7 1.0

106 4.8 2.1 1.2

We can get the same effect by identifying the rows and then using these as row
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indices:

> (ix <- which(Clay1 > 65)); obs[ix, ]

[1] 1 2 106

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

1 702638 326959 657 2 f FF 72 74 78 13.6 10.1 7.1

2 701659 326772 628 2 f FF 71 75 80 12.6 8.2 7.4

106 696707 327780 623 2 f FV 67 70 73 22.0 13.0 11.0

OC1 OC2 OC5

1 5.5 3.1 1.5

2 3.2 1.7 1.0

106 4.8 2.1 1.2

Q8 : Which are the unusual observations? Is there any evidence of errors in
data entry? Why or why not? Jump to A8 •

Other exploratory graphics There are several other ways to view the distribu-
tion of a single variable in a histogram:

1. We can specify the number of histogram bins and their limits.

2. We can view the histogram as a probability density rather than a frequency
(actual number of cases); this makes it easier to compare histograms with
different numbers of observations.

3. We can compare the actual distribution of a variable to a theoretical dis-
tribution with a quantile-quantile plot.

4. We can fit empirical kernel density estimator curves, which give a more-or-
less smoothed continuous approximation to the histogram.

Task 7 : Show the distribution as a boxplot. Plot the histogram with bins of
5% clay, with kernel density estimators. Make a quantile-quantile plot for both
the normal and lognormal distributions. •

> par(mfrow=c(2,2))

> boxplot(Clay1, notch=T, horizontal=T,

+ main="Boxplot of Clay 0-10cm")

> #

> hist(Clay1, freq=F, breaks=seq(0,100,5),

+ main="Probability density for Clay 0-10cm")

> lines(density(Clay1),lwd=2)

> lines(density(Clay1, adj=.5),lwd=1)

> lines(density(Clay1, adj=2),lwd=1.5)

> #

> qqnorm(Clay1, main="QQ plot for Clay 0-10cm vs Normal distribution",

+ ylab="Clay %, 0-10cm")

> qqline(Clay1, col=4)

> #

> qqnorm(log(Clay1), main="QQ plot for Clay 0-10cm vs lognormal distribution",

+ ylab="log(Clay %), 0-10cm")
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> qqline(log(Clay1), col=4)

> par(mfrow=c(1,1))

●●●

10 20 30 40 50 60 70

Boxplot of Clay 0−10cm Probability density for Clay 0−10cm

Clay1

D
en

si
ty

0 20 40 60 80 100

0.
00

0.
01

0.
02

0.
03

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

10
20

30
40

50
60

70

QQ plot for Clay 0−10cm vs Normal distribution

Theoretical Quantiles

C
la

y 
%

, 0
−

10
cm

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−2 −1 0 1 2

2.
5

3.
0

3.
5

4.
0

QQ plot for Clay 0−10cm vs lognormal distribution

Theoretical Quantiles

lo
g(

C
la

y 
%

),
 0

−
10

cm

The boxplot (upper-left) matches the histogram: the distribution is right-skewed.
The three largest observations are shown as boxplot outliers, i.e. they are more
than 1.5 times the inter-quartile range (width of the box) larger than the 3rd

quartile. This is just a technical measure: they are boxplot outliers, but this does
not necessarily mean that they are part of a different population. In particular,
a few boxplot outliers are expected in the direction of skew.

Q9 : Does the distribution look normal or lognormal? What does this imply for
the underlying natural process? Jump to A9 •

Exercise 1 : Repeat the analysis with the clay content of the 10–20 cm or 30–
50 cm layers; comment on any differences with the distribution in the 0–10 cm
layer.

4.2 Point estimation; inference of the mean

When computing summary statistics (§4.1), we calculated a sample mean; this is
simply a descriptive statistic for that sample. If we go one step further, we can
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ask what is the best estimate of the population mean, given this sample from that
population; this is an example of point estimation. We may also make inferences
about the true (but unknown) mean of the population: is it equal to a known
value, or perhaps higher or lower?

For small samples, inference must be based on the t-distribution. The null hy-
pothesis can be a value known from theory, literature, or previous studies.

Task 8 : Compute the best estimate of the population mean of topsoil clay
content from this sample, its 99% confidence interval, and the probability that it
is not equal to 30% clay. •

> t.test(Clay1, mu=30, conf.level=.99)

One Sample t-test

data: Clay1

t = 1.11, df = 146, p-value = 0.27

alternative hypothesis: true mean is not equal to 30

99 percent confidence interval:

28.272 34.272

sample estimates:

mean of x

31.272

Q10 : What is the estimated population mean and its 99% confidence interval?
Express this in plain language. What is the probability that we would commit
a Type I error if we reject the null hypothesis that the population mean is 30%
clay? Jump to A10 •

Sometimes we are interested in the mean with relation to a set threshold value;
this usually comes from external considerations such a regulations or an existing
classification system.

Q11 : What is the probability that the true population mean is less than 35%
clay? (Hint: use the alternative="less" argument to the t.test method.)

Jump to A11 •

4.3 Answers

A5 : It increases with depth, as evidenced by the mean, quartiles including the median,
and maximum. Return to Q5 •

A6 : The mean and median are almost equal. Return to Q6 •

A7 : Both the stem-and-leaf plot and the histogram show that, compared to a normal
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distribution, this is skewed towards positive values and with a lower peak. Return to
Q7 •

A8 : Observations 1, 2, and 106 in the list of 147 observations have surface clay contents
over 65%. These seem consistent with the clay contents of the other layers, so there is
no evidence of a data entry error. Return to Q8 •

A9 : It is not normal; especially at the lower tail of the normal distribution where
values are too high. This implies that clay content of the topsoil does not simply reflect
an addition of many small errors.

It is not lognormal; especially at the upper tail of the lognormal distribution where
values are too low. This implies that clay content of the topsoil does not simply reflect
a multiplication of many small errors. So, there should be some underlying process, i.e.
an identifiable cause of the variation across the sample set. Return to Q9 •

A10 : The best estimate of the mean is 31.3% clay. With only 1% chance of being
wrong, we assert that the true mean is between about 28.3 and 34.3% clay. We can not
reject the null hypothesis; if we do, there is about a 0.27 probability (more than 1 in 4)
that we are wrong. Return to Q10 •

A11 : p = 0.00073, i.e. it is almost certain that the mean is below this threshold.
Return to Q11 •

5 Bivariate correlation and regression

Now we consider the relation between two variables. This is the cause of much
confusion and incorrect analysis.

5.1 Conceptual issues in correlation and regression

Correlation and various kinds of regression are often misused. There are several
good journal articles that explain the situation, with examples from earth science
applications [21, 36]. A particularly understandable introduction to the proper
use of regression is by Webster [37], whose notation we will use.

Bivariate correlation and regression both compare two variables that refer to
the same observations, that is, they are paired. This is the natural order in a
data frame: each row represents one observation on which several variables were
measured; in the present case, the coördinates, clay contents, organic matter
contents, and CEC at three depths, so we can use the sample to ask about the
relation between these variables in the whole population.

First we discuss the key issues; then we resume the analysis in §5.2.

Description vs. prediction, relation vs. causation Regression analysis can be
used for two main purposes:

1. To describe a relation between two or more variables;
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2. To predict the value of a variable (the predictand, sometimes called the
dependent variable or response), based on one or more other variables (the
predictors, sometimes called independent variables.

So the analyst must first decide whether the results of the analysis will be used
predict or not. These can lead to different mathematical procedures.

Another pair of concepts which are sometimes confused with the above are related
to the philosophical issues of knowledge:

1. The relation between two or more variables, often described mathematically
as the correlation (‘co-relation’);

2. The causation of one variable by another.

This second pair is a much stronger distinction than the first. The issue of
causation must also involve some conceptual model of how the two phenomena
are related. Statistics can never prove causation; it can only provide evidence for
the strength of a causative relation supported by other evidence.

Types of models A simple correlation or regression relates two variables only;
a multiple correlation or regression relates several variables at the same time.
Modelling and interpretations are much trickier in the multivariate case, because
of the inter-relations between the variables.

A linear relation models one variable as a linear function of one or several other
variables. That is, a proportional change in the predictor results in a propor-
tional change in the predictand or the modelled variable. Any other relation is
non-linear, but there is controversy over the use of this term. In particular, a
polynomial model, where one variable is modelled as a sum of one or more powers
of one or more other variables, is termed curvilinear and is usually considered a
linear model.

Non-linear relations may be linearisable by means of a transformation of one
or more variables, but in many interesting cases this is not possible; these are
intrinsically non-linear.

Fixed vs. random variables* An important distinction is made between pre-
dictors which are known without error, whether fixed by the experimenter or
measured, and those that are not. Webster [37] calls the first type a “Gauss
linear model”, because only the predictand has error, whereas the predictor is a
mathematical variable, as opposed to a random variable which is measured with
error. The regression goes in one direction only, from the mathematical predictor
to the random response, and is modelled by a linear model with error:

yi = BXi + εi

of which the simplest case is a line with intercept:

yi = β0 + β1xi + εi
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Note that there is no error associated with the predictors xi, only with the
predictand yi. Thus the predictors are assumed to be known without error, or at
least the error is quite small in comparison to the error in the model. An example
of this type is a designed agricultural experiment where the quantity of fertiliser
added (the predictor) is specified by the design and the crop yield is measured
(the predictand); there is random error εi in this response.

An example of the second type is where the crop yield is the predictand, but the
predictor is the measured nutrient content of the soil. Here we are modelling the
relation as a bivariate normal distribution of two random variables, X and Y with
(unknown) population means µX and µY , (unknown) population variances σX and
σY , and an (unknown) correlation ρXY which is computed as the standardised
(unknown) covariance Cov(X, Y):

X ∼ N (µX , σX)
Y ∼ N (µY , σY )

ρXY = Cov(X, Y)/σXσY

In practice, the distinction between the two models is not always clear. The
predictor, even if specified by the experimenter, can also have some measurement
error. In the fertiliser experiment, even though we specify the amount per plot,
there is error in measuring, transporting, and spreading it. In that sense it can
be considered a random variable. But, since we have some control over it, the
experimental error can be limited by careful procedures. We can not limit the
error in the response by the same techniques.

5.2 Bivariate Exploratory Data Analysis

The first question in the analysis is the relation between clay content in the three
layers. We could have several specific questions:

1. Are the clay contents between layers positively, negatively, or not related?
E.g. if the topsoil is high in clay, does that imply that the subsoil is high
also? low? or that we can’t tell.

2. How can we explain this relation? I.e., what does it imply for soil formation
in this area?

3. How well can we predict the subsoil clay from the topsoil? If we can do this,
it would save fieldwork (having to auger half a meter from the surface) and
laboratory work (having to analyse another sample).

4. What is the predictive equation?

Note that the second question, requiring a conceptual model and support from
other information, is much harder to answer than the first, requiring only a
mathematical manipulation.

Task 9 : View the relation between layers. •
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Here are two ways to show the same scatterplot; in the second we specify the
plotting limits of each axis. We also show the inverted plots. In all graphs we
show the 1:1 line and the means of both variables. We plot these all in the same
figure, using the mfrow argument to the par (“graphics parameters”) method on
the open graphics device.

Note: To see all the possible printing characters (the pch= argument to plot),
run the command example(plot.)

> par(mfrow=c(2,2)) # 2x2 matrix of plots in one figure

> #

> plot(Clay1,Clay2); abline(0,1,lty=2);

> title("default axes, subsoil vs. topsoil")

> abline(h=mean(Clay2)); abline(v=mean(Clay1))

> #

> plot(Clay1,Clay2,xlim=c(0,100),ylim=c(0,100),pch=20); abline(0,1,lty=2)

> title("axes 0..100, subsoil vs. topsoil")

> abline(h=mean(Clay2)); abline(v=mean(Clay1))

> #

> plot(Clay2,Clay1); abline(0,1,lty=2)

> title("default axes, topsoil vs. subsoil")

> abline(h=mean(Clay1)); abline(v=mean(Clay2))

> #

> plot(Clay2,Clay1,xlim=c(0,100),ylim=c(0,100),pch=20); abline(0,1,lty=2)

> title("axes 0..100, topsoil vs. subsoil")

> abline(h=mean(Clay1)); abline(v=mean(Clay2))

> #

> par(mfrow=c(1,1)) # reset to 1 plot per figure
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Q12 : Describe the relation in words. Jump to A12 •

Task 10 : Optional but interesting: View the relation between layers, showing
whether it is the same for each of the three soil classes (code wrb1). •

We can show the soil class either by symbol or by colour (or both); here we
compare the three methods on one plot:

> par(mfrow=c(2,2))

> #

> plot(Clay1, Clay2, xlim=c(0,80), ylim=c(0,80),

+ pch=as.numeric(wrb1))

> abline(0,1,lty=2)

> abline(h=mean(Clay2)); abline(v=mean(Clay1))

> legend(60, 20, legend=levels(wrb1), pch=1:nlevels(wrb1), bty="n")

> #

> plot(Clay1, Clay2, xlim=c(0,80), ylim=c(0,80), pch=20,

+ col=as.numeric(wrb1))
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> legend(60, 20, legend=levels(wrb1), pch=20,

+ col=1:nlevels(wrb1), bty="n")

> abline(0, 1, lty=2)

> abline(h=mean(Clay2)); abline(v=mean(Clay1))

> #

> plot(Clay1, Clay2, xlim=c(0,80), ylim=c(0,80),

+ pch=as.numeric(wrb1), col=as.numeric(wrb1))

> abline(0, 1, lty=2, col=5)

> abline(h=mean(Clay2)); abline(v=mean(Clay1))

> legend(60, 20, levels(wrb1), pch=1:nlevels(wrb1),

+ col=1:nlevels(wrb1), bty="n")

> #

> par(mfrow=c(1,1))
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Note the use of the levels method to extract the soil codes for use in the legend,
and the use of the as.numeric method to convert the soil code to an integer for
use with the col= and pch= graphics parameters.

Q13 : Is there any difference in the relation between soil classes? Jump to A13
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•

5.3 Bivariate Correlation Analysis

If the two variables to be correlated are numeric and relatively symmetric, we use
the standard Pearson’s product-moment correlation.

The sample covariance is computed as:

Cov(X, Y) = 1
n− 1

n∑
i=1

{(xi − x̄)(yi − ȳ)}

and then the sample Pearson’s correlation coefficient is computed as:

rXY = Cov(X, Y)/sX · sY

Task 11 : Compute the Pearson’s correlation between the clay contents of the
topsoil and subsoil. Test whether this correlation is significant. •

First we compute the correlation from the sample covariance (computed with
the cov method) and standard deviations (computed with the sd method), to
show how the definition works, then we use the cor.test method to compute a
confidence interval.

> sum((Clay2-mean(Clay2))*(Clay1-mean(Clay1)))/(length(Clay2)-1)

[1] 190.74

> cov(Clay1,Clay2)

[1] 190.74

> sd(Clay1); sd(Clay2)

[1] 13.936

[1] 14.626

> cov(Clay1,Clay2)/(sd(Clay1)*sd(Clay2))

[1] 0.9358

> cor(Clay1,Clay2)

[1] 0.9358

> cor.test(Clay1,Clay2)

Pearson's product-moment correlation

data: Clay1 and Clay2

t = 32, df = 145, p-value <2e-16

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.91208 0.95327
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sample estimates:

cor

0.9358

Q14 : According to this test, what is the probability that the two clay contents,
in the population from which this sample was taken, are in fact not correlated?

Jump to A14 •

Q15 : What is the best estimate for the population correlation coefficient? With
only 5% probability of being wrong, what are the lowest and highest values this
coefficient could in fact have? Jump to A15 •

5.4 Fitting a regression line

When we decide to consider one of the variables as as a response and the other
as a predictor, we attempt to fit a line that best describes this relation. There
are three types of lines we can fit, usually in this order:

1. Exploratory, non-parametric

2. Parametric

3. Robust

The first kind just gives a “smooth” impression of the relation. The second fits
according to some optimality criterion; the classic least-squares estimate is in
this class. The third is also parametric but optimises some criterion that protects
against a few unusual data values in favour of the majority of the data.

A common non-parametric fit is the LOWESS (“locally weighted regression and
smoothing scatterplots”) [35], computed by R method lowess. This has a user-
adjustable parameter, the smoother’s “span”, which is the proportion of points
in the plot which influence the smooth at each value; larger values result in a
smoother plot. This allows us to visualise the relation either up close (low value
of parameter) or more generally (high). The default is 2/3.

Task 12 : Plot subsoil vs. surface soil clay with the default smooth line. Show
the soil type of each point by its colour. For comparison, plot the least-squares
fit with a thin dashed line (n.b. this is not explained until 5.5). •

> plot(Clay2 ~ Clay1, pch=20,col=as.numeric(wrb1))

> legend(60, 20, legend=levels(wrb1), pch=20, col=1:nlevels(wrb1), bty="n")

> lines(lowess(Clay1, Clay2), lwd=2, col="blue")

> abline(lm(Clay2 ~ Clay1), lty=2)
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Q16 : What is the difference between the “best” line and the smooth fit? Does
the smooth fit provide evidence that the different soil types might have different
relations between subsoil and surface soil clay content? Jump to A16 •

Task 13 : Plot subsoil vs. surface soil clay with the default smooth line and with
1/10, 1/2, and all the points contributing to the fit. •

> plot(Clay1,Clay2,pch=20,col=as.numeric(wrb1))

> legend(60, 20, legend=levels(wrb1),pch=20, col=1:3,bty="n")

> for (f in c(0.1, .5, 2/3, 1)) {

+ lines(lowess(Clay1, Clay2, f=f), lwd=2) }

> abline(lm(Clay2 ~ Clay1), lty=2)
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Q17 : What happens as the smoothness parameter changes? Which value gives
the best visualisation in this case? Jump to A17 •

5.5 Bivariate Linear Regression

Both subsoil and topsoil clay are measured with the same error, so the bivariate
normal model is appropriate. That means we can compute the regression in both
directions.

Subsoil as predicted by topsoil We may want to predict subsoil clay from topsoil
clay. If we can establish this relation, we wouldn’t have to sample the subsoil,
just the topsoil; this is easier and also saves laboratory analysis.

Task 14 : Compute the ordinary least-squares (OLS) linear regression of subsoil
clay on surface soil clay •

The lm method by default computes the OLS solution:

> lm21<-lm(Clay2 ~ Clay1)

> summary(lm21)

Call:

lm(formula = Clay2 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-17.499 -3.463 0.143 2.662 17.269

Coefficients:

Estimate Std. Error t value Pr(>|t|)
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(Intercept) 6.0354 1.0514 5.74 5.3e-08 ***

Clay1 0.9821 0.0307 31.96 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.17 on 145 degrees of freedom

Multiple R-squared: 0.876, Adjusted R-squared: 0.875

F-statistic: 1.02e+03 on 1 and 145 DF, p-value: <2e-16

Q18 : What is the best predictive equation for subsoil clay, given topsoil clay?
Jump to A18 •

Q19 : Express this in plain language: (1) How much subsoil clay is predicted for
a soil with no topsoil clay? (2) How much does subsoil clay increase for a given
increase in topsoil clay? Jump to A19 •

Q20 : How much of the total variation in subsoil clay among the 147 samples is
explained by topsoil clay? Jump to A20 •

Visualising the regression Here we show what the regression line looks like, and
visualise the sense it which it is the “best” possible line.

Task 15 : Plot the least-squares regression line on the scatterplot of subsoil vs.
topsoil clay, showing the residuals (distance to best-fit line). •

> plot(Clay1, Clay2, pch=20)

> title("Ordinary least-squares regression, subsoil vs. topsoil clay")

> abline(lm21)

> segments(Clay1, Clay2, Clay1, fitted(lm21), lty=2)
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Ordinary least−squares regression, subsoil vs. topsoil clay

Q21 : What would happen to the total length of the residual lines if the “best-fit”
regression line were moved up or down (changed intercept) or if its slope were
changed? Jump to A21 •

Reversing the regression: topsoil as predicted by subsoil As explained above,
mathematically we can compute the regression in either direction.

Task 16 : Compute the regression of topsoil on subsoil clay •

This is the inverse of the previous regression.

> lm12<-lm(Clay1 ~ Clay2) ; summary(lm12)

Call:

lm(formula = Clay1 ~ Clay2)

Residuals:

Min 1Q Median 3Q Max

-17.172 -2.534 -0.097 2.795 15.445

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.4949 1.1028 -1.36 0.18

Clay2 0.8917 0.0279 31.96 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.93 on 145 degrees of freedom

Multiple R-squared: 0.876, Adjusted R-squared: 0.875

F-statistic: 1.02e+03 on 1 and 145 DF, p-value: <2e-16
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Q22 : What is the best predictive equation for topsoil clay, given subsoil clay?
Jump to A22 •

Q23 : Express this in plain language: (1) How much topsoil clay is predicted for
a soil with no subsoil clay? (2) How much does topsoil clay increase for a given
increase in subsoil clay? Jump to A23 •

Q24 : How much of the total variation in subsoil clay among the 147 samples is
explained by topsoil clay? Jump to A24 •

Task 17 : Explain the differences between the two relations. •

Q25 : Wait a minute! The first equation says that subsoil clay is about 6% higher
than topsoil, while the second one says that topsoil is about 1.5% lower than the
subsoil. Shouldn’t these two equations give the same difference? Jump to A25 •

Q26 : Wait a minute! The first equation says that the proportional increase in
subsoil clay for 1% in topsoil is about 0.98%; the inverse of this is 1/0.98 = 1.02,
yet the second equation says the proportional increase in topsoil clay for 1% in
subsoil is only 0.89%. Shouldn’t these two equations give the same slope? Jump
to A26 •

5.6 Bivariate Regression Analysis from scratch*

In this optional section we compute the regression coefficients directly from their
definitions, rather than using the lm() function. This gives a better insight into
the meaning of the coefficients. In practice, we would use the lm() function.

Task 18 : Compute the sample variance for both variables, and their sample
covariance. These will be used to compute the regressions. •

> s2x<-var(Clay1); s2x

[1] 194.21

> s2y<-var(Clay2); s2y

[1] 213.92

> sxy<-var(Clay1,Clay2); sxy

[1] 190.74
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Note that the variances are of similar magnitude. We can compute the variances
and co-variances directly from their definitions, just to check that R is doing the
right thing. This is a nice illustration of R’s implicit vector arithmetic:

> sum((Clay1-mean(Clay1))^2)/(length(Clay1)-1)

[1] 194.21

> sum((Clay2-mean(Clay2))^2)/(length(Clay2)-1)

[1] 213.92

> sum((Clay2-mean(Clay2))*(Clay1-mean(Clay1)))/(length(Clay1)-1)

[1] 190.74

Task 19 : Compute the slopes and intercepts (y on x and x on y). •

For the regression of y on x, these are estimated by from the sample covariance
and variances as:

β̂Y .x = sXY /s2
x

α̂Y .x = ȳ − β̂Y .xx̄

For the inverse regression, i.e. x on y , the estimates are:

β̂X.y = sXY /s2
y

α̂X.y = x̄ − β̂X.y ȳ

Note that in both cases the regression line passes through the centroid estimated
by the means, i.e. (x̄, ȳ).

We compute these in R from the sample variances and covariances calculated
above:

> byx<-sxy/s2x; byx

[1] 0.98212

> ayx<-mean(Clay2)-byx*mean(Clay1); ayx

[1] 6.0354

> bxy<-sxy/s2y; bxy

[1] 0.89166

> axy<-mean(Clay1)-bxy*mean(Clay2); axy

[1] -1.4949

These are the same coefficients we got from the lm method.
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5.7 Regression diagnostics

The lm method will usually compute a fit, i.e. give us the mathematical answer
to the question “What is the best linear model to explain the observations?”. The
model’s adjusted R2 tells us how well it fits the observations overall; this is the
highest-possible R2 with the given predictor.

However, the model may not be statistically adequate:

� The fit may not be equally-good over the whole range of observations, i.e.
the error may not be independent of the predictor;

� The assumptions underlying least-squares regression may not be met, in
particular, that the residuals are normally-distributed.

So for any regression, we should examine some diagnostics of its success and
validity. Here we look at (1) the fit to observed data; (2) unusually-large residuals;
(3) distribution of residuals; (4) points with unusual leverage.

5.7.1 Fit to observed data

The first diagnostic is how well the model fits the data; this is the success of the
model conditional on the sample data; this does not yet say how well the model
is expected to fit the entire population.

The fitted method applied to a linear model object returns values predicted by
a model at the observation values of the predictor. This is applied to an object
saved from the lm method. Similarly, the resid method returns the residuals,
defined as the fitted values less the actual values.

Task 20 : Compute the predicted subsoil clay content for each observation, and
compare it graphically with the observed subsoil clay content. •

> plot(fitted(lm21),Clay2,pch=20,xlab="Fitted",ylab="Observed",

+ xlim=c(5,85),ylim=c(5,85),main="Observed vs. Fitted Clay %, 0-10cm")

> abline(0,1)

> segments(fitted(lm21),Clay2,fitted(lm21),fitted(lm21))
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Note: The segments method draws segments from the (x, y) coordinates given
by the first two arguments, to the (x, y) coordinates given by the second pair.
In this example, all four are equal-length vectors (one for each observation), so
the method acts on each pair in turn. The beginning point of each segment is
at (fitted, observed), while the second is at (fitted, fitted), so that the line is the
vertical residual.

Q27 : What should be the relation between the predicted and observed? Do you
see any discrepancies? Jump to A27 •

5.7.2 Large residuals

The absolute residuals, defined for observation xi as ei = yi − ŷi (observed less
expected value) give the discrepancy of each fitted point from its observation.
If any are unusually large, it may be that the observation is from a different
population, or that there was some error in making or recording the observation.
These residuals are interpretable directly in terms of the response variable.

Task 21 : Prepare a plot showing the residuals plotted against predicted val-
ues, along with horizontal lines showing ±3,±2,±1 standard deviations of the
residuals. •

The plot produced by the following code also gives the observation number (index
in the data frame) of each observations with unusual residuals; we find these with
the which method. For each of these, we then display their observation number,
actual topsoil and subsoil clay, fitted (predicted) subsoil clay, and the residual.

Note also the use of the col graphics parameter to draw the error lines in different
colours depending on the number of standard deviations (abs method).
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> plot(fitted(lm21), resid(lm21), pch=20, xlab="Fitted", ylab="Residual",

+ main="Regression Residuals vs. Fitted Values, subsoil clay %")

> sdres <- sd(residuals(lm21))

> for (j in -3:3) abline(h=j*sqrt(var(resid(lm21))), col=abs(j)+1)

> ix<-which(abs(resid(lm21))>2*sdres)

> text(fitted(lm21)[ix], resid(lm21)[ix], ix, pos=4)

> cbind(obs[ix,c("Clay1","Clay2")], fit=round(fitted(lm21)[ix],1),

+ resid=round(resid(lm21)[ix],1))

Clay1 Clay2 fit resid

17 20 39 25.7 13.3

81 46 38 51.2 -13.2

119 21 40 26.7 13.3

128 17 40 22.7 17.3

137 42 61 47.3 13.7

138 21 41 26.7 14.3

139 42 60 47.3 12.7

145 30 18 35.5 -17.5

> rm(sdres, ix)
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Q28 : What should this relation be? Does the plot show the expected relation?
Jump to A28 •

Q29 : Which observations have the highest positive and negative residuals? Are
these large enough to have practical significance for soil management? Jump to
A29 •
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5.7.3 Distribution of residuals

Regression residuals should be approximately normally-distributed; that is, the
regression should explain the structure and whatever is left over (the “residue”)
should just be noise, caused by measurement errors or many small uncorrelated
factors. This is precisely the theory of the normal distribution. The normality of
residuals can be checked graphically and numerically.

A simple way to see the distribution of residuals is with a stem plot or histogram,
using the stem function:

Task 22 : Make a stem plot of the residuals. •

> stem(residuals(lm21), scale=2)

The decimal point is at the |

-17 | 5

-16 |

-15 |

-14 |

-13 | 2

-12 |

-11 |

-10 |

-9 |

-8 | 844

-7 | 9861

-6 | 98732

-5 | 8887

-4 | 8888764411

-3 | 98777755552

-2 | 9888877544422110

-1 | 988765442

-0 | 866665442

0 | 1334555568889

1 | 33445566666779

2 | 033444566777777

3 | 244468

4 | 0244446678

5 | 44

6 | 456

7 | 455

8 | 4

9 | 4

10 |

11 |

12 | 7

13 | 337

14 | 3

15 |

16 |

17 | 3
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Note that without the scale=2 optional argument to stem, the wide spread of
residuals causes the stem plot to have one bin for each two integers, which is hard
to interpret.

Q30 : Are the residuals symmetrically-distributed? Do they appear to have a
normal distribution (“bell-shaped curve”)? Jump to A30 •

The most useful graphical tool to examine the normality of the residuals is the
normal quantile-quantile (“Q-Q”) plot of the regression residuals; this shows how
quantiles of the residuals match to what they would be if they were taken from
a normal distribution with mean 0 (by definition of “residual”) and standard
deviation calculated from the sample residuals.

Task 23 : Make a normal quantile-quantile (“Q-Q”) plot of the regression resid-
uals. •

> qqnorm(residuals(lm21))

> qqline(residuals(lm21))
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Q31 : Do the residuals fit the normal distribution? Where are the discrepancies,
if any? Jump to A31 •

The hypothesis of normality can be tested with a variety of methods; these are
not too useful because they often show that the null hypothesis of normality can
be rejected, but the departures from normality may not be too severe.

Task 24 : Use the Shapiro-Wilk normality test of the hypothesis that the resid-
uals are normally-distributed. •

The R function is named shapiro.test:

34



> shapiro.test(residuals(lm21))

Shapiro-Wilk normality test

data: residuals(lm21)

W = 0.969, p-value = 0.0021

This test computes a statistic (“W”) and then compares it against a theoretical
value for a normal distribution. The item in the output that can be interpreted
is the p-value that rejecting the null hypothesis of normality is a Type I error.

Q32 : With what probability can we assert that these residuals are not normally-
distributed? Jump to A32
•

5.7.4 Leverage *

Observations that are far from the centroid of the regression line can have a
large effect on the fits. They are said to have high leverage, by analogy with a
physical lever. These are not necessarily in error, but they should be identified
and verified; in particular, it is instructive to compare the estimated regression
line with and without the high-leverage observations.

The leverage is measured by the hat value, which measures the overall influence of
a single observation on the predictions. Appendix A explains how this is derived.

Computing the leverage with R We can find the hat values for any model with
the hatvalues method. Values more than about three times h̄, which is the
average leverage (k + 1)/n, where k is the number of coefficients in the model,
are quite influential.

Task 25 : Find the high-leverage observations for the regression of subsoil on
topsoil clay. Compare these against the highest and lowest values of the predictor.
Plot the hat values against predictor value. Re-fit the model without the high-
leverage observations and compare the two model coefficients. •

To compute a model with only some of the observations, use the optional subset
argument to the lm method. The subset can either be inclusive (e.g. seq[1:20]
to fit the model from the first twenty observations) or exclusive (e.g. -c(1,5) to
use all the observations except the first and fifth).

> par(mfrow=c(1,2))

> h <- hatvalues(lm21)

> hi.lev <- which(h>3*mean(h)); hi.lev

1 2 7 106

1 2 7 106

> Clay1[hi.lev]

[1] 72 71 63 67
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> (sort.list(Clay1))[(length(Clay1)-5):length(Clay1)]

[1] 3 10 7 106 2 1

> (sort.list(Clay1))[1:5]

[1] 34 39 134 82 114

> #

> plot(Clay1,h); abline(v=mean(Clay1),lty=2)

> abline(h=seq(1:3)*mean(h),col=c(1,4,2))

> points(Clay1[hi.lev],hatvalues(lm21)[hi.lev],pch=20,col=2,cex=2.5)

> text(Clay1[hi.lev],hatvalues(lm21)[hi.lev],paste("obs", hi.lev),adj=1.5)

> #

> plot(Clay1,Clay2); abline(lm21)

> points(Clay1[hi.lev],Clay2[hi.lev],pch=20,col=2,cex=2.5)

> text(Clay1[hi.lev],Clay2[hi.lev],paste("obs", hi.lev),adj=1.5)

> #

> lm21.2 <- lm(Clay2~Clay1,subset=-hi.lev)

> round(coefficients(lm21), 3); round(coefficients(lm21.2), 3)

(Intercept) Clay1

6.035 0.982

(Intercept) Clay1

5.718 0.994

> par(mfrow=c(1,1))
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Q33 : What is the relation between predictor value and its leverage? Jump to
A33 •

Q34 : In this particular case, do the high-leverage predictor values appear to
influence the regression line? Jump to A34 •

Task 26 : Compare the fits of the two models, both as RMSE and R2. The RMSE
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can be computed directly from the model residuals; the R2 as 1 − (RSS/TSS),
where RSS is the residual sum of squares (after the model fit), and TSS is the
total sum of squares of the predictand (here, Clay2), before the model fit. •

> sqrt(sum(residuals(lm21)^2)/length(residuals(lm21)))

[1] 5.1386

> sqrt(sum(residuals(lm21.2)^2)/length(residuals(lm21.2)))

[1] 5.1973

> 1-(sum(residuals(lm21)^2)/sum((Clay2-mean(Clay2))^2))

[1] 0.87572

> 1-(sum(residuals(lm21.2)^2)/sum((Clay2[-hi.lev]-mean(Clay2[-hi.lev]))^2))

[1] 0.85305

Q35 : Does removing the high-leverage points from the dataset improve or worsen
the fit in this case? Jump to A35 •

5.7.5 DFBETAS *

The hat values give the influence of each observation on the fitted values. Another
question is the influence of each observation on the regression coefficients. This
is measured by the DFBETA statistic d[j]i for the effect on coefficient βj of
omitting the ith observation, and its standardized form DFBETAS d[j]i∗.

DFBETA is the absolute change in the coefficients with (β̂j) and without (β̂j(i))
the ith observation:

d[j]i = β̂j(i) − β̂j (1)

This can be interpreted directly: it is the absolute change in the coefficient,
including the sign, if the model is re-fit without one observation. Positive values
of d[j]i imply that omitting observation i would result in a larger coefficient βj ,
i.e., a steeper slope.

DFBETA can be standardized to allow comparison among models; this is termed
DFBETAS (“S”tandardized). Standardization is done by dividing the absolute
difference d[j]i by the standard error s(β̂j(i)) of the estimate of coefficient j in
the reduced regression:

d[j]i∗ =
d[j]i
s(β̂j(i))

(2)
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A rule of thumb is that values of d[j]i∗ > 2/
√
n are influential.

These statistics are computed with the dfbeta and dfbetas functions. The
DFBETAS statistica are also included in the more general influence.measures
function, which also reports the hat values, DFFIT, and Cook’s distance.

Task 27 : Compute the DFBETA and DFBETAS statistics for the regression
slope coefficient, and find the most influential observations. Show the predictor
values (i.e., topsoil clay) for these. •

Note the use of the abs“absolute value” function, since we want to find the largest
effects, both positive and negative, on the slope.

> # -- most influential

> dfb.lm21 <- dfbeta(lm21)[,2]

> head(ix.dfb <- order(abs(dfb.lm21), decreasing=TRUE))

[1] 128 3 81 39 127 17

> dfb.lm21[ix.dfb[1:5]]

128 3 81 39 127

-0.0088152 -0.0075682 -0.0069635 0.0060313 0.0057800

> # -- compare with the regression coefficient and its standard error

> summary(lm21)$coefficients["Clay1",1:2]

Estimate Std. Error

0.982118 0.030726

> # -- standardized

> dfbs.lm21 <- dfbetas(lm21)[,2]

> # -- rule-of-thumb cutoff, depends on sample size

> (dfbetas.cutoff <- 2/sqrt(dim(obs)[1]))

[1] 0.16496

> ix.dfbs.gt <- which(abs(dfbs.lm21) > dfbetas.cutoff)

> sort(dfbs.lm21[ix.dfbs.gt])

128 3 81 17 138 16 40

-0.29774 -0.24706 -0.23119 -0.17789 -0.17503 -0.17340 0.16751

137 127 39

0.17448 0.18940 0.19723

> # -- what was their predictor value?

> obs[ix.dfbs.gt,c("Clay1","Clay2")]

Clay1 Clay2

3 61 59

16 52 50

17 20 39

39 10 8

40 13 11

81 46 38

127 13 10
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128 17 40

137 42 61

138 21 41

Q36 : (1) Which observation has the largest effect on the slope coefficient? (2)
What is its value of the predictor? (3) How does the absolute value of the change
in coefficient compare with the standard error of the slope coefficient in the full
model? (4) How many observations have standardized DFBETAS larger than the
rule-of-thumb cutoff for high influence? Jump to A36 •

5.8 Prediction

As we saw above, the best predictive equation of subsoil clay, given topsoil clay
was Clay2 = 6.04 + 0.98 · Clay1, and the proportion of the variation in subsoil
clay not explained by this equation was 1 − 0.8749 = 0.1251. But what does
that mean for a given prediction?

There are two sources of prediction error:

1. The uncertainty of fitting the best regression line from the available data;

2. The uncertainty in the prediction, even with a perfect regression line, be-
cause of uncertainty in the process which is revealed by the regression (i.e.
the inherent noise in the process)

These correspond to the confidence interval and the prediction inteveral, respec-
tively. Clearly, the second must be wider than the first.

The estimation variance depends on the variance of the regression s2
Y .x but also

on the distance of the predictand from the centroid of the regression, (x̄, ȳ). The
further from the centroid, the more any error in estimating the slope of the line
will affect the prediction:

s2
Y0

= s2
Y .x

[
1+ 1

n
+ (x0 − x̄)2∑n

i=1(xi − x̄)2
]

Note that at the centroid, this reduces to s2
Y .x[(n+ 1)/n], which for large n is

very close to s2
Y .x.

The variance of the regression is computed from the deviations of actual and
estimated values:

s2
Y .x = 1

n− 2

n∑
i=1

(yi − ŷi)2

Task 28 : Compute the subsoil clay predicted by the model if surface soil clay
is measured as 55%, along with the confidence interval for this prediction. •

Q37 : How much subsoil clay is expected if surface soil clay is measured as 55%?

39



What is the confidence interval, based on the standard error of the regression
line? Give a verbal description of the confidence interval. Jump to A37 •

We can calculate this directly from the regression equation:

> round(6.0354+0.9821*55,0)

[1] 60

To compute the confidence interval, we could use the regression equations directly.
But it is easier to use the predict method on the fitted model object, because
this method can also compute the standard error of a fit, which can then be used
to construct a confidence interval for that fit using the t distribution:

> pred <- predict(lm21,data.frame(Clay1 = 55),se.fit=T); str(pred)

List of 4

$ fit : Named num 60.1

..- attr(*, "names")= chr "1"

$ se.fit : num 0.845

$ df : int 145

$ residual.scale: num 5.17

> round(pred$fit + qt(c(.025,.975), pred$df) * pred$se.fit, 1)

[1] 58.4 61.7

To predict many values (or even one), we call the predict method on the fitted
model object with a list of values of the predictor at which to predict in a data
frame with a predictor variable named the same as in the model.

This method also computes the confidence interval for the specific prediction
(using the standard error of the fit and the t value computed with the model
degrees of freedom), as well as the prediction interval, both to any confidence
(default 0.95).

Task 29 : Using the data.frame method, make a prediction data frame from
the minimum to the maximum of the data set, at 1% increments.

Using the predict method on the prediction data frame, compute the predicted
values and the 95% confidence interval of the best regression, for all clay contents
from the minimum to the maximum of the data set, at 1% increments. Examine
the structure of the resulting object.

Using the predict method on the prediction data frame, compute the predicted
values and the 95% prediction interval of the best regression, for all clay contents
from the minimum to the maximum of the data set, at 1% increments. Examine
the structure of the resulting object. •

> pframe <- data.frame(Clay1=seq(min(Clay1), max(Clay1), by=1))

> pred.c <- predict(lm21, pframe, interval="confidence", level=.95)

> str(pred.c)
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num [1:63, 1:3] 15.9 16.8 17.8 18.8 19.8 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:63] "1" "2" "3" "4" ...

..$ : chr [1:3] "fit" "lwr" "upr"

> pred.p <- predict(lm21, pframe, interval="prediction", level=.95)

> str(pred.p)

num [1:63, 1:3] 15.9 16.8 17.8 18.8 19.8 ...

- attr(*, "dimnames")=List of 2

..$ : chr [1:63] "1" "2" "3" "4" ...

..$ : chr [1:3] "fit" "lwr" "upr"

Q38 : What are the predicted subsoil clay content, the confidence limits, and the
prediction limits, for a topsoil with 55% clay? Explain in words the difference
between confidence and prediction limits. Jump to A38 •

> pred.c[55+1-min(Clay1),]; pred.p[55+1-min(Clay1),]

fit lwr upr

60.052 58.382 61.722

fit lwr upr

60.052 49.690 70.413

Note: A note on this R code: the first prediction, corresponding to array position
1, is for min(Clay1), so that the prediction for 55% is at position 55+1-min(Clay1),
i.e. 46 in the prediction array.

Task 30 : Graph the best-fit line predicted values and the 95% confidence interval
of the best regression for the prediction frame. Also show the 95% prediction
interval, i.e. the band in which 95% of the predicted values are expected to be.
For comparison, also plot the observed values. •

> plot(pframe$Clay1,type="n",pred.c[,"fit"],xlab="Clay 0-10cm",

+ ylab="Clay 20-30cm",xlim=c(0,80),ylim=c(0,80))

> lines(pframe$Clay1,pred.c[,"fit"],lwd=2)

> lines(pframe$Clay1,pred.c[,"lwr"],col=2,lwd=1.5)

> lines(pframe$Clay1,pred.c[,"upr"],col=2,lwd=1.5)

> lines(pframe$Clay1,pred.p[,"lwr"],col=4,lwd=1.5)

> lines(pframe$Clay1,pred.p[,"upr"],col=4,lwd=1.5)

> points(Clay1,Clay2)
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A note on this R code: The predict method returns an matrix with rows as
the cases (prediction points) and columns as named dimensions, which we then
access by constructions like pred[,"upr"].

Q39 : Why did we not compute the prediction for higher or lower values? Jump
to A39 •

Q40 : Explain the meaning of the confidence intervals. For what parameter of
the regression are they giving the confidence? Why are these lines curved? Jump
to A40 •

Q41 : Explain the meaning of the prediction intervals. As a check, how many and
what proportion of the actual data points in our sample fall outside the prediction
interval? Give that there are 147 samples, how many of these would you expect
to find outside the 95% prediction interval? Jump to A41 •

5.9 Robust regression*

Many of the problems with parametric regression can be avoided by fitting a
so-called “robust” regression line. There are many variants of this, well-explained
by Birkes and Dodge [2] and illustrated with S code by Venables and Ripley [35].
Here we just explore one method: lqs in the MASS package; this fits a regression
to the “good” points in the dataset (as defined by some criterion), to produce
a regression estimator with a high “breakdown” point. This method has several
tuneable parameters; we will just use the defaults.
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Task 31 : Load the MASS package and compute a robust regression of subsoil on
surface soil clay content. Compare the fitted lines and the coefficient of determi-
nation (R2) of this with those from the least-squares fit. •

> require(MASS)

> lm21.r <- lqs(Clay2 ~ Clay1)

> lm21 <- lm(Clay2 ~ Clay1)

> class(lm21.r)

[1] "lqs"

> class(lm21)

[1] "lm"

> summary(lm21.r)

Length Class Mode

crit 1 -none- numeric

sing 1 -none- character

coefficients 2 -none- numeric

bestone 2 -none- numeric

fitted.values 147 -none- numeric

residuals 147 -none- numeric

scale 2 -none- numeric

terms 3 terms call

call 2 -none- call

xlevels 0 -none- list

model 2 data.frame list

> summary(lm21)

Call:

lm(formula = Clay2 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-17.499 -3.463 0.143 2.662 17.269

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.0354 1.0514 5.74 5.3e-08 ***

Clay1 0.9821 0.0307 31.96 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.17 on 145 degrees of freedom

Multiple R-squared: 0.876, Adjusted R-squared: 0.875

F-statistic: 1.02e+03 on 1 and 145 DF, p-value: <2e-16

> coefficients(lm21.r)

(Intercept) Clay1

0.40245 1.15625

> coefficients(lm21)
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(Intercept) Clay1

6.03540 0.98212

> 1-sum(residuals(lm21.r)^2)/sum((Clay2-mean(Clay2))^2)

[1] 0.84802

> 1-sum(residuals(lm21)^2)/sum((Clay2-mean(Clay2))^2)

[1] 0.87572

Notice how the two summary methods produce very different output; this illus-
trates R’s object-oriented methods, where objects of different classes can use the
same generic methods.

Task 32 : Plot the least-squares and robust lines on the scatterplot of subsoil
vs. topsoil clay. •

> plot(Clay2 ~ Clay1, data=obs, xlab="Topsoil clay %",

+ ylab="Subsoil clay %", main="Two regressions")

> abline(lm21, lty=2)

> abline(lm21.r, lty=1)

> legend(50,30, legend=c("Robust","Least-squares"), lty=1:2)
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Q42 : What is the difference between the two fitted lines? Which model has the
better internal fit? Why is this? What seems to be the advantage of the robust
line in this case? Jump to A42 •
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5.10 Structural Analysis*

In §5.5 we saw that the regression of two variables on each other depends on
which variables is considered the predictor and which the predictand. If we are
predicting, this makes sense: we get the best possible prediction. But sometimes
we are interested not in prediction, but in understanding a relation between
two variables. In the present example, we may ask what is the true relation
between topsoil and subsoil clay? Here we assume that this relation has a common
cause, i.e. that soil formation processes affected both the topsoil and subsoil in
some systematic way, so that there is a consistent relation between the two clay
contents. This so-called structural analysis is explained in detail by Sprent [33]
and more briefly by Webster [37] and Davis ( [8, pp. 214–220] and [9, pp. 218–
219]).

In structural analysis we are trying to establish the best estimate for a structural
or law-like relation, i.e. where we hypothesise that y = α + βx, where both x
and y are mathematical variables. This is appropriate when there is no need to
predict, but rather to understand. This depends on the prior assumption of a
true linear relation, of which we have a noisy sample.

X = x + ξ
Y = y + η

That is, we want to observe X and Y , but instead we observe x with random error
ξ and y with random error η. These errors have (unknown) variances σ2

ξ and

σ2
η , respectively; the ratio of these is crucial to the analysis, and is symbolised

as λ:

λ = σ2
η/σ

2
ξ (3)

Then the maximum-likelihood estimator of the slope, taking Y as the predictand
for convention, is:

β̂Y .X = 1
2sXY

{
(s2
Y − λs2

X)+
√
(s2
Y − λs2

X)2 + 4λs2
XY

}
(4)

Equation 4 is only valid if we can assume that the errors in the two variables
are uncorrelated. In the present example, it means that a large random deviation
for a particular sample of the observed subsoil clay content from its “ideal” value
does not imply anything about the random deviation of the observed topsoil clay
content from its “ideal” value.

The problem is that we don’t have any way of knowing the true error variance
ratio λ, just as we have no way of knowing the true population variances, co-
variance, or parameters of the structural relation. We estimate the population
variances σ2

X , σ2
Y and covariance σXY from the sample variances s2

x, s2
y and co-

variance sxy , but there is nothing we’ve measured from which we can estimate
the error variances or their ratio. However, there are several plausible methods
to estimate the ratio:
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� If we can assume that the two error variances are equal, λ = 1. This may
be a reasonable assumption if the variables measure the same property (e.g.
both measure clay content), use the same method for sampling and analysis,
and there is an a priori reason to expect them to have similar variability
(heterogeneity among samples).

� The two error variances may be estimated by the ratio of the sample vari-
ances: λ ≈ s2

y/s2
z . That is, we assume that the ratio of variability in the

measured variable is also the ratio of variability in their errors. For exam-
ple, if the set of topsoil clay values in a sample is twice as variable as the
set of subsoil clay values in the same sample, we would infer that the error
variance is also twice as much in the subsoil, so that λ = 2. But, these
are two completely different concepts! One is a sample variance and the
other the variance of the error in some random process. Using this value
of λ computes the Reduced Major Axis (RMA) [8, pp. 214-218], which is
popular in biometrics.

� The variance ratio may be known from previous studies.

In the present example, we notice that s2
y/s2

x ≈ 1.10; that is, the set of subsoil
samples is about 10% more variable than those from the surface soil. We could
take this as the error variance ratio as well. This is not so far from 1, which is
also reasonable, since both variables measure the same property.

Task 33 : Write an R function to compute β̂Y .X , given the structural predictand,
the structural predictor, and the ratio of the error variances λ. Apply this to the
structural relation between subsoil and topsoil clay, assuming equal variances,
and then estimating the error variance ratio from the sample. •

> eqn18 <- function(y, x, lambda) {

+ a <- var(y)-lambda*var(x);

+ c <- var(x,y);

+ (a + sqrt(a^2 + 4 * lambda * c^2))/(2*c)

+ }

> eqn18(Clay2,Clay1,1)

[1] 1.053

> eqn18(Clay2,Clay1,var(Clay2)/var(Clay1))

[1] 1.0495

The first estimate, with λ = 1, is the orthogonal regression. Note that it is
numerically between the slope of the regression of y on x and the inverse of the
slope of the regression of x on y :

> lm21$coeff[2]

Clay1

0.98212

> 1/(lm21$coeff[2])
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Clay1

1.0182

> eqn18(Clay2,Clay1,1)

[1] 1.053

We can plot all of these on one graph. First, we compute the coefficients directly,
then we plot the graphs, and finally put some text with the computed coefficients
on them.

> s2x <- var(Clay1); s2y <- var(Clay2); sxy <- var(Clay1,Clay2)

> byx <- sxy/s2x; ayx <- mean(Clay2)-byx*mean(Clay1)

> bxyi <- 1/(sxy/s2y); axyi <- mean(Clay2)-bxyi*mean(Clay1)

> b <- sqrt(s2y/s2x); a <- mean(Clay2)-b*mean(Clay1)

> bp <- eqn18(Clay2,Clay1,1)

> ap <- mean(Clay2)-bp*mean(Clay1)

> plot(Clay1,Clay2,xlim=c(5,80),ylim=c(8,80))

> par(adj=0.5); title("Correlation and regression","Clay 10-20 cm vs. Clay 0-10 cm")

> par(adj=0); abline(ayx,byx,col=1,lty=1)

> text(40,8,paste("Clay2 on Clay1; b=",round(byx,4),"; a=",round(ayx,2),sep=""),

+ col=1)

> abline(axyi,bxyi,col=2,lty=2)

> text(40,12,paste("Clay1 on Clay2; b=",round(bxyi,4),"; a=",round(axyi,2),sep=""),

+ col=2)

> abline(a,b,col=3,lty=3)

> text(40,16,paste("Proportional variance; b=",round(b,4),"; a=",round(a,2),sep=""),

+ col=3)

> abline(ap,bp,col=4,lty=4)

> text(40,20,paste("Equal variance; b=",round(bp,4),"; a=",round(ap,2),sep=""),

+ col=4)

> text(8,70,paste("r = ",round(cor(Clay1,Clay2),4),"; r**2 = ",

+ round((cor(Clay1,Clay2)^2)*100,1),"%",sep=""))
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5.11 Structural Analysis by Principal Components*

This optional section presents another way to calculate structural equations in
the case that error variances are equal. We use principal components analysis,
which is the basic multivariate data reduction technique, discussed in more detail
in 8.2. Here it is just used to compute the orthogonal axes of the two variables
for which we want the structural analysis.

First, we compute the principal components for the two variables, which are put
in a temporary data frame, in either order. Then we examine their loadings in
the synthetic variables, which are the coefficients by which original observations
are multiplied to produce the synthetic observations. The loadings for the first
component, or principal axis of the new space, give the the slope of the structural
regression, in this case of Clay2 on Clay1; if we wanted to describe the structural
relation of Clay1 on Clay2 we would simply invert the ratio. The intercept is
computed from this slope and the centroid of the regression, as before. We also
compute the proportion of the variation explained by the first axis, from the
standard deviations of the two synthetic variables.

> pc <- princomp(cbind(Clay1,Clay2))

> pc$loadings

Loadings:

Comp.1 Comp.2

Clay1 0.689 -0.725

Clay2 0.725 0.689

Comp.1 Comp.2

SS loadings 1.0 1.0

Proportion Var 0.5 0.5

Cumulative Var 0.5 1.0

> b <- pc$loadings["Clay2","Comp.1"]/pc$loadings["Clay1","Comp.1"]; b

[1] 1.053

> b <- pc$loadings[2,1]/pc$loadings[1,1]; b

[1] 1.053

> a <- mean(Clay2)-b*mean(Clay1); a

[1] 3.8194

> pc$sdev

Comp.1 Comp.2

19.8084 3.6029

> as.numeric(round(pc$sdev[1]/sum(pc$sdev)*100,1))

[1] 84.6

The best structural equation, Clay2 = 3.82+ 1.053 · Clay1, is the same as that
computed in §5.10 for the case λ = 1, i.e. equal error variances.
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5.12 A more difficult case

The example of §5.2 – §5.11 was fairly easy to analyse. There is indeed a strong
linear relation between the two variables which is only slightly affected by soil
type.

In this section, by contrast, we examine a “messier” bivariate relation, to which
we will return for a more satisfactory multivariate analysis in §7.2. As explained
in that section, we know from theory and many detailed studies that the cation
exchange capacity (CEC) of the soil depends on reactive sites where cations (such
as K+ and Ca++) can be easily adsorbed and desorbed. There are such sites both
on clay particles and humus; here we examine only the bivariate relation with
clay.

Task 34 : Examine the relation between topsoil clay (as the predictor) and
topsoil cation exchange capacity (as the predictand); first using all points and
then showing the soil type. •

> par(mfrow=c(1,2))

> plot(Clay1, CEC1)

> plot(Clay1, CEC1,

+ pch=as.numeric(wrb1)+14,

+ col=as.numeric(wrb1), cex=1.5)

> title("CEC vs clay, topsoil")

> legend(10, 26, levels(wrb1),

+ pch=as.numeric(levels(wrb1))+14,

+ col=as.numeric(levels(wrb1)))

> par(mfrow=c(1,1))
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Q43 : Is there an apparent relation between clay and CEC? Is this consistent
across clay contents? Is it linear? Do there seem to be differences between soil
types? Jump to A43 •

Task 35 : Compute the bivariate correlation (§5.3) of topsoil CEC and clay
content. •
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> cor.test(CEC1, Clay1)

Pearson's product-moment correlation

data: CEC1 and Clay1

t = 8.1, df = 145, p-value = 2.1e-13

alternative hypothesis: true correlation is not equal to 0

95 percent confidence interval:

0.43540 0.66022

sample estimates:

cor

0.55796

Q44 : How strong is the linear correlation? Compare the confidence interval
with that from the correlation between topsoil and subsoil clay. Jump to A44 •

Task 36 : Compute and plot the bivariate regression (§5.5) of topsoil CEC on
clay content. •

> model.cec1 <- lm(CEC1 ~ Clay1); summary(model.cec1)

Call:

lm(formula = CEC1 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-6.706 -3.351 -0.645 2.201 14.196

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8262 0.8620 5.6 1.0e-07 ***

Clay1 0.2039 0.0252 8.1 2.1e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.24 on 145 degrees of freedom

Multiple R-squared: 0.311, Adjusted R-squared: 0.307

F-statistic: 65.5 on 1 and 145 DF, p-value: 2.11e-13

> plot(Clay1, CEC1)

> abline(model.cec1)
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Q45 : What is the equation of the least-squares linear regression? How much
of the variability in CEC does it explain? What is the spread of the residuals
(unexplained variation)? Jump to A45 •

Task 37 : Compute and plot the regression diagnostics (§5.7). •

> plot(fitted(model.cec1),CEC1,pch=20, xlab="Fitted", ylab="Observed",

+ xlim=range(CEC1),ylim=range(CEC1))

> title("Observed vs. Fitted topsoil CEC"); abline(0,1)

> segments(fitted(model.cec1),CEC1,fitted(model.cec1),fitted(model.cec1))

> #

> sdres <- sd(residuals(model.cec1))

> plot(fitted(model.cec1), resid(model.cec1), pch=20,

+ xlab="Fitted", ylab="Residual",

+ main="Regression Residuals vs. Fitted Values, topsoil CEC")

> #

> for (j in -3:3) abline(h=j*sqrt(var(resid(model.cec1))), col=abs(j)+1)

> ix <- which(abs(resid(model.cec1))>2*sdres)

> text(fitted(model.cec1)[ix], resid(model.cec1)[ix], ix, pos=4)

> cbind(obs[ix,c("Clay1","Clay2")], fit=round(fitted(model.cec1)[ix],1),

+ resid=round(resid(model.cec1)[ix],1))

Clay1 Clay2 fit resid

13 48 50 14.6 8.7

23 32 35 11.4 8.7

63 13 15 7.5 11.5

73 25 35 9.9 13.1

77 44 50 13.8 8.8

78 53 54 15.6 13.4

80 45 44 14.0 14.2

81 46 38 14.2 13.8
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> rm(sdres, ix)

> #

> qqnorm(residuals(model.cec1))

> qqline(residuals(model.cec1))
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Q46 : Are there unusual residuals? Do the residuals suggest unequal variance in
the predictand throughout the range of the predictor (“heteroscedascity”)? Jump
to A46 •

We will return to this example for a more satisfactory multivariate analysis in §7.2.
It turns out that much of the violation of the assumption of normal regression
residuals can be accounted for by other variables.

5.13 Non-parametric correlation

Clearly, the relation between topsoil CEC and clay is not bivariate normal, so
the parametric (Pearson’s) correlation computed above is not a valid measure of
their association. So, the Pearson’s coefficient should not be reported.

The alternative is a non-parametric measure of bivariate association. The most
common is a rank correlation, and the most common of these is Spearman’s ρ,
where the ranks of the two variables are correlated as with the Pearson’s test.

The rank function returns the ranks of each observation:

> head(CEC1, n=10)

[1] 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9

> head(rank(CEC1), n=10)

[1] 115.0 98.0 140.0 87.5 123.0 132.0 123.0 121.0 40.0 123.0
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> head(Clay1, n=10)

[1] 72 71 61 55 47 49 63 59 46 62

> head(rank(Clay1), n=10)

[1] 147.0 146.0 142.0 137.5 128.0 130.5 144.0 141.0 126.5 143.0

The first paired observation is (CEC, clay) = (13.6,72); these have ranks (115,147)
respectively of the 147 observations.

The Pearson’s correlation of the ranks is the Spearman’s ρ:

> cor(rank(CEC1),rank(Clay1))

[1] 0.57338

> cor(CEC1,Clay1, method="spearman")

[1] 0.57338

Note that in this case ρ > r :

> cor(CEC1,Clay1)

[1] 0.55796

5.14 Answers

A12 : The relation is strong, linear, and positive. An increase in clay in the surface is
accompanied by a proportional increase in clay in the upper subsoil. Return to Q12 •

A13 : The relation looks similar; Soil type 1 (circles, black) has lower values in both
layers, Soil type 3 (crosses, green) has all the high values in both layers, but it does not
appear that a different line would be fitted through each class separately. There are only
three samples of soil type 2 (diamonds, red). Return to Q13 •

A14 : The correlation is almost certainly different from zero, since the p-value for the
alternative hypothesis of no relation is almost zero. Thus there is almost certainly a
relation. Return to Q14 •

A15 : If this sample is representative of the population, the most likely value for
the correlation of clay in the 0–10 and 10–20 cm layers, over the whole population, is
estimated from this sample as 0.936. If we repeated the sampling operation (147 samples)
a large number of times, in 95% of the cases we would expect to find the sample correlation
coefficient between 0.912 and 0.953.

This is a very high positive linear correlation, since the maximum is 1. Return to Q15 •

A16 : The smooth line has a considerably steeper slope than the “best” line at low clay
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values (till about 22%) and then a slightly shallower slope at high values. The first part
of the line fits soil type 1 and the second soil type 3. Return to Q16 •

A17 : At low values of the parameter the line is very erratic; at high values it misses the
separate “pieces” of the relation. The default value in this case gives a good visualisation.

Return to Q17 •

A18 : Clay2 = 6.04 + 0.98 * Clay1 Return to Q18 •

A19 : Subsoil clay is about 6% higher than topsoil clay on average, so that if there is
no topsoil clay, we predict 6% subsoil clay. For each 1% extra topsoil clay, there is an
increase in 0.98% in subsoil clay. Return to Q19 •

A20 : This is given by the adjusted R-squared: 0.8749. Note that this is a bit smaller
than the value computed by simply squaring the correlation coefficient:

> cor(Clay2,Clay1)^2

[1] 0.87572

Return to Q20 •

A21 : The total squared length of the lines would increase; the shortest possible squared
lengths are shown here. Return to Q21 •

A22 : Clay1 = -1.49 + 0.89 * Clay2 Return to Q22 •

A23 : Topsoil clay is about 1.5% lower than subsoil clay on average, so if there is no
subsoil clay, we predict less than zero topsoil clay, which is not physically-possible. For
each 1% extra subsoil clay, there is an increase in 0.89% in subsoil clay. Return to Q23
•

A24 : This is given by the adjusted R-squared: 0.8749; it is exactly the same as the
reverse regression. Return to Q24 •

A25 : The errors are different in the different directions, leading to different east-square
estimates of the best fit. Return to Q25 •

A26 : The errors are different in the different directions, leading to different least-square
estimates of the best fit. Return to Q26 •

A27 : They should be identical, i.e. fall on the 1:1 line. Of course they are not because
of error. In any case they should be symmetric about a 1:1 line (i.e. the length of the
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residual segments should be approximately equal above and below the line) throughout
the range.

In this case, low predicted values are consistently too high (i.e. the observed was lower
than predicted, below the line). In addition, there are several points that are quite
poorly-fitted.

Return to Q27 •

A28 : The residuals should ideally all fall on the 0 horizontal line; of course they do
not because of error. However, in any case they should be symmetric about this line
throughout the range, and have the same degree of spread.

In this case, the low predicted values all have negative residuals (as we saw above). Also,
values in the 30–40% predicted range generally have positive residuals. The spread seems
about the same.

There are two residuals more than 3 standard deviations from the mean, one positive and
one negative. There are five positive and one negative residual between 2 and 3 standard
deviations from the mean. Return to Q28 •

A29 : Observation 128 has a residual of +17.3: from a topsoil content of 17% we predict
22.7% but 40% was measured; this is much higher than predicted. Observation 145 has
a residual of −17.3: from a topsoil content of 30% we predict 35.5% but only 18% was
measured; this is much lower than predicted, and indeed one of the few cases where
subsoil clay is substantially lower than topsoil. Absolute residuals above about 8% clay
content are indeed significant for management. Return to Q29 •

A30 : The residuals are more or less symmetric about 0 but there are large “tails” in
both directions with some extreme values: −17.5,−13.2 and +13.7,14.3,17.3. Even
near 0 the distribution does not appear regular: there are too many residuals in the −2
and +2 bins compared to the adjacent −1 and +1 bins. Return to Q30 •

A31 : For the most part, the residuals follow the theoretical normal distribution well:
they are near the normal line and thicker near the middle. However, two low values are
under-predicted (i.e. their value is below the line: these values should only be found at
a lower quantile), and about five are over-predicted (i.e. their value is above the line:
values this great should only be found at a higher quantile). So the tails of the residuals
do not fit the normal distribution, but the bulk of the residuals do. Return to Q31 •

A32 : The Shapiro-Wilk test shows that almost certainly (p ≈ 0.002) we would not
commit a Type I error if we reject the null hypothesis; i.e. the residuals are most likely
not normally-distributed. However, this is not so serious since they are symmetrically-
distributed, and the positive and negative departures from normality are somewhat bal-
anced. Return to Q32
•

A33 : The highest leverages are the furthest from the mean of the predictor. Return
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to Q33 •

A34 : No, the line that would be fitted without them seems to go right through these
points. Return to Q34 •

A35 : The high-leverage points are consistent with the others, so removing them produces
a model with poorer fit: higher RMSE and lower R2. Return to Q35 •

A36 : (1) Observation 128 has the largest effect on the slope coefficient: absolute change
is -0.0088.

(2) Its predictor value is 17. This low value of the predictor, if omitted, results in a lower
slope coefficient. This is because the response variable here is 40, which is quite high
considering the low topsoil clay concentration. So this point had quite some influence on
the slope: it pulled it up at the lower end, so that omitting it would decrease the slope,
hence the negative value of DFBETA.

(3) The absolute value of the change in coefficient -0.0088 is a substantial proportion of
the standard error of the slope coefficient in the full model 0.0307, about -29%.

(4) A total of 10 observations have standardized DFBETAS larger than the rule-of-thumb
cutoff for high influence. Return to Q36 •

A37 : The predicted value is
6.0354 + 0.9821 * 55 = 60.0509

which rounds to 60 (remember the precision of measurement). The confidence limits are
round(pred$fit-qt(.975,pred$df)*pred$se.fit,1) = 58.4 and
round(pred$fit+qt(.975,pred$df)*pred$se.fit,1) = 61.7.

Return to Q37 •

A38 : If the topsoil clay content is measured as 55%, the predicted subsoil clay content
(rounded to the nearest %) is 60%; the 95% confidence limits are 58.4% and 61.7% (same
as previous answer). The 95% prediction limits are 49.7% and 70.4%. The confidence
limits are the 95% confidence of the expected value of the predictand (subsoil clay) at a
predictor value of 55% topsoil clay. The prediction limits are the limits within which we
expect 95% of all measured values of the predictand (subsoil clay) at a predictor value of
55% topsoil clay. That is, if we measured 100 locations with 55% topsoil clay, we expect
that 95 of the subsoil clay contents would be between 49.7% and 70.4%. Return to
Q38 •

A39 : The equation is only calibrated in the range of the predictor. Return to Q39 •

A40 : The confidence bands refer to the best-fit regression line. Return to Q40 •

A41 : The prediction bands refer to the predicted values at each value of the predictor.
In our sample, 8 of the 147 points, i.e. 5.4%, are outside these bands. This agrees very
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well with the 95% confidence interval (0.05× 147 = 7.35). Return to Q41 •

A42 : The robust line fits the soils with 10–50% topsoil clay better than the least-squares
line. The high end of the range (about 10% of the dataset) has relatively lower subsoil
clay than predicted by the robust line. The goodness-of-fit as measured by the explained
sum of squares is by definition best for the least-squares fit. However, the robust fit is
only a bit poorer in this sense yet fits the bulk of the data better. Return to Q42 •

A43 : There is clearly a positive relation: in general, higher clay soils have higher CEC.
However this is far from linear; in particular both high-clay and high-CEC soils show
large discrepancies: some high-CEC soils have low clay and some high-clay soils have
relatively low CEC. Soil type 1 has lower values overall but also (it appears) a steeper
relation: CEC seems to increase more per unit clay increase than for soil 3. Return to
Q43 •

A44 : The correlation of r = 0.558 is moderate (R2 = 0.311) but far less than for the
close relation between topsoil and subsoil clay (r = 0.936, R2 = 0.876); the confidence
interval is also quite wide (0.435 . . .0.660) compared to the two clays (0.912 . . .0.953),
showing the weaker relation. Return to Q44 •

A45 : The least-squares line is CEC1 = 4.826 + 0.204 * Clay1. This implies that
even with zero clay there would be some CEC, suggesting that there is another source of
CEC than just clay. Only about 31% of the variability of CEC is explained by clay; this
also suggests another source. Residuals range from −6.7 . . .+14.2 which is a substantial
spread, given that the range of CEC itself is only 3 . . .29. Return to Q45 •

A46 : Not only is the fit poor, but the regression residuals are not evenly-distributed.
There are many more extreme positive than negative residuals, showing that high-CEC
soils are poorly-modelled from clay alone; eight residuals (numbered in the residual plot)
are more than two standard deviations from zero. The residuals are far from normally-
distributed (see the normal Q-Q plot). However, there does not appear to be any het-
eroscedascity; the spread of residuals seems consistent over the range of the fitted values.
Thus the linear model is not adequate and should not be used for prediction. Return
to Q46 •

6 One-way Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) is used to determine how much of the variability in
some property is explained by one or more categorical factors. As with regression,
this does not necessarily imply a causal relation from the factors to the response.
However, it does supply evidence to support a theory of causation that can be
justified with a conceptual model.

The simplest ANOVA is one-way, where the total variance of the data set is
compared to the residual variance after each observation’s value is adjusted for
the mean for the one factor.

In the current data set, we can ask how much the clay content varies among the
four zones (variable zone). Clearly, the zone itself doesn’t cause clay to vary, but
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it is certainly reasonable that some other factor associated with the zone could
be at least a partial cause. Here the zones are defined by elevation and relief,
with limits corresponding to differences in parent rock and also with orographic
rainfall.4

Because the surface soil is more subject to human disturbance and local erosion,
we will model the clay in the lower subsoil (30-50 cm).

6.1 Exploratory Data Analysis

Task 38 : Visualise the clay content of the lower subsoil by zone. •

It is always a good idea to look first at the data values themselves, and then
summarise or graph them. So first we sort the observations by their clay content
and see which zones seem to be associated with lower or higher values. The sort

method sorts one vector. The order method lists the indices (row or observation
numbers in the data frame) that would produce this order, and these indices can
be used as subscripts for another variable or the entire data frame.

> sort(Clay5)

[1] 16 16 19 20 20 20 23 24 25 25 25 25 27 27 27 27 28 30 31 31 32

[22] 32 32 32 33 33 33 33 33 33 34 34 35 35 35 36 36 37 37 37 38 38

[43] 38 38 38 39 40 40 40 40 40 40 40 40 41 41 41 41 42 42 42 43 43

[64] 43 43 43 43 44 44 44 44 44 44 44 45 45 45 45 45 45 45 45 45 46

[85] 46 46 46 47 47 47 47 47 47 48 48 48 48 48 48 49 50 50 51 51 52

[106] 52 53 53 53 54 54 54 54 55 55 55 55 56 56 57 57 57 57 57 57 57

[127] 57 58 58 58 58 60 61 62 62 65 65 66 66 66 70 70 70 72 73 78 80

> order(Clay5)

[1] 125 134 39 91 104 135 145 114 64 90 124 133 40 49 84 132

[17] 111 63 34 82 36 46 65 66 37 41 43 50 112 127 19 126

[33] 14 15 35 67 130 20 118 131 29 47 68 116 140 144 33 38

[49] 51 70 74 101 123 141 21 55 56 115 57 100 117 17 26 53

[65] 71 75 107 58 69 76 81 96 102 108 25 59 60 73 93 99

[81] 103 110 146 30 44 92 147 88 95 98 128 138 143 23 31 32

[97] 42 72 119 94 87 136 11 27 85 86 5 45 52 13 22 48

[113] 77 12 28 89 97 18 24 6 61 62 78 79 80 109 142 16

[129] 113 120 129 83 4 10 121 54 122 3 137 139 7 9 105 8

[145] 106 1 2

> Clay5[order(Clay5)]

[1] 16 16 19 20 20 20 23 24 25 25 25 25 27 27 27 27 28 30 31 31 32

[22] 32 32 32 33 33 33 33 33 33 34 34 35 35 35 36 36 37 37 37 38 38

[43] 38 38 38 39 40 40 40 40 40 40 40 40 41 41 41 41 42 42 42 43 43

[64] 43 43 43 43 44 44 44 44 44 44 44 45 45 45 45 45 45 45 45 45 46

[85] 46 46 46 47 47 47 47 47 47 48 48 48 48 48 48 49 50 50 51 51 52

[106] 52 53 53 53 54 54 54 54 55 55 55 55 56 56 57 57 57 57 57 57 57

[127] 57 58 58 58 58 60 61 62 62 65 65 66 66 66 70 70 70 72 73 78 80

4 caused by the mountain forcing moist warm air to rise into the cooler and less-dense atmo-
sphere, resulting in precipitation
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> zone[order(Clay5)]

[1] 4 4 4 4 4 4 2 4 4 4 4 4 4 4 2 4 4 4 4 4 4 3 4 4 4 4 4 3 4 4 3 4

[33] 1 1 4 3 3 3 3 3 3 3 3 3 3 2 4 4 3 3 3 3 4 3 3 3 3 3 3 3 3 2 3 3

[65] 3 3 3 3 3 3 3 3 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 4 2 2

[97] 4 2 4 3 3 2 2 3 2 3 2 2 3 1 4 2 3 2 3 2 2 2 3 1 2 2 3 3 3 2 2 2

[129] 2 2 2 2 1 1 2 2 2 1 2 2 1 2 2 2 2 2 2

Levels: 1 2 3 4

We can use the by method to compute any statistic for each level of a factor. Here
we do it for the range. The second example illustrates the use of an anonymous
function to compute the width of the range. The function(x) will be called with
the vector of clay contents for each zone in turn, so that max(x) and min(x) will
operate on this vector.

> by(Clay5,zone,range)

zone: 1

[1] 35 70

----------------------------------------------------

zone: 2

[1] 23 80

----------------------------------------------------

zone: 3

[1] 32 57

----------------------------------------------------

zone: 4

[1] 16 54

> by(Clay5,zone,function(x) max(x)-min(x))

zone: 1

[1] 35

----------------------------------------------------

zone: 2

[1] 57

----------------------------------------------------

zone: 3

[1] 25

----------------------------------------------------

zone: 4

[1] 38

Q47 : Do there appear to be differences between zones in the data values and
their ranges? If so, describe them in words. Jump to A47 •

Second, we can visualise this with the boxplot method, dividing the response
variable (here, Clay5) by a factor (here, zone), using the same syntax as lm. In
addition, if we select the notch=T option, this method will show whether the class
medians are significantly different.

> boxplot(Clay5~zone, notch=T, horizontal=T, xlab="Clay %, 30-50cm", ylab="zone")
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Q48 : Do there appear to be differences between zones in the data values and
their ranges? If so, describe them in words. Jump to A48 •

Q49 : Are there an equal number of samples in each zone? (Hint: use the by

method to divide by zones, with the length method to summarise.) Jump to
A49 •

Q50 : Does there appear to be a difference between zones in the data distribu-
tion? If so, describe it in words. Jump to A50
•

Task 39 : Compare the data summaries for clay contents of the lower subsoil by
zone; this is the numerical confirmation of the boxplots. •

> by(Clay5, zone, summary)

zone: 1

Min. 1st Qu. Median Mean 3rd Qu. Max.

35.0 49.2 59.0 55.0 63.0 70.0

----------------------------------------------------

zone: 2

Min. 1st Qu. Median Mean 3rd Qu. Max.

23.0 49.5 56.5 56.0 62.8 80.0

----------------------------------------------------

zone: 3

Min. 1st Qu. Median Mean 3rd Qu. Max.

32.0 40.0 44.0 43.8 46.0 57.0
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----------------------------------------------------

zone: 4

Min. 1st Qu. Median Mean 3rd Qu. Max.

16.0 25.0 31.5 31.3 34.2 54.0

6.2 One-way ANOVA

Based on the boxplots and descriptive statistics, it seems that the zone “explains”
some of the variation in clay content over the study area. The technique for deter-
mining how much is explained by a factor is the Analysis of Variance (ANOVA).
R’s lm method is used for ANOVA as well as for regression; in fact it is just
another form of the same linear modelling.

Task 40 : Calculate the one-way ANOVA of subsoil clay on zone, and display
the ANOVA table. •

> lmz<-lm(Clay5~zone); summary(lmz)

Call:

lm(formula = Clay5 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-32.95 -5.40 0.16 3.16 24.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.00 3.21 17.14 < 2e-16 ***

zone2 0.95 3.52 0.27 0.7874

zone3 -11.16 3.41 -3.28 0.0013 **

zone4 -23.67 3.55 -6.67 5.2e-10 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.08 on 143 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.502

F-statistic: 50.1 on 3 and 143 DF, p-value: <2e-16

Q51 : How much of the total variation is explained by zones? Jump to A51 •

The summary for a categorical model shows the class means:

� The estimate on the first line, here labelled (Intercept) with value 55.0,
is the mean for the first-listed class, here zone 1.

� The estimate on the second line, here labelled zone2 with value 0.95, is the
difference between the mean of the second-listed class; in this example the
mean for zone 2 is 55.0+ 0.95 = 55.95.

� The remaining classes are computed as for the second-listed class.

We can also see this result as a classical ANOVA table, by using the aov method:
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> summary(aov(lmz))

Df Sum Sq Mean Sq F value Pr(>F)

zone 3 12390 4130 50.1 <2e-16 ***

Residuals 143 11782 82

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> coefficients(aov(lmz))

(Intercept) zone2 zone3 zone4

55.000 0.950 -11.159 -23.667

Q52 : How likely is it that this much of the variability could have been explained
by chance? Jump to A52 •

Q53 : Can you determine the zone means from the ANOVA table? Jump to
A53 •

Q54 : From what was the reported probability value computed? Jump to A54
•

Q55 : How were the variances of the model terms estimated? Jump to A55 •

6.3 ANOVA as a linear model*

We can see that ANOVA is just a special case of linear models by examining the
design matrices of a regression and an ANOVA model; these are also called the
model matrices. We’ll look at observations 15 through 22, since they come from
different zones.

Note for experts: the second matrix shown here is produced with the contrasts
options set to contr.treatment; other choices of contrasts may be preferred; see
the help for ?contrasts and ?options.

R code:
model.matrix(lm21)[15:22,]

model.matrix(lmz)[15:22,]
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R console output:
(Intercept) Clay1

15 1 22

16 1 52

17 1 20

18 1 33

19 1 21

20 1 22

21 1 26

22 1 38

(Intercept) zone2 zone3 zone4

15 1 0 0 0

16 1 1 0 0

17 1 1 0 0

18 1 1 0 0

19 1 0 1 0

20 1 0 1 0

21 1 0 1 0

22 1 0 0 1

These are just the predictor values, for each observation, of the linear equation
which lm is trying to fit by least-squares; each is matched with the value of the
predictand for the same observation. In the first design matrix, there is an in-
tercept and the topsoil clay content. In the second design matrix, there is an
intercept (which will be fitted by the mean of the first level of the factor, i.e.
zone 1; mean(Clay5[zone ==1])) and three dummy variables, representing the
deviations of the means of the remaining three zones from the mean of zone 1.
Observations from zone 1 (e.g. observation 15) have 0’s for all of these; observa-
tions from other zones have a single 1, corresponding to the zone (e.g. observation
16 has a 1 for dummy variable zone2).

The design matrix X is then used in the unweighted least-squares estimate, given
the sample values as the response vector y:

β̂ = (XTX)−1XTy

which we can compute directly as:

R code:
X <- model.matrix(lm21)

(beta <- solve(t(X)%*%X) %*% t(X) %*% Clay5)

X <- model.matrix(lmz)

(beta <- solve(t(X)%*%X) %*% t(X) %*% Clay5)

rm(X, beta)

Note the use of the %*% operator for matrix multiplication.
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R console output:
(Intercept) 18.7586

Clay1 0.8289

(Intercept) 55.000

zone2 0.950

zone3 -11.159

zone4 -23.667

These are the same coefficients as we found using lm for bivariate regression (§5.5)
and one-way ANOVA (§6.2).

6.4 Means separation*

Now we infer that the model is highly significant, but are all the means different?
For any two zones, we could use an unpaired t-test. For the entire ANOVA table,
we could use Tukey’s HSD if the sample was approximately balanced (which it
isn’t here). Another method is to do all the pairwise t-tests, but adjust for the
number of comparisons; the pairwise.t.test method performs these tests. It
may be used with different assumptions about the individual class variances (i.e.
whether it is legitimate to pool them or not) and different degrees of correction.

Here are examples of the use of pairwise.t.test, first with no correction, then
with a correction, then without the assumption of equal class variances; output
has been edited for brevity:

> pairwise.t.test(Clay5, zone, p.adj="none")

Pairwise comparisons using t tests with pooled SD

data: Clay5 and zone

1 2 3

2 0.787 - -

3 0.001 8e-10 -

4 5e-10 <2e-16 8e-10

P value adjustment method: none

> pairwise.t.test(Clay5, zone, p.adj="holm")

Pairwise comparisons using t tests with pooled SD

data: Clay5 and zone

1 2 3

2 0.787 - -

3 0.003 3e-09 -

4 3e-09 <2e-16 3e-09

P value adjustment method: holm

> pairwise.t.test(Clay5, zone, p.adj="none",pool.sd=F)
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Pairwise comparisons using t tests with non-pooled SD

data: Clay5 and zone

1 2 3

2 0.855 - -

3 0.050 2e-07 -

4 0.001 1e-15 2e-09

P value adjustment method: none

> pairwise.t.test(Clay5, zone, p.adj="holm",pool.sd=F)

Pairwise comparisons using t tests with non-pooled SD

data: Clay5 and zone

1 2 3

2 0.855 - -

3 0.099 6e-07 -

4 0.003 8e-15 1e-08

P value adjustment method: holm

Q56 : What is the probability that the observed difference between zones 1 and
3 is due to chance, for all four methods? Jump to A56 •

Q57 : How do the p values change if we adjust for multiple comparisons? How
do they change if variances can not be pooled? Jump to A57 •

Q58 : In the present case, is it reasonable to assume that class variances can be
pooled? Jump to A58 •

6.5 One-way ANOVA from scratch*

It is instructive to see exactly how ANOVA works. The idea is to partition the
total variance in a variable into the part attributable to some group (here the
zone) and a residual.

The unadjusted R2 is directly computed as:

R2 = 1− (ResidualSS/TotalSS)

First we compute the grand mean and group means, to see that they’re different.
Then, we compute the total sum of squares and the residual sum of squares after
subtracting the appropriate group mean. We also compute the group sum of
squares, i.e. how much the groups explain, and check that this and the within-
group sum of squares equals the total sum of squares. Finally, we can compute
the proportion of variation explained.
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> mean(Clay5)

[1] 44.68

> (means <- by(Clay5, zone, mean))

zone: 1

[1] 55

----------------------------------------------------

zone: 2

[1] 55.95

----------------------------------------------------

zone: 3

[1] 43.841

----------------------------------------------------

zone: 4

[1] 31.333

> (tss <- sum((Clay5 - mean(Clay5))^2))

[1] 24172

> (rss <- sum((Clay5 - means[zone])^2))

[1] 11782

> (gss <- sum(((means-mean(Clay5))^2)*by(Clay5, zone, length)))

[1] 12390

> (gss+rss - tss)

[1] 3.638e-12

> 1-(rss/tss)

[1] 0.51256

These computations show quite well how R operates on vectors. For example, in
the computation of gss, the group means (means) is a vector of length 4; since
the grand mean mean(Clay5) is a scalar, it is subtracted from each element of the
vector, resulting in another vector of length 4; each element is squared; then since
the by method also results in a vector of length 4 (the number of observations in
each class), the multiplication is element-wise. Finally, the sum method sums the
4-element vector.

Note that the R2 = 0.513, exactly as reported by aov.

6.6 Answers

A47 : Zone 4 has most of the low clay contents (with a few in zone 2), zone 3 is medium,
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while zones 1 and 2 have the highest clay contents. Zone 2 has the widest spread. Return
to Q47 •

A48 : There is a marked difference overall. Zones 1 and 2 are similarly high, zone 3
lower and zone 4 lowest. Return to Q48 •

A49 : No, zone 1 is severely under-represented, and zone 3 has about half again as
many samples as zones 2 and 4. Return to Q49 •

A50 : Zone 2 has the widest range. It is mostly positively skewed, but has two boxplot
outliers at the low end of the range. Zone 1 has very short boxplot tails, i.e. the box with
50% of the values covers most of the range (but this is probably an effect of the small
sample size). Zone 3 has a somewhat narrower range than the others and is symmetric.
Zone 4 is slightly positively skewed. Return to Q50 •

A51 : About half (50.23% exactly). Return to Q51 •

A52 : Less than 2.2−16, i.e. practically 0. Return to Q52 •

A53 : Yes. The intercept is the mean of the first level of the factor, here zone 1.
It is 55% clay. The factor estimates for the other levels are added to this to get the
corresponding zone mean. For example, zone 2 is 55+ (−11.159) = 43.84 (compare to
the descriptive statistics, above). Return to Q53 •

A54 : From the F ratio of the variances (zone and residual) and the two degrees of
freedom associated with these model terms. Return to Q54 •

A55 : By the mean squared errors. Return to Q55 •

A56 : For the case where variances are pooled: 0.0013 and 0.0026; that is, in all cases
the two means are significantly different at p=0.01. For the case where variances are not
pooled: 0.0497 and 0.0993. That is, if we don’t adjust for the number of comparisons,
the difference is significant at p=0.05, and the Holm correction still shows a significant
difference but only at p=0.10. Return to Q56 •

A57 : In both cases the p-values increase, i.e. it is more likely that the observed
difference is just due to chance. Return to Q57 •

A58 : No. From the boxplot it is clear that zone 1 is much more variable than the
others, so the pool.sd=F option should be used. Return to Q58 •
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7 Multivariate correlation and regression

In many datasets we measure several variables. We may ask, first, how are they
inter-related? This is multiple correlation analysis. We may also be interested in
predicting one variable from several others; this is multiple regression analysis.

7.1 Multiple Correlation Analysis

The aim here is to see how a set of variables are inter-related. This will be dealt
with in a more sophisticated manner in Principal Components Analysis (§8.1)
and factor analysis (§8.2).

7.1.1 Pairwise simple correlations

For two variables, we used bivariate correlation analysis (§5.3). For more vari-
ables, a natural extension is to compute their pairwise correlations of all variables.

As explained in the next section, we expect correlations between soil cation ex-
change capacity (CEC), clay content, and organic carbon content.

Task 41 : Display all the bivariate relations between the three variables CEC,
clay content, and organic carbon content of the 0-10cm (topsoil) layer. •

> pairs( ~ Clay1 + OC1 + CEC1, data=obs)
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Q59 : Describe the relations between the three variables. Jump to A59 •

The numeric strength of association is computed as for any pair of variables with
a correlation coefficient such as Pearson’s. Since these only consider two variables
at a time, they are called simple coefficients.

Task 42 : Compute the covariances and the Pearson’s correlation coefficients for
all pairs of variables CEC, clay, and OC in the topsoil. •

We first must find the index number of the variables we want to plot, then we
present these as a list of indices to the cov method:

> names(obs)

[1] "e" "n" "elev" "zone" "wrb1" "LC" "Clay1" "Clay2"

[9] "Clay5" "CEC1" "CEC2" "CEC5" "OC1" "OC2" "OC5"

We see the target variables at positions 10, 7 and 13, so:

> cov(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 25.9479 39.609 5.6793

Clay1 39.6092 194.213 12.5021

OC1 5.6793 12.502 2.2520

> cor(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 1.00000 0.55796 0.74294

Clay1 0.55796 1.00000 0.59780

OC1 0.74294 0.59780 1.00000

Q60 : Explain these in words. Jump to A60 •

7.1.2 Pairwise partial correlations

The simple correlations show how two variables are related, but this leaves open
the question as to whether there are any underlying relations between the entire
set. For example, could an observed strong simple correlation between variables
X and Y be because both are in fact correlated to some underlying variable Z?
One way to examine this is by partial correlations, which show the correlation
between two variables after correcting for all others.

What do we mean by “correcting for the others”? This is just the correlation
between the residuals of linear regressions between the two variables to be corre-
lated and all the other variables. If the residuals left over after the regression are
correlated, this can’t be explained by the variables considered so far, so must be
a true correlation between the two variables of interest.

For example, consider the relation between Clay1 and CEC1as shown in the scat-
terplot and by the correlation coefficient (r = 0.55). These show a moderate
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positive correlation. But, both of these are positively correlated to OC1 (r = 0.56
and 0.74, respectively). Is some of the apparent correlation between clay and
CEC actually due to the fact that soils with higher clay tend (in this sample) to
have higher OC, and that this higher OC also contributes to CEC? This is an-
swered by the partial correlation between clay and CEC, in both cases correcting
for OC.

We can compute partial correlations directly from the definition, which is easy in
this case with only three variables. We also recompute the simple correlations,
computed above but repeated here for comparison. It’s not logical (although
mathematically possible) to compute the partial correlation of Clay and OC,
since the “lurking” variable CEC is a result of these two, not a cause of either.
So, we only consider the correlation of CEC with OC and Clay separately.

> cor(residuals(lm(CEC1 ~ Clay1)), residuals(lm(OC1 ~ Clay1)))

[1] 0.61538

> cor(residuals(lm(CEC1 ~ OC1)), residuals(lm(Clay1 ~ OC1)))

[1] 0.21214

> cor(CEC1, OC1)

[1] 0.74294

> cor(CEC1, Clay1)

[1] 0.55796

This shows that CEC is only weakly positively correlated (r = 0.21) to Clay
after controlling for OC; compare this to the much higher simple correlation
(r = 0.56). In other words, much of the apparent correlation between Clay and
CEC can be explained by their mutual positive correlation with OC.

We can visualize the reduction in correlation by comparing the scatterplots be-
tween Clay and CEC with and without correction for OC:

> par(mfrow=c(1,2))

> par(adj=0.5)

> plot(CEC1 ~ Clay1, pch=20, cex=1.5, xlim=c(0,100),

+ xlab="Clay %",

+ ylab="CEC, cmol+ (kg soil)-1")

> abline(h=mean(CEC1), lty=2); abline(v=mean(Clay1), lty=2)

> title("Simple Correlation, Clay vs. CEC 0-10 cm")

> text(80, 4, cex=1.5, paste("r =",round(cor(Clay1, CEC1), 3)))

> mr.1 <- residuals(lm(CEC1 ~ OC1)); mr.2 <-residuals(lm(Clay1 ~ OC1))

> plot(mr.1 ~ mr.2, pch=20, cex=1.5, xlim=c(-50, 50),

+ xlab="Residuals, Clay vs. OC, %",

+ ylab="Residuals, CEC vs. OC, cmol+ (kg soil)-1")

> abline(h=mean(mr.1), lty=2); abline(v=mean(mr.2), lty=2)

> title("Partial Correlation, Clay vs. CEC, correcting for OC 0-10 cm")

> text(25, -6, cex=1.5, paste("r =",round(cor(mr.1, mr.2), 3)))

> par(adj=0)

> rm(mr.1, mr.2)

> par(mfrow=c(1,1))
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r = 0.212

The two scatterplots show that much of the apparent pattern in the simple cor-
relation plot (left) has been removed in the partial correlation plot (right); the
points form a more diffuse cloud around the centroid.

By contrast, CEC is highly positively correlated (r = 0.62) to OC, even after
controlling for Clay (the simple correlation was a bit higher, r = 0.74). This
suggests that OC should be the best single predictor of CEC in the topsoil; we
will verify this in the next section.

The partial correlations are all smaller than the simple ones; this is because all
three variables are inter-correlated. Note especially that the correlation between
OC and clay remains the highest while the others are considerably diminished;
this relation will be highlighted in the principal components analysis.

Simultaneous computation of partial correlations Computing partial correla-
tions from regression residuals gets tedious for a large number of variables. For-
tunately, the partial correlation can also be obtained from either the variance–
covariance or simple correlation matrix of all the variables by inverting it and
then standardising this inverse so that the diagonals are all 1; the off-diagonals
are then the negative of the partial correlation coefficients.

Here is a small R function to do this (and give the off-diagonals the correct sign),
applied to the three topsoil variables:

> p.cor <- function(x){

+ inv <- solve(var(x))

+ sdi <- diag(1/sqrt(diag(inv)))

+ p.cor.mat <- -(sdi %*% inv %*% sdi)

+ diag(p.cor.mat) <- 1

+ rownames(p.cor.mat) <- colnames(p.cor.mat) <- colnames(x)

+ return(p.cor.mat) }

> p.cor(obs[c(10,7,13)])

CEC1 Clay1 OC1

CEC1 1.00000 0.21214 0.61538

Clay1 0.21214 1.00000 0.32993

OC1 0.61538 0.32993 1.00000
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7.2 Multiple Regression Analysis

The aim here is to develop the best predictive equation for some predictand, given
several possible predictors.

In the present example, we know that the CEC depends on reactive sites on
clay colloids and humus. So it should be possible to establish a good predictive
relation for CEC (the predictand) from one or both of clay and organic carbon
(the predictors); we could then use this relation at sites where CEC itself has not
been measured.

Note that the type of clay mineral and, in some cases, the soil reaction
are also important in modelling soil CEC; but these are similar in the
sample set, so we will not consider them further.

First, we visualise the relation between these to see if the theory seems plausible
in this case. This was already done in the previous section, §7.1. We saw that
both predictors do indeed have some positive relation with the predictand.

To develop a predictive regression equation, we have three choices of predictors:

� Clay content

� Organic matter content

� Both Clay content and Organic matter content

The simple regressions are computed as before; the multiple regression with more
than one predictor also uses the lm method, with both predictors named in the
formula.

Task 43 : Compute the two simple regressions and the one multiple regression
and display the summaries. Compare these with the null regression, i.e. where
every value is predicted by the mean. •

> lmcec.null<-lm(CEC1 ~ 1); summary(lmcec.null)

Call:

lm(formula = CEC1 ~ 1)

Residuals:

Min 1Q Median 3Q Max

-8.2 -3.7 -1.1 1.9 17.8

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.20 0.42 26.7 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.09 on 146 degrees of freedom

> lmcec.oc<-lm(CEC1 ~ OC1); summary(lmcec.oc)
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Call:

lm(formula = CEC1 ~ OC1)

Residuals:

Min 1Q Median 3Q Max

-7.28 -2.25 -0.21 1.58 15.19

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.671 0.630 5.82 3.6e-08 ***

OC1 2.522 0.189 13.37 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.42 on 145 degrees of freedom

Multiple R-squared: 0.552, Adjusted R-squared: 0.549

F-statistic: 179 on 1 and 145 DF, p-value: <2e-16

> lmcec.clay<-lm(CEC1 ~ Clay1); summary(lmcec.clay)

Call:

lm(formula = CEC1 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-6.706 -3.351 -0.645 2.201 14.196

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 4.8262 0.8620 5.6 1.0e-07 ***

Clay1 0.2039 0.0252 8.1 2.1e-13 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 4.24 on 145 degrees of freedom

Multiple R-squared: 0.311, Adjusted R-squared: 0.307

F-statistic: 65.5 on 1 and 145 DF, p-value: 2.11e-13

> lmcec.oc.cl<-lm(CEC1 ~ OC1 + Clay1); summary(lmcec.oc.cl)

Call:

lm(formula = CEC1 ~ OC1 + Clay1)

Residuals:

Min 1Q Median 3Q Max

-7.706 -2.016 -0.377 1.289 15.115

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.7196 0.7179 3.79 0.00022 ***

OC1 2.1624 0.2308 9.37 < 2e-16 ***

Clay1 0.0647 0.0249 2.60 0.01015 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.36 on 144 degrees of freedom
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Multiple R-squared: 0.572, Adjusted R-squared: 0.566

F-statistic: 96.3 on 2 and 144 DF, p-value: <2e-16

Q61 : How much of the total variability of the predictand (CEC) is explained by
each of the models? Give the three predictive equations, rounded to two decimals.

Jump to A61 •

Q62 : How much does adding clay to the predictive equation using only organic
carbon change the equation? How much more explanation is gained? Does the
model summary show this as a statistically-significant increase? Jump to A62 •

7.3 Comparing regression models

Which of these models is “best”? The aim is to explain as much of the varia-
tion in the dataset as possible with as few predictive factors as possible, i.e. a
parsimonious model.

7.3.1 Comparing regression models with the adjusted R2

One measure which applies to the standard linear model is the “adjusted” R2Compare
R2 which decreases the apparent R2, computed from the ANOVA table, to account

for the number of predictive factors:

R2
adj ≡ 1−

[
(n− 1)
(n− p) · (1− R

2)
]

where n is the number of observation and p is the number of coefficients.

Q63 : What are the adjusted R2 in the above models? Which one is highest?
Jump to A63 •

We can see these in the model summaries (above); they can also be extracted
from the model summary:

> summary(lmcec.null)$adj.r.squared

[1] 0

> summary(lmcec.oc)$adj.r.squared

[1] 0.54887

> summary(lmcec.clay)$adj.r.squared

[1] 0.30657

> summary(lmcec.oc.cl)$adj.r.squared

[1] 0.56618
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7.3.2 Comparing regression models with the AIC

A more general measure, which can be applied to almost any model type, isCompare
AIC Akaike’s Information Criterion, abbreviated AIC. The lower value is better.

> AIC(lmcec.null); AIC(lmcec.oc); AIC(lmcec.clay); AIC(lmcec.oc.cl)

[1] 898.81

[1] 782.79

[1] 845.98

[1] 778.02

Q64 : Which model is favoured by the AIC? Jump to A64 •

7.3.3 Comparing regression models with ANOVA

A traditional way to evaluate nested models (where one is a more complex version
of the other) is to compare them in an ANOVA table, normally with the more
complex model listed first. We also compute the proportional reduction in theANOVA, F-

test Residual Sum of Squares (RSS):

> (a <- anova(lmcec.oc.cl, lmcec.clay))

Analysis of Variance Table

Model 1: CEC1 ~ OC1 + Clay1

Model 2: CEC1 ~ Clay1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 1621

2 145 2609 -1 -988 87.8 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> diff(a$RSS)/a$RSS[2]

[1] 0.3787

The ANOVA table shows that the second model (clay only) has one more degree
of freedom (i.e. one fewer predictor), but a much higher RSS (i.e. the variability
not explained by the model); the reduction is about 38% compared to the simpler
model. These two estimates of residual variance can be compared with an F-test.
In this case the probability that they are equal is approximately zero, so it’s clear
the more complex model is justified (adds information).

However, when we compare the combined model with the prediction from organic
matter only, we see a different result:

> (a <- anova(lmcec.oc.cl, lmcec.oc))

Analysis of Variance Table
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Model 1: CEC1 ~ OC1 + Clay1

Model 2: CEC1 ~ OC1

Res.Df RSS Df Sum of Sq F Pr(>F)

1 144 1621

2 145 1697 -1 -76.4 6.79 0.01 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> diff(a$RSS)/a$RSS[2]

[1] 0.045004

Q65 : Which model has a lower RSS? What is the absolute and proportional
difference in RSS between the combined and simple model? What is the prob-
ability that this difference is due to chance, i.e. that the extra information from
the clay content does not really improve the model? Jump to A65 •

Regression diagnostics

Before accepting a model, we should review its diagnostics (§5.7). This provides
insight into how well the model fits, and where any lack of fit comes from.

Task 44 : Display two diagnostic plots for the best model: (1) a normal quantile-
quantile (“Q-Q”) plot of the residuals. Identify badly-fitted observations and
examine the relevant fields in the dataset, (1) predicted vs. actual topsoil CEC.

•

> par(mfrow=c(1,2))

> tmp <- qqnorm(residuals(lmcec.oc.cl), pch=20,

+ main="Normal Q-Q plot, residuals from lm(CEC1 ~ OC1 + Clay1)")

> qqline(residuals(lmcec.oc.cl))

> diff <- (tmp$x - tmp$y)

> ### label the residuals that deviate too far from the line

> text(tmp$x, tmp$y, ifelse((abs(diff) > 3), names(diff), ""), pos=2)

> rm(tmp,diff)

> ### observed vs. fitted

> #

> plot(CEC1 ~ fitted(lmcec.oc.cl), pch=20,

+ xlim=c(0,30), ylim=c(0,30),

+ xlab="Fitted",ylab="Observed",

+ main="Observed vs. Fitted CEC, 0-10cm")

> abline(0,1); grid(col="black")

> par(mfrow=c(1,1))
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Q66 : Are the residuals normally distributed? Is there any apparent explanation
for these poorly-modelled observations? Jump to A66 •

7.4 Stepwise multiple regression*

In the previous section, we examined several models individually, using our ex-
pert judgement to decide which predictors to use, and in which order. Another
approach is to let R try out a large number of possible equations and select the
“best” according to some criterion. One method for this is stepwise regression,
using the step method.

The basic idea of step is to specify an initial model object, as with lm, and
then a scope which specifies how variables in the full model should be added
or subtracted; in the simplest case we do not specify a scope and step tries to
eliminate all variables, one at a time, until no more can be eliminated without
increasing the AIC, explained above.

We will illustrate this with the problem of predicting subsoil clay (difficult to
sample) from the three topsoil parameters.

Task 45 : Set up a model to predict subsoil clay from all three topsoil variables
(clay, OM, and CEC) and use step to see if all three are needed. •

> # let stepwise pick the best from a full model

> lms <- step(lm(Clay2 ~ Clay1 + CEC1 + OC1))

Start: AIC=461.91

Clay2 ~ Clay1 + CEC1 + OC1

Df Sum of Sq RSS AIC

<none> 3224 462

- OC1 1 81 3305 464

- CEC1 1 179 3403 468

- Clay1 1 21078 24301 757

In this case we see that the full model has the best AIC (461.91) and removing
any of the factors increases the AIC, i.e. the model is not as good. However,
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removing either OC1 or CEC1 doesn’t increase the AIC very much (only to 468),
so although statistically valid they are not so useful.

An example with more predictors shows how variables are eliminated.

Task 46 : Set up a model to predict CEC in the 30-50 cm layer from all three
variables (clay, OM, and CEC) for the two shallower layers, and use step to see
if all six are needed. Note: this model could be applied if only the first two soil
layers were sampled, and we wanted to predict the CEC value of the third layer.

•

> lms <- step(lm(Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2, data=obs))

Start: AIC=420.7

Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- CEC1 1 1 2339 419

- OC1 1 9 2347 419

- OC2 1 12 2350 419

- Clay1 1 27 2365 420

<none> 2338 421

- CEC2 1 48 2387 422

- Clay2 1 1764 4102 501

Step: AIC=418.75

Clay5 ~ Clay1 + OC1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC1 1 11 2350 417

- OC2 1 12 2350 417

- Clay1 1 31 2370 419

<none> 2339 419

- CEC2 1 76 2415 421

- Clay2 1 1966 4305 506

Step: AIC=417.43

Clay5 ~ Clay1 + Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC2 1 5 2355 416

- Clay1 1 21 2371 417

<none> 2350 417

- CEC2 1 67 2417 420

- Clay2 1 2294 4644 516

Step: AIC=415.77

Clay5 ~ Clay1 + Clay2 + CEC2

Df Sum of Sq RSS AIC

<none> 2355 416

- Clay1 1 36 2392 416

- CEC2 1 62 2417 418

- Clay2 1 2311 4666 514
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The original AIC (with all six predictors) is 420.7; step examines all the vari-
ables and decides that by eliminating CEC1 (a topsoil property) the AIC is most
improved.

The AIC is now 418.75; step examines all the remaining variables and decides
that by eliminating OC1 the AIC is most improved; again a topsoil property is
considered unimportant.

The AIC is now 417.43; step examines all the remaining variables and decides
that by eliminating OC2 the AIC is most improved.

The AIC is now 415.77 and all three remaining variables must be retained, oth-
erwise the AIC increases. The final selection includes both clay measurements
(0-10 and 10-20 cm) and the CEC of the second layer.

Notice from the final output that Clay1 could still be eliminated with very little
loss of information, which would leave a model with two properties from the
second layer to predict the clay in the subsoil; or CEC2 could be eliminated with
a little more loss of information; this would leave the two overlying clay contents
to predict subsoil clay. Either of these alternatives would be more parsimonious
in terms of interpretation, although statistically just a bit weaker than the final
model discovered by step.

7.5 Combining discrete and continuous predictors

In many datasets, including this one, we have both discrete factors (e.g. soil
type, agro-ecological zone) and continuous variables (e.g. topsoil clay) which we
show in one-way ANOVA and univariate regression, respectively, to be useful
predictors of some continuous variable (e.g. subsoil clay). The discussion of the
design matrix and linear models (§6.3) showed that both one-way ANOVA on
a factor and univariate regression on a continuous predictor are just a cases of
linear modelling. Thus, they can be combined in a multiple regression.

Task 47 : Model the clay content of the 20-50 cm layer from the agro-ecological
zone and measured clay in the topsoil (0-10 cm layer), first separately and then
as an additive model. •

> lm5z <- lm(Clay5 ~ zone); summary(lm5z)

Call:

lm(formula = Clay5 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-32.95 -5.40 0.16 3.16 24.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.00 3.21 17.14 < 2e-16 ***

zone2 0.95 3.52 0.27 0.7874

zone3 -11.16 3.41 -3.28 0.0013 **

zone4 -23.67 3.55 -6.67 5.2e-10 ***
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---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.08 on 143 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.502

F-statistic: 50.1 on 3 and 143 DF, p-value: <2e-16

> lm51 <- lm(Clay5 ~ Clay1); summary(lm51)

Call:

lm(formula = Clay5 ~ Clay1)

Residuals:

Min 1Q Median 3Q Max

-20.626 -3.191 0.005 3.387 14.150

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 18.7586 1.1556 16.2 <2e-16 ***

Clay1 0.8289 0.0338 24.5 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.69 on 145 degrees of freedom

Multiple R-squared: 0.806, Adjusted R-squared: 0.805

F-statistic: 602 on 1 and 145 DF, p-value: <2e-16

> lm5z1 <- lm(Clay5 ~ zone + Clay1); summary(lm5z1)

Call:

lm(formula = Clay5 ~ zone + Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.09 -2.99 0.15 3.14 13.89

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 19.3244 2.9054 6.65 5.8e-10 ***

zone2 5.6945 2.1060 2.70 0.0077 **

zone3 2.2510 2.1831 1.03 0.3043

zone4 -0.6594 2.5365 -0.26 0.7953

Clay1 0.7356 0.0452 16.26 < 2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.39 on 142 degrees of freedom

Multiple R-squared: 0.83, Adjusted R-squared: 0.825

F-statistic: 173 on 4 and 142 DF, p-value: <2e-16

Note the use of the + in the model specification. This specifies an additive model,
where there is one regression line (for the continuous predictor) which is dis-
placed vertically according to the mean value of the discrete predictor. This is
sometimes called parallel regression. It hypothesizes that the only effect of the
discrete predictor is to adjust the mean, but that the relation between the contin-
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uous predictor and the predictand is then the same for all classes of the discrete
predictor. Below (§7.8) we will investigate the case where we can not assume
parallel slopes.

Q67 : How much of the variation in subsoil clay is explained by the zone? by the
topsoil clay? by both together? Is the combined model better than individual
models? How much so? Jump to A67 •

Q68 : In the parallel regression model (topsoil clay and zone as predictors), what
are the differences in the means between zones? What is the slope of the linear
regression, after accounting for the zones? How does this compare with the slope
of the linear regression not considering zones? Jump to A68 •

Q69 : Are all predictors in the combined model (topsoil clay and zone as pre-
dictors) asignificant? (Hint: look at the probability of the t-tests.) Jump to
A69 •

Diagnostics We examine the residuals to see if any points were especially badly-
predicted and if the residuals fit the hypothesis of normality.

Task 48 : Make a stem plot of the residuals. •

> stem(residuals(lm5z1))

The decimal point is at the |

-24 | 1

-22 |

-20 |

-18 |

-16 |

-14 |

-12 |

-10 | 540

-8 | 77104

-6 | 10099662

-4 | 888539854322

-2 | 8655321009876110

-0 | 9866654322110987666555321

0 | 00122334445679023444466688889

2 | 0334488900122333345568

4 | 0336800058

6 | 35792244

8 | 5

10 | 11188

12 | 49
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Q70 : Are the residuals normally-distributed? Are there any particularly bad
values? Jump to A70 •

Clearly there are some points that are less well-modelled.

Task 49 : Display the records for these poorly-modelled points and compare
their subsoil clay to the prediction. •

> res.lo <- which(residuals(lm5z1) < -12)

> res.hi <- which(residuals(lm5z1) > 9)

> obs[res.lo, ]

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

145 695098 328237 547 2 f OCA 30 18 23 7 6 7

OC1 OC2 OC5

145 1.5 0.8 0.8

> predict(lm5z1)[res.lo]

145

47.086

> obs[res.hi, ]

e n elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5

9 681230 311053 600 2 f FV 46 56 70 7.9 5.7 4.5

27 679242 338073 360 3 a FV 24 35 51 5.0 5.4 13.1

38 671039 336819 130 4 a OCA 13 23 40 4.8 3.4 3.2

42 667325 334883 243 4 a FV 23 38 48 3.9 4.2 4.9

119 666452 337405 134 4 a BF 21 40 48 5.4 2.6 7.5

128 699567 328185 630 2 f MCA 17 40 47 8.0 8.0 8.0

137 698928 328368 640 2 f FV 42 61 66 9.0 9.0 8.0

139 695014 328757 560 2 f FV 42 60 66 9.0 8.0 8.0

OC1 OC2 OC5

9 2.30 1.36 0.9

27 1.04 0.52 0.5

38 1.30 0.34 0.2

42 1.27 0.58 0.5

119 2.00 0.60 0.4

128 1.80 0.90 0.8

137 2.30 1.30 1.0

139 2.30 1.20 1.0

> predict(lm5z1)[res.hi]

9 27 38 42 119 128 137 139

58.856 39.229 28.228 35.583 34.112 37.524 55.913 55.913

Q71 : What are the predicted and actual subsoil clay contents for the highest
and lowest residuals? What is unusual about these observations? Jump to A71
•
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7.6 Diagnosing multi-colinearity

Another approach to reducing a regression equation to its most parsiminious form
is to examine the relation between the predictor variables and the predictand for
multi-collinearity, that is, the degree to which they are themselves linearly related
in the multiple regression. In the extreme, clearly if two variables are perfectly
related, one can be eliminated, as it can not add information as a predictor.

This was discussed to some extent in §7.1 “Multiple correlation”, but it was not
clear which of the correlated variables to discard, because the predictand was not
included in the analysis. For this we use the Variance Inflation Factor (VIF),
which measures the effect of a set of explanatory variables (predictors) on the
variance of the coefficient of another predictor, in the multiple regression equation
including all predictors, i.e. how much the variance of an estimated regression
coefficient is increased because of collinearity. The square root of the VIF gives
the increase in the standard error of the coefficient in the full model, compared
with what it would be if the target predictor were uncorrelated with the other
predictors. Fox [12] has a good discussion, including a visualization.

In the standard multivariate regression:

Y =
k∑
0

βkXk + ε, X0 = 1 (5)

solved by ordinary least-squares, the sampling variance of an estimated regression
coefficient β̂j can be expressed as:

var(β̂j) =
s2

(n− 1)s2
j
· 1

1− R2
j

(6)

where:

s2 : is the estimated error variance of the residuals of the multiple regression;

s2
j : is the sample variance of the target variable;

R2
j : is the multiple coefficient of determination for the regression of the target

variable Xj on the other predictors.

The left-hand multiplicand applies also in a single-predictor regression: it mea-
sures the imprecision of the fit compared to that of the predictor. A larger overall
error variance of the regression, s2, will, of course, always lead to a higher vari-
ance in the regression coefficient, while a larger number of observations n and
a larger variance s2

j of the target variable will both lower the variance in the
regression coefficient.

The right-hand multiplicand, 1/(1−R2
j ) applies only in multiple regression. This

is the VIF: it multiplies the variance of the regression coefficient by a factor that
will be larger as the multiple correlation of a target predictor with the other
predictors increases. Thus the VIF increases as the target predictor does not add
much information to the regression.

The VIF is computed with the vif function of John Fox’s car package [13].
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Task 50 : Load the car package and compute the VIF of the six predictors. •

> require(car)

> vif(lm(Clay5 ~ Clay1 + CEC1 + OC1 + Clay2 + CEC2 + OC2, data=obs))

Clay1 CEC1 OC1 Clay2 CEC2 OC2

12.8391 4.7712 4.0944 10.3882 3.5531 3.0349

There is no test of significance or hard-and-fast rule for the VIF: however many
authors consider VIF ≥ 5 as a caution and VIF ≥ 10 as a definite indication of
multicolinearity. Note that this test does not tell which variables, of the set, each
variable with a high VIF is correlated with. It could be with just one or with
several taken together.

Q72 : According to the VIF ≥ 10 criterion, which variables are highly correlated
with the others? Jump to A72 •

Task 51 : Re-compute the VIF for the multiple regression without these variables,
each taken out separately. •

> vif(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs))

Clay1 CEC1 OC1 CEC2 OC2

2.5927 4.2208 4.0916 3.3218 3.0214

> vif(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs))

Clay2 CEC1 OC1 CEC2 OC2

2.0978 4.5034 4.0277 3.5256 2.9037

Q73 : According to the VIF >= 10 criterion, which variables in these reduced
equations are highly correlated with the others? What do you conclude about
the set of variables? Jump to A73 •

Since either Clay1 or Clay2 can be taken out of the equation, we compare the
models, starting from a reduced model with each one taken out, both as full
models and models reduced by backwards stepwise elimination:

First, eliminating Clay2:

> AIC(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs))

[1] 920.5

> AIC(step(lm(Clay5 ~ Clay1 + CEC1 + OC1 + CEC2 + OC2, data=obs), trace=0))

[1] 916.16

Second, eliminating Clay1:

> AIC(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs))
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[1] 839.57

> AIC(step(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs) , trace=0))

[1] 835.2

Q74 : Which of the two variables with high VIF in the full model should be
eliminated? Jump to A74 •

Task 52 : Compute a reduced model by backwards stepwise elimination, starting
from the full model with this variable eliminated. •

> (lms.2 <- step(lm(Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2, data=obs)))

Start: AIC=420.4

Clay5 ~ Clay2 + CEC1 + OC1 + CEC2 + OC2

Df Sum of Sq RSS AIC

- CEC1 1 5 2370 419

- OC1 1 5 2371 419

- OC2 1 22 2387 420

<none> 2365 420

- CEC2 1 56 2421 422

- Clay2 1 10782 13148 671

Step: AIC=418.69

Clay5 ~ Clay2 + OC1 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC1 1 1 2371 417

- OC2 1 20 2390 418

<none> 2370 419

- CEC2 1 67 2437 421

- Clay2 1 11653 14023 678

Step: AIC=416.75

Clay5 ~ Clay2 + CEC2 + OC2

Df Sum of Sq RSS AIC

- OC2 1 21 2392 416

<none> 2371 417

- CEC2 1 66 2437 419

- Clay2 1 11876 14247 678

Step: AIC=416.03

Clay5 ~ Clay2 + CEC2

Df Sum of Sq RSS AIC

<none> 2392 416

- CEC2 1 47 2439 417

- Clay2 1 15687 18078 711

Call:
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lm(formula = Clay5 ~ Clay2 + CEC2, data = obs)

Coefficients:

(Intercept) Clay2 CEC2

14.519 0.861 -0.199

Q75 : What is the final model? What is its AIC? How do these compare with
the model found by stepwise regression, not considering the VIF criterion? Jump
to A75 •

Another approach is to compute the stepwise model starting from a full model,
and then see the VIF of the variables retained in that model.

Task 53 : Compute the VIF for the full stepwise model. •

The vif function can be applied to a model object; in this case lms, computed
above:

> vif(lms)

Clay1 Clay2 CEC2

8.3567 8.0790 1.5327

Q76 : What is the multi-colinearity in this model? Jump to A76 •

This again indicates that the two “clay” variables are highly redundant, and that
eliminating one of them results in a more parsimonious model. Which to eliminate
is evaluated by computing both reduced models and comparing their AIC.

Task 54 : Compute the AIC of this model, with each of the highly-correlated
variables removed. •

We specify the new model with the very useful update function. This takes a
model object and adjusts it according to a new formula, where existing terms are
indicated by a period (‘.’).

> AIC(lms)

[1] 834.94

> AIC(update(lms, . ~ . - Clay1))

[1] 835.2

> AIC(update(lms, . ~ . - Clay2))

[1] 933.44

Q77 : Which of the two “clay” variables should be eliminated? How much does
this change the AIC? Jump to A77 •
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7.7 Visualising parallel regression*

In parallel regression (additive effects of a continuous and discrete predictor) there
is only one regression line, which is displaced up or down for each class of the
discrete predictor. Even though there are two predictors, we can visualize this in
a 2D plot by showing the displaced lines.

Task 55 : Plot subsoil vs. topsoil clay, with the observations coloured by zone.
Add the parallel regression lines from the combined model, in the appropriate
colours, and the univariate regression line. •

> # scatterplot, coloured by zone

> plot(Clay5 ~ Clay1, col=as.numeric(zone), pch=20)

> # zone 1

> abline(coefficients(lm5z1)["(Intercept)"] , coefficients(lm5z1)["Clay1"])

> # zone 2

> for (iz in 2:4) {

+ abline(coefficients(lm5z1)["(Intercept)"]

+ + coefficients(lm5z1)[iz]

+ , coefficients(lm5z1)["Clay1"], col=iz) }

> # univariate line

> abline(lm51, lty=2, lwd=1.5)

> # legend

> text(70, 30, pos=2,

+ paste("Slopes: parallel:",

+ round(coefficients(lm5z1)["Clay1"],3),

+ "; univariate:",

+ round(coefficients(lm51)["Clay1"],3)));

> text(70, 26, pos=2,

+ paste(" AIC: parallel:", floor(AIC(lm5z1)),

+ "; univariate:", floor(AIC(lm51))));

> text(70, 22, pos=2,

+ paste("Pr(>F) parallel is not better:",

+ round(anova(lm5z1,lm51)$"Pr(>F)"[2],)))

> for (iz in 1:4) { text(65, 50-(3*iz), paste("zone",iz), col=iz) }
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Note the use of the coefficients method to extract the vector of fitted coeffi-
cients, which can be accessed by name or position.

Q78 : How well do the four parallel lines appear to fit the corresponding points,
i.e. the points from the corresponding zone? Jump to A78 •

7.8 Interactions*

Both topsoil clay and agro-ecological zone can predict subsoil clay to some extent.
Combined as an additive model, they do better than each separately. But this
leaves the question of whether they are completely independent. In this case, we
may ask if the slope of the regression of subsoil on topsoil clay is different.

Task 56 : Model the clay content of the 20-50 cm layer from the agro-ecological
zone and measured clay in the topsoil (0-10 cm layer) as a additive model with
interactions. •

To express an interaction between model terms, we use * instead of + in the model
formula:

> lm51.z <- lm(Clay5 ~ Clay1 * zone)

> summary(lm51.z)

Call:

lm(formula = Clay5 ~ Clay1 * zone)
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Residuals:

Min 1Q Median 3Q Max

-24.048 -2.883 0.515 2.889 13.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5362 6.4093 2.27 0.025 *

Clay1 0.8343 0.1265 6.59 8.2e-10 ***

zone2 10.3477 6.9759 1.48 0.140

zone3 12.2331 6.9145 1.77 0.079 .

zone4 -1.8272 6.8954 -0.26 0.791

Clay1:zone2 -0.0955 0.1411 -0.68 0.500

Clay1:zone3 -0.2703 0.1513 -1.79 0.076 .

Clay1:zone4 0.2471 0.1877 1.32 0.190

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.24 on 139 degrees of freedom

Multiple R-squared: 0.842, Adjusted R-squared: 0.834

F-statistic: 106 on 7 and 139 DF, p-value: <2e-16

Q79 : How much of the variation in subsoil clay is explained by this model? Is
it better than the additive model? Jump to A79 •

Q80 : Are all predictors in the combined model (topsoil clay and zone as predic-
tors) significant? For the predictors also present in the additive model (i.e. zone
and clay separately, not their interaction) are the same ones significant, and to
the same degree? Jump to A80 •

Of most interest are the interaction terms in the model summary. In this model,
these tell us if the relation between topsoil and subsoil clay is the same in all
zones. This was the assumption of parallel (additive) regression (§7.5); but if
there are interactions, there is not only one slope, but different slopes for each
level of the classified predictor (here, zone).

Q81 : Is there evidence that the relation between topsoil and subsoil clay is
different in some of the zones? If so, at what significance level (i.e. probability of
Type I error)? Jump to A81 •

Task 57 : Visualise this by plotting the different regressions of subsoil on topsoil
clay, by zone. •

To do this, we use the subset optional argument to the lm method to select just
some observations, in this case, those in a zone. We plot each regression and its
associated points in different colours.

Note: This code uses a“trick”to plot each regression only in the range of its subset
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(zone). The abline method draws a line for the whole range of the plot, and can’t
be limited to a range. We use the loess “local polynomial regression fitting”
function on the subset, selected with the subset argument, with a very large span

argument to force a straight line (rather than a locally-adjusted polynomial). This
returns a set of fitted values which only cover the span of the data. We plot this
with the usual lines function, but only use the minimum and maximum fitted
points (i.e. the end points of the fitted line); otherwise the line becomes too thick.

> plot(Clay1, Clay5, xlim=c(10,80), ylim=c(10,80), pch=20,

+ cex=1.5, col=as.numeric(zone),xlab="Topsoil clay %", ylab="Subsoil clay %");

> title("Subsoil vs. topsoil clay, by zone");

> text(65, 40, "Slope of regression");

> for (z in 1:4) {

+ m <- lm(Clay5 ~ Clay1, subset=(zone==z));

+ text(65, 40-(3*z), paste("zone",z,":",round(coefficients(m)[2], 3)),

+ col=z);

+ m.l <- loess(Clay5 ~ Clay1, subset=(zone==z), span=100);

+ lines(y=c(min(m.l$fitted), max(m.l$fitted)),

+ x=c(min(m.l$x), max(m.l$x)), col=z);

+ };

> m <- lm(Clay5 ~ Clay1);

> abline(m, col=6, lwd=1.5, lty=2);

> text(65, 25, paste("overall:", round(coefficients(m)[2], 3)), col=6);

> rm(m, m.l, z)
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With the lines covering only part of the data, and the obviously different slopes,
a black-and-white graph with different point symbols may be a cleaner visualiza-
tion:
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> plot(Clay1, Clay5, xlim=c(10,80), ylim=c(10,80), pch=as.numeric(zone),

+ xlab="Topsoil clay %", ylab="Subsoil clay %")

> title("Subsoil vs. topsoil clay, by zone")

> legend(10,75, pch=1:4, lty=1:4, legend=1:4)

> text(65, 40, "Slopes:")

> for (z in 1:4) {

+ m <- lm(Clay5 ~ Clay1, subset=(zone==z))

+ text(65, 40-(3*z), paste("zone",z,":",round(coefficients(m)[2], 3)))

+ m.l <- loess(Clay5 ~ Clay1, subset=(zone==z), span=100)

+ lines(y=c(min(m.l$fitted), max(m.l$fitted)),

+ x=c(min(m.l$x), max(m.l$x)), lty=z, lwd=1.5)

+ }

> m <- lm(Clay5 ~ Clay1)

> abline(m)

> text(65, 25, paste("overall:", round(coefficients(m)[2], 3)))

> rm(m, m.l, z)
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Q82 : Do the different regressions appear different? How different are the slopes?
Referring back to the combined model summary, can we reject the null hypothesis
that these slopes are in fact the same? Jump to A82 •

Q83 : What are the reasons why an apparent difference that is readily visible is
not statistically-significant? Jump to A83 •
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7.9 Analysis of covariance*

In the parallel-lines model (§7.5) there was only one regression line between the
continuous predictor and predictand, which could be moved up and down accord-
ing to different class means; this is an additive model. In the interactions model
(§7.8) there was both an overall line and deviations from it according to class,
allowing different slopes, as well as differences in class means. Another way to
look at this is to abandon the idea of a single regression altogether, and fit a
separate line for each class. This is a nested model: the continuous predictor is
measured only within each level of the classified predictor. It is specified with
the / formula operator:

> lm51.z.n <- lm(Clay5 ~ zone/Clay1); summary(lm51.z.n)

Call:

lm(formula = Clay5 ~ zone/Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.048 -2.883 0.515 2.889 13.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5362 6.4093 2.27 0.025 *

zone2 10.3477 6.9759 1.48 0.140

zone3 12.2331 6.9145 1.77 0.079 .

zone4 -1.8272 6.8954 -0.26 0.791

zone1:Clay1 0.8343 0.1265 6.59 8.2e-10 ***

zone2:Clay1 0.7388 0.0625 11.83 < 2e-16 ***

zone3:Clay1 0.5640 0.0829 6.80 2.8e-10 ***

zone4:Clay1 1.0814 0.1387 7.80 1.3e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.24 on 139 degrees of freedom

Multiple R-squared: 0.842, Adjusted R-squared: 0.834

F-statistic: 106 on 7 and 139 DF, p-value: <2e-16

Note that there is no entry for Clay1 by itself; rather there is a separate slope for
each zone, e.g. zone1:Clay1 for zone 1. The t-test is then whether each slope
separately is different from 0.

Q84 : How much of the variation in subsoil clay is explained by this model? How
does this compare with the additive (parallel) model (§7.5) and the interactions
model (§7.8)? Are all terms significant? Jump to A84 •

Q85 : Compare the slopes for zones 1 and 4 in the nested model with the zone
slopes (i.e. combined plus zone-specific) for these zones in the interaction model.
Are they the same? Jump to A85 •
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> coefficients(lm51.z.n)["zone4:Clay1"] -

+ (coefficients(lm51.z)["Clay1"] +

+ coefficients(lm51.z)["Clay1:zone4"])

zone4:Clay1

-1.1102e-15

This model is also called the Analysis of Covariance (ANCOVA) when the aimANCOVA
is to detect differences in the classified predictor (here, zone), controlling for
the effect of a continuous covariate, here the topsoil clay, when the covariate is
considered a ‘nuisance’ parameter, not an object of the study.

In this case topsoil clay is not a nuisance parameter, but we can still see if
controlling for it changes our perception of the differences between zones for
subsoil clay.

Q86 : Are the coefficients and significance levels between subsoil clay contents
in the four zones different in the nested and additive models, and also the model
which did not consider the covariate at all? Jump to A86 •

> summary(lm5z); summary(lm51.z.n); summary(lm51.z)

Call:

lm(formula = Clay5 ~ zone)

Residuals:

Min 1Q Median 3Q Max

-32.95 -5.40 0.16 3.16 24.05

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 55.00 3.21 17.14 < 2e-16 ***

zone2 0.95 3.52 0.27 0.7874

zone3 -11.16 3.41 -3.28 0.0013 **

zone4 -23.67 3.55 -6.67 5.2e-10 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.08 on 143 degrees of freedom

Multiple R-squared: 0.513, Adjusted R-squared: 0.502

F-statistic: 50.1 on 3 and 143 DF, p-value: <2e-16

Call:

lm(formula = Clay5 ~ zone/Clay1)

Residuals:

Min 1Q Median 3Q Max

-24.048 -2.883 0.515 2.889 13.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5362 6.4093 2.27 0.025 *

zone2 10.3477 6.9759 1.48 0.140

zone3 12.2331 6.9145 1.77 0.079 .
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zone4 -1.8272 6.8954 -0.26 0.791

zone1:Clay1 0.8343 0.1265 6.59 8.2e-10 ***

zone2:Clay1 0.7388 0.0625 11.83 < 2e-16 ***

zone3:Clay1 0.5640 0.0829 6.80 2.8e-10 ***

zone4:Clay1 1.0814 0.1387 7.80 1.3e-12 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.24 on 139 degrees of freedom

Multiple R-squared: 0.842, Adjusted R-squared: 0.834

F-statistic: 106 on 7 and 139 DF, p-value: <2e-16

Call:

lm(formula = Clay5 ~ Clay1 * zone)

Residuals:

Min 1Q Median 3Q Max

-24.048 -2.883 0.515 2.889 13.233

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 14.5362 6.4093 2.27 0.025 *

Clay1 0.8343 0.1265 6.59 8.2e-10 ***

zone2 10.3477 6.9759 1.48 0.140

zone3 12.2331 6.9145 1.77 0.079 .

zone4 -1.8272 6.8954 -0.26 0.791

Clay1:zone2 -0.0955 0.1411 -0.68 0.500

Clay1:zone3 -0.2703 0.1513 -1.79 0.076 .

Clay1:zone4 0.2471 0.1877 1.32 0.190

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 5.24 on 139 degrees of freedom

Multiple R-squared: 0.842, Adjusted R-squared: 0.834

F-statistic: 106 on 7 and 139 DF, p-value: <2e-16

7.10 Design matrices for combined models*

In §6.3 we examined the design matrix for ANOVA and regression models. It
is instructive to see this matrix for the combined models: additive (parallel),
interactive, and nested. As in §6.3 we’ll look at the matrix for observations 15
through 22, since they come from different zones.

> model.matrix(lm5z1)[15:22,]

(Intercept) zone2 zone3 zone4 Clay1

15 1 0 0 0 22

16 1 1 0 0 52

17 1 1 0 0 20

18 1 1 0 0 33

19 1 0 1 0 21

20 1 0 1 0 22

21 1 0 1 0 26

22 1 0 0 1 38
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> model.matrix(lm51.z)[15:22,]

(Intercept) Clay1 zone2 zone3 zone4 Clay1:zone2 Clay1:zone3

15 1 22 0 0 0 0 0

16 1 52 1 0 0 52 0

17 1 20 1 0 0 20 0

18 1 33 1 0 0 33 0

19 1 21 0 1 0 0 21

20 1 22 0 1 0 0 22

21 1 26 0 1 0 0 26

22 1 38 0 0 1 0 0

Clay1:zone4

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 38

> model.matrix(lm51.z.n)[15:22,]

(Intercept) zone2 zone3 zone4 zone1:Clay1 zone2:Clay1 zone3:Clay1

15 1 0 0 0 22 0 0

16 1 1 0 0 0 52 0

17 1 1 0 0 0 20 0

18 1 1 0 0 0 33 0

19 1 0 1 0 0 0 21

20 1 0 1 0 0 0 22

21 1 0 1 0 0 0 26

22 1 0 0 1 0 0 0

zone4:Clay1

15 0

16 0

17 0

18 0

19 0

20 0

21 0

22 38

Observation 15 is in zone 1, so it only has an entry for the intercept and topsoil
clay. Observation 16 is in zone 2, so it has an entry for the intercept, topsoil
clay, zone 2, and (in the second case) the interaction between topsoil clay and its
zone. Note that for the parallel regression model lm5z1 there is only one column
for the continuous predictor, whereas in the interaction model lm51.z there is a
separate column for the continuous predictor in each zone. This is how the model
can fit a separate slope for each zone. In the nested model lm51.z.n there is no
column for slope difference nor for overall slope, but rather one slope per zone,
each with only the topsoil clay observations for that zone.
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7.11 Answers

A59 : CEC is positively correlated with both clay and organic matter; however there
more spread in the CEC-vs-clay relation. The two possible predictors (clay and organic
matter) are also positively correlated. Return to Q59 •

A60 : The covariances depend on the measurement scales, whereas the correlations
are standardised to the range [−1,1]. CEC is highly correlated (r = 0.74) with organic
carbon and somewhat less so (r = 0. 56) with clay content. The two predictors are also
moderately correlated (r = 0.60). Return to Q60 •

A61 : These are given by the adjusted R2: 0.3066 using only clay as a predictor
(CEC = 4.83 + 0.20 · Clay), 0.5489 using only organic carbon as a predictor (CEC =
3.67+2.52·OC), and 0.5662 using both together (CEC = 2.72+2.16·OC+0.64·Clay).

Return to Q61 •

A62 : The predictive equation is only a little affected: the slope associated with OC
decreases from 2.52 to 2.16, while the intercept (associated with no clay or organic carbon)
decreases by 0.95. Adding Clay increases R2 by only 0.5662 − 0.5489 = 0.0173, i.e.
1.7%. This is significant (p = 0.010152) at the α = 0.05 but not the α = 0.01 level.

Return to Q62 •

A63 : OC only: 0.549; Clay only: 0.307; Both: 0.566. The model with both is slightly
better than the single-predictor model from OC. Return to Q63 •

A64 : The AIC favours the model with both OC and clay, but this is only slightly
better than the single-predictor model from OC. Return to Q64 •

A65 : The combined model has the lowest RSS (necessarily); the difference is only
76.4, i.e. about 12% lower. There is a 1% probability that this reduction is due to
chance. Return to Q65 •

A66 : The residuals are not normally-distributed; both tails are too long, and there are
about six serious under-predictions (observations 73, 60, 63, 140, 77, 124).

The two observations with the most negative residuals (over-predictions), i.e. 1 and 10,
are the only two with very high clay and OC5. This suggests an interaction at high levels;
“the whole is more than the sum of the parts”.

There seems to be no comparable explanations for the four observations with the most
positive residuals (under-predictions). Return to Q66 •

A67 : The model explains 50% (zone); 80% (topsoil clay); 82.5% (both) of the variation

5 obs[(Clay1 > 60) & (OC1 > 5.5),]
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in subsoil clay; the combined model is only a bit better than the model using only
measured topsoil clay. Return to Q67 •

A68 : The regression lines for zones 2, 3, and 4 are adjusted by 5.69, 2.25, and −0.66,
respectively, compared to zone 1. These are the mean differences. The slope is 0.736,
which is somewhat flatter than the slope estimated without considering zones, 0.829.
That is, some of the apparently steep slope in the univariate model is accounted for by
the differences between zones. In particular zone 2, which has the higher clay values in
both layers, has a higher mean, so that once this is accounted for the regression line is
not “pulled” to the higher values. Return to Q68 •

A69 : Topsoil clay is very highly significant (p ≈ 0 that it isn’t) and so is the intercept (0
clay and zone 1). Zone 2 is significantly different (p < 0.008 that it isn’t) but the others
are not. Note that in the one-way ANOVA by zone, zones 3 and 4 are both significantly
different from zone 1 and 2, which form a group. Here we see that the inclusion of topsoil
clay in the model has completely changed the relation to zone, since much of the zone
effect was in fact a clay effect, i.e. zones had different average topsoil clay contents. The
two predictors were confounded. Return to Q69 •

A70 : The residuals are more or less normally distributed around 0, except for one very
large negative residual (under-prediction) and seven large positive residuals (heavy tail)

Return to Q70 •

A71 : At point 145, the prediction is 23% while the actual is 47%; this is a severe
under-prediction. This is an unusual observation: topsoil clay is 7% higher than both
underlying layers. There are only two observations where topsoil clay exceeds subsoil
clay (> which(Clay1 > Clay5)), 145 and 81, and for observation 81 the difference is
only 2%.

At point 119, the prediction is 34% while the actual is 48%; this is the largest under-
prediction. Here topsoil clay is fairly low (21%) compared to the much higher subsoil
values. Return to Q71 •

A72 : Variables Clay1 and Clay2 have VIF ≥ 10 and are thus highly co-linear with
other variables. As a set, the others are fairly independent. Return to Q72 •

A73 : If either Clay1 or Clay2 are removed, the remaining set of five variables are
fairly independent (all VIF < 5). This shows that the high VIF for Clay1 and Clay2 in
the full model was due to the presence of the other “clay” variable. So either topsoil or
subsoil clay should be included in a parsimonious model, but not both. Return to Q73
•

A74 : Eliminating Clay1 results in a much lower AIC. This seems logical, as subsoil clay
(Clay2) is closer physically to the deep subsoil (target variable Clay5), so the processes
that lead to a certain clay content would seem to be more similar. Return to Q74 •

A75 : The final stepwise regression model, starting from the full set less Clay1, is
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Clay5 ~ Clay2 + CEC2, with an AIC of 835.2. The model starting from the full set is
Clay5 ~ Clay1 + Clay2 + CEC2, i.e. it has both clays as well as the subsoil CEC. Its
AIC is 834.94. The two final models are almost the same except for the inclusion of the
highly-colinear variable; their AIC is almost identical. So, the reduced model (without
Clay1 is preferred. Return to Q75 •

A76 : Both Clay1 and Clay2 have VIF > 8, not above the threshold VIF >= 10 but
not much below. Clearly, Clay1 and Clay2 are still highly-correlated. Return to Q76 •

A77 : As in the previous tasks of this section, we see that Clay1 can be eliminated with
almost no increase in model information content as shown by the AIC.

Return to Q77 •

A78 : Zone 4 (blue points and line, low clay values) seems poorly-fit. A line with a lower
intercept and a steeper slope would appear to fit better. So a model with interaction
between classified and continuous predictor, allowing separate slopes for each class, might
be better. For the other three the parallel lines seem OK. Return to Q78 •

A79 : The model explains 83.4% of the variation in subsoil clay; this is slightly better
than the additive model (82.5%). Return to Q79 •

A80 : Additive terms for topsoil clay, the intercept (zone 1 at zero clay) and zone 3
are significant. This differs from the additive model, where zone 2 was the only zone
significantly different from the intercept. Return to Q80 •

A81 : The most significant interaction is Clay1:zone3 but the probability that rejecting
the null hypothesis of no difference in slopes is fairly high, 0.076, so we can’t reject the
null hypothesis at the conventional 95% confidence level. Return to Q81 •

A82 : They certainly appear different, ranging from 0.564 in zone 3 (green points and
line) to 1.081 (blue points and line), almost double. Yet the t-tests for the interaction
terms are not significant at the 95% confidence level, so these four slopes could all be
different just because of sampling error. Return to Q82 •

A83 : The fundamental problems are: (1) small sample size in each zone; (2) a spread
of points (“cloud” or “noise”) within each zone. These two factors make it difficult to
establish statistical significance. Return to Q83 •

A84 : The nested model explains 83.4% of the variation in subsoil clay; this is slightly
better than the additive model (82.5%) and the same as the interactions model. It is
quite unlikely that the mean for zone 4 is different from zone 1. Return to Q84 •

A85 : Yes, they are the same. For zone 1, the interaction model has the default
slope (coefficient for Clay1) which is the same as the nested model slope for zone 1
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(coefficient for zone1:Clay1). For zone 4, adding the slope difference in the interaction
model (coefficient for Clay1:zone4) to the default slope (coefficient for Clay1) gives the
same value as the nested model slope for zone 4 (coefficient for zone4:Clay1). Return
to Q85 •

A86 : There is a big difference between the model coefficients and their significance.
Without considering the covariate at all, the difference from zone 1 is (zone 4 � zone 3
� zone 2), the latter is not significantly different. In the nested model the differences
are (zone 3 > zone 2 � zone 4), the latter coefficient not significant; this is because
the difference between zone 1 and 4 subsoil clay can be almost entirely explained if one
knows the topsoil clay and allows separate regression lines for each zone. In the additive
(parallel) model the differences are (zone 2 > zone 3 � zone 4). The parallel regression
line for zone 2 is significantly above that for zone 1, the others not significantly different.

Return to Q86 •

8 Factor analysis

Sometimes we are interested in the inter-relations between a set of variables, not
just their individual (partial) correlations (§7.1). That is, we want to investigate
the structure of the multivariate feature space covered by a set of variables.; this
is factor analysis. This can also be used to diagnose multi-collinearity and select
representative variables (see also §7.6).

The basic idea is that the vector space made up of the original variables may be
projected onto another space, where the new synthetic variables are orthogonal
to each other, i.e. completely uncorrelated. These synthetic variables can often
be interpreted by the analyst, that is, they represent some composite attribute
of the objects of study.

8.1 Principal components analysis

The first such technique is Principal components analysis. This is a multivariate
data reduction technique. It finds a new set of variables, equal in number to the
original set, where these synthetic variables are uncorrelated (i.e. orthogonal to
each other in the space formed by the principal components). In addition, the
first synthetic variable represents as much of the common variation of the origi-
nal variables as possible, the second variable represents as much of the residual
variation as possible, and so forth.

Note: This is a common image-processing technique and is explained and illus-
trated in many textbooks on remote sensing [e.g. 1, 20].

In the present example, we investigate the structure of the feature space defined
by the three variables (CEC, Clay, and OC) in a single horizon. A summary of
the components reveals how much redundancy there is in this space.

Task 58 : Compute the unstandardized principal components of three variables:
topsoil clay, CEC, and organic carbon. •
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To compute the PCs we use the prcomp method; this produces an object of class
prcomp which contains information about the components. The relevant columns
are extracted from the data frame.

> pc <- prcomp(obs[,c("CEC1","Clay1","OC1")])

> class(pc)

[1] "prcomp"

> str(pc)

List of 5

$ sdev : num [1:3] 14.282 4.192 0.933

$ rotation: num [1:3, 1:3] -0.2187 -0.9735 -0.0665 -0.9589 0.2271 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:3] "CEC1" "Clay1" "OC1"

.. ..$ : chr [1:3] "PC1" "PC2" "PC3"

$ center : Named num [1:3] 11.2 31.27 2.99

..- attr(*, "names")= chr [1:3] "CEC1" "Clay1" "OC1"

$ scale : logi FALSE

$ x : num [1:147, 1:3] -40.3 -39 -31.5 -23.2 -16.2 ...

..- attr(*, "dimnames")=List of 2

.. ..$ : chr [1:147] "1" "2" "3" "4" ...

.. ..$ : chr [1:3] "PC1" "PC2" "PC3"

- attr(*, "class")= chr "prcomp"

> summary(pc)

Importance of components:

PC1 PC2 PC3

Standard deviation 14.282 4.192 0.93299

Proportion of Variance 0.917 0.079 0.00391

Cumulative Proportion 0.917 0.996 1.00000

Q87 : What proportion of the total variance is explained by the first component
alone? By the first and second? Jump to A87 •

The numbers here are misleading, because the variables are on different scales.
In these cases it is better to compute the standardised components, using the
correlation instead of covariance matrix; this standardises all the variables to
zero mean and unit standard deviation before computing the components.

Task 59 : Compute the standardized principal components of three variables:
topsoil clay, CEC, and organic carbon. •

This option is specified by setting the scale optional argument to TRUE.

> pc.s <- prcomp(obs[c(10,7,13)], scale=T)

> summary(pc.s)

Importance of components:

PC1 PC2 PC3

Standard deviation 1.506 0.690 0.5044
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Proportion of Variance 0.756 0.159 0.0848

Cumulative Proportion 0.756 0.915 1.0000

Q88 : What is the difference between the variance proportions in the standard-
ized vs. unstandardized principal components? Which gives a better idea of the
proportion of variance explained? In what circumstances would you prefer to use
unstandardized components? Jump to A88 •

Q89 : What proportion of the total standardised variance is explained by the
first component alone? By the first and second? Jump to A89 •

We can see which original variables are associated with which synthetic variables
by examining the loadings, also called the factor rotations. These are the eigen-
vectors (in the columns) which multiply the original variables to produce the
synthetic variables (principal components).

> pc.s$rotation

PC1 PC2 PC3

CEC1 -0.58910 0.45705 -0.666384

Clay1 -0.54146 -0.83542 -0.094322

OC1 -0.59982 0.30525 0.739619

These show the amount that each original (standardised) original variable con-
tributes to each synthetic variable. Here, the first PC is an almost equal mixture
of CEC, Clay, and OC; this can be interpreted as an overall intensity of soil ac-
tivity; we’ve seen that CEC, Clay and OC are generally all positively-correlated
and this strong relation comes out in the first PC. This represents 76% of the
overall variability. The second PC has a large contribution from Clay opposed to
the two other variables; this component can be interpreted as high CEC without
high Clay, i.e. high CEC due mostly to OC. This represents 16% of the overall
variability. The third PC represents CEC that is higher than expected by the
OC content. The interpretation here is more difficult. It could just represent
lack of precision in the laboratory (i.e. experimental error). Or it could represent
a different compostion of the organic matter. This represents 8% of the overall
variability.

8.1.1 The synthetic variables*

If the retx argument to the prcomp method is specified as TRUE (this is the
default), R computes the numeric value of each observation for each PC; these
are the scores and are the values of the new variables, substituting for the original
variables. They are stored in the x field of the prcomp object.

It’s instructive to see what the observations look like in the space spanned by the
PCs. (These are also displayed as part of the biplot, see §8.1.3.)

Task 60 : Compute the standardized PCs, along with the scores for each obser-
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vation. Plot these in the space spanned by the first two PCs and highlight the
observations that are not well-explained by these. •

> pc.s <- prcomp(obs[c(10,7,13)], scale=T, retx=T)

> plot(pc.s$x[,1], pc.s$x[,2], pch=20,

+ xlab="Standardised PC 1", ylab="Standardised PC 2")

> abline(h=0); abline(v=0)

> abline(h=2, col="red", lty=2); abline(v=3, col="red", lty=2)

> abline(h=-2, col="red", lty=2); abline(v=-3, col="red", lty=2)

> (pts <- which((abs(pc.s$x[,1]) >= 3) | (abs(pc.s$x[,2]) >= 2) ))

2 3 10 13 78 81 106

2 3 10 13 78 81 106

> points(pc.s$x[pts,1], pc.s$x[pts,2], pch=21, col="red", bg="blue")

> text(pc.s$x[pts,1], pc.s$x[pts,2], pts, pos=4, col="red")

> pc.s$x[pts, c(1,2)]

PC1 PC2

2 -1.7900 -2.213046

3 -3.9647 -0.028197

10 -3.3611 -0.625042

13 -3.2530 0.695328

78 -5.4654 1.598616

81 -5.6773 2.233634

106 -3.3612 -0.804394

> obs[pts, c(10,7,13)]

CEC1 Clay1 OC1

2 12.6 71 3.20

3 21.7 61 6.98

10 14.9 62 7.34

13 23.3 48 6.00

78 29.0 53 9.40

81 28.0 46 10.90

106 22.0 67 4.80
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In the displayed graph, we can identify unusual points (towards the outside of
the plot) with the identify method and then display their values of the original
variables. In this example, points furthest from the centroid are indentified by
their distance and plotted in a different colour; the identify method wasn’t used
here because it is interactive.

Q90 : Which are the most unusual observations in the space spanned by the first
two PC’s? What do these represent, in terms of the original variables? Jump
to A90 •

8.1.2 Residuals*

The PC scores, along with the loadings (rotations), contain the complete infor-
mation of the original observations.

Task 61 : Confirm this: reproduce the original observations from the results of
the PCA and compare to the original observations. •

By default, the prcomp function centres each variable on zero (by subtracting
the mean), but does not by defaults scale them (by dividing by the standard
deviation). This is done simply to avoid problems with the numeric solution. It’s
easier to see that the multiplication of the score matrix by the rotation matrix
reproduces the original values with the non-centred and non-scaled PCA. So,
specify argument center to be FALSE.

First, we compute the PCs without any centring or scaling, and confirm that the
rotations are used to produce the synthetic variables:

> pc <- prcomp(obs[,c("CEC1","Clay1","OC1")], retx=TRUE, center=FALSE)

> summary(as.matrix(obs[,c("CEC1","Clay1","OC1")])%*%pc$rotation - pc$x)
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PC1 PC2 PC3

Min. :0 Min. :0 Min. :0

1st Qu.:0 1st Qu.:0 1st Qu.:0

Median :0 Median :0 Median :0

Mean :0 Mean :0 Mean :0

3rd Qu.:0 3rd Qu.:0 3rd Qu.:0

Max. :0 Max. :0 Max. :0

The observations multiplied by eigenvectors indeed are the synthetic variables.

Now we invert the process, to reproduce the orginal values from the synthetic
ones. Since we have the relation:

OE = S (7)

where O are the original observations (147× 3), E are the eigenvectors (3× 3),
and X are the values of the synthetic variables (147× 3), we then must have:

O = SE−1 (8)

We find the inverse of the rotations matrix with the solve function with only
one argument (the matrix to be inverted); this then post-multiplies the scores
matrix:

> obs.reconstruct <- pc$x %*% solve(pc$rotation)

> summary(obs.reconstruct - obs[,c("CEC1","Clay1","OC1")])

CEC1 Clay1 OC1

Min. :-7.11e-15 Min. :-1.42e-14 Min. :-1.78e-15

1st Qu.:-1.78e-15 1st Qu.:-1.78e-15 1st Qu.:-4.44e-16

Median :-1.78e-15 Median : 0.00e+00 Median : 0.00e+00

Mean :-1.36e-15 Mean :-8.70e-16 Mean :-1.59e-16

3rd Qu.: 0.00e+00 3rd Qu.: 0.00e+00 3rd Qu.: 0.00e+00

Max. : 1.78e-15 Max. : 1.42e-14 Max. : 8.88e-16

The only difference between the reconstructed observations and the originals is
due to limited computational precision; mathematically they are identical

If fewer than the maximum PCs are used, they will not exactly reproduce the
original observations. By omitting the higher PCs, we are sacrificing some infor-
mation for increased parsimony. The question is, how much?

Task 62 : Compute the orginal value of the observations, using only the first
standardized PC, and then with the first two. Compute the residuals. •

Here we use only the first eigenvector, and then the first two. In both cases we
have to use only the first scores and the first rows of the inverted rotation matrix.
Note the use of the drop argument when selecting only one row or column of a
matrix with the [ “extract” method. By default this is TRUE (and invisible); any
extra dimensions are dropped, and so selecting only one row or column results in
vector, not a matrix, and so can not be used in matrix operations. When this is
FALSE the dimensions are retained.
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For completeness, we show the long form of the full reconstruction. Note that
residuals are defined as (observed - modelled).

> dim(solve(pc$rotation)[1,])

NULL

> dim(solve(pc$rotation)[1,,drop=T])

NULL

> dim(solve(pc$rotation)[1,,drop=F])

[1] 1 3

> obs.reconstruct.1 <- pc$x[,1,drop=F] %*% solve(pc$rotation)[1,,drop=F]

> summary(obs[,c("CEC1","Clay1","OC1")] - obs.reconstruct.1)

CEC1 Clay1 OC1

Min. :-10.187 Min. :-4.505 Min. :-2.9565

1st Qu.: -2.303 1st Qu.:-0.936 1st Qu.:-0.5964

Median : 0.203 Median :-0.129 Median : 0.0123

Mean : 0.546 Mean :-0.195 Mean : 0.1079

3rd Qu.: 2.548 3rd Qu.: 0.800 3rd Qu.: 0.7975

Max. : 13.071 Max. : 3.721 Max. : 6.2981

> obs.reconstruct.2 <- pc$x[,1:2] %*% solve(pc$rotation)[1:2,]

> summary(obs[,c("CEC1","Clay1","OC1")] - obs.reconstruct.2)

CEC1 Clay1 OC1

Min. :-0.78864 Min. :-0.118803 Min. :-3.2491

1st Qu.:-0.09594 1st Qu.:-0.014452 1st Qu.:-0.5447

Median : 0.00821 Median : 0.001237 Median :-0.0439

Mean :-0.00201 Mean :-0.000304 Mean : 0.0108

3rd Qu.: 0.10186 3rd Qu.: 0.015344 3rd Qu.: 0.5130

Max. : 0.60759 Max. : 0.091529 Max. : 4.2173

> obs.reconstruct <- pc$x[,1:3] %*% solve(pc$rotation)[1:3,]

> summary(obs[,c("CEC1","Clay1","OC1")] - obs.reconstruct)

CEC1 Clay1 OC1

Min. :-1.78e-15 Min. :-1.42e-14 Min. :-8.88e-16

1st Qu.: 0.00e+00 1st Qu.: 0.00e+00 1st Qu.: 0.00e+00

Median : 1.78e-15 Median : 0.00e+00 Median : 0.00e+00

Mean : 1.36e-15 Mean : 8.70e-16 Mean : 1.59e-16

3rd Qu.: 1.78e-15 3rd Qu.: 1.78e-15 3rd Qu.: 4.44e-16

Max. : 7.11e-15 Max. : 1.42e-14 Max. : 1.78e-15

Q91 : What happens to the accuracy of the reconstruction as the number of
components is increased? Jump to A91 •

Task 63 : Create a matrix of the residuals that result from using only one and
two PCs to represent the three variables. •

The previous code has done this, but not returned it as a separate object.
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> resid.reconstruct.1 <- obs[,c("CEC1","Clay1","OC1")] -

+ pc$x[,1,drop=F] %*% solve(pc$rotation)[1,,drop=F]

> summary(resid.reconstruct.1)

CEC1 Clay1 OC1

Min. :-10.187 Min. :-4.505 Min. :-2.9565

1st Qu.: -2.303 1st Qu.:-0.936 1st Qu.:-0.5964

Median : 0.203 Median :-0.129 Median : 0.0123

Mean : 0.546 Mean :-0.195 Mean : 0.1079

3rd Qu.: 2.548 3rd Qu.: 0.800 3rd Qu.: 0.7975

Max. : 13.071 Max. : 3.721 Max. : 6.2981

> head(sort(resid.reconstruct.1[,"OC1"]))

[1] -2.9565 -2.2345 -2.1700 -2.0076 -1.6831 -1.6532

> head(sort(resid.reconstruct.1[,"OC1"], decreasing=T))

[1] 6.2981 4.2113 2.8299 2.3241 2.2431 1.9575

> resid.reconstruct.2 <- obs[,c("CEC1","Clay1","OC1")] -

+ pc$x[,1:2] %*% solve(pc$rotation)[1:2,]

> summary(resid.reconstruct.2)

CEC1 Clay1 OC1

Min. :-0.78864 Min. :-0.118803 Min. :-3.2491

1st Qu.:-0.09594 1st Qu.:-0.014452 1st Qu.:-0.5447

Median : 0.00821 Median : 0.001237 Median :-0.0439

Mean :-0.00201 Mean :-0.000304 Mean : 0.0108

3rd Qu.: 0.10186 3rd Qu.: 0.015344 3rd Qu.: 0.5130

Max. : 0.60759 Max. : 0.091529 Max. : 4.2173

> head(sort(resid.reconstruct.2[,"OC1"]))

[1] -3.2491 -2.2603 -2.0374 -1.9332 -1.4185 -1.3474

> head(sort(resid.reconstruct.2[,"OC1"], decreasing=T))

[1] 4.2173 2.7102 2.3981 1.7506 1.7186 1.5830

Task 64 : Plot the residuals vs. original values of organic carbon for the one-
and two-PC cases, using the same scale. •

> par(mfrow=c(1,2))

> ymax <- round(max(resid.reconstruct.1[,"OC1"],

+ resid.reconstruct.2[,"OC1"]))

> ymin <- round(min(resid.reconstruct.1[,"OC1"],

+ resid.reconstruct.2[,"OC1"]))

> plot(resid.reconstruct.1[,"OC1"] ~ obs[,"OC1"],

+ main="Residuals, 1 PC reconstruction",

+ xlab="Topsoil organic carbon, %",

+ ylab="Residual, % OC", ylim=c(ymin,ymax))

> abline(h=0, lty=2)

> plot(resid.reconstruct.2[,"OC1"] ~ obs[,"OC1"],

+ main="Residuals, 2 PC reconstruction", xlab="Topsoil organic

+ carbon, %",
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+ ylab="Residual, % OC", ylim=c(ymin,ymax))

> abline(h=0, lty=2)

> par(mfrow=c(1,1))
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Q92 : What is the pattern of the reconstruction residuals? Try to explain. (Hint:
look at the loadings, pc$rotation.) Are two PCs satisfactory for representing
topsoil carbon? Jump to A92 •

Task 65 : Repeat the analysis for CEC. •

> par(mfrow=c(1,2))

> ymax <- round(max(resid.reconstruct.1[,"CEC1"],

+ resid.reconstruct.2[,"CEC1"]))

> ymin <- round(min(resid.reconstruct.1[,"CEC1"],

+ resid.reconstruct.2[,"CEC1"]))

> plot(resid.reconstruct.1[,"CEC1"] ~ obs[,"CEC1"],

+ main="Residuals, 1 PC reconstruction",

+ xlab="Topsoil CEC, cmol+ kg-1 soil",

+ ylab="Residual, % CEC", ylim=c(ymin,ymax))

> abline(h=0, lty=2)

> plot(resid.reconstruct.2[,"CEC1"] ~ obs[,"CEC1"],

+ main="Residuals, 2 PC reconstruction",

+ xlab="Topsoil CEC, cmol+ kg-1 soil",

+ ylab="Residual, % CEC", ylim=c(ymin,ymax))

> abline(h=0, lty=2)

> par(mfrow=c(1,1))
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Q93 : What is the pattern of the reconstruction residuals? Are two PCs satis-
factory for representing topsoil CEC? Jump to A93
•

It may help to answer this question if you compute the range of residuals in the
two cases using the range function:

> range(resid.reconstruct.1[,"CEC1"])

[1] -10.187 13.071

> range(resid.reconstruct.2[,"CEC1"])

[1] -0.78864 0.60759

Standardized residuals can also be computed. The relation O = SE−1 is not
valid here, because the E matrix refers to eigenvectors from the standardized
variables. However, we can standardize the original variables ourselves and then
use these to compute residuals; i.e. S becomes standardized Ss and the same
back-transformation can be used.

Task 66 : Compute the standarized residuals of organic carbon and CEC, for
the two-PC case. Plot the residuals vs. original standardized values. •

We use the scale function to scale the columns of a matrix:

> resid.reconstruct.2 <- scale(obs[,c("CEC1","Clay1","OC1")]) -

+ pc.s$x[,1:2] %*% solve(pc.s$rotation)[1:2,]

> summary(resid.reconstruct.2)

CEC1 Clay1 OC1

Min. :-1.068 Min. :-0.1512 Min. :-1.6011

1st Qu.:-0.208 1st Qu.:-0.0294 1st Qu.:-0.1966

Median : 0.012 Median : 0.0017 Median :-0.0133

Mean : 0.000 Mean : 0.0000 Mean : 0.0000
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3rd Qu.: 0.177 3rd Qu.: 0.0251 3rd Qu.: 0.2305

Max. : 1.443 Max. : 0.2042 Max. : 1.1855

> par(mfrow=c(1,2))

> plot(resid.reconstruct.2[,"OC1"] ~ scale(obs[,"OC1"]),

+ main="Residuals, 2 PC reconstruction",

+ xlab="Topsoil organic carbon, standardized",

+ ylab="Residual, % OC standardized")

> abline(h=0, lty=2)

> plot(resid.reconstruct.2[,"CEC1"] ~ scale(obs[,"CEC1"]),

+ main="Residuals, 2 PC reconstruction",

+ xlab="Topsoil CEC, standardized",

+ ylab="Residual, CEC standardized")

> abline(h=0, lty=2)

> par(mfrow=c(1,1))
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Q94 : How do these reconstructions compare to those using unstandardized
PCs? Jump to A94 •

8.1.3 Biplots*

The relation between variables and observations in the new space can be visualised
with a biplot [15, 17]. This has two kinds of information on one plot, leading to
four interpretations:

1. The plot shows the observations as points, labeled by the observation num-
ber (i.e. the row in data frame), in the plane formed by two principal com-
ponents (synthetic variables). Any two PC’s can be used; most common
are the first two.

The coordinates of the points are shown in the lower (PC1) and left (PC2)
margins; they are the transformed variables, with the origin (0,0) defined
by the mean of the data in this space, and scaled to have similar ranges
(this can be changed by an optional parameter).
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These points are interepreted like any scatterplot: you can find clusters of
observations or outliers in this space. Note that the scaling can affect your
visualisation.

2. The plot shows the original variables from which the PC’s were computed
(i.e. the original feature space) as vectors. They begin at the origin and
extend to coordinates shown by the upper (PC1) and right (PC2) margins.
These have a different scale (and scaling) than the observations, so they
must be interepreted separately.

These can be interpreted in three ways:

(a) The orientation (direction) of the vector, with respect to the PC space,
in particular, its angle with the PC axes: the more parallel to a PC axis
is a vector, the more it contributes only to that PC. The contribution
of an original variable to a PC can be estimated from the projection
of the vector onto the PC.

(b) The length in the space defined by the displayed PCs; the longer the
vector, the more variability of this variable is represented by the two
displayed PCs; short vectors are thus better represented in other di-
mensions (i.e. they have a component that is orthogonal to the plane
formed by the two displayed PCs, which you can visualize as coming
out of the plane).

(c) The angles between vectors of different variables show their correla-
tion in this space: small angles represent high positive correlation,
right angles represent lack of correlation, opposite angles represent
high negative correlation.

We can also produce versions of the biplot emphasizing only the vectors or only
the points. These require some tricks with the arguments to the biplot method.
In any event we exaggerate a bit the text size of the variables with the cex=

argument.

> par(mfrow=c(2,2))

> biplot(pc.s, main="Biplot, Standardized PCs 1 and 2",

+ pc.biplot=T, cex=c(.9,1.2))

> biplot(pc.s, main="Variables only, Standardized PCs 1 and 2",

+ pc.biplot=T, cex=c(0.3,1.2), xlabs=rep("o", dim(pc.s$x)[1]))

> biplot(pc.s, main="Observations only, Standardized PCs 1 and 2",

+ pc.biplot=T, var.axes=F, cex=c(1,0.1))

> par(mfrow=c(1,1))

110



−4 −3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

Biplot, Standardized PCs 1 and 2

PC1

P
C

2

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

5051

5253

54

55

56

57

58

59

60

6162

63

64

6566

67

68

69

70
71

72

73

74

75
76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102
103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118
119

120

121

122
123

124
125

126

127

128

129

130

131

132
133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

CEC1

Clay1

OC1

−4 −3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

Variables only, Standardized PCs 1 and 2

PC1

P
C

2

o

o

o

o

o

o

o

o

o

o

o o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

oo

o
o

o

o

o

o

o

o

o

oo

o

o

oo

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

o

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

CEC1

Clay1

OC1

−4 −3 −2 −1 0 1 2 3

−
4

−
3

−
2

−
1

0
1

2
3

Observations only, Standardized PCs 1 and 2

PC1

P
C

2

1

2

3

4

5

6

7

8

9

10

11 12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32
33

34

35

36

37

38

39
40

41

42

43

44

45

46
47

48

49

5051

5253

54

55

56

57

58

59

60

6162

63

64

6566

67

68

69

70
71

72

73

74

75
76

77

78

79

80

81

82

83

84

85
86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102
103

104

105

106

107

108

109
110

111

112

113

114

115
116

117

118
119

120

121

122
123

124
125

126

127

128

129

130

131

132
133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

−1.0 −0.5 0.0 0.5

−
1.

0
−

0.
5

0.
0

0.
5

CEC1

Clay1

OC1

The argument pc.biplot=T produces a so-called “principal component biplot”,
where the observations are scaled up by

√
n and variables scaled down by the

same factor. With this scaling, inner products between variables (as shown by
the vectors) approximate their correlations and distances between observations
(as shown by the points) approximate Mahalanobis distance in PC space. These
lead to easier visual interpretation.)

First, we can look for groups of points (“clusters”) and unusual points (“outliers”)
in the new space.

Q95 : Do there appear to be any clusters formed by the observations? If so,
where? Jump to A95 •

Q96 : Which observations are unusual in the space spanned by the first two
standardized principal components? Can you explain them from the original
observations? Jump to A96 •

> obs[c(1,2,78,81),c(7,10,13)]
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Clay1 CEC1 OC1

1 72 13.6 5.5

2 71 12.6 3.2

78 53 29.0 9.4

81 46 28.0 10.9

Second, we can look at the vectors representing the original variables.

Q97 : Which variables are better explained in this space? (Hint: look at the
length of the vectors.) Jump to A97 •

Q98 : Which variables contribute most to PC1? to PC2? (Hint: look at the
projection of the vectors onto the axes.) Jump to A98 •

Q99 : Which variables are highly-correlated in this space? (Hint: look at the
angles between the vectors.) What does this imply for modelling? Jump to
A99 •

8.1.4 Screeplots*

A useful graphical representation of the proportion of the total variance explained
by each component is the screeplot. This is named for a “scree slope”, which is
the zone at the base of a steep cliff where debris (“scree”) accumulates. We
look for the “breaks” in the slope to decide how many PCs can be meaningfully
interpreted.

Task 67 : Repeat this analysis, but with the three continuous variables from
all three layers, i.e. a total of nine variables. Show the proportional variance
explained with a screeplot. •

> pc9 <- prcomp(obs[7:15], scale=T)

> summary(pc9)

Importance of components:

PC1 PC2 PC3 PC4 PC5 PC6 PC7

Standard deviation 2.384 1.091 0.998 0.6939 0.5478 0.392 0.301

Proportion of Variance 0.632 0.132 0.111 0.0535 0.0333 0.017 0.010

Cumulative Proportion 0.632 0.764 0.875 0.9281 0.9614 0.978 0.988

PC8 PC9

Standard deviation 0.26680 0.18038

Proportion of Variance 0.00791 0.00362

Cumulative Proportion 0.99638 1.00000

> screeplot(pc9, main="Screeplot, 9 principal components")
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Screeplot, 9 principal components
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Q100 : How much of the variance is explained by the first PC? At what com-
ponents does the “scree slope” change substantially? How many PCs out of the
9 computed are meaningful? Jump to A100 •

Task 68 : Show the three faces of the cube defined by PCs 1, 2 and 3 as three
2-D biplots. •

To show combinations of PCs other than the first two, we must use the choice=

argument.

> par(mfrow=c(2,2))

> biplot(pc9, pc.biplot=T, main="Standardized PCs 1 and 2")

> biplot(pc9, choice=2:3, pc.biplot=T, main="Standardized PCs 2 and 3")

> biplot(pc9, choice=c(1,3), pc.biplot=T, main="Standardized PCs 1 and 3")

> par(mfrow=c(1,1))
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8.2 Factor analysis*

PCA is a data reduction technique, but the resulting synthetic variables may not
be interpretable. A related technique is factor analysis in the sense used in social
sciences [35, §11.3]. Here we hypothesize that the set of observed variables is a
measureable expression of some (smaller) number of latent variables that can’t
themselves be measured, but which influence a number of the observed variables.
This has an obvious interpretation in pyschology, where concepts such as “math
ability” or “ability to think abstractly” can’t be directly measured; instead these
variables are assumed to exist (based on external evidence) and measured with
various clever tests.

In the natural sciences the concept of latent variables is not so easy to justify;
still, the techniques are useful because they (1) give a method to rotate axes to
line up observed with synthetic variables and (2) allow us to determine how many
latent variables there might be.

Suppose there are k original variables, to be explained by p < k factors. Factor
analysis decomposes the k× k variance-covariance matrix Σ of the original vari-
ables into a p × k loadings matrix Λ (the k columns are the original variables,
the p rows are the factors) and a k×k diagonal matrix of unexplained variances
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per original variable (its uniqueness) Ψ , such that

Σ = Λ′Λ+ Ψ
In PCA p = k, there is no Ψ , and all variance is explained by the synthetic
variables; there is only one way to do this. In factor analysis, the loadings matrixΛ is not unique; it can be multiplied by any k× k orthogonal matrix, known as
rotations. The factor analysis algorithm finds a rotation to satisfy user-specified
conditions; one common condition is known as varimax ; this is the default in R.

Task 69 : Compute a factor analysis assuming three latent variable, over the
three continuous variables from all three layers (i.e. nine original variables). •

> (fa <- factanal(obs[7:15], 3))

Call:

factanal(x = obs[7:15], factors = 3)

Uniquenesses:

Clay1 Clay2 Clay5 CEC1 CEC2 CEC5 OC1 OC2 OC5

0.067 0.016 0.085 0.180 0.005 0.505 0.094 0.335 0.320

Loadings:

Factor1 Factor2 Factor3

Clay1 0.838 0.393 0.277

Clay2 0.928 0.200 0.289

Clay5 0.910 0.186 0.227

CEC1 0.144 0.797 0.404

CEC2 0.265 0.283 0.919

CEC5 0.290 0.640

OC1 0.317 0.896

OC2 0.478 0.530 0.393

OC5 0.653 0.293 0.410

Factor1 Factor2 Factor3

SS loadings 3.322 2.116 1.955

Proportion Var 0.369 0.235 0.217

Cumulative Var 0.369 0.604 0.821

Test of the hypothesis that 3 factors are sufficient.

The chi square statistic is 84 on 12 degrees of freedom.

The p-value is 7.07e-13

Interpretation First, the uniqueness of each original variable is the “noise” left
over after the factors are fitted. Here CEC5 is far and away the most poorly
explained, followed by OC2 and OC5.

Second, the loadings are just like PCA: the contribution of each original variable
to the synthetic variable. Factor 1 is clearly built up mainly from all three Clay
contents; Factor 2 is clearly built up from topsoil CEC and OC.
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Third, the proportional variances are like PCA: how much of the total variance
in the original set is explained by the factor. These are generally lower than the
corresponding PC’s.

Fourth, a test of the hypothesis that the number of factors is sufficient to explain
the data set. Here we see it is not, so we add another factor:

> (fa <- update(fa, factors = 4))

Call:

factanal(x = obs[7:15], factors = 4)

Uniquenesses:

Clay1 Clay2 Clay5 CEC1 CEC2 CEC5 OC1 OC2 OC5

0.068 0.013 0.088 0.030 0.005 0.462 0.224 0.005 0.241

Loadings:

Factor1 Factor2 Factor3 Factor4

Clay1 0.820 0.363 0.261 0.245

Clay2 0.914 0.179 0.289 0.189

Clay5 0.894 0.172 0.224 0.185

CEC1 0.126 0.892 0.375 0.137

CEC2 0.226 0.262 0.881 0.315

CEC5 0.282 0.676

OC1 0.325 0.781 0.236

OC2 0.406 0.400 0.221 0.788

OC5 0.611 0.183 0.331 0.492

Factor1 Factor2 Factor3 Factor4

SS loadings 3.097 1.861 1.739 1.168

Proportion Var 0.344 0.207 0.193 0.130

Cumulative Var 0.344 0.551 0.744 0.874

Test of the hypothesis that 4 factors are sufficient.

The chi square statistic is 20.06 on 6 degrees of freedom.

The p-value is 0.0027

Now the four factors explain the data set. Notice how the uniqueness values have
all decreased. The first three factors have changed somewhat.

We can visualise the meaning of the axes:

> par(mfrow=c(2,2))

> plot(loadings(fa), xlim=c(-.1,1.1), ylim=c(-.1,1.1), type="n",

+ main="Loadings 1 and 2, 4-factor model")

> text(loadings(fa),dimnames(loadings(fa))[[1]])

> plot(loadings(fa)[,c(1,3)], xlim=c(-.1,1.1), ylim=c(-.1,1.1), type="n",

+ main="Loadings 1 and 3, 4-factor model")

> text(loadings(fa)[,c(1,3)],dimnames(loadings(fa))[[1]])

> plot(loadings(fa)[,2:3], xlim=c(-.1,1.1), ylim=c(-.1,1.1), type="n",

+ main="Loadings 2 and 3, 4-factor model")

> text(loadings(fa)[,2:3],dimnames(loadings(fa))[[1]])

> plot(loadings(fa)[,3:4], xlim=c(-.1,1.1), ylim=c(-.1,1.1), type="n",

+ main="Loadings 3 and 4, 4-factor model")

> text(loadings(fa)[,3:4],dimnames(loadings(fa))[[1]])

> par(mfrow=c(1,1))
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In this example, the clay contents clearly align with factor 1, high CEC and OC
in the topsoil with factor 2, subsoil CEC with factor 3, and subsoil OC with factor
4.

8.3 Answers

A87 : 91.7%, 99.6%. So the three-dimensional space is effectively two-dimensional; and
even reducing to one dimension only discards about 8% of the total information. Return
to Q87 •

A88 : The first component explains much less of the overall variance in the standardized
PCs, 75.6% vs. 98.4%. This is because, in the non-standardized case, one variable (clay)
has much larger numbers (in range 10 – 70, mean about 30) than the others (CEC in the
teens, OC below 5). Further, the units of measurement are different. If the variables had
the same units of measurement and were roughly comparable (e.g. clay proportion at
different depths, or analyzed by different lab. methods) the unstandardized PCA would
give better insight into the relative magnitudes of variation. Return to Q88 •

A89 : 75.6%, 91.5%. All three dimensions contain significant variability in the new
space. Return to Q89 •

A90 : Observations 78 and 81 score very low on PC1 and very high on PC 2; they have
very high CEC and OC. Thus most of their CEC is accounted for by OC, not clay.
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Observation 2 scores very low on PC2 and moderately low on PC1; this has an unusually
low CEC for its high clay content, because of the low OC.

Observations 3, 10, 13 and 106 score quite low on PC1 but are not exceptional for PC2.
Return to Q90 •

A91 : The accuracy increases with the number of components used in the reconstruction.
With all three, the reconstruction is exact (within numerical precision). With two, there
are some fairly large errors; e.g. for OC1, as large as 4.22%. Using only one component,
this increases to 6.3%. Of course, with all three there is no error. Return to Q91 •

A92 : The residuals are somewhat smaller (tighter distribution about the zero-line) with
the two-PC reconstruction; however in both cases they are quite related to the original
values. High OC are systematically under-predicted and vice-versa. This shows that the
first two PCs do not capture all the variability in OC and systematically ignore extremes.
The rotations matrix shows that OC is highly related to the third component, whereas
the first two components are related to clay and CEC. The systematic bias is because
some high-CEC, high-clay soils have low OC and vice-versa. Return to Q92 •

A93 : As with OC, the representation with one PC is poor, and has a systematic
bias towards average values. But with two PCs the reconstruction is excellent. The
maximum absolute-value residual is only 1.44 cmol+ (kg soil)-1 a fairly small error given
the minimum observation of 11.2, although it is about 1/4 of the minimum observation
(3). Return to Q93 •

A94 : Of course the units of measure are different (here, standardized; in the previous
analysis original units of measure). The pattern of residuals vs. original values is very
similar for OC in the two cases. However for CEC the original values are reproduced
very accurately and with no gain in the unstandardized case, whereas the standardized
CEC is less well reproduced. Return to Q94 •

A95 : There are no large clusters; indeed the data is remarkably well-distributed
around (0,0); however the unusual observations (see next question) seem to form two
small groups. Return to Q95 •

A96 : Observations 81 and 78 have unusually high values of both PCs; observations 1
and 2 are nearer the centre of the range of PC1 but are unusually low for PC2. The first
two have unusually high OC and CEC, with low clay; no other observations have this
combination. The second two have high clay, moderate OC, but lower-than-expected
CEC. Return to Q96 •

A97 : All three have about the same length vectors, so are equally-well represented in
t his space. Return to Q97 •

A98 : CEC1 and OC1 are nearly parallel to the axis for PC1; Clay1 contributes about
equally to the two axes. All three variables contribute in the same direction. So PC1
represents the general trend of all the soils in this dataset from low CEC, OC, and clay
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towards (generally correlated) high CEC, OC and clay. PC2 represents the variability in
clay, and to a lesser extent CEC, not associated with this general trend. Return to
Q98 •

A99 : CEC and OC are almost identical, implying that OC would be a good single
predictor of CEC (as we saw when comparing various regressions, §7.2). Clay is about
halfway from correlated to uncorrelated with these two (angle about π/4 with OC).

Return to Q99 •

A100 : The first PC explains almost 90% of the variance. The slope changes dra-
matically after the first PC and somewhat less after the third PC. Three PCs can be
interpreted. Return to Q100 •

9 Geostatistics

These observations were made at known locations, which allows us to examine
them for their spatial structure. First we look at the spatial distribution of the
points and the data values, then we see if there is a regional trend and/or a local
structure.

Note: This dataset is not ideal for spatial analysis; the sample size is not great
and the sample locations are clustered. It is included here to introduce some
techniques of spatial analysis.

9.1 Postplots

Task 70 : Display a map of the sample locations, coloured by agro-ecological
zone, and with the symbol size proportional to the value of subsoils clay at each
location (a postplot). •

Note: Note on this code: the asp argument, with value 1, to the plot method
ensures that the horizontal and vertical axes have the same expansion, as in a map;
the grid method draws a grid on the map.

Q101 : Does their appear to be any regional trend in subsoil clay content? How
consistent is this? Jump to A101 •

9.2 Trend surfaces

The regional trend can be modelled by a trend surface, using the grid coördinates
as independent linear predictors. However, there is a problem with the näıve
approach using ordinary least squares (OLS) (e.g. lm(Clay5 ~ e + n), if the
observations are clustered and, even worse, spatially-correlated, as seems to be
the case here.

If the sample points are clustered in some parts of the map (as in this case), there
is a danger of mis-estimating the regression coefficients. In particular, a large
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> plot(e, n, cex=Clay5*3/max(Clay5), pch=20, col=as.numeric(zone), asp=1)

> grid(lty=1)

> title("Postplot of topsoil clay %, by soil type")
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Figure 1: Postplot of clay%, 30-50 cm layer, by agro-ecological zone
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number of close-by points with similar values will “pull” a trend surface towards
them. Furthermore, the OLS R2 may be over-optimistic.

The solution is to use Generalised Least Squares (GLS) to estimate the trend sur-
face. This allows a covariance structure between residuals to be included directly
in the least-squares solution of the regression equation. GLS is a special case of
Weighted Least Squares (WLS).

The GLS estimate of the regression coefficients is [6]:

β̂gls = (XT · C−1 ·X)−1 ·XTC−1 ·y

where X is the design matrix, C the covariance matrix of the (spatially-correlated)
residuals, and y the observations. If there is no spatial dependence among the
errors, C reduces to Iσ2 and the estimate to OLS:

β̂ols = (XT ·X)−1 ·XT ·y

This leads us to a further difficulty: The covariance structure refers to the resid-
uals, but we can’t compute these until we fit the trend . . . but we need the co-
variance structure to fit the trend . . . which is a classic “chicken or the egg?”
problem.

In practice, it is usually sufficient to (1) make a first estimate of the trend surface
with OLS; (2) compute the residuals; (3) model the covariance structure of the
OLS residuals as a function of their separation; (4) use this covariance structure
to determine the weights to compute the GLS trend surface. The GLS residuals
could again be modelled to see if their covariance structure differs from that
estimated from the OLS residuals; in practice, unless the dataset is large it is not
possible to see any such difference.

GLS surfaces and spatial correlation structures can both be analyzed in the
spatial package; this follows the procedures explained by Ripley [29, 35].

Task 71 : Load the spatial package. Use its surf.ls method to compute the
OLS trend surface; display its analysis of variance and coefficients. •

> require(spatial)

> clay5.ls<-surf.ls(1, e, n, Clay5)

> summary(clay5.ls)

Analysis of Variance Table

Model: surf.ls(np = 1, x = e, y = n, z = Clay5)

Sum Sq Df Mean Sq F value Pr(>F)

Regression 12228 2 6114.124 73.715 <2e-16

Deviation 11944 144 82.943

Total 24172 146

Multiple R-Squared: 0.506, Adjusted R-squared: 0.499

AIC: (df = 3) 652.44

Fitted:

Min 1Q Median 3Q Max

27.4 40.1 44.7 53.7 62.8

Residuals:
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Min 1Q Median 3Q Max

-31.601 -5.106 -0.363 3.607 20.467

> clay5.ls$beta

[1] 46.4288 14.3561 -7.0893

A note on trend surface coefficients computed by the spatial package: they do
not refer to the original coördinates (e and n) but rather to offsets in e and n

values from the centre of the trend surface area, defined by the extreme values of
the coördinates. This is to make computations more stable. The first coefficient
is thus the value at the centre of area:

> (predict(clay5.ls,

+ diff(range(e))/2 + min(e),

+ diff(range(n))/2 + min(n)))

[1] 46.429

> clay5.ls$beta[1]

[1] 46.429

Q102 : How much of the variation in subsoil clay is explained by the OLS trend
surface? Jump to A102 •

Q103 : What is the equation of the 1st-order OLS trend surface? Jump to
A103 •

Task 72 : Use the correlogram method to compute the spatial auto-correlation
of subsoil clay. Examine this correlation. •

The correlogram method automatically computes the correlation for the resid-
uals, once a trend surface is fit, as it was for object clay5.ls, above:

Q104 : What is the autocorrelation at the shortest lag? What distance range
between point-pairs is in this bin? How many point-pairs contributed to this
estimate? What happens to the auto-correlation as the distance between pairs
increases? Jump to A104 •

The observations are indeed spatially-correlated at short ranges; we now model
this.

Task 73 : Fit an autocorrelation function to the correlogram and use this to fit
the GLS trend surface. Display its analysis of variance and coefficients. •

This structure is not very strong and difficult to model, so we use an estimate
just to show how the procedure works. An exponential model with an effective
range of 1800 m seems to fit.
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> c <- correlogram(clay5.ls, 50, plotit=F)

> str(c)

List of 3

$ x : num [1:48] 0 949 1898 2847 3796 ...

$ y : num [1:48] 0.4069 -0.1299 0.0644 0.0351 -0.1015 ...

$ cnt: int [1:48] 429 291 299 273 345 199 116 143 127 163 ...

> plot(c, ylim=c(-.2, .6), xlim=c(0,12000), pch=20, col="blue")

> text(c$x, c$y, round(c$y, 2), pos=3)

> abline(h=0)
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Figure 2: Auto-correlogram, clay%, 30-50cm layer
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We first re-plot the correlogram, then the fit:

> # estimate function by eye: exponential

> plot(c, ylim=c(-.2, .6), xlim=c(0,12000), pch=20, col="blue")

> abline(h=0)

> d <- seq(100,12000, by=100)

> lines(d, expcov(d, d=600, alpha=.4), col="blue")
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> rm(c, d)

We then fit a GLS trend surface, using this covariance function to model the
spatial autocorrelation:

> # fits fairly well at close range

> # now fit the GLS surface

> clay5.gls<-surf.gls(1, expcov, d=600, alpha=.4, e, n, Clay5)

> summary(clay5.gls)

Analysis of Variance Table

Model: surf.gls(np = 1, covmod = expcov, x = e, y = n, z = Clay5, d = 600, alpha = 0.4)

Sum Sq Df Mean Sq F value Pr(>F)

Regression 12150 2 6075.201 72.772 <2e-16

Deviation 12022 144 83.483

Total 24172 146

Multiple R-Squared: 0.503, Adjusted R-squared: 0.496

AIC: (df = 3) 653.39

Fitted:

Min 1Q Median 3Q Max

27.8 41.0 45.0 54.4 63.5

Residuals:

Min 1Q Median 3Q Max

-32.40 -5.61 -1.03 3.14 19.58

> clay5.gls$beta
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[1] 46.8158 14.8960 -6.3662

Q105 : How do the R2 and coefficients compare to the OLS surface? Jump to
A105 •

Task 74 : Plot the OLS and GLS trend surfaces, with the sample points super-
imposed. •

We use the eqscplot method of the MASS library, as well as the contourplot

method of the lattice library; both these must be loaded; MASS was loaded
above, so here we just load lattice:

> require(lattice)

Task 75 : Make a postplot of the residuals, with the symbol coloured according
to whether it is positive or negative. •

Q106 : Does there appear to be any spatial pattern to the residuals? Jump to
A106 •

9.3 Higher-order trend surfaces

Evidently the first-order trend surface (a plane) captured a regional trend, but
the fit was not very good (R2 = 0.496). This suggests that a higher-order surface
may be more satisfactory, both mathematically and in explaining the trend. That
is, the trend may not be a plane, but rather a second-order surface such as a dome
or saddle. In this case the residuals did not show an obvious pattern to suggest
this, but still we will try.

Task 76 : Compute and plot a 2nd-order trend surface and summarize its
goodness-of-fit. •

Q107 : How well does this trend surface fit the observations? Is this an improve-
ment over the 1st-order surface? Jump to A107
•

Q108 : Describe the form of the 2nd-order surface. Does its main 1st-order axis
match the 1st-order surface? Jump to A108 •

9.4 Local spatial dependence and Ordinary Kriging

In the previous two sections we’ve considered a regional (“global”) trend in subsoil
clay. However it is evident that there is local spatial autocorrelation, that is,
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> xmin <- min(e); xmax <- max(e); ymin <- min(n); ymax <- max(n); res <- 40

> clay5.ts <- trmat(clay5.ls, xmin, xmax, ymin, ymax, res)

> clay5.gts <- trmat(clay5.gls, xmin, xmax, ymin, ymax, res)

> eqscplot(clay5.gts, type="n",

+ main="OLS and GLS trend surfaces, subsoil clay %", xlab="E", ylab="N")

> contour(clay5.gts, level=seq(20, 80, 4), add=T)

> contour(clay5.ts, level=seq(20, 80, 4), add=T, lty=2, col="blue")

> grid(lty=1)

> points(e, n, cex=Clay5*2.5/max(Clay5), pch=23, bg=3)

> rm(clay5.ts, clay5.gts, xmin, xmax, ymin, ymax, res)
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Figure 3: First-order OLS and GLS trend surfaces for clay%, 30-50cm layer
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> xmin <- min(e); xmax <- max(e); ymin <- min(n); ymax <- max(n); res <- 40

> clay5.gls <- surf.gls(1, expcov, d=600, alpha=.4, e, n, Clay5)

> clay5.gls.resid <- resid(clay5.gls)

> clay5.gts <- trmat(clay5.gls, xmin, xmax, ymin, ymax, res)

> eqscplot(clay5.gts, type="n",

+ main="Residuals from GLS 1st-order trend surface, subsoil clay %",

+ sub="Red: negative; Green: positive",

+ xlab="E", ylab="N")

> contour(clay5.gts, level=seq(20, 80, 4), add=T)

> grid(lty=1)

> points(e, n, cex=abs(clay5.gls.resid)*2.5/max(abs(clay5.gls.resid)),

+ pch=23, bg=ifelse(clay5.gls.resid < 0, 3, 2))

> rm(clay5.gls, clay5.gts, clay5.gls.resid, xmin, xmax, ymin, ymax, res)
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Figure 4: Residuals from first-order GLS trend surface for clay%, 30-50cm layer
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> xmin <- min(e); xmax <- max(e); ymin <- min(n); ymax <- max(n); res <- 40

> clay5.gls2 <- surf.gls(2, expcov, d=600, alpha=.4, e, n, Clay5)

> summary(clay5.gls2)

Analysis of Variance Table

Model: surf.gls(np = 2, covmod = expcov, x = e, y = n, z = Clay5, d = 600, alpha = 0.4)

Sum Sq Df Mean Sq F value Pr(>F)

Regression 12832 5 2566.460 31.912 <2e-16

Deviation 11340 141 80.423

Total 24172 146

Multiple R-Squared: 0.531, Adjusted R-squared: 0.514

AIC: (df = 6) 650.81

Fitted:

Min 1Q Median 3Q Max

30.3 39.0 45.4 52.8 64.5

Residuals:

Min 1Q Median 3Q Max

-29.86 -5.35 -1.11 3.85 20.39

> clay5.gts2 <- trmat(clay5.gls2, xmin, xmax, ymin, ymax, res)

> eqscplot(clay5.gts2, type="n",

+ main="GLS 2nd-order trend surface, subsoil clay %", xlab="E", ylab="N")

> contour(clay5.gts2, level=seq(20, 80, 4), add=T)

> grid(lty=1)

> points(e, n, cex=Clay5*2.5/max(Clay5), pch=23, bg=3)

> clay5.gls2$beta

[1] 42.2565 13.6599 6.8285 -8.7301 5.0466 8.9743

> rm(clay5.gls2, clay5.gts2, xmin, xmax, ymin, ymax, res)
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Figure 5: Second-order GLS trend surface for clay%, 30-50cm layer 128



nearby points tend to be similar. The correlogram of Figure 2 shows this spatial
autocorrelation. This is best analyzed with variograms; the results can be used for
mapping by “optimal” interpolation: Ordinary Kriging. R has several packages
for this; we will use gstat [25–27] which is part of the spatial data initiative, and
uses the sp “spatial classes” package.

Task 77 : Load the gstat and sp packages with the library method and confirm
they are in the search path, with the search method. •

> require(sp)

> require(gstat)

> search()

[1] ".GlobalEnv" "package:gstat" "package:sp"

[4] "package:lattice" "package:spatial" "obs"

[7] "package:car" "package:MASS" "ESSR"

[10] "package:stats" "package:graphics" "package:grDevices"

[13] "package:utils" "package:datasets" "package:methods"

[16] "Autoloads" "package:base"

9.4.1 Spatially-explicit objects

Task 78 : Review the structure of the obs object. •

> str(obs)

'data.frame': 147 obs. of 15 variables:

$ e : int 702638 701659 703488 703421 703358 702334 681328 681508 681230 683989 ...

$ n : int 326959 326772 322133 322508 322846 324551 311602 311295 311053 311685 ...

$ elev : int 657 628 840 707 670 780 720 657 600 720 ...

$ zone : Factor w/ 4 levels "1","2","3","4": 2 2 1 1 2 1 1 2 2 1 ...

$ wrb1 : Factor w/ 3 levels "a","c","f": 3 3 3 3 3 3 3 3 3 3 ...

$ LC : Factor w/ 8 levels "BF","CF","FF",..: 3 3 4 4 4 4 3 3 4 4 ...

$ Clay1: int 72 71 61 55 47 49 63 59 46 62 ...

$ Clay2: int 74 75 59 62 56 53 66 66 56 63 ...

$ Clay5: int 78 80 66 61 53 57 70 72 70 62 ...

$ CEC1 : num 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9 ...

$ CEC2 : num 10.1 8.2 10.2 8.4 9.2 11.6 7.4 7.1 5.7 6.8 ...

$ CEC5 : num 7.1 7.4 6.6 8 8.5 6.2 5.4 7 4.5 6 ...

$ OC1 : num 5.5 3.2 6.98 3.19 4.4 5.31 4.55 4.5 2.3 7.34 ...

$ OC2 : num 3.1 1.7 2.4 1.5 1.2 3.2 2.15 1.42 1.36 2.54 ...

$ OC5 : num 1.5 1 1.3 1.26 0.8 ...

Q109 : What is the data type of this object? Which of the fields refer to spatial
information? What is their data type? Jump to A109 •

The data types for the e and n fields in the data frame are int, i.e. integers. These
are indeed numbers, but of a special kind: they are coördinates in geographic
space.
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It is possible to do some visualization and analysis in R with the data frame, but it
is more elegant, and gives many more possibilities, if geographic data is explicitly
recognized as such. This was the motivation behind the R Spatial Project, which
resulted in the sp package [24] which provides classes (data types and methods
for these) for spatial data.

The sp package adds a number of spatial data types, i.e. new object classes; these
are then recognized by methods in other packages that are built on top of sp,
most notably (for our purposes) the gstat package.

To take advantage of the power of an explicit spatial representation, we must
convert the data frame to the most appropriate sp class.

Task 79 : Create a new object of class SpatialPointsDataFrame named obs.sp,
from the obs dataframe. •

We do this by adding the computed coordinates to the data frame with the
coordinates method; this automatically converts to the spatial data type defined
by the sp package:

> class(obs)

[1] "data.frame"

> obs.sp <- obs

> coordinates(obs.sp) <- ~ e + n

> class(obs.sp)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

This is a syntax we haven’t seen before; the coordinates method can appear ei-
ther on the right or the left of the assignment operator, and the formula operators
~ and +

Q110 : What is the data type of the obs.sp object? Jump to A110 •

Task 80 : View the structure and data summary of the spatial object. •

As usual, the structure is displayed by the str method; we then summarize the
object with the generic summary method and view the first few records in the
dataframe with the head method:

> str(obs.sp)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 147 obs. of 13 variables:

.. ..$ elev : int [1:147] 657 628 840 707 670 780 720 657 600 720 ...

.. ..$ zone : Factor w/ 4 levels "1","2","3","4": 2 2 1 1 2 1 1 2 2 1 ...

.. ..$ wrb1 : Factor w/ 3 levels "a","c","f": 3 3 3 3 3 3 3 3 3 3 ...

.. ..$ LC : Factor w/ 8 levels "BF","CF","FF",..: 3 3 4 4 4 4 3 3 4 4 ...
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.. ..$ Clay1: int [1:147] 72 71 61 55 47 49 63 59 46 62 ...

.. ..$ Clay2: int [1:147] 74 75 59 62 56 53 66 66 56 63 ...

.. ..$ Clay5: int [1:147] 78 80 66 61 53 57 70 72 70 62 ...

.. ..$ CEC1 : num [1:147] 13.6 12.6 21.7 11.6 14.9 18.2 14.9 14.6 7.9 14.9 ...

.. ..$ CEC2 : num [1:147] 10.1 8.2 10.2 8.4 9.2 11.6 7.4 7.1 5.7 6.8 ...

.. ..$ CEC5 : num [1:147] 7.1 7.4 6.6 8 8.5 6.2 5.4 7 4.5 6 ...

.. ..$ OC1 : num [1:147] 5.5 3.2 6.98 3.19 4.4 5.31 4.55 4.5 2.3 7.34 ...

.. ..$ OC2 : num [1:147] 3.1 1.7 2.4 1.5 1.2 3.2 2.15 1.42 1.36 2.54 ...

.. ..$ OC5 : num [1:147] 1.5 1 1.3 1.26 0.8 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:147, 1:2] 702638 701659 703488 703421 703358 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:147] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "e" "n"

..@ bbox : num [1:2, 1:2] 659401 310897 703488 342379

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "e" "n"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

> head(obs.sp@data)

elev zone wrb1 LC Clay1 Clay2 Clay5 CEC1 CEC2 CEC5 OC1 OC2 OC5

1 657 2 f FF 72 74 78 13.6 10.1 7.1 5.50 3.1 1.50

2 628 2 f FF 71 75 80 12.6 8.2 7.4 3.20 1.7 1.00

3 840 1 f FV 61 59 66 21.7 10.2 6.6 6.98 2.4 1.30

4 707 1 f FV 55 62 61 11.6 8.4 8.0 3.19 1.5 1.26

5 670 2 f FV 47 56 53 14.9 9.2 8.5 4.40 1.2 0.80

6 780 1 f FV 49 53 57 18.2 11.6 6.2 5.31 3.2 1.08

> summary(obs.sp@data)

elev zone wrb1 LC Clay1

Min. : 82 1: 8 a: 40 FV :69 Min. :10.0

1st Qu.: 322 2:40 c: 3 BF :19 1st Qu.:21.0

Median : 432 3:63 f:104 FF :17 Median :30.0

Mean : 418 4:36 CF :15 Mean :31.3

3rd Qu.: 560 OCA :14 3rd Qu.:39.0

Max. :1000 MCA :11 Max. :72.0

(Other): 2

Clay2 Clay5 CEC1 CEC2

Min. : 8.0 Min. :16.0 Min. : 3.0 Min. : 1.60

1st Qu.:27.0 1st Qu.:36.5 1st Qu.: 7.5 1st Qu.: 5.00

Median :36.0 Median :44.0 Median :10.1 Median : 7.00

Mean :36.7 Mean :44.7 Mean :11.2 Mean : 7.41

3rd Qu.:47.0 3rd Qu.:54.0 3rd Qu.:13.1 3rd Qu.: 9.40

Max. :75.0 Max. :80.0 Max. :29.0 Max. :22.00

CEC5 OC1 OC2 OC5

Min. : 1.00 Min. : 1.04 Min. :0.30 Min. :0.20

1st Qu.: 5.00 1st Qu.: 1.98 1st Qu.:0.85 1st Qu.:0.60

Median : 6.50 Median : 2.70 Median :1.30 Median :0.84

Mean : 6.84 Mean : 2.99 Mean :1.39 Mean :0.81

3rd Qu.: 8.90 3rd Qu.: 3.70 3rd Qu.:1.70 3rd Qu.:1.00

Max. :14.00 Max. :10.90 Max. :3.70 Max. :1.70
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The spatial object now has several slots, marked with the @ symbol in the struc-
ture listing.

9.4.2 Analysis of local spatial structure

With this preparation, we can now use the gstat package to analyze local spatial
structure.

Task 81 : Compute and plot the empirical variogram of subsoil clay. •

> v <- variogram(Clay5 ~ 1, obs.sp)

> print(plot(v, pl=T, pch=20, col="blue", cex=1.5))
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Figure 6: Experimental variogram for clay%, 30-50cm layer

The experimental variogram is shown in Figure 6. Note that the pl=T argument
to the plot method shows the number of point-pairs for each estimate.

Q111 : Does there seem to be local spatial dependence? What is the evidence
for this? Jump to A111 •

Q112 : What is an appropriate variogram shape and approximate range, sill,
and nugget? Jump to A112 •

Task 82 : Estimate (by eye) a variogram model to fit the experimental variogram.
•
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Note that the range parameter of an exponential model is 1/3 of the effective
range.

> m <- vgm(100, "Exp", 15000/3, 50)

> print(plot(v, pl=T, pch=20, col="blue", cex=1.5, model=m))
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Task 83 : Fit a variogram model to the experimental variogram, using the gstat
fit.variogram method. •

The fitted model is shown superimposed on the experimental variogram in Figure
7.

Q113 : What are the parameters of your estimate and the best fit as determined
by gstat? Jump to A113 •

9.4.3 Interpolation by Ordinary Kriging

Once we have a model of the local spatial structure, we can use this to map the
study area by kriging, which, if the model is correct, is an optimal interpolator.

Note: This dataset is not really suitable for interpolation, since there are large ar-
eas far from any sample points. The samples do not have to be evenly-distributed,
but there should be some points within variogram range of all areas to be inter-
polated; with the fitted exponential model, this range is about 3 ∗ 2626 ≈ 8000
meters. We will see the effect of this irregular point distribution in the map of
kriging prediction variance.

Task 84 : Use this variogram model to interpolate across the study area by
Ordinary Kriging; also produce a map of the kriging prediction variance. •
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> (m.f <- fit.variogram(v, m))

model psill range

1 Nug 47.188 0.0

2 Exp 62.349 2626.5

> str(m.f)

Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:

$ model: Factor w/ 20 levels "Nug","Exp","Sph",..: 1 2

$ psill: num 47.2 62.3

$ range: num 0 2626

$ kappa: num 0 0.5

$ ang1 : num 0 0

$ ang2 : num 0 0

$ ang3 : num 0 0

$ anis1: num 1 1

$ anis2: num 1 1

- attr(*, "singular")= logi FALSE

- attr(*, "SSErr")= num 0.0488

- attr(*, "call")= language fit.variogram(object = v, model = m)

> attr(m.f, "SSErr")

[1] 0.048754

> print(plot(v, pl=T, pch=20, col="blue", cex=1.5, model=m.f))
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Figure 7: Experimental variogram, with fitted exponential model, for clay%, 30-
50cm layer
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First we have to create a grid onto which to interpolate. We do this from the
bounding box of the study area.

The overall dimensions are (in km, and km2):

> diff(range(e))/1000

[1] 44.087

> diff(range(n))/1000

[1] 31.482

> diff(range(e)) * diff(range(n)) / 10^6

[1] 1387.9

So a 1 x 1 km grid would require about 1388 cells; we’ll use double that resolution,
i.e. 500 x 500 m.

We first use the expand.grid method to make the grid, then coordinates to
make it a spatial object, and finally gridded to specify that this is a regular
spatial grid, not just a collection of points:

> res <- 500

> g500 <- expand.grid(e = seq(min(e), max(e), by=res), n = seq(min(n), max(n), by=res))

> coordinates(g500) <- ~ e + n

> gridded(g500) <- T

> str(g500)

Formal class 'SpatialPixels' [package "sp"] with 5 slots

..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots

.. .. ..@ cellcentre.offset: Named num [1:2] 659401 310897

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cellsize : Named num [1:2] 500 500

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cells.dim : Named int [1:2] 89 63

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

..@ grid.index : int [1:5607] 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 ...

..@ coords : num [1:5607, 1:2] 659401 659901 660401 660901 661401 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:5607] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "e" "n"

..@ bbox : num [1:2, 1:2] 659151 310647 703651 342147

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "e" "n"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

> rm(res)

Now we krige onto this grid, and display the prediction and variance maps:

> k.o <- krige(Clay5 ~ 1, obs.sp, g500, m.f)

[using ordinary kriging]
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> str(k.o)

Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots

..@ data :'data.frame': 5607 obs. of 2 variables:

.. ..$ var1.pred: num [1:5607] 46.3 46.3 46.3 46.3 46.3 ...

.. ..$ var1.var : num [1:5607] 113 113 113 113 113 ...

..@ coords.nrs : int [1:2] 1 2

..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots

.. .. ..@ cellcentre.offset: Named num [1:2] 659401 310897

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cellsize : Named num [1:2] 500 500

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cells.dim : Named int [1:2] 89 63

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

..@ grid.index : int [1:5607] 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 ...

..@ coords : num [1:5607, 1:2] 659401 659901 660401 660901 661401 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:5607] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "e" "n"

..@ bbox : num [1:2, 1:2] 659401 310897 703401 341897

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "e" "n"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

The maps are shown in Figure 8: predictions left and kriging prediction variances
right.

Q114 : Does this map seem realistic? Jump to A114 •

Q115 : Explain the pattern of prediction variances. Jump to A115 •

Block OK Although we predicted on a 500x500 m grid, the reported prediction
variances refer to a plot of the same size as the original sample, also called its
support. Here that is not specified exactly, but we know it is a small plot, about
0.5 ha (≈ 70x70 m); this is smaller than the grid size. Note that samples were
bulked from the whole field; although each sample is just one auger core, if they
are taken from different places in the field and mixed, it is as if the entire soil
were mixed and then subsampled. Thus the reported kriging prediction variance
is for an 0.5 plot on 500 m centres.

If we are satisfied with average values over a larger area, we should use block
kriging at that size; this determines an average, rather than point, value, and
reduces the kriging prediction variance, because all variation smaller than the
block is ignored. This is easy to do with the krige method, simply by specifying
the block size.

Task 85 : Predict by ordinary kriging in 500 m by 500 m blocks, and compute
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> plot.1 <- spplot(k.o, zcol="var1.pred",

+ main="OK prediction of Clay %, 30-50 cm", col.regions=bpy.colors(128),

+ pretty=T)

> plot.2 <- spplot(k.o, zcol="var1.var",

+ main="OK prediction variance of Clay %, 30-50 cm", col.regions=cm.colors(128),

+ pretty=T)

> print(plot.1, split=c(1,1,2,1), more=T)

> print(plot.2, split=c(2,1,2,1), more=F)
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Figure 8: Predictions and standard deviation of the prediction, clay%, 30-50cm layer
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the difference in predicted values and variances. •

> k.o.500 <- krige(Clay5 ~ 1, obs.sp, g500, m.f, block=c(500, 500))

[using ordinary kriging]

> str(k.o.500)

Formal class 'SpatialPixelsDataFrame' [package "sp"] with 7 slots

..@ data :'data.frame': 5607 obs. of 2 variables:

.. ..$ var1.pred: num [1:5607] 46.3 46.3 46.3 46.3 46.3 ...

.. ..$ var1.var : num [1:5607] 60.2 60.2 60.2 60.2 60.2 ...

..@ coords.nrs : int [1:2] 1 2

..@ grid :Formal class 'GridTopology' [package "sp"] with 3 slots

.. .. ..@ cellcentre.offset: Named num [1:2] 659401 310897

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cellsize : Named num [1:2] 500 500

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

.. .. ..@ cells.dim : Named int [1:2] 89 63

.. .. .. ..- attr(*, "names")= chr [1:2] "e" "n"

..@ grid.index : int [1:5607] 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 ...

..@ coords : num [1:5607, 1:2] 659401 659901 660401 660901 661401 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:5607] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "e" "n"

..@ bbox : num [1:2, 1:2] 659401 310897 703401 341897

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "e" "n"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

.. .. ..@ projargs: chr NA

> summary(k.o$var1.pred - k.o.500$var1.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.61300 -0.00124 0.00007 0.00037 0.00135 0.76000

> summary(k.o.500$var1.var / k.o$var1.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.103 0.446 0.500 0.468 0.519 0.532

The predictions are almost the same but the prediction variances are much
smaller, from 1/8 to 1/2 of those for punctual ordinary Kriging.

9.5 Answers

A101 : See Figure 1.

Subsoil clay appears to increase from the NW to the SE. There are local anomalies to
this trend, especially in zone 2 (NW corner). Return to Q101 •

A102 : Almost half of the variation is explained by the trend surface. Residuals
are symmetric, with most within 5% clay, but a few are quite large, both positive and
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negative. This means that the surface does not account for some local variability. Return
to Q102 •

A103 : z = 42.4288+ 14.3561 · x − 7.0893 · y , where x and y are offsets from the
centre of the area. Return to Q103 •

A104 : See Figure 2.

There were 429 point-pairs with a separation from 0 to 949/2 ≈ 475 m. Their autocor-
relation was 0.41. At the next bin, the autocorrelation has decreased to near zero, and
stays there, fluctuating irregularly around zero as distance increases. Return to Q104 •

A105 : See Figure 3.

The R2 is slightly lower (more realistic, accounting for spatial correlation); the coefficients
changed slightly (OLS: 46.43,14.36,−7.09; GLS: 46.8214.90− 6.37): a bit more N-S
trend and a bit less E-W; i.e. the direction of the trend surface rotates slightly towards
the S, from N107.2°E to N107.7°E.

In this case the GLS and OLS trend surfaces are almost the same, which can be appre-
ciated in the plot. Return to Q105
•

A106 : See Figure 4.

There is no clear pattern; some large positive and negative residuals are close to each
other, so the fit can’t be improved. There are some small clusters of large residuals with
the same sign, but with no obvious trend. Return to Q106 •

A107 : The 2nd-order R2 = 0.514, which is only a bit higher than the 1st-order
R2 = 0.496, i.e.1.8% more variance was explained. Return to Q107 •

A108 : See Figure 5.

The 1st-order plane, trending to the ESE, is preserved; the 2nd-order structure is domed
in the middle of this trend and falls off to the NNE and SSW. Thus the 2nd-order trend
improves but does not fundamentally change the 1st-order trend. Note that the linear
coefficients of the 2nd-order trend (13.6599,−8.7301) are similar to the 1st-order trend
(14.8960,−6.3662). Return to Q108 •

A109 : The object is a data frame. Fields e and n give the UTM coordinates; field elev

gives the third (elevation) coordinate. These three are all integers (i.e. whole numbers).
The other fields are measured attributes. Return to Q109 •

A110 : The data type is now SpatialPointsDataFrame; this is defined in the sp

package. Return to Q110 •
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A111 : Spatial information includes (1) a bounding box, i.e. limits of the the coördinates;
(2) the geographic projection, in this case marked as NA (“not applicable”) because we
haven’t informed sp about it. Return to Q111 •

A112 : Non-spatial information is the data frame less the coördinates, i.e. all the feature
(attribute) space information: the two categorical variables and the seven metal contents.

Return to Q112 •

A113 : Yes; the evidence is that semivariances at close separation distances between
point pairs are generally lower than those at longer distances. Return to Q113 •

A114 : This variogram is erratic and difficult to model, mainly because of the low
number of point pairs at some separations. It does not seem to reach a clear sill, so
an exponential model (which approaches a sill asymptotically) may be most appropriate.
The nugget is about 50%2; the sill somewhere near 150%2, and the effective range 15 km.

Return to Q114 •

A115 : The estimated parameters of the exponential model were: partial sill 100, nugget
50, range 5 000 (n.b. this implies an effective range of 15 000). The fitting algorithm
emphasis close-separation points and large numbers of point pairs, and thus lowered the
partial sill and shortened the range considerably: partial sill 62.3, nugget 47.2, range
2 627 (effective range 7 881). Return to Q115 •

A116 : The map respects the general clusters of higher or lower values (also seen on
the 2nd-order trend surface) but seems to have small patches that are artefacts of the
sampling. Away from the sample cluster, the spatial mean is predicted, with no detail.

Return to Q116 •

A117 : Prediction variances are low near the point clusters; in areas further than the
effective range (about 8 km) the variance is maximum. Return to Q117 •

10 Going further

The techniques introduced in this note do not even begin to exhaust the possibil-
ities offered by the R environment. There are several good R-specific texts which
you can consult:

� Dalgaard [7] is a simple introduction to elementary statistics using R for
the examples. If you found these notes too advanced, this is a good book
to get you started.

� Fox [12] is a thorough treatments of applied regression and linear models,
with examples from social and political sciences. It is rigorous but provides
many aids for understanding. This is accompanied by a text with all the
techniques illustrated by R code [13].

� Venables and Ripley [35] is the well-known Modern applied statistics with
S, which gave rise to the MASS package. This has a wealth of advanced
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techniques, but also some well worked-out examples of statistical mod-
elling. Some topics covered are linear modelling, multivariate analysis,
spatial statistics, and temporal statistics. I highly recommend this book
for serious S users.

And remember: Each R package has its own documentation and demonstrations.
There are a large number of specialised packages; one may be exactly what you
need. Browse through CRAN and the R help and package archives.

A useful R resource is the set of Task Views, on-line at http://cran.r-project.Task Views
org/src/contrib/Views/. These are a summary by a task maintainer of the
facilities in R to accomplish certain tasks, with links to all relevant packages.
In particular there is a task view for “Multivariate Statistics” at http://cran.

r-project.org/src/contrib/Views/Multivariate.html.

The best resource is a good statistics textbook at your level; anything explained
in these is either already available in R or can be directly programmed.

Above all, experiment and keep thinking !
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Index of R Concepts

+ formula operator, 129
[, 104
~ formula operator, 129

abline, 90
abs, 31, 38
aov, 61
as.numeric, 21
asp graphics argument, 118
attach, 9

biplot, 109
border graphics argument, 11
boxplot, 59
breaks graphics argument, 11
by, 59, 60

car package, 83, 84
center argument, 103
coefficients, 88
col graphics argument, 11, 31
colors, 11
contourplot (package:lattice), 124
coordinates (package:sp), 129, 134
cor.test, 22
correlogram (package:spatial), 121
cov, 22, 69

data.frame, 40
dfbeta, 37
dfbetas, 37
drop argument, 104

eqscplot (package:mass), 124
expand.grid, 134

file.show, 3
fit.variogram (package:gstat), 132
fitted, 30

grid, 118
gridded (package:sp), 134
gstat package, 3, 128, 129, 131, 132

hatvalues, 35
head, 129

identify, 102
influence.measures, 37

krige (package:gstat), 135

lattice package, 3, 124
length, 60
levels, 21
library, 128
lines, 90
lm, 25, 29, 30, 35, 59, 61, 63, 64, 72, 77, 89
load, 5
loess, 90
lowess, 23
lqs, 42

main graphics argument, 11
MASS package, 42, 43, 124

order, 58

pairwise.t.test, 64
par, 19
plot (package:lattice), 131
plot, 11, 118
prcomp, 99, 101, 103
predict, 40, 42

range, 107
rank, 52
read.csv, 4, 5
read.table, 4
reshape, 7
resid, 30
retx argument, 101
row.names, 5
rug, 11

scale, 107
scale argument, 100
sd, 22
search, 128
segments, 31
seq, 11
shapiro.test, 34
solve, 103
sort, 58
sp package, 3, 128, 129, 138, 139
span argument, 90
spatial package, 120, 121
stem, 33, 34
step, 77–79
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str, 129
subset argument, 89, 90
summary, 44, 129
surf.ls (package:spatial), 120

t.test, 15
text, 11

update, 86

vif, 83, 86

which, 31
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A Derivation of the hat matrix

The “hat” matrix is derived from an interesting way to look at the linear model:

y = Xb+ ε (A1)

where ε ∼ N (0, σ I) are the (unobservable) identically-distributed errors with
(unknown) variance σ2.

Recall that a vector of fitted values ŷ is computed from the design matrix X and
the vector of fitted coefficients b:

ŷ = Xb (A2)

The “hat” notation, e.g. ŷ , is used to indicate a fitted (not observed) value; the
observed value has no hat, e.g. y .

This can be written separately for each of the n fitted values as:

ŷi = β0 + β1xi1 + · · · + βnxin, i = 1 . . . n (A3)

Equation A3 shows the expansion of the matrix multiplication of equation A1 by
rows. There is one βj for each of the predictors, including the intercept β0. So,
if we know the coefficients b we can predict at any value of the predictors, i.e. a
given row of X.

In least squares regression, the coefficients b are solved by least squares estimation
from the vector of sample observations y:

y = Xb (A4)

X′y = X′Xb (A5)

(X′X)−1X′y = (X′X)−1(X′X)b (A6)

(X′X)−1X′y = Ib (A7)

b = (X′X)−1X′y (A8)

and substituting into equation A1:

ŷ = X(X′X)−1X′y (A9)

so that the “hat” matrix, which is what multiples the observations to get the fits,
can be defined as:

V = X(X′X)−1X′ (A10)

that is,

ŷ = Vy (A11)

ŷi = vi1y1 + vi2y2 + · · · + vinyn, i = 1 . . . n (A12)

The “hat” matrix is so-named because it “puts the hats on” the fitted values: from
observed y to best-fit ŷ. Notice that once this is computed, there is no more need
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for the predictors in the model matrix X, and there is no need to use the regression
equation, i.e., all the information in the regression coefficients vector β. However,
the “hat” matrix can only be used to compute the fits ŷi corresponding to each
observation of the target variable yi, it can not be used to predict at arbitrary
values of the predictors; for that, the regression equation is used.

The hat matrix V gives the weights by which each original observation yj is
multiplied when fitting ŷi. This means that if a high-leverage observation were
changed, the fit would change substantially. In terms of vector spaces, the V
matrix gives the orthogonal projection of the observation vector y into the column
space of the design (model) matrix X.

The overall leverage of each observation yi is given by its hat value, which is the
sum of the squared entries of the hat matrix associated with the observation, i.e.,
column j of the matrix. This is also observation i’s entry vii on the diagonal of
the hat matrix, because of the fact that V = V′V = V2:

vii =
n∑
j=1

v2
ji (A13)

This is because the “hat” matrix is symmetric.

A.1 Influence of values on prediction

Each row i of the “hat” matrix gives the multipliers of each observation xj on the
predicted value ŷi. The larger the vij , the more influence observation xj has on
the predicted value ŷi. This raises the interesting question . . .

Details of this and many other interesting aspects of the hat matrix are given by
Cook and Weisberg [5].
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