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1 Introduction

This technical note shows how to perform co-kriging using the gstat
geostatistical package [12] of the R environment for statistical comput-
ing and visualisation [3]. It does not present the theory of co-regionalisation
or co-kriging; this is dealt with in many texts [e.g. 2, 4, 9, 19]. The main
aim is to show various R techniques for data manipulation, calculation
and graphics; emphasis is on the gstat geostatistical package, the sp
spatial data package [11], and the lattice graphics package [15].

Note: Since the first version of this tutorial in 2005, the ggplot2 ‘Gram-
mar of Graphics‘ package was developed, along with many packages that
depend on it. These provide other ways to produce statistical graphics
and maps. Probably these would be more attractive, but I do not have
time to re-do the tutorial.

It also shows how to evaluate the success of a kriging interpolation by
evaluation (“validation”) from an independent data set and by cross-
validation from the sample data set.

These notes are designed so that you can cut the code shown and paste
it directly into the R console; you should then see the output of execut-
ing the code, the same as you see in the document. Of course, you are
encouraged to edit the code and experiment.

1.1 When to use co-kriging?

Co-kriging allows samples of an auxiliary variable (also called the co-
variable), besides the target value of interest, to be used when predict-
ing the target value at unsampled locations. The co-variable may be
measured at the same points as the target (co-located samples), at other
points, or both.

A common application of co-kriging is when the co-variable is cheaper
to measure, and so has been more densely sampled, than the target vari-
able. In this example we show this typical situation, where there is a
small sample set where both variables have been measured (co-located
measurements) and a larger sample set where only the co-variable has
been measured. This is the application we will examine in this tutorial.

Note: Another application is when several correlated variables are mea-
sured at the same locations, and using the spatial and feature-space cor-
relation can lead to more precise predictions for all of the variables.

Co-kriging requires that both target and co-variable be, individually, spa-
tially autocorrelated, and in addition that they be spatially cross-correlated.

If the target and co-variable samples are co-located, and in addition

the values of the co-variable are known at each prediction location

(e.g. an interpolation grid), more appropriate techniques are Krig-

ing with External Drift (KED) or Regression Kriging (RK); these only

require a significant feature-space relation between target and co-

variable.
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1.2 R and gstat

R is set up as a base system with many contributed libraries, among
which are several for geostatistics, including spatial [17], geoR [13],
and gstat [12]. The latter, gstat, is the subject of these notes. Each
package has its own way of approaching geostatistics. This is one of the
strengths of R: it is open to any practising statisticians who can write
code to express their computational methods. Recently, several of these
practicioners have together developed a common package sp to facili-
tate spatial statistics [11]; gstat depends on this package and loads it
as necessary.

As with all R packages, gstat has on-line help: library(help=gstat)
to get a list of methods in the package, ?variogram to get help for the
variogram method, and similarly for the other methods. The user’s
manual [10] refers to the stand-alone version, not the R package, but
explains the algorithms in detail.

The gstat library uses structures from the sp “classes and methods for
spatial data” package.

1.3 Example Data Set

This example uses the Meuse soil pollution dataset [14] and an interpola-
tion grid of the study area in the south of the Netherlands, both provided
with the sp R library as sample data sets. A brief explanation of the data
fields is given in the on-line help (?meuse, ?meuse.grid) once this library
is loaded.

Task 1 : Load the sp and gstat libraries, the dataset of sample points,
and the interpolation grid. Examine the structure of the point set and
grid. •
library(sp)
library(gstat)
?meuse
data(meuse)
str(meuse)

'data.frame': 155 obs. of 14 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

?meuse.grid
data(meuse.grid)
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str(meuse.grid)

'data.frame': 3103 obs. of 7 variables:
$ x : num 181180 181140 181180 181220 181100 ...
$ y : num 333740 333700 333700 333700 333660 ...
$ part.a: num 1 1 1 1 1 1 1 1 1 1 ...
$ part.b: num 0 0 0 0 0 0 0 0 0 0 ...
$ dist : num 0 0 0.0122 0.0435 0 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

The data frame of sample points contains 155 observations of twelve
variables1, each with its coördinates in the Dutch national grid. The
prediction grid has 3103 locations, spaced every 40 m in both the E and N
grid directions, covering the irregularly-shaped study area. The support
(geographic area represented by the soil samples) (10 m)2 ·π ≈ 314 m2

[14, §2.2] horizontal, 10 cm vertical. Punctual kriging is thus a prediction
of the average concentration over this area, at the centre of each grid cell,
averaged over 10 cm depth slice. The ‘point‘ support is about 20% of the
area of each cell of the interpolation grid, 1600m2.

2 Target and co-variables

In a mapping exercise we are often interested in one or more target vari-
ables, i.e. those to be mapped. When co-kriging we also need to select
one or more co-variables to assist in the mapping of the target variables.

When mapping with co-kriging it is possible to use the same set of

variables as target and co-variables; however this is typically used

in the case of more or less equal sampling density. In these notes

we consider the case of under-sampling of a target varible, using

additional samples from co-variables.

2.1 The target variable

We select lead (chemical symbol Pb) as the target variable, i.e. the one
we want to map. This metal is a serious human health hazard. It can be
inhaled as dust from disturbed soil or taken up by plants and ingested.
The critical value for Pb in agricultural soils, according to the Berlin Dig-
ital Environmental Atlas2, is 600 mg kg-1 for agricultural fields: above
this level grain crops can not be grown for human consumption. Above
300 mg kg-1 crops must be tested; above 100 mg kg-1 consumption of
leafy vegetables should be avoided. Levels below 200 mg kg-1 are re-
quired for sports fields or parks where soil may become bare from over-
use. Natural levels in unpolluted soils are on the order of 30 mg kg-1.

Task 2 : Display histograms of the target variable and its log10 trans-

1 although there are a few missing values of organic matter
2 http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.
htm
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form. What proportion of the samples are above the five thresholds?
•

We will use the lattice graphics package throughout this case study;
this is an R implementation by Sarkar [15] of the Trellis framework for
data visualization developed at Bell Labs, based on the ideas in Cleveland
[1]. It must be loaded before use. The histogram method is part of this
package, not the base graphics package3.
require("lattice")
h1 <- histogram(~ lead , meuse, xlab="Pb", col="thistle3", nint=12)
h2 <- histogram(~ log10(lead), meuse, xlab="log10(Pb)", col="thistle3", nint=12)
print(h1, split = c(1,1,2,1), more=T)
print(h2, split = c(2,1,2,1), more=F)
rm(h1, h2)
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# proportions higher than various thresholds
ph <- function(level) {

round(100 * sum(meuse$lead > level)/length(meuse$lead), 1)
}
p <- NULL; lvls <- c(600, 300, 200, 100, 30)
for (l in lvls) p <- c(p, ph(l))

# display a table of thresholds and proportions
(data.frame(cbind(level=lvls, percent.higher=p)))

level percent.higher
1 600 0.6
2 300 8.4
3 200 27.1
4 100 54.8
5 30 100.0

rm(ph, l, lvls, p)

The nint= optional parameter is used to specify the number of his-

togram bins; if it is omitted, lattice will compute it as (log2n)+1,

in this case 8.

Not many samples are too polluted for grain crops, but over a quarter
are too polluted for use as playgrounds and half are too polluted for
garden allotments. All are above background levels.

Because of the right-skew and wide numerical range of the Pb values we
will work with the log-transformed target variable; to allow easy inter-
pretation of the results we will use base-10 logarithms.

3 The hist method in the base graphics package gives similar output.
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2.2 Selecting the co-variables

A co-variable for use in co-kriging is correlated to the target variable in
both feature and geographic space, and has usually been more densely
sampled than the target variable.

Candidates for co-variables must have:

1. a feature-space correlation with the target variable;

2. a spatial structure (i.e. be modelled as a regional variable);

3. a spatial co-variance with the target variable.

There are two main ways to select a co-variable:

1. theoretically, from knowledge of the spatial process that caused the
observed spatial (co-)distribution;

2. empirically, by examining the feature-space correlations (scatter-
plots) and then the spatial co-variance (cross-correlograms or cross-
variograms).

We usually have some idea of the possible co-variables from theory (i.e.
an a priori hypothesis) based on our knowledge of the process that (we
think) gave rise to the data. The modelling process reveals if our hy-
pothesis is supported by this particular data set. The second option,
exploring the data (a sort of “data mining”) is appropriate when there is
no theory.

In this tutorial we will compare two possible co-variables based on the-
ory, which turn out to have different strengths of relation with the target
variable.

First, we select organic matter content (abbreviation “OM”). It is cheaper
than the heavy metal to measure in the laboratory, and may bind heavy
metals in the soil [6, 16]; thus there may be a positive correlation in
feature space between this co-variable and target variable. However, it is
mostly formed in place in the soil and not transported with flood waters,
as is Pb, so it is unclear if there will prove to be a spatial co-variance with
Pb in the study area.

Second, we select zinc content (chemical symbol Zn). Many of the in-
dustrial processes that result in lead pollution also produce Zn, and it
is transported similarly, both as dust and sediment. It is generally mea-
sured along with lead at no additional cost (i.e. the same soil sample
serves for both) so this example is somewhat artificial, but it will illus-
trate the effect of a highly-correlated (in both feature and geographic
spaces) co-variable.

Task 3 : Display histograms of the co-variables and their log10 trans-
forms. •
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h1 <- histogram(~ om, meuse, xlab="OM", col="lightblue", nint=12)
h2 <- histogram(~ zinc , meuse, xlab="Zn", col="red4", nint=12)
h3 <- histogram(~ log10(om), meuse, xlab="log10(OM)", col="lightblue", nint=12)
h4 <- histogram(~ log10(zinc) , meuse, xlab="log10(Zn)", col="red4", nint=12)
print(h1, split = c(1,1,2,2), more=T)
print(h3, split = c(2,1,2,2), more=T)
print(h2, split = c(1,2,2,2), more=T)
print(h4, split = c(2,2,2,2), more=F)
rm(h1, h2, h3, h4)
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The co-variable OM is symmetric with a fairly narrow range, and does
not need to be transformed for feature-space correlation; however we
will work with the transformed value to have comparable numbers for
modelling co-regionalisation (§6). The co-variable Zn is skewed much
like Pb, and so is log-transformed.

3 Simulation of under-sampling

To explore the value of co-kriging, we will simulate the situation where
the target variable is under-sampled compared to the co-variable.

Task 4 : Make a subset of the observations of the target variable (lead)
and the co-variables (organic matter and zinc), using every third sample
from the full data set. •
meuse.pb <- meuse[ seq(1, length(meuse$lead), by=3),

c("x", "y", "lead", "om", "zinc")]
str(meuse.pb)

'data.frame': 52 obs. of 5 variables:
$ x : num 181072 181298 181165 181232 180874 ...
$ y : num 333611 333484 333370 333168 333339 ...
$ lead: num 299 116 132 80 285 240 207 123 75 67 ...
$ om : num 13.6 8 9.2 6.3 15.4 16.2 13.7 7.2 6.9 4.4 ...
$ zinc: num 1022 257 346 183 1096 ...
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Note the use of the seq method to select every third row, and the

c method to select only the relevant columns. Another possibility

is the sample method to select a random sample of rows; however

each sample is different, so you would not be able to compare your

results with mine.

We can see which observations were selected:
rownames(meuse.pb)

[1] "1" "4" "7" "10" "13" "16" "19" "22" "25" "28" "31"
[12] "34" "38" "41" "44" "47" "50" "53" "56" "59" "62" "65"
[23] "69" "79" "82" "85" "88" "123" "70" "92" "95" "98" "101"
[34] "104" "108" "111" "114" "117" "120" "124" "127" "130" "133" "136"
[45] "137" "141" "144" "147" "150" "153" "156" "159"

Since we will work with the log10 transformed variables, for convenience
we compute these once and add them to the subsample data frame.

Task 5 : Add fields with the log10 transformed target and co-variables
to the data frame of the subsample. •
We name the new fields ltpb (stands for “log-ten-lead”), ltom (stands
for “log-ten-organic-matter”), and ltzn:
meuse.pb <- cbind(meuse.pb,

ltpb = log10(meuse.pb$lead),
ltom = log10(meuse.pb$om),
ltzn = log10(meuse.pb$zinc))

str(meuse.pb)

'data.frame': 52 obs. of 8 variables:
$ x : num 181072 181298 181165 181232 180874 ...
$ y : num 333611 333484 333370 333168 333339 ...
$ lead: num 299 116 132 80 285 240 207 123 75 67 ...
$ om : num 13.6 8 9.2 6.3 15.4 16.2 13.7 7.2 6.9 4.4 ...
$ zinc: num 1022 257 346 183 1096 ...
$ ltpb: num 2.48 2.06 2.12 1.9 2.45 ...
$ ltom: num 1.134 0.903 0.964 0.799 1.188 ...
$ ltzn: num 3.01 2.41 2.54 2.26 3.04 ...

The cbind method is used to add columns to a data frame. The

column names may be specified on the left side of a = sign for each

added column; otherwise they are named by the full expression,

e.g. log10(meuse.pb$zinc) instead of ltzn.

We have a set of 103 points at which lead was measured, but which
we didn’t use in the subset, either for modelling or interpolation. This
can be used as a evaluation dataset4 to assess the performance of the
interpolation; see §5.1. Here we set up the evaluation data set.

Task 6 : Make a data frame of the lead values at the extra points
that were not included in the subsample and compare the descriptive
statistics of the three sets: sample, extra, and full. •
4 often called the “validation” dataset, but see [7, 8]
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Since we already have the subsample in frame meuse.pb, we can extract
the samples we didn’t choose for the subsample by comparing the sam-
ple with the full sample, using the setdiff method on the row names.
meuse.extra <- meuse[setdiff(rownames(meuse), rownames(meuse.pb)),

c("x", "y", "lead")]
meuse.extra <- cbind(meuse.extra, ltpb = log10(meuse.extra$lead))
str(meuse.extra)

'data.frame': 103 obs. of 4 variables:
$ x : num 181025 181165 181307 181390 181027 ...
$ y : num 333558 333537 333330 333260 333363 ...
$ lead: num 277 199 117 137 150 133 86 97 183 130 ...
$ ltpb: num 2.44 2.3 2.07 2.14 2.18 ...

summary(log10(meuse$lead)); sd(log10(meuse$lead))

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.568 1.860 2.090 2.088 2.316 2.816

[1] 0.2894356

summary(meuse.pb$ltpb); sd(meuse.pb$ltpb)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.681 1.831 2.139 2.117 2.386 2.683

[1] 0.3080808

summary(meuse.extra$ltpb); sd(meuse.extra$ltpb)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.568 1.863 2.068 2.073 2.293 2.816

[1] 0.2799144

The subsample has very similar statististics to the full sample. As ex-
pected, the range is a bit narrower but the standard deviation a bit
higher; by chance the median and mean are a bit larger. The evaluation
set has almost identical statistics to the full set.

4 Modelling the spatial structure of the target variable

We now begin spatial analysis. The first step is to convert the data sets
to explictly-spatial, using the sp package.

As loaded from the sp package, the sample data meuse is a data.frame.
Notice that the coördinates of each point are listed as fields. However, sp
has defined some classes to make the spatial nature of the data explicit.
It also provides a coordinates method to set the spatial coördinates
and thereby create explict spatial data.

Task 7 : Convert the full and subset data frames, and the interpolation
grid, to sp classes. •
class(meuse)

[1] "data.frame"

coordinates(meuse) <- ~ x + y
# alternate command format: coordinates(meuse) <- c("x", "y")

coordinates(meuse.pb) <- ~ x + y
coordinates(meuse.extra) <- ~ x + y
coordinates(meuse.grid) <- ~ x + y

8



class(meuse)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

The coordinates method is used to inform sp about the spatial objects.
The objects are now spatially-explicit; so for example they have a known
bounding box, projection (here not defined), and attributes:
summary(meuse.pb)

Object of class SpatialPointsDataFrame
Coordinates:

min max
x 178786 181298
y 329822 333611
Is projected: NA
proj4string : [NA]
Number of points: 52
Data attributes:

lead om zinc ltpb
Min. : 48.00 Min. : 1.900 Min. : 117.0 Min. :1.681
1st Qu.: 67.75 1st Qu.: 5.450 1st Qu.: 190.0 1st Qu.:1.831
Median :138.00 Median : 7.000 Median : 401.0 Median :2.139
Mean :167.12 Mean : 7.782 Mean : 516.6 Mean :2.117
3rd Qu.:243.25 3rd Qu.: 9.150 3rd Qu.: 737.8 3rd Qu.:2.386
Max. :482.00 Max. :17.000 Max. :1672.0 Max. :2.683

NA's :1
ltom ltzn

Min. :0.2788 Min. :2.068
1st Qu.:0.7362 1st Qu.:2.279
Median :0.8451 Median :2.603
Mean :0.8470 Mean :2.586
3rd Qu.:0.9614 3rd Qu.:2.868
Max. :1.2304 Max. :3.223
NA's :1

Many R methods are not yet aware of sp classes; for these the original
data frame can be recovered when necessary with the as.data.frame
method:
str(as.data.frame(meuse))

'data.frame': 155 obs. of 14 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...
$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

Task 8 : Display a postplot of the subsample superimposed on the full
sample and compare their geographic distribution. •
xyplot(y ~ x, as.data.frame(meuse), asp="iso",

panel = function(x, ...) {
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panel.points(coordinates(meuse),
cex=1.8*(log10(meuse$lead) - 1.3),
pch=1, col="blue");

panel.points(coordinates(meuse.pb),
cex=1.8*(meuse.pb$ltpb - 1.3),
pch=20, col="red");

panel.grid(h=-1, v=-1, col="darkgrey")
})

x

y

330000

331000

332000

333000

178500 179000 179500 180000 180500 181000 181500
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Note: The xyplot method is part of the lattice graphics package.

It allows the use of panel functions to superimpose different kinds

of plots, in this case two point sets and the grid lines on top of the

main x-y (scatter) plot. Each panel.* method can have optional

graphics parameters; in this case we used cex= to specify maxi-

mum point size, pc to specify the printing character shape, and co

to specify the character colour. Colours may be given by an RGB

code or by name, see ?colors and ?col2rgb. The aspect="iso"

argument scales the map so that the same distance in the N–S and

E–W directions is represented by the same distance on the map.

The subsample has a similar but sparser geographic distribution to the
full sample.

The first step in any kriging prediction is to model the regionalised target
variable. In this case the sample set is small for variogram modelling; it
is certainly too small to model anisotropy.

Task 9 : Compute the omnidirectional spatial variogram of log10Pb and
fit a variogram model to it. •

Gstat provides methods for each of these steps:
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1. The variogram method computes the experimental variogram as a
variogram object;

2. The vgm method creates a variogram model object;

3. The fit.variogram method adjusts a variogram model object to
a variogram object.

First we examine the variogram cloud to see all the point-pairs; then
we compute the experimental variogram. Then we specify a variogram
model and its initial parameters (determined by eye looking at the exper-
imental variogram); finally we fit it.

The variogram method has optional arguments to specify maxi-

mum distance, bin widths, directions, directional tolerances, and

whether the robust Cressie estimator should be used. In this case

we use the default estimator but specify the bin widths and cutoff.

Plot the variogram cloud:
plot(v.ltpb.c <- variogram(ltpb ~ 1, data=meuse.pb, cutoff=1800, cloud=T))
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Plot the empirical variogram, also showing the number of point-pairs in
each bin:
plot(v.ltpb <- variogram(ltpb ~ 1, data=meuse.pb, cutoff=1800, width=200), pl=T)
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Estimate the variogram model form and parameters by eye, visualize on
the empirical variogram:
m.ltpb <- vgm(0.08,"Sph",800,0.03)
plot(v.ltpb, pl=T, model=m.ltpb)
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Fit the model parameters by weighted least-squares and plot on the em-
pirical variogram:
(m.ltpb.f <- fit.variogram(v.ltpb, m.ltpb))

model psill range
1 Nug 0.02395032 0.0000
2 Sph 0.08879807 876.1765

plot(v.ltpb, pl=T, model=m.ltpb.f)
rm(v.ltpb.c, v.ltpb, m.ltpb)
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The initial variogram parameters (Spherical form, total sill 1.1, range
800, nugget 0.03) are estimated by eye. The form is suggested not only
by this experimental variogram but also by previous experience with soil
chemical values. The automatic fit did not change the initial parameter
estimates much. For a small sample, the variogram has a good structure,
and was successfully modelled.

5 Ordinary Kriging interpolation of the target variable

First, we predict Pb without the co-variables, from the small subset. This
simulates the situation where we have a small sample of the expensive-
to-measure target variable.

Task 10 : Use the fitted model of regionalization to interpolate the
log10Pb content with OK on the prediction grid. Summarize the predic-
tion and error; we will use this as a baseline to evaluate the benefits of
co-kriging. •

Gstat provides the krige method for univariate kriging. We must sup-
ply a formula for the spatial dependence (here, ltpb ~ 1 for a stationary
field), the object containing the sample data and from which the coor-
dinates can be extracted (here, meuse.pb), an object with locations to
be predicted (here, meuse.grid) and named coordinates as in the sam-
ple data object, and a model of spatial dependence (variogram) (here,
m.ltpb.f):

# interpolate
k.o <- krige(ltpb ~1, locations=meuse.pb, newdata=meuse.grid, model=m.ltpb.f)

[using ordinary kriging]

# summary statistics
summary(k.o)

Object of class SpatialPointsDataFrame
Coordinates:

min max
x 178460 181540
y 329620 333740
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Is projected: NA
proj4string : [NA]
Number of points: 3103
Data attributes:

var1.pred var1.var
Min. :1.707 Min. :0.03569
1st Qu.:1.897 1st Qu.:0.05195
Median :2.027 Median :0.06078
Mean :2.060 Mean :0.06380
3rd Qu.:2.231 3rd Qu.:0.07379
Max. :2.530 Max. :0.11188

The kriged object has both the predictions (field var1.pred) and vari-
ances of the predictions (field var1.var).

Task 11 : Display a map of the predictions and their errors. •

A grid map can be displayed with the levelplot and contourplot func-
tions of the lattice package. Here we use panel functions to superim-
pose the sample points, as well as the extra points not included in the
sample. For the predictions, we draw a postplot (size of symbols pro-
portional to value); for the errors only the positions, since kriging er-
ror depends only on point configuration. The production of these plots
has been encapsulated in several plotting functions which make use of
levelplot; they are presented in §A.1 and also provided as source code
in file ck_plotfns.R, which must be loaded at this point:
source("ck_plotfns.R")
plot.kresults(k.o, "var1", meuse, meuse.pb, "lead", "log10(Pb), OK")
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The OK map shows the main features of the spatial distribution; however
it is clear that some of the sample points that were not included in the
sub-sample are poorly predicted. (See for example the extra point near
(179750E,330800N); the prediction is low, but the large green point
shows that the value is large.) The OK prediction error map shows the
expected low errors near the sample points. There are extra points near
most high-error areas; using information on the co-variable from these
points should improve the prediction and lower its error.

5.1 Evaluation

The meuse.extra object has the coördinates and lead levels of the 103
points at which lead was measured, but which we didn’t use in the sub-
set, either for modelling or interpolation. This can be used as a evalu-
ation dataset (often called the validation dataset) to assess the perfor-
mance of the interpolation.

The procedure is to predict (by kriging) at the points in this evalua-
tion set meuse.extra, using the sample points only. Then we com-
pare the predictions with the measured values. We work with the log10-
transformed values.

Task 12 : Interpolate at the extra points, using OK from the sample
points, and determine the prediction bias and precision. •
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# predict at the extra points
k <- krige(ltpb ~ 1, meuse.pb, meuse.extra, m.ltpb.f)

[using ordinary kriging]

# compute and summarize evaluation errors
summary(k)

Object of class SpatialPointsDataFrame
Coordinates:

min max
x 178605 181390
y 329714 333558
Is projected: NA
proj4string : [NA]
Number of points: 103
Data attributes:

var1.pred var1.var
Min. :1.744 Min. :0.04016
1st Qu.:1.920 1st Qu.:0.05255
Median :2.108 Median :0.05797
Mean :2.098 Mean :0.06064
3rd Qu.:2.263 3rd Qu.:0.06648
Max. :2.457 Max. :0.10325

diff <- k$var1.pred - meuse.extra$ltpb
summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.66294 -0.06474 0.02155 0.02502 0.12695 0.37164

sqrt(mean(sum(diff^2))) # RMSE (precision)

[1] 1.684435

mean(diff) # mean error (bias)

[1] 0.02502092

median(meuse.extra$ltpb) # median error

[1] 2.068186

There is a slight positive bias: the median and mean predictions at the
extra points by OK is higher than the true value, as is the mean error:
0.025. The overall precision is good: RMSE: 1.684.

Task 13 : Display a postplot of the errors. •

We can use the bubble method of the gstat package to plot spatial
points. It requires two arguments: the spatial object (here, a kriging in-
terpolation) and the field in the object to plot, in this case the difference.
Positive values are plotted in green and negative in red, with the size of
the “bubble” proportional to the distance from zero.

This has also been included in the plot.valids function listed in §A.1;
this also plots the cross-validation (see next §§). Since we haven’t yet
computed the cross-validation, we just look at the evaluation residuals.
The bubble method requires a spatial object, so we first have to con-
vert the differences, assigning them the coördinates from the evaluation
points:
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diff.df <- as.data.frame(diff)
coordinates(diff.df) <- coordinates(meuse.extra)
bubble(diff.df, zcol="diff", pch=1,

main="OK evaluation errors at undersampled points, log10(Pb)")

OK evaluation errors at undersampled points, log10(Pb)
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This Figure shows the evaluation errors at the extra points. There are
several large relative errors, from -0.66 to 0.37, compared to the median
value for the extra points, 2.07. Note the very large under-prediction at
the extra point near (179750E,330800N) which we noticed in the OK
map.

5.2 Cross-validation

We can also evaluate the success of OK by cross-validation at the 52
points in the subset. Each point is held out in turn, and the prediction
at that point is made from the remaining 51 points, using the common
variogram model.

Diagnostic measures are the ME (bias), RMSE (precision), and Mean Squared
Deviation Ratio (MSDR) of the residuals to the prediction errors; this
should be 1 because the residuals from cross-validation should equal
to prediction errors at each point that was held out. For the univariate
case (OK) we can use the krige.cv cross-validation method of the gstat
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package.

Task 14 : Cross-validate the OK predictions of log10Pb and compute
the diagnostic measures. •
cv.o <- krige.cv(ltpb ~ 1, meuse.pb, model=m.ltpb.f, nfold=nrow(meuse.pb),

verbose=FALSE)

summary(cv.o)

Object of class SpatialPointsDataFrame
Coordinates:

min max
x 178786 181298
y 329822 333611
Is projected: NA
proj4string : [NA]
Number of points: 52
Data attributes:

var1.pred var1.var observed
Min. :1.783 Min. :0.04124 Min. :1.681
1st Qu.:1.957 1st Qu.:0.05594 1st Qu.:1.831
Median :2.123 Median :0.06213 Median :2.139
Mean :2.114 Mean :0.06430 Mean :2.117
3rd Qu.:2.269 3rd Qu.:0.07295 3rd Qu.:2.386
Max. :2.494 Max. :0.11311 Max. :2.683

residual zscore fold
Min. :-0.464118 Min. :-1.867852 Min. : 1.00
1st Qu.:-0.154049 1st Qu.:-0.574692 1st Qu.:13.75
Median :-0.055698 Median :-0.226918 Median :26.50
Mean : 0.003671 Mean : 0.007067 Mean :26.50
3rd Qu.: 0.166942 3rd Qu.: 0.699510 3rd Qu.:39.25
Max. : 0.658260 Max. : 2.683341 Max. :52.00

res <- as.data.frame(cv.o)$residual
sqrt(mean(res^2))

[1] 0.2369119

mean(res)

[1] 0.003670487

mean(res^2/as.data.frame(cv.o)$var1.var)

[1] 0.8845749

The nfoldrgument specifies the number of times to do the cross-validation,
in this case once for each point.

The RMSE is 0.2369, the mean error is almost zero, and the Mean Squared
Deviation Ratio (MSDR) of the predictions vs. the sample is a bit lower,
0.8846, than the ideal 1, meaning that the predictions are somewhat less
variable than reality; this is to be expected, as kriging is a smoothing
estimator.

Task 15 : Display a postplot of the errors. •

This is included in the plot.valids function, which also shows the eval-
uation errors from the previous § on the left side plot:
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plot.valids(k, "var1", meuse.extra, "ltpb", cv.o, "OK")

OK Validation errors
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OK Cross−validation errors
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This Figure (right) shows the cross-validation errors at the sample points.
There are some very large errors, from -0.464 to 0.658.

5.3 Evaluating errors in absolute terms

The maximum absolute residual for both evaluations was 0.66 log10Pb;
one might naïvely back-transform this as 100.66 = 4.6 mg kg-1 Pb, an
order of magnitude smaller than the smallest data values. However, this
conversion is not correct, because the error is in addition to the predicted
value, which is of another order of magnitude. For example, the mean
predictions are about 2.1 log10Pb, i.e. about 102.1 = 125.9 mg kg-1 Pb;
at this level an error of 0.66 log10Pb corresponds to about 102.1+0.66 −
102.1 = 450 mg kg-1 Pb.

So, to evaluate the severity of the errors, we must compare original Pb
values with predicted Pb values, not log-transformed values (although
these were used for interpolation).

Task 16 : Compute and summarize the absolute evaluation and cross-
validation errors in units of mg kg-1 Pb. •
diff <- 10^(k$var1.pred) - 10^(meuse.extra$ltpb)
summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-367.687 -23.345 6.655 -7.198 27.193 109.603

histogram(diff, col="darkseagreen2", nint=12, type="count",
main="Validation errors", xlab="Pb, ppm")

diff <- 10^(cv.o$var1.pred) - 10^(meuse.pb$ltpb)
summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-311.36 -63.35 12.31 -24.63 34.42 157.98

histogram(diff, col="lightblue2", nint=12, type="count",
main="Cross-Validation errors", xlab="Pb, ppm")

19



Validation errors

Pb, ppm
C

ou
nt

0

10

20

30

40

50

−400 −300 −200 −100 0 100

Cross−Validation errors

Pb, ppm

C
ou

nt

0

5

10

15

20

−300 −200 −100 0 100 200

This Figure shows the histograms of the absolute evaluation and cross-
validation errors. There are some serious errors; in particular the high
negative residuals are points with high Pb which are seriously under-
predicted; recall that 100 mg kg-1 is the level at which agricultural crops
must be tested.

In summary, OK with this small dataset did not perform so well; this is
the motivation for trying to improve the predictions with co-kriging.

6 Modelling a bivariate co-regionalisation

In order to perform co-kriging, we must first model the spatial structure
of a co-variable and its covariance with the target variable. This is called
a co-regionalisation. It is an extension of the theory of a single region-
alised variable used for ordinary kriging. This is the same sequence we
followed for OK: we first modelled the spatial structue of the target vari-
able (§4) and then used this model to interpolate by OK (§5).

In this section we use the organic matter content as the co-variable.
This is cheap to sample and determine in the laboratory, and in prac-
tice would be a good choice if it turns out to give better predictions.
We will see that this isn’t the case, so in a later section (§9) a different
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co-variable, zinc content, is used.

6.1 Modelling the co-variable

First we examine the feature-space correlation.

Task 17 : Display a scatterplot of the co-variable (organic matter) vs.
the target variable (Pb) and compute the correlation coefficient. Describe
the feature-space relation. •

For this task we can only use the points from the subsample, since we
are simulating the situation where the target variable is under-sampled.
xyplot(ltpb ~ ltom, data=meuse.pb@data, pch=20, cex=1.2,

col="blue", ylab="log10(Pb)", xlab="log10(OM)")
with(meuse.pb@data, cor(ltom, ltpb))

[1] NA

sum(is.na(meuse.pb$om))

[1] 1

with(meuse.pb@data, cor(ltom, ltpb, use = "complete"))

[1] 0.61277
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The cor method does not, by default, compute the correlation co-

efficient if there are any missing values in either vector. Here there

is one missing value of organic matter in the sub-sample (detected

by the is.na method). The use = "complete" optional argument

to cor specifies that only complete observations (with values for

both variables) be used to compute the correlation.

The scatterplot and numerical correlation both show that there is a pos-
itive feature-space relation between the target and co-variable. However,
the relation only explains 37.55% of the total variability (the square of
the correlation coefficient); this can be seen in the “cloud”-like form of
the scatterplot. We will see if this is too weak for a successful co-kriging.
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Task 18 : Model the omnidirectional spatial variogram of the log10-
transformed covariable. We do not intend to interpolate it; however we
need to know its spatial structure for co-kriging. Compare thstructure
with that of the target variable. •

First we have to make a data frame without the missing values of or-
ganic matter, then we can compute the variogram. The subset method
is convenient for this; its second argument is the condition (in this case,
to omit the missing values) and its third argument is the list of fields
to include. All available samples are used for this model, not just the
subset. This simulates the realistic situation where the target variable is
under-sampled but the co-variable has a full sample.

# all valid covariable observations, with coordinates
meuse.co <- subset(as.data.frame(meuse), !is.na(om), c(x, y, om))

# add log10-transformed variables for convenience
meuse.co <- cbind(meuse.co, ltom = log10(meuse.co$om))
str(meuse.co)

'data.frame': 153 obs. of 4 variables:
$ x : num 181072 181025 181165 181298 181307 ...
$ y : num 333611 333558 333537 333484 333330 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ltom: num 1.134 1.146 1.114 0.903 0.94 ...

# convert to spatial object
coordinates(meuse.co) <- ~ x + y

# experimental variogram
v.ltom <- variogram(ltom ~ 1, meuse.co, cutoff=1800)
plot(v.ltom, pl=T)

# model by eye
m.ltom <- vgm(.035, "Sph", 800, .015)

# fit
(m.ltom.f <- fit.variogram(v.ltom, m.ltom))

model psill range
1 Nug 0.01067190 0.0000
2 Sph 0.03859883 641.6166

plot(v.ltom, pl=T, model=m.ltom.f)
# compare variogram structure to target variable

m.ltom.f$range[2]; m.ltpb.f$range[2]

[1] 641.6166
[1] 876.1765

round(m.ltom.f$psill[1]/sum(m.ltom.f$psill),2)

[1] 0.22

round(m.ltpb.f$psill[1]/sum(m.ltpb.f$psill),2)

[1] 0.21
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The structure for log10OM is quite similar to that for log10Pb . A spheri-
cal model could be fitted in both cases, with an almost identical nugget
effect (about 1/5 of the total sill). However, the range for OM is only
about 3/4 of that for Pb; it has a more local structure. The linear model
of co-regionalisation requires the ranges of the target and co-variable be
the same; here we see they are not too different.

6.2 Building a data structure to model co-regionalisation

Now comes the hardest part of co-kriging: modelling the co-regionalis-
ation. We have to fit models to both the direct and cross-variograms
simultaneously, and these models must lead to a positive definite cok-
riging system. The easiest way to ensure this is to fit a linear model of
co-regionalisation: all models (direct and cross) have the same shape and
range, but may have different partial sills and nuggets.

It is possible to model any number of variables together; in this case we
have three (one target and two co-variables). The modelling and subse-
quent co-kriging in fact treat all the variables equally: they are all mod-
elled (direct and cross) and predicted.

We will explore the simplest case: one target variable (here, Pb) and one
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co-variable (here, OM). In a later section (§9.2) we will use the other co-
variable (Zn).

Task 19 : Build a gstat structure containing the two sample sets:
subsample for Pb and full sample for OM. •

Up till now we’ve worked with data frames, variograms, and variogram
models as separate objects, each with its own class. This is sufficient
for univariate geostatistics. For multivariate analysis we must work with
the more general gstat object; this allows all the flexibility of the stand-
alone gstat program but within the R environment.

First, we build gstat objects to specify the two experimental variograms
that we computed above. The object has named subframes, and is added
to as we go. In the ordinary kriging case we used a ‘wrapper’ method,
variogram, for the simple case of a single variogram. Here we have to
explicitly build the gstat model piece-by-piece, using the gstat method.
This allows us to build complicated structures both for modelling and
interpolation. It works on an object of class gstat that is a list of frames;
each frame has a separate model or interpolation result.

We fill the first frame within the gstat object with the log10Pb sam-
ple observations, only at the subsample points, and the second for the
log10OM sample observations, at all the points where it was measured.

The first command declares that there is no existing object, whereas

the second command begins by naming the existing object, so that

gstat will add onto it. Note also how each command uses the id

argument to name the frame within the object. Here we have one

frame for Pb (id="ltpb") and one for OM (id="ltom").

(g <- gstat(NULL, id = "ltpb", form = ltpb ~ 1, data=meuse.pb))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6

(g <- gstat(g, id = "ltom", form = ltom ~ 1, data=meuse.co))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6
ltom : formula = ltom`~`1 ; data dim = 153 x 2

The gstat object now has two frames, both of which are data obser-
vation with their associated formulas and locations. From these, both
direct and cross-variograms can be computed and plotted.

Task 20 : Compute and display the two direct variograms and one
cross-variogram. •
v.cross <- variogram(g)
str(v.cross)

Classes 'gstatVariogram' and 'data.frame': 46 obs. of 6 variables:
$ np : num 38 194 277 291 357 360 367 360 402 381 ...
$ dist : num 76.4 163.1 264.9 373.1 477.4 ...
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$ gamma : num 0.0285 0.0548 0.055 0.0581 0.0755 ...
$ dir.hor: num 0 0 0 0 0 0 0 0 0 0 ...
$ dir.ver: num 0 0 0 0 0 0 0 0 0 0 ...
$ id : Factor w/ 3 levels "ltpb.ltom","ltom",..: 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "direct")='data.frame': 3 obs. of 2 variables:
..$ id : Factor w/ 3 levels "ltom","ltpb",..: 3 1 2
..$ is.direct: logi FALSE TRUE TRUE
- attr(*, "boundaries")= num 0 101 202 303 404 ...
- attr(*, "pseudo")= num 0
- attr(*, "what")= chr "semivariance"

plot(v.cross, pl=T)
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The variogram object has a field id, which identifies the variogram (di-
rect or cross, using the same identifiers as the gstat object used to
specify the variogram) to which the semi-variance refers; we can also see
whether the variogram estimate is from a direct or cross-variogram. Note
in the larger number of point pairs for each lag for the co-variable com-
pared to the target variable; the cross-variogram is intermediate between
these.

Gstat does not compute the cross-variogram as strictly defined,

but rather the pseudo-cross-variogram [19, p. 217-8]. The cross-

variogram only uses co-located points, whereas the pseudo-cross-

variogram uses all point pairs which can be formed from the target
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and co-variables. This gives many more point pairs with which to

estimate the co-regionalisation.

We have already computed the variograms for log10Pb (§4) and log10OM
(§6.1) and determined that their structures and ranges were similar. The
cross-variogram in this case also has a similar structure to the direct
variograms; the nugget effect appears to be about 1/5 of the total sill.
The range seems comparable to the range of the direct variogram of the
target variable (about 850 m). Since the linear model of coregionalization
requires equal ranges, this is good.

6.3 Fitting a linear model of co-regionalisation

The next step is to add variogram models to the gstat object and then
fit these.

Task 21 : Add variogram models to the gstat object and fit a them
using the linear model of co-regionalisation. •

We use the fitted model for the target value as a starting point for all
three variogram models. This is because we will use the linear model of
co-regionalisation, which requires a single range and structure. By filling
all the frames with one model (using the fill.all = T argument), these
conditions are automatically met.
(g <- gstat(g, id = "ltpb", model = m.ltpb.f, fill.all=T))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6
ltom : formula = ltom`~`1 ; data dim = 153 x 2
variograms:

model psill range
ltpb[1] Nug 0.02395032 0.0000
ltpb[2] Sph 0.08879807 876.1765
ltom[1] Nug 0.02395032 0.0000
ltom[2] Sph 0.08879807 876.1765
ltpb.ltom[1] Nug 0.02395032 0.0000
ltpb.ltom[2] Sph 0.08879807 876.1765

The gstat object now contains both the data and the models:

Models can be specified individually for each direct and cross-

variogram; however, it is difficult to ensure that the resulting CK

system is positive-definite. For example:

g <- gstat(g, id=c("ltpb","ltom"), model=vgm(0.02,"Sph",800,0.08))

could be used to specify the cross-variogram. Note how the two

variables whose cross-variogram is to be specified are named in a

list.

Now we fit all three variograms together, ensuring they lead to a pos-
itive definite co-kriging system. For this we use the fit.lmc method
(“fit linear model of co-regionalization”). This takes the initial estimate,
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fits all the variograms, and then each of the partial sills is adjusted (by
least squares) to the closest value that will result in a positive definite
matrices.

There are several variogram fitting methods in gstat; the default method
fit.method=7 gives more weight to nearby point-pairs, but can not
handle co-located points, as in the cross-variogram (dividing by zero is
not possible). So we have to specify another method; a good choice is
fit.method=6: unweighted (ordinary least squares). Another possibility
is fit.method=1: weights proportional to the number of point-pairs in
each bin.

Note: The correct.diagonal optional argument is often required in
order to avoid numerical instability. This is expained in the help for
fit.lmc:
“correct.diagonal: multiplicative correction factor to be applied to
partial sills of direct variograms only; the default value, 1.0, does not cor-
rect. If you encounter problems with singular covariance matrices during
cokriging or cosimulation, you may want to try to increase this to e.g.
1.01 . . . The argument correct.diagonal was introduced by experience:
by zeroing the negative eigenvalues for fitting positive definite partial sill
matrices, apparently still perfect correlation may result, leading to singu-
lar cokriging/cosimulation matrices. If someone knows of a more elegant
way to get around this, please let me know.”

(g <- fit.lmc(v.cross, g, fit.method=6, correct.diagonal=1.01))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6
ltom : formula = ltom`~`1 ; data dim = 153 x 2
variograms:

model psill range
ltpb[1] Nug 0.03218388 0.0000
ltpb[2] Sph 0.08546483 876.1765
ltom[1] Nug 0.02529692 0.0000
ltom[2] Sph 0.03223500 876.1765
ltpb.ltom[1] Nug 0.02825085 0.0000
ltpb.ltom[2] Sph 0.04251836 876.1765

plot(variogram(g), model=g$model)

27



distance

se
m

iv
ar

ia
nc

e

0.
00

0.
02

0.
04

0.
06

0.
08

500 1000 1500

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

ltpb.ltom

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

●

●

●

● ●

●

●

● ● ●

●

●

●

●

●

ltom

0.
00

0.
05

0.
10

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

ltpb

The model fits fairly well , although the sill for log10OM seems a bit
high and its range too long. Note that the ranges are not adjusted by
fit.lmc, however all the partial sills (both for the spherical model and
for the nugget) of the co-variable and cross-variogram were adjusted. So,
the fitted variograms have the same range but different sills and nuggets.

6.4 Comparing models of regionalisation and co-regionalisation

We can compare the two direct variograms (for subset Pb, §4, and full
set OM, §6.1) with the parameters that we determined for each one sep-
arately, to see how much fitting the linear model of co-regionalisation
adjusted the fit to each variable separately.

First, we have to examine the structure of the model objects (the gstat
object g and the variogram model objects m.ltom.f and m.ltpb.f) to
see where the parameters are stored; then we can compute their differ-
ences.

We begin with the single variogram model for OM:
str(m.ltom.f)

Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
$ model: Factor w/ 20 levels "Nug","Exp","Sph",..: 1 3
$ psill: num 0.0107 0.0386
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$ range: num 0 642
$ kappa: num 0 0.5
$ ang1 : num 0 0
$ ang2 : num 0 0
$ ang3 : num 0 0
$ anis1: num 1 1
$ anis2: num 1 1
- attr(*, "singular")= logi FALSE
- attr(*, "SSErr")= num 6.69e-08
- attr(*, "call")= language fit.variogram(object = v.ltom, model = m.ltom)

This object is of class variogramModel and has several fields of interest,
including the ranges range and partial sills psill for the different com-
ponents of the variogram model. In this case there are two (as shown in
the model field): the first is a spherical model with partial sill 0.0373 and
range 653, and the second is a nugget mode with partial sill 0.0121 (and
by definition range 0).

We now examine the structure of the gstat object; this is so complex
that we look at it a level at a time:
str(g, max.level = 1)

List of 3
$ data :List of 2
$ model:List of 5
$ call : language gstat(g = g, id = "ltom", formula = ltom ~ 1, data = meuse.co)
- attr(*, "class")= chr [1:2] "gstat" "list"

At the first level this is a list of three items: the data frames (here, for the
two variables), the models (here, two direct and three cross-variograms
and their parameters), and the most recent call.

Now we look at the structure of the list components:
str(g$data, max.level = 1)

List of 2
$ ltpb:List of 15
$ ltom:List of 15

str(g$model, max.level = 1)

List of 5
$ ltpb :Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
..- attr(*, "singular")= logi FALSE
..- attr(*, "SSErr")= num 0.00171
..- attr(*, "call")= language fit.variogram(object = x, model = m, fit.ranges = fit.ranges, fit.method = 6)
$ ltpb.ltom:Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
..- attr(*, "singular")= logi FALSE
..- attr(*, "SSErr")= num 0.00142
..- attr(*, "call")= language fit.variogram(object = x, model = m, fit.ranges = fit.ranges, fit.method = 6)
$ ltom :Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
..- attr(*, "singular")= logi FALSE
..- attr(*, "SSErr")= num 0.000233
..- attr(*, "call")= language fit.variogram(object = x, model = m, fit.ranges = fit.ranges, fit.method = 6)
$ ltom.NA :Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
..- attr(*, "singular")= logi FALSE
..- attr(*, "SSErr")= num 1.11e-07
..- attr(*, "call")= language fit.variogram(object = v.ltpb, model = m.ltpb)
$ ltom.ltom:Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
..- attr(*, "singular")= logi FALSE
..- attr(*, "SSErr")= num 1.11e-07
..- attr(*, "call")= language fit.variogram(object = v.ltpb, model = m.ltpb)
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The data has two sub-lists and the models five. There are two cross-
variograms we didn’t ask for explicitly: ltom.NA for the missing values
of OM, and ltom.ltom for the OM values measured at different sampling
locations (subset vs. full set).
str(g$data$ltpb, max.level = 1)

List of 15
$ formula :Class 'formula' language ltpb ~ 1
.. ..- attr(*, ".Environment")=<environment: R_GlobalEnv>
$ data :Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
$ has.intercept: int 1
$ beta : num(0)
$ nmax : num Inf
$ nmin : num 0
$ omax : num 0
$ maxdist : num Inf
$ force : logi FALSE
$ dummy : logi FALSE
$ vfn : int 1
$ weights : NULL
$ degree : num 0
$ vdist : logi FALSE
$ lambda : num 1

The data list item is itself a list with 11 items. One is the data object used
to estimate the variogram for the model list components which use this
variable. Another is the formula used for modelling. The others control
the modelling for this variable, e.g. is there a trend, should a limiting
distance be used, are their weights etc.; all these are explained in the
help ?gstat.
str(g$model$ltpb, max.level = 1)

Classes 'variogramModel' and 'data.frame': 2 obs. of 9 variables:
$ model: Factor w/ 20 levels "Nug","Exp","Sph",..: 1 3
$ psill: num 0.0322 0.0855
$ range: num 0 876
$ kappa: num 0 0.5
$ ang1 : num 0 0
$ ang2 : num 0 0
$ ang3 : num 0 0
$ anis1: num 1 1
$ anis2: num 1 1
- attr(*, "singular")= logi FALSE
- attr(*, "SSErr")= num 0.00171
- attr(*, "call")= language fit.variogram(object = x, model = m, fit.ranges = fit.ranges, fit.method = 6)

The structure for the model within the gstat object is exactly that same
as for the single variogram; it is of the same class: variogramModel.

Now that we know the structure, we can compare the models:
g$model$ltom$psill - m.ltom.f$psill

[1] 0.014625015 -0.006363833

sum(g$model$ltom$psill) - sum(m.ltom.f$psill)

[1] 0.008261181

sum(g$model$ltom$psill)

[1] 0.05753192

g$model$ltpb$psill - m.ltpb.f$psill
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[1] 0.008233553 -0.003333242

sum(g$model$ltpb$psill) - sum(m.ltpb.f$psill)

[1] 0.004900311

sum(g$model$ltpb$psill)

[1] 0.1176487

The total sills 0.058 for log10OM and 0.118 for log10Pb, were hardly
affected (in both cases raised slightly). The partial sills were adjusted
even less. Thus the common starting point for the linear model of co-
regionalisation was satisfactory. Note that the total sill for Pb is about
double that for OM.

7 Co-kriging with one co-variable

Now that we have modelled the co-regionalisation, we can use the ex-
tra samples of OM to improve (we hope!) the predictions of the target
variable.

Task 22 : Predict log10Pb on the interpolation grid using the modelled
co-regionalisation. Summarize the predictions and their errors. •

The wrapper method krige that was used for OK (§5) can only be used
for univariate kriging; here we must use the predict method. This takes
a gstat object as the first argument and the prediction points data frame
as the second argument,.

# interpolate
k.c <- predict(g, meuse.grid)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

str(k.c)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 3103 obs. of 5 variables:
.. ..$ ltpb.pred : num [1:3103] 2.32 2.35 2.32 2.3 2.38 ...
.. ..$ ltpb.var : num [1:3103] 0.0764 0.0669 0.07 0.0733 0.0564 ...
.. ..$ ltom.pred : num [1:3103] 1.01 1.04 1.02 1.01 1.06 ...
.. ..$ ltom.var : num [1:3103] 0.0444 0.0412 0.042 0.0431 0.0378 ...
.. ..$ cov.ltpb.ltom: num [1:3103] 0.0524 0.0481 0.0493 0.0507 0.0434 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:3103, 1:2] 181180 181140 181180 181220 181100 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:3103] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178460 329620 181540 333740
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..@ projargs: chr NA

# summarize predictions and their errors
summary(k.c$ltpb.pred); summary(k.c$ltpb.var)
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Min. 1st Qu. Median Mean 3rd Qu. Max.
1.624 1.835 2.016 2.043 2.254 2.611
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.04166 0.05317 0.05891 0.06190 0.06789 0.10503

Both variables and their covariance are all predicted at the same time. We
are interested in the target variable, but the linear model also predicts
the co-variable, in both cases using all sample information.

Task 23 : Display the predictions and their errors as maps. •

plot.kresults(k.c, "ltpb", meuse, meuse.pb, "lead", "CK of Pb with OM covariable, ")

CK of Pb with OM covariable,  Prediction
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There are still some obvious discrepancies between the predictions and
extra Pb points, although not so glaring as with OK.

7.1 Evaluation

We have a set of 103 points at which lead was measured, but which we
didn’t use in the subset, either for modelling or interpolation. We did
use these points for CK prediction, but only their OM values. Thus, as in
§5.1, the lead values at these points can be used as a evaluation dataset
to assess the performance of the interpolation. We already have the data
frame of extra points meuse.extra from §5.1.

Task 24 : Interpolate at the extra points, using CK from the sample
points, and determine the prediction bias and precision. •

# predict at the extra points
k <- predict(g, meuse.extra)

Linear Model of Coregionalization found. Good.
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[using ordinary cokriging]

# compute and summarize prediction errors
diff <- k$ltpb.pred - meuse.extra$ltpb
summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.74736 -0.06402 0.03529 0.01388 0.10208 0.52287

sqrt(sum(diff^2)/length(diff)) # RMS error (precision)

[1] 0.2118304

sum(diff)/length(diff) # mean error (bias)

[1] 0.01388193

There is a slight positive bias: the median and mean predictions at the
extra points by CK is higher than the true value, as is the mean error
(+0.015). The overall precision is good (RMSE = 0.222). There are several
large relative errors (from −0.81 to +0.55) compared to the median value
for the extra points of 2.07. This evaluation will be compared with the
OK evaluation (§5.1) in §8.3, below.

Task 25 : Display the evaluation errors as a bubble plot. •
diff <- as.data.frame(diff)
coordinates(diff) <- coordinates(meuse.extra)
bubble(diff, zcol="diff", pch=1,

main="CK evaluation errors at undersampled points, log10(Pb)")

CK evaluation errors at undersampled points, log10(Pb)
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This Figure shows the evaluation errors at the extra points; this is com-
parable to the same figure for the OK predictions.

7.2 Cross-validation

We can also evaluate the success of CK from its cross-validation, as we
did for OK (§5.2). As with OK, the cross-validatation is at the 52 points
with data for Pb in the subset, since these were used for the interpola-
tion. Each point is held out in turn, and the prediction at that point is
made from the remaining 51 points. However, for CK cross-validation,

33



all 153 samples of the co-variable are used to predict the target variable;
these points are not held out. For almost all points in the subset there
is a measurement of the co-variable (OM) at that point; this should give
a decided advantage to CK if the feature-space correlation is good and
there is a good spatial cross-correlation.

For the univariate case (OK) we were able to use the krige.cv cross-
validation method, but for the more general case of CK we must use
the gstat.cv cross-validation method that can be applied to arbitrary
gstat objects. We do not have to specify the model, since this is already
stored as part of the gstat object.

Task 26 : Cross-validate the CK predictions of log10Pb and compute the
diagnostic measures. •
cv.c <- gstat.cv(g)

str(cv.c)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 52 obs. of 6 variables:
.. ..$ ltpb.pred: num [1:52] 2.4 2.12 2.16 1.88 2.42 ...
.. ..$ ltpb.var : num [1:52] 0.01742 0.01417 0.01011 0.01481 0.00903 ...
.. ..$ observed : num [1:52] 2.48 2.06 2.12 1.9 2.45 ...
.. ..$ residual : num [1:52] 0.0712 -0.0542 -0.0428 0.027 0.0319 ...
.. ..$ zscore : num [1:52] 0.54 -0.456 -0.425 0.222 0.336 ...
.. ..$ fold : int [1:52] 1 2 3 4 5 6 7 8 9 10 ...
..@ coords.nrs : num(0)
..@ coords : num [1:52, 1:2] 181072 181298 181165 181232 180874 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178786 329822 181298 333611
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..@ projargs: chr NA

summary(cv.c$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.504049 -0.103375 0.014853 0.004864 0.162211 0.468696

sqrt(mean(cv.c$residual^2))

[1] 0.2037365

mean(cv.c$residual)

[1] 0.004864414

mean(cv.c$residual^2/cv.c$ltpb.var)

[1] 4.913226

The RMSE is 0.209, the mean error is almost zero, but the Mean Squared
Deviation Ratio (MSDR) of the prediction residuals vs. the kriging error
is very high (12.6) meaning that the actual residuals are an order of mag-
nitude greater than what CK predicts; this is very poor performance, and
shows that the CK prediction errors are too low.
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Task 27 : Display a postplot of the errors. •
plot.valids(k, "ltpb", meuse.extra, "ltpb", cv.c, "CK, OM co-variable")

CK, OM co−variable Validation errors
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CK, OM co−variable Cross−validation errors
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This Figure (right) shows the cross-validation errors at the sample points;
this is comparable to the same Figure for the OK predictions. There are
some very large errors, from −0.52 to +0.51; this is similar to the OK
result.

8 Comparison of co-kriging and ordinary kriging

We have now used both OK and CK to predict the lead distribution across
the study area. In this section we compare the predictions and their
errors, and investigate the reasons for any discrepancies.

8.1 Predictions

First we compare the predictions of the target variable from OK and CK.

Task 28 : Determine the differences between co-kriging (with OM) and
OK predictions of log10Pb, and display these as maps. •

These can be compared graphically on the same scale by use of the
range function on the list of kriging predictions to find the extremes
and then by dividing this range into a number (here, 32) of break points.
The differences between predictions are computed, placed into a tempo-
rary data frame, and displayed with levelplot, using a different colour
scheme than for the predictions. This has been encapsulated in the
plot.cf function which is listed in §A.1 and also provided as source
code in file ck_plotfns.R.
plot.cf(k.o, k.c, "var1", "ltpb", meuse, meuse.pb, "pred",

"log10(Pb), OK", "log10(Pb), CK with log10(OM)")

[1] "diff <- k2.o$ltpb.pred- k1.o$var1.pred"
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log10(Pb), OK
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There are some regions of the map where the predictions are quite dif-
ferent; these are in the undersampled regions where the OM sample pro-
vides new information. Now we compare them numerically:
summary(k.o$var1.pred); summary(k.c$ltpb.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.707 1.897 2.027 2.060 2.231 2.530
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.624 1.835 2.016 2.043 2.254 2.611

diff <- k.c$ltpb.pred - k.o$var1.pred
summary(diff); rm(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.19914 -0.07768 -0.02929 -0.01725 0.03894 0.31329

The CK predictions are on average slightly lower than the OK predictions;
there are some fairly large differences, both positive and negative.

8.2 Prediction errors

Second, we compare the prediction errors for the target variable from
OK and CK.

A major aim of using co-kriging is to reduce the prediction variances.
With so much new information (103 extra points, plus the 52 colocated
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points) and a fairly good model of co-regionalisation, we expect lower
predication errors.

Task 29 : Determine the differences between the prediction errors of
CK with OM and OK and display these as maps. •

We compare these graphically on the same scale; in addition we show
the differences with a different colour scheme.
plot.cf(k.o, k.c, "var1", "ltpb", meuse, meuse.pb, "var",

"log10(Pb), OK", "log10(Pb), CK with log10(OM)")

[1] "diff <- k2.o$ltpb.var- k1.o$var1.var"
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Clearly, the cokriging errors are in general larger, especially near the
sample points of the subset. This is because the co-kriging predictions
are based not only on the target variable but also the co-variable at these
points as well as their covariance. Both of these have a significant nugget
effect.

However, some areas of the map have much improved predictions; these
are the areas far from the subsample points and relatively nearer the
extra samples with the co-variable.
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Now we compare the prediction errors numerically:
summary(k.o$var1.var); summary(k.c$ltpb.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03569 0.05195 0.06078 0.06380 0.07379 0.11188

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.04166 0.05317 0.05891 0.06190 0.06789 0.10503

diff.var <- (k.c$ltpb.var - k.o$var1.var)
summary(diff.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.0257395 -0.0052398 -0.0005685 -0.0019007 0.0024603 0.0082648

round(100*sum(diff.var < 0)/length(diff.var))

[1] 54

rm(diff.var)

The OK prediction variances are higher than the CK prediction variances
over 67% of the map.

8.3 Validations

We used the extra sample points to evaluate the performance of OK
(§5.1) and CK (§7.1). Here we compare these two validations.

ME RMSE MinE MaxE
OK 0.0250 0.1660 -0.663 +0.372
CK with OM 0.0148 0.2226 -0.811 +0.555

The OK validation is superior in all measures except bias: the mean error
of CK is closer to zero than that of OK. However, the overall precision is
greater for OK, and the extreme errors are smaller.

The following Figure shows where the prediction differences are located.
There are many large changes in predictions between the two validations.
kv.ok <- krige(ltpb ~ 1, meuse.pb, meuse.extra, m.ltpb.f)

[using ordinary kriging]

kv.ck <- predict(g, meuse.extra, debug.level=0)
kv.diff <- (kv.ck$ltpb.pred - kv.ok$var1.pred)
summary(kv.diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.77403 -0.12973 0.01907 -0.01114 0.10997 0.44596

d <- SpatialPointsDataFrame(coordinates(kv.ok),
data=as.data.frame(kv.diff))

bubble(d, col = c("plum","seagreen"),
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

rm(kv.ok, kv.ck, kv.diff, d)
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kv.diff
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8.4 Cross-validations

We summarize the cross-validation performance of OK (§5.2) and CK
(§7.2):

ME RMSE MSDR
OK 0.0037 0.2369 00.88
CK with OM 0.0059 0.2093 12.62

The cross-validation of log10Pb at the 52 subsample points shows that
CK had slightly lower RMSE; however the MSDR for CK was very high,
meaning that the actual residuals are an order of magnitude greater than
what CK predicts. By contrast, the MSDR for OK was close to the ideal 1.
Both had low bias, OK being a bit lower.
cv.diff <- data.frame(diff = cv.c$residual -

cv.o$residual,
better = (abs(cv.c$residual) < abs(cv.o$residual)))

summary(cv.diff$diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.404650 -0.109298 0.004691 0.001194 0.129863 0.454612

summary(cv.diff$better)

Mode FALSE TRUE
logical 22 30

d <- SpatialPointsDataFrame(coordinates(cv.c),
data=as.data.frame(cv.diff$diff))

bubble(d,
col=c("lightblue", "red4"),
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

rm(cv.diff)
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cv.diff.diff
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Slightly more than half (56%) of the individual cross-validation predic-
tions are better with CK than OK. The Figure shows the difference be-
tween the cross-validation residuals for the two methods. There are large
differences between the residuals, showing the large effect of CK on pre-
dictions at the sample points.

9 Co-kriging with a different co-variable

The use of organic matter as a co-variable gave disappointing results
(§8.3, §8.4). Now we try the other co-variable (Zn), to see if it is a
better co-variate. We follow the same procedure as explained in detail
in §6 (modelling the co-regionalisation) and §7 (co-kriging with one co-
variable), so here we present the code and results without explanation,
concentrating on the discussion.

9.1 Modelling the co-variable Zn

As with the other co-variable (§6.1), we first we examine the feature-
space correlation.

Task 30 : Display a scatterplot of the co-variable (Zn) vs. the target vari-
able (Pb) and compute the correlation coefficient. Describe the feature-
space relation. •

Note that we should only use the points from the subsample, since we
are simulating the situation where the target variable is under-sampled.
xyplot(ltpb ~ ltzn, data=meuse.pb@data, pch=20, cex=1.2,

col="red4", ylab="log10(Pb)", xlab="log10(Zn)")
with(meuse.pb@data,cor(ltzn, ltpb))
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[1] 0.9737985
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The scatterplot and numerical correlation both show that there is a very
strong positive feature-space relation between the target and co-variable.
However, there is a big difference between the co-variables: in the case of
OM (§6.1) the relation only explained about 38% of the total variability,
whereas in this case the relation explains 0,97382 = 0.9483 or about 95%
of the total variability; this should give better results.

This close relation is evidence that the processes by which soils in this
area are polluted with the two metals are similar.

Task 31 : Model the omnidirectional spatial variogram of the log10-
transformed covariable. Compare the structure with that of the target
variable. •

We use all the available samples for the co-variable, not just the subset.
# all valid covariable observations, with coordinates

meuse.co <- as.data.frame(meuse)[, c("x", "y", "zinc")]
# add log10-transformed variables for convenience

meuse.co <- cbind(meuse.co, ltzn = log10(meuse.co$zinc))
coordinates(meuse.co) <- ~ x + y
str(meuse.co)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..@ data :'data.frame': 155 obs. of 2 variables:
.. ..$ zinc: num [1:155] 1022 1141 640 257 269 ...
.. ..$ ltzn: num [1:155] 3.01 3.06 2.81 2.41 2.43 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:155] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
.. .. ..@ projargs: chr NA

# experimental variogram
v.ltzn <- variogram(ltzn ~ 1, meuse.co, cutoff=1800)
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plot(v.ltzn, pl=T)
# model by eye

m.ltzn <- vgm(.11, "Sph", 1000, .02)
# fit

(m.ltzn.f <- fit.variogram(v.ltzn, m.ltzn))

model psill range
1 Nug 0.01552141 0.0000
2 Sph 0.10615089 976.6231

plot(v.ltzn, pl=T, model=m.ltzn.f)
# compare variogram structure to target variable

m.ltzn.f$range[2]; m.ltpb.f$range[2]

[1] 976.6231
[1] 876.1765

round(m.ltzn.f$psill[1]/sum(m.ltzn.f$psill),2)

[1] 0.13

round(m.ltpb.f$psill[1]/sum(m.ltpb.f$psill),2)

[1] 0.21
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The structure for log10Zn is quite similar to that for log10Pb. A spherical
model could be fitted in both cases, but with a much lower nugget effect
(about 1/8 of the total sill) and a somewhat longer range (976 vs. 876 m)
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for log10Zn. Thus Zn is more structured than Pb.

9.2 Building a data structure to model co-regionalisation of Pb with Zn

As with the other co-variable (§6), the next step is to model its co-
regionalisation with the target variable.

Task 32 : Build a gstat structure containing the two sample sets:
subsample for Pb and full sample for Zn. •
(g2 <- gstat(NULL, id = "ltpb", form = ltpb ~ 1, data = meuse.pb))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6

(g2 <- gstat(g2, id = "ltzn", form = ltzn ~ 1, data = meuse.co))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6
ltzn : formula = ltzn`~`1 ; data dim = 155 x 2

Task 33 : Compute and display the two direct variograms and one
cross-variogram. •
v.cross <- variogram(g2)
plot(v.cross, pl=T)
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9.3 Fitting a linear model of co-regionalisation for Zn and Pb

Task 34 : Add variogram models to the gstat object and fit a linear
model of co-regionalisation to them. •
g2 <- gstat(g2, id = "ltpb", model = m.ltpb.f, fill.all=T)
(g2 <- fit.lmc(v.cross, g2, fit.method=6))

data:
ltpb : formula = ltpb`~`1 ; data dim = 52 x 6
ltzn : formula = ltzn`~`1 ; data dim = 155 x 2
variograms:

model psill range
ltpb[1] Nug 0.026487524 0.0000
ltpb[2] Sph 0.088075546 876.1765
ltzn[1] Nug 0.009280069 0.0000
ltzn[2] Sph 0.112520566 876.1765
ltpb.ltzn[1] Nug 0.011893222 0.0000
ltpb.ltzn[2] Sph 0.099550542 876.1765

plot(variogram(g2), model=g2$model)
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The model fits fairly well, although the sill for the cross-variogram seems
a bit low. The enforced common range (876 m) does not seem unreason-
able.

Task 35 : Compare these fits to the fitted models for the direct vari-
ograms. •

# zinc
g2$model$ltzn$psill - m.ltzn.f$psill

[1] -0.006241337 0.006369676

sum(g2$model$ltzn$psill) - sum(m.ltzn.f$psill)

[1] 0.0001283387

sum(g2$model$ltzn$psill)

[1] 0.1218006

# lead
g2$model$ltpb$psill - m.ltpb.f$psill

[1] 0.0025372006 -0.0007225288

sum(g2$model$ltpb$psill) - sum(m.ltpb.f$psill)
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[1] 0.001814672

sum(g2$model$ltpb$psill)

[1] 0.1145631

The total sills, 0.124 for log10Zn and 0.117 for log10Pb, were hardly
affected (in both cases raised slightly). The partial sills were adjusted
even less. Thus the common starting point for the linear model of co-
regionalisation was satisfactory. The partial and total sills are quite sim-
ilar between the two models.

Task 36 : Compare the fitted variogram for Pb in the two co-regional-
isations; this one with Zn and the previous with OM (§6). •
g2$model$ltpb$psill - g$model$ltpb.$psill

[1] -0.00176333 0.04555719

sum(g2$model$ltpb$psill) - sum(g$model$ltpb$psill)

[1] -0.003085639

The models are somewhat different: the model co-fitted with Zn has
slightly higher partial sill of the spherical model, nugget, and therefore
total sill. This shows that the linear model of co-regionalisation depends
on the variables included in the model.

9.4 Co-kriging Pb with Zn as a co-variable

Task 37 : Predict log10Pb on the interpolation grid using the modelled
co-regionalisation with log10Zn. Summarize the predictions and their
errors. •
k.c2 <- predict(g2, meuse.grid, debug.level=0)
summary(k.c2$ltpb.pred); summary(k.c2$ltpb.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.663 1.843 1.970 2.022 2.201 2.690
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.03190 0.03975 0.04357 0.04707 0.05108 0.09503

The first line of the summary is for log10Pb, the second for the covariable
log10Zn. Note that co-kriging predicts both variables together. In this
case, the strong correlation might make a better map of both variables,
compared to predicting them individually.

The prediction errors for log10Pb are somewhat lower than for the CK
with OM (§7).

Task 38 : Display the predictions and their errors as maps. •
plot.kresults(k.c2, "ltpb", meuse, meuse.pb, "lead", "CK with Zn covariable, ")
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This figure shows the results. There are no glaring discrepancies be-
tween the predictions and extra Pb points, unlike the CK predictions
using OM as co-variable and OK . In particular, the extra point near
(179750E,330800N) is well-predicted; this is because of the high Zn
value at that point in the full data set.

9.5 Validation

Task 39 : Interpolate at the extra (validation) points, using CK from the
sample points, and determine the actual prediction bias and precision. •

# predict at the extra points
k <- predict(g2, meuse.extra, debug.level=0)

# compute and summarize prediction errors
diff <- k$ltpb.pred - meuse.extra$ltpb
summary(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.132012 -0.054154 -0.007258 0.005356 0.050025 0.200444

sqrt(sum(diff^2)/length(diff)) # RMS error (precision)

[1] 0.07547095

sum(diff)/length(diff) # mean error (bias)

[1] 0.005355924

There is a very slight positive bias: the mean predictions at the extra
points by CK is higher than the true value, as is the mean error (+0.005);
however the median is slightly lower (−0.006). The overall precision is
very good (RMSE = 0.075). There are no large relative errors (only from
−0.14 to +0.19) compared to the median value for the extra points of
2.07.

Task 40 : Display the validation errors as a bubble plot. •
plot.valids(k, "ltpb", meuse.extra, "ltpb", cv.o, "CK, Zn co-variable")
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CK, Zn co−variable Validation errors
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This Figure (left) shows the prediction errors at the validation points;
this is much better than the validation of CK with OM as covariable (note
the different scales).

9.6 Cross-validation

Task 41 : Cross-validate the CK predictions of log10Pb and compute the
diagnostic measures. •
cv.c2 <- gstat.cv(g2, verbose=FALSE)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
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Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
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[using ordinary cokriging]

summary(cv.c2$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-1.865e-01 -4.148e-02 9.354e-03 -1.105e-05 4.441e-02 2.427e-01

sqrt(mean(cv.c2$residual^2))

[1] 0.07213579

mean(cv.c2$residual)

[1] -1.104855e-05

mean(cv.c2$residual^2/cv.c2$ltpb.var)

[1] 0.4144632

The RMSE is 0.07, which is much lower than when using OM as the co-
variable (0.21, §7.2). The mean error is again almost zero, but the Mean
Squared Deviation Ratio (MSDR) lower than the ideal 1 (0.31), meaning
that the CK prediction errors are less variable than reality, as expected
with a smooth predictor.

Task 42 : Display a postplot of the errors. •
plot.valids(k, "ltpb", meuse.extra, "ltpb", cv.o, "CK, Zn co-variable")
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This Figure (right) shows the cross-validation errors at the sample points;
this is comparable to the OK predictions and the CK predictions with OM
as the co-variable. The maximum errors, from −0.18 to +0.23 are about
half those for OK or for CK with co-variable OM.

9.7 Comparison of co-kriging Pb with Zn and ordinary kriging of Pb

In this section we compare the CK and OK predictions and their errors,
and investigate the reasons for any discrepancies for CK with co-variable
Zn, just as we did for CK with co-variable OM (§8).
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9.7.1 Predictions

Task 43 : Determine the differences between co-kriging (with Zn) and
OK predictions of log10Pb, and display these as maps. •
plot.cf(k.o, k.c2, "var1", "ltpb", meuse, meuse.pb, "pred",

"log10(Pb), OK", "log10(Pb), CK with log10(Zn)")

[1] "diff <- k2.o$ltpb.pred- k1.o$var1.pred"
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There are some regions of the map where the predictions are quite differ-
ent; these are in the undersampled regions where the Zn measurement
provides new information. The CK map shows finer detail. This is sim-
ilar to CK using OM as the co-variable (§8.1). Now we compare them
numerically:
summary(k.o$var1.pred); summary(k.c2$ltpb.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.707 1.897 2.027 2.060 2.231 2.530
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.663 1.843 1.970 2.022 2.201 2.690

diff <- k.c2$ltpb.pred - k.o$var1.pred
summary(diff); rm(diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
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-0.33624 -0.09076 -0.03722 -0.03807 0.01247 0.34837

The CK predictions are on average slightly lower than the OK predictions;
there some substantial differnces, both positive and negative, although
half the differences are small, between −0.089 and +0.012; this is a nar-
rower range than for CK with OM as the co-variable (§8.1).

9.7.2 Prediction variances

Task 44 : Determine the differences between the prediction errors of
CK with Zn and OK and display these as maps. •
summary(k.o$var1.var); summary(k.c2$ltpb.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03569 0.05195 0.06078 0.06380 0.07379 0.11188

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03190 0.03975 0.04357 0.04707 0.05108 0.09503

diff.var <- (k.c2$ltpb.var - k.o$var1.var)
summary(diff.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.066369 -0.022628 -0.013948 -0.016724 -0.008424 -0.002091

The CK prediction variances are all lower than the OK prediction vari-
ances. This is a much better result than when using OM as the covariable
(§8.2).

9.7.3 Validations

plot.cf(k.o, k.c2, "var1", "ltpb", meuse, meuse.pb, "var",
"log10(Pb), OK", "log10(Pb), CK with log10(Zn)")

[1] "diff <- k2.o$ltpb.var- k1.o$var1.var"
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The cokriging errors are in general larger, especially near the sample
points of the subset. However, some areas of the map have much im-
proved predictions; these are the areas far from the subsample points
and relatively nearer the extra samples with the co-variable. This is the
same pattern we saw when using CK with OM as the co-variable (§8.2),
but here the differences are less marked.

Now we compare the prediction errors numerically:
summary(k.o$var1.var); summary(k.c2$ltpb.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03569 0.05195 0.06078 0.06380 0.07379 0.11188

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.03190 0.03975 0.04357 0.04707 0.05108 0.09503

diff.var <- (k.c2$ltpb.var - k.o$var1.var)
summary(diff.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.066369 -0.022628 -0.013948 -0.016724 -0.008424 -0.002091

The CK prediction variances are all lower than the OK prediction vari-
ances. This is a much better result than when using OM as the covariable
(§8.2).
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9.7.4 Validations

We used the extra sample points to evaluate the performance of OK
(§5.1) and CK with Zn as co-variable (§9.5). Here we compare these two
validations; this is the same as we did in §8.3 for CK with OM as co-
variable.

ME RMSE MinE MaxE
OK 0.0250 0.1660 -0.663 +0.372
CK with Zn 0.0043 0.0775 -0.137 +0.228

The CK validation is well superior in all measures; this is in contrast to
the result for CK with OM as the co-variable. This Figure shows where
the prediction differences are located. There are many large changes in
predictions between the two validations, but not as extreme as when OM
was used as the co-variable.
kv.ok <- krige(ltpb ~ 1, meuse.pb, meuse.extra, m.ltpb.f)

[using ordinary kriging]

kv.ck <- predict(g2, meuse.extra, debug.level=0)
kv.diff <- data.frame(x = coordinates(kv.ck)[,"x"],

y = coordinates(kv.ck)[,"y"],
diff = kv.ck$ltpb.pred - kv.ok$var1.pred)

summary(kv.diff$diff)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.45342 -0.10540 -0.04435 -0.01966 0.07801 0.59876

coordinates(kv.diff) <- ~ x +y
bubble(kv.diff, z="diff",

main="CK - OK predictions, validation points, co-variable Zn",
col = c("plum","seagreen"),
panel = function(x, ...) {

panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

rm(kv.ok, kv.ck, kv.diff)
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CK − OK predictions, validation points, co−variable Zn
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9.7.5 Cross-validations

We summarize the cross-validation performance of OK (§5.2) and CK
with Zn as co-variable (§9.6); this is the same as we did in §8.4 for CK
with OM as co-variable.

ME RMSE MSDR
OK +0.0037 0.2369 0.88
CK with Zn -0.0035 0.0807 0.32

CK with Zn had much lower overall error than OK. The bias of both cross-
validations was very low. The MSDR for CK with Zn was quite a bit fur-
ther from the ideal 1 than OK, evidence of over-smooth predictions.
cv.diff <- data.frame(x = coordinates(cv.c2)[,"x"],

y = coordinates(cv.c2)[,"y"],
diff = cv.c2$residual -
cv.o$residual, better = (abs(cv.c2$residual) < abs(cv.o$residual)));

str(cv.diff);

'data.frame': 52 obs. of 4 variables:
$ x : num 181072 181298 181165 181232 180874 ...
$ y : num 333611 333484 333370 333168 333339 ...
$ diff : num -0.2964 0.2401 0.0934 0.2366 -0.2133 ...
$ better: logi TRUE FALSE TRUE TRUE TRUE FALSE ...

summary(cv.diff$better);

Mode FALSE TRUE
logical 7 45

coordinates(cv.diff) <- ~ x +y
bubble(cv.diff, z="diff",

main="CK - OK cross-validation residuals, co-variable Zn",
col = c("lightblue", "red4"),
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})
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rm(cv.diff)

CK − OK cross−validation residuals, co−variable Zn
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About 85% of the individual cross-validation predictions are better with
CK than OK. This Figure shows the difference between the cross-valid-
ation residuals for the two methods. There are large differences between
the residuals; this shows that CK with co-variable Zn had a large effect
on predictions at the sample points. This effect is stronger than that for
CK with co-variable OM.

10 Comparison of the three interpolations

Here we compare all three interpolations side-by-side.

10.1 Predictions

Task 45 : Compare the predictions of log10Pb for OK (§5), CK with OM
as co-variable (§7), and CK with Zn as co-variable (§9.4). •

# common colour scale
range <- range(k.o$var1.pred, k.c$ltpb.pred, k.c2$ltpb.pred)
breaks <- seq(range[1], range[2], length=32)
p1 <- levelplot(var1.pred ~ x+y, as.data.frame(k.o), aspect="iso",

col.regions=bpy.colors(64), at=breaks,
main="log10(Pb), OK predictions",

panel = function(x, ...) {
panel.levelplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")

})
p2 <- levelplot(ltpb.pred ~ x+y, as.data.frame(k.c), aspect="iso",

col.regions=bpy.colors(64), at=breaks,
main="log10(Pb), CK predictions, OM covariable",

panel = function(x, ...) {
panel.levelplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")
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})
p3 <- levelplot(ltpb.pred ~ x+y, as.data.frame(k.c2), aspect="iso",

col.regions=bpy.colors(64), at=breaks,
main="log10(Pb), CK predictions, Zn covariable",

panel = function(x, ...) {
panel.levelplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")

})

print(p1, split=c(1,1,3,1), more=T)
print(p2, split=c(2,1,3,1), more=T)
print(p3, split=c(3,1,3,1), more=F)
rm(range, breaks)
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This Figure (left) shows large differences in predictions. The most intri-
cate pattern is for CK with co-variable Zn; this respects the full sample
points much better than the other co-variable, because both the feature-
space correlation and the spatial co-regionalisation is much stronger for
Zn than OM.

10.2 Prediction errors

Task 46 : Compare the kriging predictions errors of log10Pb for OK (§5),
CK with OM as co-variable (§7), and CK with Zn as co-variable (§9.4). •

# common colour scale
range <- range(k.o$var1.var, k.c$ltpb.var, k.c2$ltpb.var)
breaks <- seq(range[1], range[2], length=32)
p1 <- levelplot(var1.var ~ x+y, as.data.frame(k.o), aspect="iso",

col.regions=cm.colors(64), at=breaks, colorkey=T,
main="log10(Pb), OK errors",
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.points(coordinates(meuse), col="green", pch=20, cex=.6);
panel.points(coordinates(meuse.pb), col="red", pch=20, cex=.8);
panel.grid(h=-1, v=-1, col="darkgrey")

})
p2 <- levelplot(ltpb.var ~ x+y, as.data.frame(k.c), aspect="iso",

col.regions=cm.colors(64), at=breaks, colorkey=T,
main="log10(Pb), CK errors, OM covariable",
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.points(coordinates(meuse), col="green", pch=20, cex=.6);
panel.points(coordinates(meuse.pb), col="red", pch=20, cex=.8);
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panel.grid(h=-1, v=-1, col="darkgrey")
})
p3 <- levelplot(ltpb.var ~ x+y, as.data.frame(k.c2), aspect="iso",

col.regions=cm.colors(64), at=breaks, colorkey=T,
main="log10(Pb), CK errors, Zn covariable",
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.points(coordinates(meuse), col="green", pch=20, cex=.6);
panel.points(coordinates(meuse.pb), col="red", pch=20, cex=.8);
panel.grid(h=-1, v=-1, col="darkgrey")

})
rm(range, breaks)

print(p1, split=c(1,1,3,1), more=T)
print(p2, split=c(2,1,3,1), more=T)
print(p3, split=c(3,1,3,1), more=F)
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This Figure (right) shows that the OK prediction errors are the smallest
of the three near the sample points, whereas CK with co-variable Zn gives
the lowest errors averaged across the map.

10.3 Evaluations

Task 47 : Compare the evaluations for OK (§5.1), CK with OM as co-
variable (§7.1), and CK with Zn as co-variable (§9.5). •

ME RMSE MinE MaxE
OK 0.0250 0.1660 -0.663 +0.372
CK with OM 0.0148 0.2226 -0.811 +0.555
CK with Zn 0.0043 0.0775 -0.137 +0.228

The CK with Zn as co-variable is far superior to OK in all measures; in
turn this is better than CK with OM as co-variable. We see that CK with
Zn substantially narrows the range of errors, lowers the RMSE, and has
almost no bias at these extra points. This is a very good result.

Task 48 : Plot all three evaluations and cross-validations. •
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# compute all the evaluations and x-validations, and differences
k.ok <- krige(ltpb ~ 1, meuse.pb, meuse.extra, m.ltpb.f)

[using ordinary kriging]

diff.ok <- k.ok$var1.pred - meuse.extra$ltpb
k.ck <- predict(g, meuse.extra)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

diff.ck <- k.ck$ltpb.pred - meuse.extra$ltpb
k.ck.zn <- predict(g2, meuse.extra)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

diff.ck.zn <- k.ck.zn$ltpb.pred - meuse.extra$ltpb
cv.o <- krige.cv(ltpb ~ 1, meuse.pb, model=m.ltpb.f, nfold=nrow(meuse.pb),

verbose=FALSE)
cv.c <- gstat.cv(g, verbose=FALSE)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
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[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

cv.c2 <- gstat.cv(g2, verbose=FALSE)

Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
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[using ordinary cokriging]
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[using ordinary cokriging]
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Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
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[using ordinary cokriging]
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[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]
Linear Model of Coregionalization found. Good.
[using ordinary cokriging]

# value that corresponds to cex=3
extreme <- max(abs(range(diff.ok, diff.ck, diff.ck.zn,

cv.o$residual, cv.c$residual, cv.c2$residual)))
# max. cex in each case proportional to its largest

# display all plots
d <- SpatialPointsDataFrame(coordinates(k.ok), data=as.data.frame(diff.ok))
b.ok <- bubble(d,

main="OK evaluation errors, log10(Pb)",
maxsize = 3 * (max(abs(range(diff.ok))))/extreme,
panel = function(x, ...) {

panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

d <- SpatialPointsDataFrame(coordinates(k.ck), data=as.data.frame(diff.ck))
b.ck <- bubble(d,

main="CK evaluation errors, log10(Pb), co-variable log10(OM)",
maxsize = 3 * (max(abs(range(diff.ck))))/extreme,
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

d <- SpatialPointsDataFrame(coordinates(k.ck.zn), data=as.data.frame(diff.ck.zn))
b.ck.zn <- bubble(d,

main="CK evaluation errors, log10(Pb), co-variable log10(Zn)",
maxsize = 3 * (max(abs(range(diff.ck.zn))))/extreme,
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

d <- SpatialPointsDataFrame(coordinates(cv.o), data=as.data.frame(cv.o$residual))
b.x.ok <- bubble(d,

main="OK cross-validation errors, log10(Pb)",
maxsize = 3 * (max(abs(range(diff.ok))))/extreme, col=c(4,5),
panel = function(x, ...) {

panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

d <- SpatialPointsDataFrame(coordinates(cv.c), data=as.data.frame(cv.c$residual))
b.x.ck <- bubble(d,

main="CK cross-validation errors, log10(Pb), co-variable log10(OM)",
maxsize = 3 * (max(abs(range(diff.ck))))/extreme, col=c(4,5),
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

d <- SpatialPointsDataFrame(coordinates(cv.c2), data=as.data.frame(cv.c2$residual))
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b.x.ck.zn <- bubble(d,
main="CK cross-validation errors, log10(Pb), co-variable log10(Zn)",
maxsize = 3 * (max(abs(range(diff.ck.zn))))/extreme, col=c(4,5),
panel = function(x, ...) {
panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")})

rm(k.ok, k.ck, k.ck.zn)
rm(diff.ok, diff.ck, diff.ck.zn, extreme)
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print(b.ok, split=c(1,1,2,3), more=T)
print(b.ck, split=c(1,2,2,3), more=T)
print(b.ck.zn, split=c(1,3,2,3), more=T)
print(b.x.ok, split=c(2,1,2,3), more=T)
print(b.x.ck, split=c(2,2,2,3), more=T)
print(b.x.ck.zn, split=c(2,3,2,3), more=F)
rm(b.ok, b.ck, b.ck.zn, b.x.ok, b.x.ck, b.x.ck.zn)
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This figure (left) shows bubble plots of the evaluation errors; this is a
summary of previous evaluation error plots, but with a single symbol
size range for all three figures. The superiority of CK with Zn as co-
variable is clear.

10.4 Cross-validations

Task 49 : Compare the cross-validations for OK (§5.2), CK with OM as
co-variable (§7.2), and CK with Zn as co-variable (§9.6). •

ME RMSE MSDR
OK +0.0037 0.2369 00.88
CK with OM +0.0059 0.2093 12.62
CK with Zn -0.0035 0.0807 00.32

CK with Zn as co-variable performs much better on every measure than
CK with OM as co-variable. CK with Zn is better than OK except that it
underestimates the prediction error at the cross-validation points.

This figure (right) shows bubble plots of the cross-validation errors; this
is a summary of the previous cross-validation figures (right), but with a
single symbol size range for all three figures. The superiority of CK with
Zn as co-variable is clear.

11 Conclusion

This technical note has shown how to perform co-kriging using the gstat
package of the R environment for statistical computing and visualisation,
and how to evaluate its success by validation and cross-validation.

In the particular case studied here, the use of organic matter as the co-
variable for co-kriging the target variable did not in general improve pre-
dictions compared to univariate ordinary kriging. This was despite the
fairly feature-space good correlation between the two variables and the
fairly good linear model of co-regionalisation that could be fitted to the
two variables. This shows that the more sophisticated technique is not
always better. The underlying reasons for the poor relative performance
of co-kriging in this case are (1) that the feature-space correlation be-
tween OM and Pb is too weak (§6.1), explaining only about 38% of the
variabilty; (2) the spatial structures of the two variables were somewhat
different, so that the linear model of co-regionalization was not com-
pletely appropriate.

Using Zn as the co-variable, with a feature-space correlation that ex-
plained about 95% of the variability and also had a good model of co-
regionalisation with the target variable, did result in a much-improved
map, especially away from the sample points of the (undersampled) tar-
get variable (§9).
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There is much more to co-regionalisation and co-kriging than is explained
in these notes, for example indicator co-kriging, multivariate co-kriging,
non-linear models of co-regionalisation, and universal co-kriging. The
reader is encouraged to consult relevant texts [e.g. 2, 4, 9, 18, 19] and
then experiment with gstat. Modelling the co-regionalisation is also
tricky and should be approached with caution [e.g. 5]; remember that
all kriging approaches are model-based: bad models lead to bad predic-
tions.
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A Producing the figures for this document

Many figures in this document combine several plots into one. This can
easily be accomplished with the lattice graphics package. The basic
idea is to create plots with any lattice method, including levelplot(),
xyplot(), and histogram(), but instead of displaying them directly,
saving them (using the assignment operator <-) as trellis objects; this is
the object type created by lattice graphics methods5. They are then
printed with the print() method for trellis objects, using the op-
tional split= argument to split the display and position each saved plot
within it.

The kriged maps in the tutorial were created using the plot.kresults
function shows in the next section §A.1; see the code listing.

First, two trellis objects (plot.kr and plot.kre) are created, using
the levelplot() method. Then they are placed into a one-row, two-
column split display: The split = c(1,1,2,1) optional argument says
to place this figure in position (1,1) within a matrix with dimensions
(2,1) in (x, y) i.e. (columns, rows). The more=T argument indicates that
more saved objects will be added to the current plot; more=F indicates
that the plot is finished.

Plots can be saved for later printing or incorporation into documents
by writing them to a graphics “device” that represents a file. Here is an
example of how to write a PDF file.

R code:
# open the graphics device

pdf("graph/fig_pb_ok.pdf", h=6, w=12)
# put plotting commands here
# ...
# close the graphics device

dev.off()

5 The reason for this name is historical: S-PLUS has a ‘trellis’ graphics environment,
on which the R package ‘lattice’ is based.
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The optional h= and w= arguments specify the dimensions of the plot, in
inches6. In this case the plots are side-by-side so the plot is wider than
tall.

A.1 Plotting functions

Note: These were written before sp package was developed; this pack-
age includes the spplot method which would probably make this code
simpler and easier to understand.

These functions should be loaded into your workspace as follows:

R code:
source("ck_plotfns.R")

The code is reproduced here for your reference; however, rather than at-
tempt to cut-and-paste from here, it is better to download file ck_plotfns.R
from the author’s website where this tutorial is also found7.

### R source code, file ck_plotfns.R
### author: DG Rossiter, d.g.rossiter@cornell.edu
###
### to accompany Technical Note "Co-kriging with the gstat package
### of the R environment for statistical computing"
### plot Kriging results: predictions and variances
## with postplot of sample/subsample points on predictions
## colour: bpy, grey, red
## and locations of sample/subsample points on prediction variance
## colour: cm, green, red
## arguments
## kr.o SpatialPointsDataFrame from kriging
## coordinates must be named x, y
## var1 prefix for field names *.pred, *.var, e.g. "var1"
## samp.pts SpatialPointsDataFrame sample points
## subsamp.pts SpatialPointsDataFrame subsample points
## f field name (quoted) or number for point data values
## title
plot.kresults <- function(kr.o, var1, samp.pts, subsamp.pts,

f=1, title="") {
to.eval <- paste("plot.kr <- levelplot(",

paste(var1,"pred",sep="."),
" ~ x+y, as.data.frame(kr.o),

aspect='iso',
col.regions=bpy.colors(64), cut=32,
main=paste(title, 'Prediction'),

panel = function(x, ...) {
panel.levelplot(x, ...);
panel.points(coordinates(samp.pts), col='grey',

pch=20,
# log scale, but still show minimum
cex=1.6 * (log10(samp.pts[[f]]) -

0.9 * min(log10(samp.pts[[f]]))));
panel.points(coordinates(subsamp.pts), col='red',

6 1” = 2.54 cm exactly
7 http://www.css.cornell.edu/faculty/dgr2/pubs/list.html#pubs_m_R
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pch=20,
cex=1.6 * (log10(subsamp.pts[[f]]) -

0.9 * min(log10(subsamp.pts[[f]]))));
panel.grid(h=-1, v=-1, col='')

})" );
eval(parse(text=to.eval));
to.eval <- paste("plot.kr.e <- levelplot(",

paste(var1,"var",sep="."),
"~ x+y, as.data.frame(kr.o),

aspect='iso',
col.regions=cm.colors(64), cut=32,
main=paste(title, 'Prediction variance'),

panel = function(x, ...) {
panel.levelplot(x, ...);
panel.points(coordinates(samp.pts), col='green',

pch=20, cex=.6);
panel.points(coordinates(subsamp.pts), col='red',

pch=20, cex=.8); # subsample points larger
panel.grid(h=-1, v=-1, col='darkgrey')

})" );
eval(parse(text=to.eval));
print(plot.kr, split = c(1,1,2,1), more=T);
print(plot.kr.e, split = c(2,1,2,1), more=F)

}

### plot Kriging validation and cross-validation errors
## colours: validation: bubble() default: palette()[2:3]
## colours: x-valid: palette()[4:5]
## arguments
## kv.o SpatialPointsDataFrame from kriging to validation points
## var1 prefix for kriging field name *.pred, e.g. "var1"
## valid.pts SpatialPointsDataFrame with validation points
## f field name (quoted) or number for point data values
## cv.o SpatialPointsDataFrame from x-validation kriging
## title
plot.valids <- function(kv.o, var1, valid.pts, f, cv.o, title="") {

# validation errors
to.eval <- paste("diff <- kv.o$", paste(var1,"pred",sep="."),

" - valid.pts[[f]]")
eval(parse(text=to.eval))
extreme <- max(abs(range(diff, as.data.frame(cv.o)$residual)))
d <- SpatialPointsDataFrame(kv.o, data=as.data.frame(diff))
b1 <- bubble(d,

main=paste(title,"Validation errors"),
maxsize = 3 * (max(abs(range(diff))))/extreme,
panel = function(x, ...) {

panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")}

)
b2 <- bubble(cv.o, z="residual",

main=paste(title,"Cross-validation errors"), col=c(4,5),
maxsize = 3 * (max(abs(range(cv.o$residual))))/extreme,
panel = function(x, ...) {

panel.xyplot(x, ...);
panel.grid(h=-1, v=-1, col="darkgrey")}

)
print(b1, split=c(1, 1, 2, 1), more=T)
print(b2, split=c(2, 1, 2, 1), more=F)

}
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### compare Kriging results: predictions or prediction variance
## with locations of sample/subsample points on predictions
## colour: bpy, grey, red
## and locations of sample/subsample points on prediction variance
## colour: cm, green, red
## arguments
## k1.o, k2.o SpatialPointsDataFrame'sfrom kriging
## coordinates must be named x, y
## var1.1, var1.2 prefix for field names *.pred, *.var, e.g. "var1"
## in the two objects
## samp.pts SpatialPointsDataFrame sample points
## subsamp.pts SpatialPointsDataFrame subsample points
## type what to compare: "pred" or "var"
## title.1, title.2 titles for the two kriging objects
plot.cf <- function(k1.o, k2.o, var1.1, var1.2, samp.pts, subsamp.pts,

type="pred", title.1="", title.2="") {
# common scale

to.eval <- paste("range <- range(k1.o$", paste(var1.1, type, sep="."),
", k2.o$", paste(var1.2, type, sep="."), ")", sep="")

eval(parse(text=to.eval)); # makes range
breaks <- seq(range[1], range[2], length=32)
to.eval <- paste("plot.k1 <- levelplot(",

paste(var1.1,type,sep="."),
" ~ x+y, as.data.frame(k1.o), aspect='iso', col.regions=",
ifelse(type=='pred', 'bpy.colors', 'cm.colors'),
"(64), at=breaks, main=title.1,
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.grid(h=-1, v=-1, col='darkgrey')})"

);
eval(parse(text=to.eval)); # makes plot.k1
to.eval <- paste("plot.k2 <- levelplot(",

paste(var1.2,type,sep="."),
" ~ x+y, as.data.frame(k2.o), aspect='iso', col.regions=",
ifelse(type=='pred', 'bpy.colors', 'cm.colors'),
"(64), at=breaks, main=title.2,
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.grid(h=-1, v=-1, col='darkgrey')})"

);
eval(parse(text=to.eval)); # makes plot.k2
to.eval <- paste("diff <- k2.o$", paste(var1.2, type, sep="."),

"- k1.o$", paste(var1.1, type, sep="."), sep="")
print(to.eval)
eval(parse(text=to.eval)); # makes diff
tmp <- data.frame(x = coordinates(k1.o)[,"x"],

y = coordinates(k2.o)[,"y"], diff)
plot.diff <-

levelplot(diff ~ x+y, tmp, aspect="iso",
col.regions=topo.colors(64), cut=32,
main="Difference",
panel = function(x, ...) {

panel.levelplot(x, ...);
panel.points(coordinates(samp.pts), col="white",

pch=20, cex=.6);
panel.points(coordinates(subsamp.pts), col="red",

pch=20, cex=.8);
panel.grid(h=-1, v=-1, col="darkgrey")

})
# display the plots in one figure
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print(plot.k1, split = c(1,1,2,2), more=T)
print(plot.k2, split = c(2,1,2,2), more=T)
print(plot.diff, split = c(1,2,2,2), more=F)

}
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