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Sampling Design 1

Topic: Why sample?

We sample to understand some aspect of reality (natural or social).

With that understanding we can take some action.

The most basic concepts in sampling theory are:

• individual

• population

• sample

We first define these, and their relation that underlies sampling theory.
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Population and sample

Individual The object about which we want to make a statement

Population All the individuals of interest, about which we want to make some
statement

Actual populations:

• Examples: all farmers in a village / district / province / country; all 1x1 m
soil bodies in a defined area

Hypothetical populations:

• Example: All rice crops that could be produced in a defined area.

Sample The set of individuals actually observed

• Examples: twenty selected farmers;: fifty soil borings; twenty rice crops
actually produced

So the sample is a subset of the population of individuals
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Why sample?

• We want to know the attributes of some population

– Mean, median, range, variance, distribution . . .
– Predicted value of unsampled individual, maybe with prediction

uncertainty
∗ Spatial: unvisited location
∗ Temporal: unsampled time point or interval

• It is usually not possible to observe all individuals

– For a hypothetical or infinite population it is not possible
– For a finite population, it is inefficient if all we need is an estimate from the

population to a known precision
– Can not sample in the past or the future

• The cost (field, lab.) to observe an individual may be high, budgets are limited
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The sample

• So, we only observe a portion of the population

• This is called the sample

– Note: One observation from the sample is sometimes also called ‘a sample’
– But, it is more correct to call it an observation or sampling unit
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How does sampling allow inferences about populations?

How can it be that we can make a statement about the population as a whole, if
we haven’t observed all of it?

This is possible because of:

1. the law of large numbers

• The larger the sample compared to the population, the more the sample
parameters approach the population parameters;

2. the concept of probability sampling: each individual has some defined chance
of being sampled.

• Note this is not necessarily equal chance.

3. the concept of representativeness: selected individuals are “typical” of the
population.

• Probability sampling ensures representativeness.
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Sampling contexts

• Non-spatial, non-temporal

– space or time are not relevant to the analysis
– sampling can be in space or over time but these are not considered relevant

• Spatial

– location of observations is important for analysis, e.g., mapping

• Temporal

– time that observations are made is important for analysis, e.g., monitoring

• Spatio-temporal

– both space and time are relevant for analysis, e.g., mapping trends over time

We begin with non-spatial, non-temporal.
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Topic: Sampling concepts

1. Steps in sampling

2. Designing a sampling strategy

In a later topic we will see how to compute sample sizes.
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Steps in sampling

1. Define the research questions

2. Define the target population, target variable and target parameter

3. Define the quality measure

4. Specify the sampling frame

5. Specify the sampling design

6. Determine the sample size

7. Determine the sampling plan

8. Carry out the sampling in the field
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Research questions

Without knowing what you want to know it is impossible to design a sampling
scheme to find out!

These questions should be a precise as possible. Compare:

• Which is the most widely-grown rice variety in a district?

• What is the total area under rice in the district?

• What proportion of the rice production in a district is from this variety?

• What was the mean yield of this rice variety in a given year?

• What is the yield potential of this rice variety under optimal management?

• What is the relation between yield and soil preparation method? (etc.)

For all these: How much certainty (precision) is needed in the answers?
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Target population

What exactly is the population about which we want to make inferences?

This is the (possibly hypothetical) enumeration of all the individuals that make
up the population:

• Clear rules for inclusion or exclusion from the sample

• If the population is inherently continuous (e.g. “forest cover”), we need a
discretization rule to divide into individuals.

– This is the size and shape of the “individual”
– Equivalent to the concept of geostatistical support
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The sampling unit

Given the population, we must define it in terms of the sampling units.

These are the individuals which could be observed or measured.

We must specify:

• How to identify (recognize, limit) it in the field;

• How to actually make the observation (procedures to be followed):

– site preparation for sampling
– what is to be measured
– measurement scale and resolution
– for interviews: how to ask questions (experimental protocol)

and if it is a geographic individual:

• its spatial dimensions, called the support.
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Target variable

This is the variable to be measured for each sampling unit.

Note that there may be several target variables of interest in the same sampling
campaign.

Examples:

• Soil grain size fractions (gravel, coarse sand . . . ) in the 0-20 cm and 30-50 cm
layers;

• Whether the soil is above a regulatory threshold for some pollutant
(“contaminated”) or not

• Age of each child in a household and whether s/he attends school regularly
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Target parameter

This is the statistical measure which will summarize the target variable. It is
closely related to the research question. What do we really want to know?

Examples:

• Mean proportion of each soil grain size fraction over a study area;

• Mean proportion of each soil grain size fraction of all 1 ha blocks in the study
area (mapping)

• Minimum, maximum, percentiles . . .

• Variance (as a measure of heterogeneity)

These will be estimated by statistical inference.
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The sampling frame

This is the technical term for the list or enumeration of all possible sampling
units for the survey.

• Note that this does not have to be the population!

• But if it is not, the researcher must argue that it is representative of the
population; this meta-statistical reasoning is used to make inferences about
the population from the sample.

D G Rossiter



Sampling Design 15

Example of sampling frame

1. The population is all shifting-cultivation fields in the humid tropical rainforest
of Cameroon;

2. The sampling frame includes all shifting-cultivation fields in four
“representative” villages;

3. The sample will be some selection of these fields.

We have to argue (with evidence) that the four villages represent the whole area.

We have to ensure that each individual in the sample has a known probability of
being selected.
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Sampling fraction

This is the proportion of individuals in the sampling frame that are actually
selected and sampled. If N is the population size and n is the number of
individuals sampled:

f = n
N

Example 1: In a study area of 100 ha = 1 000 000 m2; sampling individuals are
defined as 10 x 10 m surface areas; so there are 106/102 = 104 sampling
individuals.

If we make 50 observations (e.g. biomass in the 10 x 10 m area) the sampling
fraction is 50/104 = 0.005 = 0.5%.

Example 2: Sampling individuals are households; the sampling frame is the 150
households in a village.

If 20 are selected and interviewed, the sampling fraction is 20/150 = 13.3̄%
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Topic: Sampling designs

This is plan which says which sample individuals to select from the sampling
frame. These are of several types:

1. Opportunistic

2. Purposive

3. Probability

(a) Systematic
(b) Random
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Opportunistic sampling

Also called “convenience” or “grab”.

• wherever we happen to be, and we see something “interesting”

• or, wherever we are able to sample

• often used in reconnaissance geographical survey, going along the main roads

• also used in rapid rural appraisals

This has the obvious serious flaw that there is no way to evaluate its
representativeness. It should not be used for any statistical inference or even
descriptive statistics, just to get a very rough idea of the range of values in a
study area.

(However, any sampling plan can be used for model-based spatial inference, e.g.,
kriging.)
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Purposive sampling

We go on purpose to a specific site, based on its characteristics

• it’s something we want to measure

• we suppose (i.e. assume based on prior evidence) that it represents some
sub-population

This is often used with small sample sizes, where we will not make statistical
inferences anyway, but want to make sure to see certain sites.

It differs from opportunistic sampling in that we have an a priori (before the field)
reason to sample a given individual.

Example: select sites for soil profile description in locations where we expect a
certain kind of soil “typical” for the landscape.

Again, can not make any statistical statements about the population.
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Probability sampling

This is a scheme where there is a known probability for any sampling unit to be
selected for the sample.

• This does not have to be equal probability, just as long as it is known

This is the ideal for statistical inference.

We now consider some probability sampling designs:

1. Systematic

2. Completely random; also called Simple random

3. Stratified random

4. Clustered random
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Systematic sampling

Sampling units are drawn from the frame in some regular pattern (“system”),
either in geographic or feature space

• E.g. soils sampled at intersection points of a 500x500 m grid

• E.g. interview every tenth person who walks into a community centre

The starting point is selected at random and then the other points are at fixed
offsets; before the first point is selected, each sampling individual has an equal
probability of being selected.

Since there is no bias, this can be used for statistical inference. The danger is of
some periodic effect that matches the system.
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Systematic sampling (2/2)

An advantage for spatial sampling: covers the whole area evenly; any mapping
by interpolation from this sample will have a known minimum accuracy possible
with this number of samples.

Note: in spatial sampling a small jitter may be added to avoid periodic effects.
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Completely random sampling design

Sampling units are selected from the frame at random; this is also called simple
random.

• Each sampling individual has an equal probability of being selected

• In practice: number the units, use a random number generator from the
uniform distribution to select them

• For geographic samples, the coordinates already provide a numbering, so
just select a uniform random number within the range of each coordinate
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Example of two spatial sampling designs
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Advantages of the completely random design

• Each sampling unit has the same probability of being selected, so there is no
need to weight the observations in computations

• For example, the estimated population mean and its variance are calculated as:

µ̂ = x̄ = 1
n

n∑
i
xi

σ̂µ = N2(1− f)s
2

n

where s2 is the sample variance. As f → 1, the variance of the mean σ̂µ → 0.

• There is no constraint on the relative location (in space) or sequence (in the
sampling frame) of the observations

• In spatial sampling, provides point-pairs at many separations; good for
variogram estimation (although not the most efficient)
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Disadvantages of the completely random design

• Assumes one homogeneous population (no sub-populations); if these exist
they may have different:

– expected value, and/or
– variance

• If so, this design is inefficient: too many samples to achieve a desired
precision.

• For spatial sampling, inefficient in transport time
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Stratified random sampling design

This addresses the siutation where the population can be divided into
subpopulations with:

• different expected values or variances, or

• different importance (required precision of results).

The sampling frame is divided into strata by some criterion

• Example in social surveys: gender, employment status, educational level . . .

• Example in geographical surveys: soil or geologic map units; management unit
in a forestry concession . . .

Within each stratum the observations are random

(Note: There are also stratified systematic designs and cluster designs.)
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How to distribute sample numbers in stratified designs?

1. Sample numbers in each stratum are proportional to its size within the full
population (proportional stratified); analysis is then as for completely
random.

• The reason to use strata in this case is to make sure we sample all
subpopulations; otherwise small subpopulations might be missed by
chance.

2. Use larger (proportional) sample numbers where there is more variability
(more heterogeneous); this is the most efficient to determining population
parameters (e.g. overall mean)

3. Distribute sample numbers by importance of each stratum to the objectives;
you will know more about the most important strata

The latter two require different formulas for computing population parameters
such as inferred means, variances etc.

D G Rossiter



Sampling Design 29

Clustered sampling designs

These overcome the logistical problems associated with completely random
designs.

• Cluster centres may be chosen at random or systematically;

• From each centre, observations are distributed either:

– randomly ‘nearby’ (within some user-defined distance)
– systematically to cover some user-defined area; note starting point must be

random (perhaps a random cluster centre)

• Major advantage: efficient for sample logistics such as transport, sample
handling

• Spatial sampling: random-within-clusters also suited for estimating
variograms
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Estimates from unequal probability designs

All designs except for completely (simple) and proportional stratified random
sampling have unequal probabilities of sampling a given individual. So any
estimate from the sample (e.g. mean, variance, total, proportion) must take this
into account.
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Estimates for Stratified Random Sampling

First some notation:

• There are k strata;

• Nh is the number of individuals in stratum h; total N

• nh is the number of observations in stratum h; total n

• Wh = Nh/N is the proportion of the population in stratum h; the stratum
weight

• wh = nh/n is the proportion of the sample in stratum h; the sample allocation

• fh = nh/Nh is the sampling fraction for stratum h

• ȳh, µh are the sample and population means for stratum h

• s̄2
h, σ

2
h are the sample and population variances for stratum h
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Estimates (continued)

Then we compute the overall mean as:

ȳ =
k∑
h=1

Wh · ȳh

The variance of each stratum mean is:

Var(ȳh) = Nh −nh
Nhnh

s̄2
h

and of the overall mean is:

Var(ȳ) =
k∑
h=i
Wh
Nh −nh
Nhnh

s̄2
h
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Implications of these formulas

• As fh → 1 (more of stratum h is sampled), v(ȳ)→ 0; so if sh is large we should
allocate more samples to this stratum in order to reduce its contribution to the
overall variance

• Although, as ph → 1 (the stratum represents more of the population), the
contribution to the overall variance increases.
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R methods for sampling design

• In the base package: sample; runif for random numbers from the uniform
distribution

– sample can also be used with weighted probabilities of selection

• In the sp package: spsample for spatial objects

• Package spcosa implements “Spatial Coverage Sampling and Random
Sampling from Compact Geographical Strata”
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Topic: Visualizing sampling designs

Following are screenshots from Google Earth of six spatial sampling designs
covering the same study area, created with spsample:

1. completely random

2. stratified random (4 equal-size strata)

3. rectangular grid, random origin

4. hexagonal grid, random origin

continued . . .
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. . .

5. non-alligned rectangular grid , random origin

6. clustered

• three cluster centres randomly located, then four points per cluster

7. stratified cluster

• one cluster of three observations in each of four strata

D G Rossiter
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Another completely random sample
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Another clustered sample (3 clusters of 4 each)
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Stratified cluster sample (4 strata, 1 cluster of 3 per stratum)
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R code (1)

# set up sampling area
require(sp)
max.n <- 5791250; min.n <- 5790700
max.e <- 353900; min.e <- 353100
corners <- as.matrix(rbind(c(min.e, min.n), c(min.e, max.n),

c(max.e, max.n), c(max.e, min.n), c(min.e, min.n)))
str(p <- Polygon(corners))
str(pp <- Polygons(list(p), "bounds"))
str(spp <- SpatialPolygons(list(pp)))
EPSG <- make_EPSG()
(EPSG[grep("WGS 84 / UTM zone 32N", fixed = T, EPSG$note), ])
ix <- which(EPSG$note=="# WGS 84 / UTM zone 32N")
(epsg.utm32.code <- EPSG[ix,"code"])
proj4string(spp) <- CRS(paste("+init=epsg",epsg.utm32.code,sep=":"))

# set up sampling plan
n.plan <- 12
samp.pts.random <- spsample(spp, n=n.plan, type="random")
samp.pts.random <- SpatialPointsDataFrame(samp.pts.random, data=data.frame(id=1:n.actual))
# convert to WGS84 long/lat as required by Google Earth and native format GPS
samp.pts.random.84 <- spTransform(samp.pts.random, CRS(paste("+init=epsg",wgs84.code,sep=":")))
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R code (2)

# write out as text files for import into GPS; round to 0.00001 decimal degrees, about 1.1 m
write.table(round(coordinates(samp.pts.random.84),5),

file="./coords/random84.txt", col.names=F, row.names=F)

# export to KML
kmlPoints(samp.pts.random.84, kmlfile="./KML/samp_random.kml",

kmlname="Random sample", name=samp.pts.random.84$id,
icon="http://maps.google.com/mapfiles/kml/pushpin/red-pushpin.png")
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R code (3) – stratified random sampling

mid.n <- (max.n + min.n)/2; mid.e <- (max.e + min.e)/2
corners <- as.matrix(rbind(c(min.e, mid.n), c(min.e, max.n),

c(mid.e, max.n), c(mid.e, mid.n), c(min.e, mid.n)))
p.nw <- Polygons(list(Polygon(corners)), ID="NW")
corners <- as.matrix(rbind(c(mid.e, mid.n), c(mid.e, max.n),

c(max.e, max.n), c(max.e, mid.n), c(mid.e, mid.n)))
p.ne <- Polygons(list(Polygon(corners)), ID="NE")
corners <- as.matrix(rbind(c(mid.e, min.n), c(mid.e, mid.n),

c(max.e, mid.n), c(max.e, min.n), c(mid.e, min.n)))
p.se <- Polygons(list(Polygon(corners)), ID="SE")
corners <- as.matrix(rbind(c(min.e, min.n), c(min.e, mid.n),

c(mid.e, mid.n), c(mid.e, min.n), c(min.e, min.n)))
p.sw <- Polygons(list(Polygon(corners)), ID="SW")
spp.4 <- SpatialPolygons(list(p.nw, p.ne, p.se, p.sw))
proj4string(spp.4) <- CRS(paste("+init=epsg",epsg.utm32.code,sep=":"))

# random sample in each of the four strata
samp.pts.srand <- SpatialPoints(matrix(0, nrow=1, ncol=2)) # dummy first row
proj4string(samp.pts.srand) <- CRS(paste("+init=epsg",epsg.utm32.code,sep=":"))
for (i in 1:4) {

s.tmp <- spsample(spp.4@polygons[[i]], n=n.plan/4, type="random")
proj4string(s.tmp) <- CRS(paste("+init=epsg",epsg.utm32.code,sep=":"))
samp.pts.srand <- rbind(samp.pts.srand, s.tmp)

}
samp.pts.srand <- samp.pts.srand[-1,] # remove dummy first row
samp.pts.srand <- SpatialPointsDataFrame(samp.pts.srand, data=data.frame(id=1:n.plan))
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Topic: Practical issues in field sampling

1. Navigation

2. At the site

3. Inaccessible / non-population locations

In a later topic we will see how to compute sample sizes.
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Navigation

• with GPS, preferably with map background (e.g., smartphone);

• map and compass from control points (e.g., road intersections);

• compare with airphoto.

In all cases compare with landscape.

Precision of location only has to match precision of support.
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The sampling unit

This is the thing we observe in the field.

Recall: We must specify:

• How to identify (recognize, limit) it in the field;

• its spatial dimensions, called the support;

• How to actually make the observation (procedures to be followed):

– site preparation for sampling;
– what is to be measured;
– measurement scale and resolution.
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At the site

1. Record location;

2. Take photos from location in four directions to document;

3. Take photo of location.

• This can be used later to re-find the same site, or identify the land cover etc.
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Inaccessible / non-population locations

Why?

• No permission on site / to access site;

• Too dangerous or without proper equipment;

• Can access but site is not within the defined population

– e.g., agricultural soil sampling, planned site is in an irrigation ditch
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What to do?

Options:

1. Ignore; sample size is smaller

• Must not be any systematic reason for exclusion, e.g., all sites of a
particular land use or geology are inaccessible; this biases the sample

2. Pre-compute reserve extra sites, use one-for-one (in sequence) to substitute

• According to the same sampling plan; so not possible for grid samples

3. A common but incorrect procedure: move a random distance (within some
pre-specified bounds) and direction from planned site to a substitute site.

• No! this destroys the probability sampling, since points near the rejected
point are more likely to be chose than points further away.
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Topic: Sample size

Sampling is expensive, but so is incorrect or imprecise information. These two
must be balanced by determining the sample size that will satisfy information
needs while minimizing costs.

We first illustrate the concept of sampling error, then develop theory to determine
sample size, then see how to compute it:

1. Sampling error

2. Theory

3. Computation
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Sampling error

Estimates from samples are almost never equal to true values, and estimates from
different samples differ among themselves.

To quantify this we define the concept of sampling error:

• The amount by which an estimate of some population parameter computed
from a sample deviates from the true value of that parameter for the
population.

Example: Estimated total rice production in a district, extrapolated from a sample
of fields, vs. the actual total production.

Of course we usually don’t know this (since we don’t know the true value).
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Sampling error

We can appreciate sampling error by simulation from known populations.

Example: Draw 10 different random samples from a normal distribution with true
mean 100 and standard deviation 5; size of each sample is 20 observations;
compute the sampling errors:

R> # set up a vector for the results
R> samp <- rep(0, 10)
R> # compute the means of 10 sets of 20 normal variates, true mean=100
R> for (i in 1:10) samp[i] <- mean(rnorm(20, 100, 5))
R> # compute sampling errors
R> 100 - samp
[1] -1.480606 0.256055 0.165392 -0.096576 -0.730931 -0.109797
[7] 1.118741 -0.246498 0.674641 0.887922

R> # mean sampling error
R> mean(100 - samp)
[1] 0.043834

Notice that the mean sampling error is almost zero. This is the result of the
central limit theorem, derived from the law of large numbers.
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Illustrating the central limit theorem: sample size 20 vs. 200

Sample size: 20
Mean of 120 samples: rnorm(20, 100, 5)
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Mean of 120 samples: rnorm(200, 100, 5)
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Significance testing

This is of two types, with major philosophical and practical differences:

Reject-support (RS) : the null hypothesis (written H0) is set up as the opposite
of what we would like to prove (and what we expect to prove if nature is as we
think)

So, rejecting the null hypothesis supports our conclusions, which are known
as the alternate hypothesis, written HA.

Example: We think a new crop variety should yield at least 100 kg ha-1 higher
than the current one; but we set up the null hypothesis that it does not.

Accept-support (AS) : the null hypothesis is set up as what we believe.

So, accepting the null hypothesis supports our conclusions.

Example: The null hypothesis is that the new crop variety has average yield at
least 100 kg ha-1 higher than the current one.
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Why Reject-support (RS) is commonly used

The idea here is that we should be pretty sure before rejecting a null hypothesis
that is against what we would like to happen.

This guards against false optimism and wishful thinking.

For the remainder of the notes we are using RS testing.

The main use of AS is with very small sample sizes where it is quite difficult to
achieve a low Type I error rate (see next).
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Type I and Type II error

To understand how we determine sample size, we need to recall some basics of
hypothesis testing

• n.b.: this is the so-called “frequentist” view of probability.

There are two types of inferential errors we might make:

Type I : rejecting the null hypothesis when it is in fact true; a false positive

Type II : not rejecting the null hypothesis when it is in fact false; a false
negative

Null hypothesis H0 is really . . .
Action taken True False

Reject Type I error committed success
Don’t reject success Type II error committed
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Significance levels

There are two risk levels associated with the two types of error:

α is the risk of Type I error

We set α to guard against false inference. In RS testing we are inherently
conservative.

β is the risk of Type II error

1− β is known as the power of the test (see below).

We get β from the form of the test and true effect (see below).
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Example

Null hypothesis: A new crop variety will not yield at least 100 kg ha-1 more than
the current variety; that is, there is no real reason to recommend the new variety.

Note: this is an informative null hypothesis; not just “no difference”. It is set by the researcher. In this
case, unless we can prove this much difference we won’t bother to develop the new variety. This is a
management decision, not statistical.

Type I error: the new crop variety in fact does not have an average yield (if
grown “everywhere”) at least 100 kg ha-1 more than the current variety, but from
our (limited) sample we say that it does. A “false positive”. So, we develop the
variety and recommend it, but the farmer gets no significant benefit.

Type II error: the new crop variety in fact does have an average yield (if grown
“everywhere”) at least 100 kg ha-1 more than the current variety, but from our
(limited) sample we say that it does not. A “false negative”. So, we abandon the
variety, even though the farmer would have benefitted.
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Comparing Type I and Type II risks

Inference from any sample smaller than the full population has two probabilities
(Type I and II) of being incorrect.

Q: How to balance? A: The risk of economic loss:

Risk = Hazard (the probability of a wrong decision)
x Vulnerabilty (the cost of a wrong decision)

Solve the following minimization for α and β:

r = (α · costα)+ (β · costβ)

α,β are the hazards; costα, costβ the vulnerabilities.

D G Rossiter



Sampling Design 65

Approaches to computing sample size

We will compare two approaches:

1. Power analysis

2. Sampling to narrow a confidence interval
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Topic: Power analysis

One approach to estimating the required sample size is to set the size to achieve
a desired statistical power of detecting a true difference. This is very common in
social science and medical trials.

Standard reference: Cohen, J. (1988). Statistical power analysis for the
behavioral sciences (2nd ed.). Hillsdale, N.J.: L. Erlbaum Associates.
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Statistical power

The quantity (1− β) is called the power of a test.

It is the probability of rejecting the null hypothesis when it is in fact false; i.e.
making a correct positive decision (to take some action).

This is what we would like to do. So, we want to maximize the statistical power,
after setting α to guard against false inference.

Example: the probability of deciding that a new crop variety will yield at
least 100 kg ha-1 more than the current variety, if this is in fact true. We
want to know how likely we are to take the correct action, i.e. promote the
new variety.
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Why worry about power?

Before sampling, we would like to believe that it will be sufficient to support our
beliefs, i.e. (in RS) that the null hypothesis is in fact false.

Clearly, we would like a high probability that, if the null hypothesis is false, our
test will detect this.

If, before sampling, we don’t feel that we can get enough power, there is no point
in sampling! It would be wasted effort.

Note that many funding agencies require an a priori power analysis of proposed
research.
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Power vs. significance

A common misconception is that power is the inverse of significance. But recall:

• α is the risk of a Type I error: rejecting the null hypothesis when it is in fact
true; this was set by the analyst to guard against wishful thinking;

• (1−α) is just the lack of risk of making this mistake, the so-called
confidence level

• But it tells us nothing about how likely we are to reject a false null
hypothesis; for this we need to know the effect size: that is, what is the real
difference? Or, “how false?”

The power of a given test (test form, α, sample size) increases with the effect
size. So to compute power, we need to specify the magnitude of the effect we
would like to detect, if it is really true.
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Graph: Power vs. significance
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Red curve: t-distribution of some parameter (e.g. population mean) assuming null
hypothesis is true

Red regions: Type I error is committed if the experimental value here

Blue curve: t-distribution of the parameter for a given real effect

Blue region: Type II error is committed if the experimental value is here
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Explanation

In this figure the power is only 0.32. This is the area under the blue curve, to
the right of the critical t-value.

The complement of the power, β, is 1− 0.32 = 0.68. This is the probability of
incorrectly concluding that there is no effect, even though there is.

In the blue region, because the critical t-value to reach α/2 is not reached, we do
not reject H0 when in fact it is false! So then we can not accept any alternate
hypothesis. This avoids a Type I error but we commit a Type II error in this
region.

Conclusion: In this example, we have only a 32% chance of a correct decision
with this test and a sample of this size, to detect an effect this large.
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Factors that affect power

1. The form of the test

• e.g. a two-sample t-test, a paired t-test, test against a constant
• one-sided vs. two-sided

2. The effect size: magnitude of the actual differences in the population

• e.g. if one variety is greatly superior to the other, there will be a large effect

3. The experimental or observational error, or noise; this is variability in the
data that is not related to the experiment; the signal (true effect) will be
masked by this noise.

• e.g. low-precision instruments, poor sample handling . . .

4. Sample size. Larger is more powerful, but too large is wasted.

D G Rossiter



Sampling Design 73

Test type vs. power

Example: Detecting a true difference of +100 kg ha-1 (5000 kg ha-1for one variety
vs. 5100 kg ha-1 for the other) with 120 samples of each; set α = 0.1, two-sided
test (H0: no difference):

(See later in section for calculations)

1. Unpaired: 1− β = 0.61

2. Paired: 1− β = 0.86

3. Variety 2 vs. a constant target value of 5000: 1−β = 0.70 (only one sample set)

Note: Paired with only 60 samples of each: 1− β = 0.61, same as the unpaired
test with double the samples.
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Visualizing effect of parameters on power

In the following graphs we start from a base situation:

• α = 0.1

• H0 = 5000

• Effect: 100

• Paired t-test, two-sided

• 45 samples of each
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Test form vs. power

One-sided tests have more power than two-sided tests:

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

critical t = 1.6802

α
2

β

Two-sided: Power: 0.322

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
0

0.1

0.2

0.3

critical t = 1.2851

αβ

One-sided: Power: 0.460
D G Rossiter



Sampling Design 76

Effect size vs. power

The greater the real or assumed effect, the higher the power:
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Noise vs. power

The narrower the t-distributions, the higher the power:
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How do we control power?

1. We set the experimental design;

2. We set the null hypothesis (one-sided vs. two-sided, H0 of no effect or
informative);

3. We set the risk level α for Type I error;

4. ‘Nature’ determines the effect size;

5. We should do our best to control experimental error;

The sample size can be used two ways:

1. We can set the sample size to achieve some desired power;

2. Or, if we know the sample size (e.g. experiment already done, or the maximum
that can be taken), we can compute the power and see if it is enough
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Power calculations

We can do this “forwards” or “backwards”:

1. a priori: compute the required sample size to achieve a given power, given α
and effect size.

2. post hoc: compute the power achieved by a test, given α, sample size, and
effect size;

Note: we don’t really know the effect (only “nature” knows) but we do know the
minimum effect that is interesting for our results.

For example, if the new crop variety is not at least 100 kg ha-1 higher-yielding on
average, it is not worth it to develop it further. This depends on the application.
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R functions for power calculations

There are three functions in the standard stats library:

power.t.test : For one- and two-sample t tests

power.prop.test : For two-sample tests for proportions

power.anova.test : For balanced one-way analysis of variance tests
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R examples (1/2)

Example: two-sample t-test for a true difference in either direction of 100,
population standard deviation estimated as 400, at α = 0.1:

1. post-hoc: specify sample size, compute achieved power

R> power.t.test(n=120, delta=100, sd=400, sig.level=0.1,
+ type="two.sample", alternative="two.sided", strict=T)

power = 0.61279

With the 120 samples we achieved 61% power.

If the null hypothesis was “not less than” (one-sided), we achieve more power
(74%) with the same sample size:

R> power.t.test(n=120, delta=100, sd=400, sig.level=0.1,
+ type="two.sample", alternative="one.sided", strict=T)

power = 0.74267
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R examples (2/2)

2. a priori: specify power, compute required sample size

R> power.t.test(power=0.9, delta=100, sd=400, sig.level=0.1,
+ type="two.sample", alternative="two.sided", strict=T)

n = 274.72

To achieve 90% power we would need 275 samples in each group.

If we only care about detecting this difference in one direction:

R> power.t.test(power=0.9, delta=100, sd=400, sig.level=0.1,
+ type="two.sample", alternative="one.sided", strict=T)

n = 210.64

Only 210 samples are needed to detect the different for a one-sided test.
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Graphical program for power analysis

G*Power 3 from Heinrich Heine University, Düsseldorf (D)

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/

There are Mac OS X and MS-Windows versions of this program.

The next two slides show sample screens.

D G Rossiter

http://www.psycho.uni-duesseldorf.de/abteilungen/aap/gpower3/


Sampling Design 84

Compute a priori sample size and post-hoc power:
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Trade-off sample size vs. power for various risk levels:
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Topic: Sampling to narrow a confidence interval

Another approach to sample size calculation is to consider the desired width of
the confidence interval for some parameter of interest.

This differs from power analysis because we don’t specify any effect; we are just
interested in one parameter.

We will use the example of a confidence interval for a mean value.
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Confidence interval for the mean

Recall that the confidence interval for a mean µ is computed as:

(x̄ − tα/2,n−1 · sx̄) ≤ µ ≤ (x̄ + tα/2,n−1 · sx̄)

where:

• x̄ is the sample mean;

• tα/2,n−1 is Student’s t with n− 1 degrees of freedom at confidence level α/2;

• sx̄ is the standard error of the sample mean:

sx̄ = 1√
n
sx

sx =
 1
n− 1

n∑
i=1

(xi − x̄)2
1/2
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Notes on these formulas

• The confidence level α, say 0.05, is halved, say to 0.025 for each side of the
interval, because this is a two-sided interval.

• The t-distribution must be used because we are estimating both the mean and
variance from the same sample; for reasonably-large sample sizes the normal
distribution itself (here called the z distribution) can be used.
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What affects the confidence interval?

1. The t value:

(a) n: sample size: t → z as n→ω
(b) α: risk level set by the experimenter that the computed interval does not

contain the true mean; a higher risk leads to a narrow interval

2. The standard error sx̄:

(a) n: sample size (again): precision increases as
√
n

(b) the sample standard deviation: this is essentially the inherent variability
of the sample
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What can we control?

1. The risk of rejecting a true null hypothesis (α); depends on the cost of a false
positive;

• If there is little cost associated with making a Type I error, α can be high
(lenient); this will narrow the confidence interval.

2. Sample standard deviation

• We have some control by good experimental or observational procedures
• But we can not control the inherent variability in the population, even with

perfect technique;

3. The half-width w of the confidence interval, i.e. the required precision. We set
this according to how precise the computed estimate must be; this depends on
the application.
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Inverting the confidence interval

With the above parameters set, we can compute the required sample size:

1. Set the required risk α that the computed mean value (or mean difference) is
outside the interval;

2. Set the desired (half-)width of the confidence interval w;

3. Estimate the sample standard deviation sx

Then we solve for n:

w = tα/2,n−1 · sx/
√
n

√
n = tα/2,n−1 · sx/w
n = (tα/2,n−1 · sx/w)2
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No closed-form solution for n

There is a problem with this “solution” for n:

The right-hand side also contains n (which we want to compute), because the
t-value depends on the degrees of freedom.

So we must somehow approximate t, solve, and then iterate. In practice either of
the following two methods can be used:

1. Replacing t with z: for larger expected sample sizes

2. Use a conservative estimate of t: for smaller expected sample sizes
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Solution 1: Replacing t with z

Replace tα/2,n−1 with zα/2, i.e. the normal deviate (= t with infinite d.f.).

This leads to under-estimation of n by a factor f of (example for α = 0.05):

n 10 20 50 100 200 500
f 0.268 0.126 0.049 0.024 0.012 0.005

(Note: R code for this: qt(0.975, n) - qnorm(0.975) etc.)

So the sample size estimate will be somewhat too low.

Then iterate with this first estimate of n, using the t value this time.
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Solution 2: Use a conservative estimate of t

Use a small but realistic value of n to compute tα/2,n−1; as long as the computed
n is larger, this is a conservative estimate.

If a more exact n is needed, the new estimate can be used to re-compute tα/2,n−1,
iteratively.
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How to set these values?

1. We set the desired risk based on how often we are willing to be wrong (i.e. the
actual value is outside the computed limits).

2. We set the desired width based on the precision we require.

3. We estimate the sample standard deviation from a previous study on this
sampling frame, or from similar studies. This of course may not be the actual
sample standard deviation we get from the new sample.
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Numeric example: Problem

• Problem: Determine sample size for an on-farm trial to detect difference in
rice yield between two on-farm treatments (e.g. early vs. normal planting date).
We want to determine which is best and then recommend it.

• The population is all fields where rice is grown in the region.

• We use a paired design: sets of adjacent fields, as similar as possible in soils
and management, differing only in planting date.

• We then compute the paired difference and, from these, the mean difference.

• We compute the confidence interval of the mean difference based on our
sample. If this interval includes 0 we can not reject the null hypothesis H0 of no
difference between planting dates.

But we get more information here: the interval in which the true difference is
expected to lie: i.e. an estimate of the magnitude of the effect. This can be
directly used for decision-making.
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Numeric example: Setup

1. We set α to 0.1 because we are willing to accept a 10% risk of falsely rejecting
the null hypothesis (i.e. falsely deciding that one of the alternatives is better
than the other). So for each half-width we use half of this, i.e. 0.05.

2. We set the half-width to 100 kg ha-1 because a smaller yield difference is not
important; this is 2% of the region’s typical yield of 5 T ha-1.

3. From a previous survey we estimate the population standard deviation to be
400 kg ha-1; note that this will be higher with on-farm trials than in controlled
experiments.
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Numeric example: Solution

We begin with an estimated sample size of 20; we know this is within our budget.

t.05,19 = 1.7291 (R code: qt(.95, 19))

n = (tα/2,n−1 · sx/w)2

n = (1.7291 · (400/100))2

n = 47.8 ≈ 48

This suggests that a sample size of 48 should detect a real difference of
100 kg ha-1 in either direction, with a risk of 10% of incorrectly calling a chance
difference real.

Note this is 48 pairs, since it is a paired test.
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Numeric solution: iteration

Now that we know ≈ n we can recompute t and refine the estimate; with this
higher n the t value will be a bit lower and so will the required sample size.

t.05,47 = 1.6779 (R code: qt(.95, 47))

n = (tα/2,n−1 · sx/w)2

n = (1.6779 · (400/100))2

n = 45.047 ≈ 45

The difference is small, only 3 fewer samples.
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Numeric solution: normal approximation to t

z.05 = 1.6449 (R code: qnorm(.95))

n = (zα/2 · sx/w)2

n = (1.6449 · (400/100))2

n = 43.289 ≈ 43

This is only two fewer than when using the correct t, so it is also a good
approximation. We could now iterate with t0.05,42 as above, and arrive at the final
(correct) sample size, n = 45.
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Effect of parameters

The following all increase the required sample size:

1. α: α = 0.10→ 45; α = 0.05→ 65; 0.01→ 115

Decreasing risk (i.e. a smaller α)

2. w: w = 200→ 11, w = 100→ 45, w = 50→ 180

Detecting a small (real) difference

3. s: s = 200→ 11, s = 400→ 45, s = 800→ 180

A more variable population
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Topic: Sampling for proportions

The previous examples have been about sampling a continuous variable. Another
kind of information is the proportion of a population that meets a given criterion.

Proportion: from 0 (none) to 1 (all) of the population.

If we are unable to observe the entire population, we take a sample and infer the
population proportion from the sample proportion.

Since there will be sampling error, we also compute the confidence itnerval for
the true proportion.

We must choose the sample size to narrow the confidence interval to some
desired target.
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Examples

• Proportion of farmers in a district who would be willing to join a new
agricultural cooperative;

• Proportion of children 6-10 in a district who attend school regularly

These are examples of large populations where it is impossible to observe every
possible sampling unit.
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References
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Terminology

• Success or a positive result: by convention, the result that is considered
desirable; given the value 1.

• Failure or a negative result: by convention, the complementary result; given
the value 0.

• p: the true proportion of the first result; the probability that a single trial will
give a positive result

• q: defined as (1− p); the true proportion of the second result; the
probability that a single trial will give a negative result

Note: logically, success and failure are symmetrical; the two outcomes are
assigned by the researcher.
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Estimating the population proportion from a sample

Given an unbiased sample of size n, with n1 successes, the population
proportion is estimated naturally as the sample proportion:

p̂ = n1

n

Its standard deviation is estimated as:

ŝ =
√
p · q
n

Note that ŝ is highest for p = 0.5 and decreases as either outcome becomes more
probable.
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Confidence interval

From the estimates of p and s, we can compute the confidence interval of the
estimate:

p̂ ±
[
ŝ · Z1−α/2 +

1
2n

]

where:

• Z1−α/2 is the one-tailed normal score for the two-tail probability of Type I error
α

• 1/2n is the small-sample correction

The small-sample correction is usually ignored for sample sizes n > 50; it is then
less than 1%.

The lower and upper limits are truncated at 0 and 1, respectively, if necessary.
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Example (1/2)

1. 200 (n) representative households selected at random from a sampling frame
were surveyed with a standard questionnaire;

2. 50 answered a certain question “yes” (n1)

3. Compute: p̂ = 50/200 = 0.25

4. Compute: ŝ =
√
(.25∗ .75)/200) = 0.030619

5. The analyst sets the risk of Type I error, say 0.1 (true proportion outside the
computed interval)
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Example (2/2)

6. Then Z0.95 = 1.6449; note a two-tailed test so for one tail, half the risk

7. p̂ = 0.25± (0.030619 · 1.6449+ 0.005) = 0.25± 0.055363

8. Confidence interval: [0.2046 . . .0.3054]

We are 90% confident that the true proportion of all households in the population
that would answer “yes” (if we could interview all of them) lies in the range 20.46%
to 30.54%.

Is this enough precision? If we need a narrower interval, we must increase
sample size. (Or, we can accept more risk of Type I error.)

Is this too much precision? If so, we sampled excessively and could have saved
effort. (Or, we can lower the risk of Type I error.)

So, inverting this relation gives us a way to compute required sample size.
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Required sample size

The required sample size n is estimated as:

n = (Z(1−α/2))2

b2
· p̂ · (1− p̂)

where:

• p̂ is a prior estimate of the population proportion of “successes”;

• b is the desired absolute precision as a proportion;

• Z(1−α/2) is the one-tailed normal score for the desired two-tailed probability α
of Type I error.

Note that this ignores the finite-population correction; for sample sizes < 50 an
exact calculation is needed; or, the experimenter can just add a few samples.
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Example

1. We want to estimate the proportion of farmers who will agree to join a new
agricultural cooperative.

2. A priori we believe that 10% will join

3. We want to measure the true proportion ±4%

4. We will accept only a 5% risk that our interval does not contain the true
proportion; Z0.975 = 1.960.

Then:

n = 1.962

0.042 · 0.1 · 0.9 ≈ 216
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How to set these parameters?

These are all at the discretion of the analyst:

p̂ estimated proportion: From prior experience in the same or similar situations;
or, wishful thinking; the computed interval will tell us if we were right;

b half-width of the interval; the precision we need; this depends on how closely
we need to know the population proportion;

α the risk of Type I error, i.e. that the interval we compute doesn’t contain the
true proportion; this depends on the consequences, including costs, of making
a decision based on the test.

Example: if, after sampling, we estimate that between 6% and 14% of the farmers
would join the cooperative, we decide to establish it. If only 3% in fact join, it will
fail.
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Effect of parameters on sample size

p̂ sample size increases from extremes (expected near 0 or 1) to the centre
(p̂ = 0.5). The factor (p · (1− p)) is:

p 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90
n 0.09 0.16 0.21 0.24 0.25 0.24 0.21 0.16 0.09

b sample size decreases as the square of the precision;

α sample size increases as the acceptable risk decreases; being more certain
costs money. The factor Z(1−α/2) is:

alpha 0.2000 0.1000 0.0500 0.0100
zsq 1.2816 1.6449 1.9600 2.5758
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Power analysis

Testing for proportions can also be done with power analysis, as we saw for
t-tests in a previous section.

Here the effect size is replaced by the difference in proportions between two
samples.

The R method power.prop.test computes either the post hoc achieved power or
the a priori required sample size.

This is a good method to determine sample size to detect a difference.
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Example of power analysis for sample size

• We intend to conduct a survey to see what proportion of school-age children
in a district are attending school regularly.

• We select representative households at random and interview or observe
every child in the household.

• We hypothesize that there is a difference between the proportion of boys and
girls that attend school, but we don’t hypothesize which is higher (maybe
boys are being kept out to work in the fields, or maybe girls are being held
back to do housework, we don’t know).

• If there is a difference we want to design a campaign targeted at the group
that is held back.

• But there is no point in a targeted campaign unless there is at least a 5%
difference; otherwise a general campaign for both boys and girls is sufficient.
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Example (2/3)

Question 1: What sample size would be needed to detect a true 5% difference?

1. Set risk of false detection at α = 0.02 (it is expensive to set up a separate
campaign);

2. Estimate the overall proportion of children attending school regularly as 0.70
(70%) based on informal surveys and secondary information;

3. If there is a 5% difference, this 0.70 could be 0.67 vs. 0.72 (any reasonable
division of the 5% will do).

4. We want the survey to have a high probability of revealing this difference; so
we set the desired power 1− β = 0.9.
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Example (3/3)

Computation:

R> power.prop.test(power=.9, p1=.67, p2=.72,
+ sig.level=0.05, alt="two.sided", strict=T)

n = 1779.8

NOTE: n is number in *each* group

Conclusion: we must survey households with a total of at least 1780 boys and
1780 girls to have 90% chance of detecting a true 5% difference if the overall
proportion is about 70%, with a risk of 5% of falsely concluding there is a
difference this large when there in fact is none.
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Using G*Power 3
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Example of power analysis for achieved power

Suppose we have already done the above survey with a sample size of 200 boys
and 200 girls. What is the probability that this survey will reveal a true difference
of 5% when the overall proportion is around 70%?
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Example (2/2)

Computation:

R> power.prop.test(n=200, p1=.67, p2=.72,
+ sig.level=0.05, alt="two.sided", strict=T)

power = 0.19186

NOTE: n is number in *each* group

Conclusion: if the observed 5% is the true difference, at this significance level and
with a sample size of 200, we only have a 19% chance of detecting the difference.
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More sophisticated calculations with proportions

The G*Power 3 power calculator has many variants on power calculations for
proportions:

• Difference from an assumed constant

• Inequality (one or two-tailed, different methods)

• Sign test

• Generic binomial test
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Topic: Sample size for multiple regression

Multiple regression is used to model a continuous variable (the response or
dependent variable) as a linear combination of several predictors or
independent variables; these can be of any type.

The aim in multiple regression is to get an accurate estimate of the regression
coefficients β, and the coefficient of determination: how much of the total
variance is explained by the model?

The problem is that, with many independent variables (predictors), there is a high
risk of finding statistically-significant regression coefficients just by chance; there
will appear to be a relation where there isn’t.
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Rules of thumb for multiple regression

These appear in various multiple regression texts, and are (at least heuristically)
justified there.

Notation:

• m is the number of predictors (independent variables)

• n is the required sample size (often called “cases” in the regression literature).

1. Never use n < 5m observations, even for exploration; results will be too
unreliable even to plan future work.

2. To test regression coefficients β, ensure n ≥ 104+m and n > 20m
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Confidence intervals of coefficients – why?

Reference: Kelley, K., & Maxwell, S. E. (2003). Sample size for multiple regression:
Obtaining regression coefficients that are accurate, not simply significant.
Psychological Methods, 8(3), 305–321.

Often obtaining a significant coefficient is not so interesting, rather, we want
good accuracy of a fitted coefficient.

That is, we want a narrow confidence interval of the coefficient.

Example: Predicting crop yield from fertilizer additions: what is the benefit of a
single nutrient? of the interaction between two nutrients?

y = β0 + β1N + β2P + β3K + β4N · P + β5N ·K + β6P ·K

Compute e.g., β1 (unit response to N), and also its confidence interval (how
high/low could the response be?)
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Confidence interval – calculation

β̂j ± t(1−α/2;N−p−1)

√√√√ 1− R2

(1− R2
XXj)(N − p − 1)

We need to estimate:

R2 multiple correlation coefficient of the model

• better overall model → narrower interval

R2
XXj multiple correlation coefficient predicting the jth predictor from the
remaining p − 1 predictors

• lower correlation with other predictors → narrower interval for this predictor

Invert this equation with desired α to obtain N (sample size).
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Topic: Geostatistical sampling

Sampling theory becomes more complicated when we need to consider the
location in space (or time) of a sampling unit.

Geostatistical sampling is selecting sampling individuals by their location.

This is appropriate when the relative geographic location of observations is
relevant to the analysis, or if there is spatial dependence (see below).

• The analysis depends on the relative location: e.g. to compute a trend surface,
or to compute the distance of observations from focal points such as markets.

Compare:

• a random selection of crop fields from a census list (non-spatial), vs.

• a selection based on the coordinates (spatial).
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Spatial sampling

Sampling in space: when the location of the observed individual is recorded and
used in the analysis.

(Of course any observtion is made somewhere on the Earth’s surface! but it is not
spatial sampling unless the location is recorded and used).

Extra inferences possible from spatial sampling:

• Prediction at unsampled locations

• Inference of spatial dependence: local or regional trends

• Point-patterns: Dispersion / clustering

• Directional statistics: alignment
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Spatial sampling for geostatistical prediction
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An example of spatial inference: Mercer-Hall wheat yields

Reference: W B Mercer and A D Hall. The experimental error of field trials. The
Journal of Agricultural Science (Cambridge), 4: 107–132, 1911

A uniformity trial:

1. Select an apparently homogeneous field of 1 acre (0.40469 ha)

2. Prepare, sow same variety of wheat, manage uniformly

3. At maturity, divide into 500 equally-size plots (approx. 8.0937 m)

4. Harvest plots, measure grain and straw yield

In theory “all plots should have the same yield” . . .

Research question: How large to make plots to reduce variability between them?
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Field layout; yields
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Non-spatial analysis

Mercer & Hall uniformity trial

Theoretical normal distribution (solid blue), empirical density function (dashed black)
Wheat grain yield, lbs per plot
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Spatial view of grain yields
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Obviously, there is spatial dependence: “hot” spots, “cold” spots
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Evidence of spatial dependence
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This variogram shows that pairs of plots are more similar (i.e. have lower
inter-plot variability) as they are closer to each other.
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Spatial independence

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
15

10
5

Mercer−Hall uniformity trial

Randomization 1
column

ro
w

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
15

10
5

Mercer−Hall uniformity trial

Randomization 2
column

ro
w

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

5 10 15 20 25

20
15

10
5

Mercer−Hall uniformity trial

Actual spatial distribution
column

ro
w

Two randomizations original locations

D G Rossiter



Sampling Design 135

Implications for analysis

Reference: H M van Es and C L van Es. Spatial nature of randomization and its
effects on the outcome of field experiments. Agronomy Journal, 85:420–428,
1993.

• Nearby plots are not independent; observations are “repeated”

• Confidence intervals for e.g. correlations are too narrow

• Solutions:

1. use a spatially-balanced design (see van Es reference)
2. larger block size: include all spatial variability
3. replication
4. incorporate into analysis (mixed models, REML estimation of parameters)
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Spatial dependence

All observations are intrinsically related by their separation vector (“distance”)

Fact: ‘nearby’ observations in space (also in time) are often similar

This is called spatial (or temporal) dependence or auto-correlation (‘auto’ = with
itself)

So, observations are not independent!

This violates a major assumption of random sampling.

(However, Brus argues convincingly that if the feature-space design was correct,
so will be the inferences; although the sampling design may be inefficient.)

D G Rossiter



Sampling Design 137

Evidence of spatial dependence
Soil samples, Swiss Jura
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Solution 1: avoid spatial dependence

• Do not allow any samples closer than the range of spatial dependence

• This range is known from previous studies, with correlogram or variogram
analysis

• This is only valid in systematic (grid) designs, only in this case are
probabilities of inclusion not changed by the restriction
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Solution 2: use geostatistical analysis

• Use model-based (also called geostatistical) approaches to analyze the data

• Explicitly models spatial dependence and uses it for inference

References:

• Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York;
Oxford: Oxford University Press.

• Isaaks, E. H., & Srivastava, R. M. (1989). Applied geostatistics. New York:
Oxford University Press.

• Webster, R., & Oliver, M. A. (2001). Geostatistics for environmental scientists.
Chichester: Wiley & Sons.

• Chilés, J.-P., & Delfiner, P. (1999). Geostatistics: modeling spatial uncertainty.
New York: John Wiley & Sons.

D G Rossiter



Sampling Design 140

Solution 3: account for reduced degrees of freedom

• Adjust formulas for variances etc. according to the effective sample size n∗.

• This is computed according to the modelled spatial dependence and the
observation locations

• That is, the spatially-correlated part (depending on variogram model, partial
sill and range) reduces the effective sample size.

• Reference: Griffith, D.A. (2005). Effective Geographic Sample Size in the
Presence of Spatial Autocorrelation. Annals of the Association of American
Geographers 95(4): 740–760.
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Purposes of geostatistical sampling

1. To make some statement about the area as a whole

• spatial mean, total, variance . . . ; e.g. total biomass; average biomass per ha

2. To map the distribution of some attribute(s) over an area;

3. To determine the spatial structure

• a regional trend;
• local spatial dependence (e.g. by variogram analysis);
• anisotropy (direction of maximum dependence)
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Models of spatial variation

• Discrete model (DMSV): crisp boundaries, discrete classes, no spatial
dependence within polygons; variance within class estimated by all samples
from the class

– “Design-based” sampling, based on feature-space structure (e.g. strata,
continuous feature-space predictors)

• Continuous model (CMSV): no boundaries, no classes, spatial dependence to
some range, all spatial variability is found by the variable itself. May include a
global (trend) and local component

– “Model-based” sampling (‘model’ of spatial dependence)

• Mixed model (MMSV)

1. Stratify by DMSV, model within by CMSV
2. Design-based methods incorporating spatial structure
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What is different about designs considering geostatistics?

The spatial structure is modelled, so . . .

1. CMSV: We can place samples for maximum information or minimum cost in a
model-based (geostatistical) sample

2. MMSV: Can consider both spatial dependence in geographic space and the
spread of samples in feature space
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Topic: Optimal grid sampling
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Optimal point configuration for the CMSV

In a square area to be mapped, given a fixed number of points that can be
sampled, in the case of bounded spatial dependence:

• Points should lie in on some regular pattern; otherwise some points duplicate
information at others (in kriging, will “share” weights)

• Optimal (for both the “minimal maximum” and “minimal average” criteria):
equilateral triangles (If the triangle is 12, max. distance to a point
=
√

7/4 ≈ 0.661)

• Sub-optimal but close: square grid (max. distance =
√

2/2 ≈ 0.707)

– Grid should be slightly perturbed so samples do not line up exactly; avoids
unexpected periodic effects
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Computing an optimal grid size with a known variogram model

• Reference: McBratney, A. B. & Webster, R. (1981) “The design of optimal
sampling schemes for local estimation and mapping of regionalized variables -
I and II”. Computers and Geosciences, 7(4), 331-334 and 335-365; also in
Webster & Oliver.

• In kriging, the estimation error is based only on the sample configuration and
the chosen model of spatial dependence, not the actual data values

• So, if we know the spatial structure (variogram model), we can compute the
maximum or average kriging variances before sampling, i.e. before we know
any data values.

• Then we can make sampling decisions on the basis of cost-benefit
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Error variance

• Recall: The kriging variance at a point is given by:

σ̂ 2(x0) = bTλ

= 2
N∑
i=1

λiγ(xi,x0)−
N∑
i=1

N∑
j=1

λiλjγ(xi,xj)

• This depends only on the sample distribution (what we want to optimise) and
the spatial structure (modelled by the semivariogram)

• Note that the values of the target variable are nowhere in this formula!

• In a block this will be lowered by the within-block variance γ(B, B)

D G Rossiter



Sampling Design 148

Reducing kriging error

Once a regular sampling scheme is decided upon (triangles, rectangles, . . . ), the
kriging variance is decreased in two ways:

1. reduce the spacing (finer grid) to reduce semivariances; or

2. increase the block size of the prediction

These can be traded off; but usually the largest possible block size is selected,
based on the mimimum decision area.
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Error as a function of increasing grid resolution

• Consider 4 sample points in a square

• To estimate is one prediction point in the middle (furthest from samples →
highest kriging variance)

• Criterion is “minimize the maximum prediction error”

• If the variogram is close-range, high nugget, low sill, we need a fine grid to
take advantage of spatial dependence; high cost

• If the variogram is long-range, low nugget, high sill, a coarse grid will give
similar results
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Kriging variances at centre point
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Cost of mapping an area

• Given sample spacing (side of grid) g and total area A, the number of sample
points required to cover the area is n = (

√
A
g + 1)2

• Example: 25 km x 25 km area (A = 625 km2)

– g = 5 km→ ((25/5)+ 1)2 = 36
– g = 0.5 km→ ((25/0.5)+ 1)2 = 2601
– g = 10 km→ ((25/10)+ 1)2 = 12.25 ≈ 12

• Multiply this by the cost of each sample

– Fixed per sample: time to acquire, equipment rental for this time, laboratory
– Variable: travel time between samples

• In addition, there is a fixed cost to set up the sampling scheme
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Cost-benefit analysis

• Compute a cost/benefit ratio and plot against a controllable parameter:

– sample spacing at a given block size
– block size for a given sample spacing

D G Rossiter



Sampling Design 153

100 150 200 250 300 350 400

30
40

50
60

70

Effect of sample spacing on the Cost/Benefit Ratio

sample spacing

C
os

t/b
en

ef
it 

R
at

io

●

●

●

●

●
● ●

(Note: this depends on the variogram)

D G Rossiter



Sampling Design 154

Topic: Simulated annealing

• Used when there are previous samples or constraints on where samples can
be placed (e.g. buildings)

• Optimizes sampling locations by trial-and-error . . .

• . . . according to some optimization criterion, e.g. mean or maximum kriging
prediction variance

• Must use an “annealing” strategy (slowly “cooling” the system) for
computational efficiency

References: D J Brus and G B M Heuvelink. Optimization of sample patterns for
universal kriging of environmental variables. Geoderma, 138:86–95, 2007.

van Groenigen, J.-W. (2000). The influence of variogram parameters on optimal
sampling schemes for mapping by kriging. Geoderma, 97(3-4), 223-236.
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Problems with the “optimal” grid

The “optimal” grid presented in the previous section is optimal only in restricted
circumstances. There are many reasons that approach might not apply:

• Edge effects: study area is not infinite

• Irregularly-shaped areas, e.g. a flood plain along a river

• Off-limits or uninteristing areas, e.g. in a soils study: buildings, rock
outcrops, ditches . . .

• Existing samples, maybe from a preliminary survey; don’t duplicate the effort!

Impossible to compute an optimum analytically (as for the regular grid on an
infinite plane).
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Annealing

Slowly cooling a molten mixture of metals into a stable crystal structure.

During annealing the temperature is slowly lowered.

At high temperatures, molecules move around rapidly and long distances

At low temperatures the system stabilizes.

Critical factor: speed with which temperature is lowered

• too fast: stabilize in a sub-optimal configuration

• too slow: waste of time
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Simulated annealing

This is a numerical analogy to physical annealing:

• Some aspect of a numerical system is perturbed

• The configuration should approach an optimum

• The amount of perturbation is controlled by a “temperature”
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Outline of SSA

1. Decide on an optimality criterion

2. Place the desired number of sample points “anywhere” in the study area (grid,
random . . . ); compute fitness according to optimality criterion

3. Repeat (iterate):

(a) Select a point to move; move it a random distance and direction
(b) If outside study area, try again
(c) Compute new fitness
(d) If better, accept new plan; if worse also accept with a certain probability

4. Stop according to some stopping criterion
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Initial configuration

Initial sampling scheme

Mean, max kriging variance: 0.8176 ; 1.1362
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Annealing; final configurations
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A real example

Industrial area, existing samples; more must be taken to lower the prediction
variance to a target level everywhere; where to place the new samples?

Reference: van Groenigen, J. W., Stein, A., & Zuurbier, R. (1997). Optimization of
environmental sampling using interactive GIS. Soil Technology, 10(2), 83-97
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Sampling to estimate spatial dependence

If an area has never been sampled for a variable of interest, we need to determine
the range of spatial dependence in order to set up an efficient sampling scheme.

Note that such a sampling scheme is not intended to map an area; thus there may
be large “holes” in the coverage; the interest is instead on determining spatial
structure.

If a map is wanted, the variogram derived from this first sampling exercise can be
used to design an optimum grid sample, as explained above.
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Nested spatial sampling

An efficient way estimate a variogram is with a nested spatial sampling scheme.
It is based on work from 1937, re-discovered and extended in 1990.

• Original work: Youden, W. J. & Mehlich A. (1937) Selection of efficient methods
for soil sampling, Contributions of the Boyce Thompson Institute for Plant
Research 9: 59-70

• Recent paper re-stating the method: Webster, R. Welham, S. J., Potts, J. M.,&
Oliver, M. A. (2006) Estimating the spatial scales of regionalized variables by
nested sampling, hierarchical analysis of variance and residual maximum
likelihood, Computers & Geosciences 32: 1320-1333

D G Rossiter



Sampling Design 164

How to design the nested sample

• Widest spacing s1 is the ‘station’, which are assumed so far away from each
other as to be spatially independent

– furthest expected dependence . . .
– . . . based on the landscape . . .
– . . . and expected range of process to be modelled

• Closest spacing sn is the shortest distance whose dependence we want to
know
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Geometric series

• A geometric series increases terms by multiplication

• It allows us to cover a wide range of distances (possible ranges) with a few
stages.

• Increases spacing in geometric series:
s = √s1 · sn

• Fill in series with further geometric means
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Geometric series: example

• First series: s1 = 600m (stations), s5 = 6m (closest)

• Intermediate spacing: s3 =
√

6m · 600m = 60m

• Series now {600m, 60m, 6m}

• Fill in with the geometric means

– s2 =
√

600m · 60m ≈ 190m
– s4 =

√
60m · 6m ≈ 19m

• Final series {600m, 190m, 60m, 19m, 6m}
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Locating the sample points

• Objective: cover the landscape, while avoiding systematic or periodic features

• Method: random bearings from centres at each stage

• Stations can be along a transect if desired (no spatial dependence)

• From a centre at stage i (Ei, Ni), to find a point (Ei+1, Ni+1) at the next spacing
si+1:

– θ = random uniform[0 . . .2π]
– Ei+1 = Ei + (si+1 ∗ sinθ)
– Ni+1 = Ni + (si+1 ∗ cosθ)
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Example of nested sampling

Source: Webster, R., and M.A. Oliver (2008). Geostatistics for environmental
scientists. 2nd ed. John Wiley & Sons Ltd.
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Number of sample points

• Number of stations selected to cover the area of interest

• At each stage Si, the next stage Si+1 has in principle double the samples

• One is for all the previous centres from stage S1 . . . Si−1 and one is for the new
centre from stage Si

• So the total number doubles: half old, half new centres

• After the first 4 stages, use an unbalanced design

• This still covers the area, but only uses half the samples at the shortest ranges
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Number of sample points: example

• Five stages {600m, 190m, 60m, 19m, 6m}

• Nine stations: n1 = 9

• Double at stages 2 . . . 4: n2 = 18, n3 = 36, n4 = 72

• At stage 5, only use half the 72 centres, i.e. 36

• Total at stage 5: 72+ 36 = 108 (would have been 144 with balanced sampling)
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Nested ANOVA : Partition Variability by sampling level

• Linear model:

zijk...m = µ +Ai + Bij + Cijk + · · · + Qijk...m + εijk...m

• Link with regional variable theory (semivariances): m stages; d1 shortest
distance at mth stage; dm largest distance at first stage

σ 2
m = γ(d1)

σ 2
m−1 + σ 2

m = γ(d2)
...

σ 2
1 + . . .+ σ 2

m = γ(dm)

• F-test from ANOVA table; for stage m+ 1 : F = MSm/MSm+1
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Nested ANOVA : Interpretation

• There is spatial dependence from the closest spacing until the F-ratio is not
significant.

• Samples from this distance are independent

• To take advantage of spatial interpolation, must sample closer than this

• Can estimate how much of the variation is accounted for at each spacing
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Topic: Temporal sampling

Sampling in time allows inferences of:

• Time series analysis: trend, cycles, unusual events . . .

• Inference of temporal auto-correlation

• Prediction of future values

It is often used for monitoring the state of some system.
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Basics of temporal sampling

Sampling in time:

• Repeat sampling: when the same sampled individual is measured at several
points in time;

• Non-repeat sampling: different individuals are sampled at the different times

Extra inferences possible from temporal sampling:

• Time series analysis: trend, cycles, unusual events . . .

• Inference of temporal auto-correlation

• Prediction of future values
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Example of time-series analysis (1)

Groundwater levels in a well, 30-year time series
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Examples of time-series analysis (2)

Anatolia well 1, decomposition
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Types of temporal sampling

• Repeat sampling: when the same sampling units are measured at several
points in time;

– Monitoring a location or individual: measuring the same indicators
– Examples: Weather stations, stream gauges

• Non-repeat sampling: different units from the same population are sampled
at the different times

– Examples: Census; yearly crop field surveys
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Sampling frequency

(also called the “sampling rate”)

This is the number of samples per time period taken from a continuous
phenomenon.

It discretizes the signal.

Example: stream flow is continuous; but recording of the water level may be only
once a day.

Example: crop growth is continuous, but we may measure the height, biomass
etc. only at two-week intervals.

Inverse is called the sampling interval, i.e. the time between sampling times.
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Implications of the sampling frequency

1. There is no information with which to interpolate between sampling times

2. Any periodic behaviour that has a higher frequency than 1/2 the sampling
frequency can not be identified.

• Example: Daily temperature cyles can not be identified with daily
measurements

• They can be identified with twice-daily measurments
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Topic: Advanced topics

Here we mention some advanced topics in sampling that may be applicable in
certain situations.

Details may be found in the listed references.
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Two-stage sampling

In many situations we would like to sample a population, but certain parts are
more interesting than others.

Example: soil pollution in some region; we would like to concentrate on the
pollution “hot spots”. We need detailed maps of these for action plans; but we do
need to map the whole area to find these.

Two-stage sampling has:

1. A preliminary sampling design;

2. A second sampling design based on the results of the first

The first design is set up to be sure to find interesting subpopulations for the
followup sampling. Since this second one is biased, appropriate analytical
techniques must be used.
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Two-stage sampling to estimate sample size

Another situation where two-stage sampling is attractive is if we don’t have any
estimate of population standard deviation.

• A preliminary sample is taken to estimate this; then the required total
sample size can be computed as explained above.

• The second sample is used to complete the sampling

• Both samples can be used together for analysis.
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Adaptive sampling

This is a “modify as you go” alternative to two-stage sampling. During the
sampling itself, we change the design according to what we see.

These are often used in social or medical surveys. For example, if we are
sampling for prevalence of turberculosis in a city, and we find one case, we would
like to sample nearby, or sample relatives and contacts of the case.

They can also be used in geographic survey. For example, if we find a polluted
soil, we’d like to sample nearby to see the extent of the pollution.

Reference: Thompson, S. K., & Seber, G. A. F. (1996). Adaptive sampling. New
York: Wiley.
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Topic: References

Sampling is an important topic which has been treated extensively by many
authors. This section lists some reference material in the following categories:

1. Textbooks

2. Technical reports

3. Papers

4. Web pages

5. Computer programs
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Textbooks

• de Gruijter, J., Brus, D. J., Bierkens, M. F. P., & Knotters, M. (2006). Sampling
for Natural Resource Monitoring: Springer. ISBN 978-3-540-22486-0

Especially useful for geostatistical sampling and spatio-temporal
monitoring schemes. Includes useful decision trees for selecting
sampling designs.

• Cochran, W. G. (1977). Sampling Techniques (3rd ed.). New York: John Wiley.
ISBN 0-471-16240-X

The classic text, especially for survey sampling. Includes formulas for
computing population parameters for different sampling designs.

• de Vries, P. G. (1986). Sampling theory for forest inventory: a teach-yourself
course. Berlin ; New York: Springer-Verlag. ISBN 0387170669
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Technical reports

• Schreuder, H. T., Ernst, R., & Ramirez-Maldonado, H. (2004). Statistical
techniques for sampling and monitoring natural resources. Fort Collins, CO:
U.S. Department of Agriculture, Forest Service, Rocky Mountain Research
Station. Gen. Tech. Rep. RMRS-GTR-126.
https://www.fs.fed.us/rmrs/publications/

statistical-techniques-sampling-and-monitoring-natural-resources

Practical information with theory, especially for forestry applications.
Lots of worked examples. Assumes no prior knowledge and develops the
required statistical theory.

• U.S. Environmental Protection Agency. (2002). Guidance for choosing a
sampling design for environmental data collection. Washington, DC: US EPA.
https://www.epa.gov/quality/

guidance-choosing-sampling-design-environmental-data-collection-use-developing-quality

Especially for compliance with EPA rules (typical of environmental
agencies).
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Papers

• Stein, A., & Ettema, C. (2003). An overview of spatial sampling procedures and
experimental design of spatial studies for ecosystem comparisons.
Agriculture, Ecosystems & Environment, 94(1), 31-47.
http://dx.doi.org/10.1016/S0167-8809(02)00013-0

• Brus, D. J., & de Gruijter, J. J. (1997). Random sampling or geostatistical
modelling? Choosing between design-based and model-based sampling
strategies for soil (with Discussion). Geoderma, 80(1-2), 1-59.
http://dx.doi.org/10.1016/S0016-7061(97)00072-4
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Web pages

– NIST/SEMATECH e-Handbook of Statistical Methods
http://www.itl.nist.gov/div898/handbook/; §3.1.3.4, 3.3.3

Emphasis on process quality control, sample plans are for proportions.
– Electronic Statistics Textbook (StatSoft);
http://www.statsoft.com/Textbook/Power-Analysis/; topic Power
Analysis

Simple introduction to many statistics topics.
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Computer programs (1/3)

R http://www.r-project.org/
The dominant open-source statistical visualization and computing language
and environment; Unix, MS-Windows and Mac OS X.
– Random sampling with the sample method; random number generation with

many distributions (Uniform, Normal, Poisson, Binomial . . . ), e.g. runif,
rnorm, rpois.

– Methods for power analysis: power.t.test, power.prop.test,
power.anova.test;

– Spatial sampling schemes with spsample in the sp library.
– Package spcosa “Spatial Coverage Sampling and Random Sampling from

Compact Geographical Strata” from Alterra (NL); based on k-means;
implements some methods described in the de Gruijter et al. text
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Computer programs (2/3)
G*Power 3 http://www.gpower.hhu.de/

from Heinrich-Heine-University, Düsseldorf (D); compute the power of statistical
tests to find true differences; compute required sample size for a given power.
MS-Windows and Mac OS X.

Visual Sample Plan (VSP) http://vsp.pnnl.gov/ (US Environmental Protection
Agency)
From the Pacific Northwest National (USA) Laboratory; aimed at environmental
modelling for remediation. MS-Windows.
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Computer programs (3/3)
ArcGIS (ESRI)

Spatial analyst extension; user-contributed extensions
QGIS (open-source GIS)

Also has links to R, so can run R-based sampling methods and user-written
programs
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Conclusion

Sampling is the way we get information about reality.

To make valid inferences, the sampling scheme must be carefully designed
according to the research questions.

Time, money, effort is always limited.
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