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What is a point pattern?

A set of (georeferenced) point locations within a defined region
Resulting from a data-generating process (DGP) operating over the region
A DGP that results in the location of points is called a point process

“a stochastic mechanism which generates a countable set of events” [7]

Details
▶ Lines and polygons may be reduced to “points”, e.g., by centroid, and treated

as points
▶ The region must be carefully defined, otherwise most statistics are distorted
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Examples

Position of (one species of?) trees on a landscape
Traces of meteor strikes
Geomorphic features (reduced to points)

▶ e.g., drumlin fields; Carolina bays
Location of crime incidents

▶ single type of crime, interaction between types of crime, interaction with point
features, e.g., banks

Distribution of grazing animals in a field
▶ could study the evolution of the point-pattern over time
▶ interaction between two species

Bomb strikes around a target
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Examples used in ASDAR text

Redwood trees in a forest plot
Cell centres on a microscope slide
Japanese pines in a forest plot
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Point-patterns on a unit square
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Example: Redwood trees

source: Strauss [17]
Hypotheses to test:

“ It was felt that the seedlings would be scattered fairly randomly,
except that a number of tight clusters would form around some of the
…stumps present in the plot. A discontinuity in the soil, very roughly
demarked by the diagonal line in the figure, was expected to cause a
difference in clustering behaviour between regions I [upper left] and II
[lower right]. Moreover, almost all the …stumps were situated in region
II”

area about 50 x 50 m = 0.25 ha
[1.8 m] “which was thought to be very roughly the range at which a pair
of seedlings could ‘interact’ ”

So maximum density ≈ 1 500 trees
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Example: Cell centres

Hypothesis to test: cells form a regular pattern
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Example: Japanese pines

Hypothesis to test: trees are distributed randomly: no attraction, no
repulsion, no regular order
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Example: Drumlin field

Cayuga County, NY tops of drumlins can be considered as “points”
Random? Clustered? Regular pattern? DGP is Laurentide Ice Sheet
See also https://rsbivand.github.io/ECS530_h21/ECS530_211119.html#Point_patterns
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Example: “crime” vs. suspect

source: Hauge, M. V. et al. (2016). Tagging Banksy: using geographic profiling to investigate a
modern art mystery. Journal of Spatial Science, 1–6.
http://doi.org/10.1080/14498596.2016.1138246
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Why analyze point patterns?

We are interested in the process which produced the pattern
We can only observe the pattern
We want to infer the spatial data-generating process (sDGP) – why are
the points located as they are?

▶ How? make a model based on hypotheses that “best” fits the observed
pattern

▶ Allows to confirm / reject / modify a geomorphological, ecological or social
theory

We may want to assign a density to every location in a region
▶ probability of occurence, normalized by area

We may want to aggregate counts / densities over some area
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Stochastic processes

An observed point pattern is a realization of some stochastic process.
The points can be labelled as {x1, x2, . . . xn}, and the number of points in
any region A is N(A).
What we observe is one realization of a process,
If we could “rewind” time and run the same process, we should see the same
statistical properties resulting from the process, but a different empirical
point pattern.
As analysts we want to infer the process from the one realization.
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Process orders

1 First-order
▶ one set of points, each point as separate occurrences from some stochastic

process
▶ point distribution (observed spatial density) suggests spatial (in-)homogeneity

of process intensity
⋆ completely spatially-random (CSR)?
⋆ clustered?
⋆ dispersed?
⋆ regularly-spaced?

2 Second-order process
▶ interaction between (positions of) points
▶ One or more sGDP, if multiple with with interaction between them
▶ model random distribution (no interaction), vs. attraction, vs. repulsion

3 both can (partially) depend on spatial covariables
▶ e.g., regional trend or environmental factors
▶ Strauss processes, see below
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First-order stochastic processes

Denote small regions in A ⊂ R2

Define the first-order point intensity of the process as:

λ(x) = lim
|dx|→0

E[N(dx)]
|dx|

This can be computed at any radius |dx|, but the theory requires a point
density.
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Stationarity and Isotropy

Divide a region A into a set of smaller regions {Ai : i = 1 . . . k} each with
observed points N(Ai).
Examine what happens if we translate or rotate the points, thereby resulting
in different N(Ai).
If the joint distribution does not change, the process is stationary and
isotropic.

▶ i.e., the process operates identically over the region, with no directional effects
nor sub-regions with different intensity.

If this is the case, λ(x) = λ = E[N(A)]
|A| , i.e., the same intensity everywhere.

The second-order density reduces to λ2(h) = λ2(||x − x||)
▶ i.e., a function of their separation distance as vectors of coordinates.

The covariance density is then λ2(h)− λ2.
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Poisson point process

Example of a Data Generating Process (DGP)
Named for the Poisson statistical distribution

f(k;λ) = Pr(X = k) = λke−λ

k!
The number of points in a region is a random variable with a Poisson
distribution, intensity λ
homogeneous λ the same everywhere
inhomogeneous λ can vary over space (cluster process)
Locations of points in the region, given the intensity, are completely
random.
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“Hard core” Poisson processes

A Poisson process but there is a hard core distance, within which no two
points can be closer to each other
Often used when the “point” has a certain size

▶ Example: mature trees in a savannah, canopies do not overlap, so locations of
tree trunks can not be closer than the canopy width
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credit: Hanspeter.Baumeler; CC BY-SA 4.0
Klein Nossob (Namibia); 24° 33’ 18.73” S, 19° 47’ 12.24” E
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Cox point process

A type of Poisson point process, but …
…the intensity, i.e., Poisson parameter λ(s), varies across the region …
…according to some external stochastic process

▶ e.g., geographic trend in climate; patches of different soils with different
suitability for a species

The cause may not be known, but the result can be analyzed
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Matérn cluster process
One of many processes studied by Matérn, a Swedish forestry statistician [12]
(1) Randomly-located (Poisson process) points tend to (2) form random
(Poisson process) clusters around these seeds
Poisson intensity of clustered points is higher than the seed points
Example: locations of rare species are random within a landscape, but each
“location” is a cluster (local seed dispersal? favourable soil conditions?)
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Strauss process

There is either clustering or repulsion between points, but this process is
homogeneous across the region
λ(u, x) = βγt(u,x)

▶ λ(u, x): intensity of pattern x at location u;
▶ β: overall homogeneous intensity;
▶ γ: interaction parameter 0 ≤ γ ≤ 1
▶ t(u, x): the number of points closer than the interaction radius r

Interpretation:
▶ γ = 0 =⇒ λ = 0: no chance of finding another point;
▶ γ < 1: chance of a second point is reduced;
▶ γ = 1 equivalent to a Poisson process (CSR)

Specify r, fit γ from observed pattern
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Second-order stochastic processes

Consider interactions between occurrences x and y.
i.e., the location of one point may affect the location of another, either to
aggregate (“attract”) or disperse (“repulse”).

▶ Must then infer the mechanism.
Express this as the second-order intensity function:

λ2(x, y) = lim
|dx|→0,|dy|→0

E[N(dx)][N(dy)]
|dx||dy|

In other words, the density of the two occurrences at the same location.
These have a covariance density, i.e., to what degree the two sets co-locate:

γ(x, y) = λ2(x, y)− λ(x)λ(y)
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Second-order “Hard core” Poisson processes

A Poisson process but there is a hard core distance, within which no two
points, one from each process can be closer to each other
Represents repulsion from one set of points to another

▶ Example: one tree species inhibits the growth of another
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Intensity

The simplest measure: how many points on average per unit area
▶ observed point density ← intensity of the process that produced them

homogeneous process: λ(s) = λ = n/|A|
▶ s = spatial location; n = number of points; |A| = area
▶ does not vary over the area; expected value the same everywhere

inhomogenous process: λ(s) varies over the area
depends on the scale at which we examine it (the bandwidth)

▶ broad (wide): all points are taken together and the process is by definition
homogeneous

▶ fine (narrow): random fluctuations lead to different intensity estimates, even
of same process

narrow bandwidth → “spiky” map; wide bandwidth → (over-?)smooth map
try to match bandwidth with the scale of the sDGP
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Kernel density estimate : objective

We suppose the process is inhomogeneous
We want to estimate the intensity at all locations

▶ i.e., what is the area-normalized probability of a point at each location?
Only uses the point-pattern itself (no covariables, no trend)
Non-parametric (no model of the underlying process)
This can lead to hypotheses about the spatial process (sDGP)

▶ overlay on presumed covariable to see if they match
▶ e.g., vegetation density vs. soil type polygons
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Kernel density estimation: concept

Simplest is the spherical kernel; in 2D this is circular:

λ̂(x) = N(b(x, h))
πh2

where:
b(x, h) is a disc of radius h centred at x

▶ λ̂(x) is estimated density per unit square
▶ h is the bandwidth
▶ larger → smoother estimates as kernel moves across the map

N is the number of points in the disc
denominator πh2 is the area of that circle, normalizes the density
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Kernel density estimation : with kernel function

This simple spherical count can be generalized with a kernel function that gives
more weight to “nearby” portions of the disc:

λ̂(x) = 1
h2

n∑
i=1

κ

(
||x − xi||

h

)
/q(||x||)

where:
|| · || is the signed norm, usually the Euclidean distance between the target
position (centre of kernel) and an observed point
κ(u) is a bivariate, symmetric kernel function of u = ||x − xi||/h (see next
slide)
q(||x||) is an edge-correction factor (unobservable points outside the
boundary)
h is the bandwidth
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Smoothing kernel

Example: the quartic (a.k.a. biweight) kernel:

κ(u) =
{

3
π

(
1 − ||u2||

)2 if u ∈ (−1, 1)
0 otherwise

as points are further away from the centre of the kernel, they get less weight
in the density estimate
u is signed according to the coördinate system, but then squared
outside the normalized bandwidth |u| ≥ 1 any points are not included in the
density for a given location
this is controlled by the h parameter
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Choice of bandwidth

Which bandwidth “best” represents the (in)homogeneity of the point process?

“For any kernel function a small value of h may result in an estimated
surface λ̂(x) that is too spiky, whereas a large h leads to smoother
surfaces but may ignore local features of λ̂(x).
“No simple recipe for the choice of bandwidth exists ….
“Background information on the objects that form the pattern, such as
dispersal distances for plants, might inform bandwidth choice …
“[In] the absence of this the user should simply consider a number of
values of h and choose the one that gives the most plausible result in
the specific context.” – Illian et al. [10, p. 115]
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Choice of bandwidth – relation to application

How is “density” perceived in the application context?
▶ Example: “dense” vegetation as cover for small animal (e.g., fox) vs. large

animal (e.g., deer) – what is the radius that has to be “dense” before the
animal feels secure using it as cover?

What is a realistic maximum density?
▶ If the process were homogeneous across the whole study area, what would be

the maximum number of points per unit area? The kernel density at any point
should not exceed this.

▶ Example: mature trees with non-overlapping main canopies, radius ≈ 3 m, so
no more than about 10000/(π · 3)2 ≈ 350 trees per hectare.

▶ Example: redwood seedlings ≈ 6000 per hectare, ≈ 1500 in the example plot
(Strauss)
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Effect of bandwidth: 1D example

λ = 10; solid line: biweight kernel density
dashed lines: contribution of each point to density
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Effect of bandwidth: 2D example: redwood trees
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– different bandwidth → different estimate;
– overall density 195 trees in the unit square
– density 2200 (unit)-1 in “hottest” spot / narrowest bandwidth → unrealistic (> 1500)
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Choice of bandwidth – Diggle’s method

Diggle [8] provides a bandwidth estimation method for the Cox process: Minimize
the mean square error (MSE) of the kernel smoothing estimator vs. actual counts.

MSE(r) = E
{[
λ̂r(x)− λr(x)

]2}

Try a series of bandwidths
For each, compute the kernel density at each grid point, compare to counts
Summarize across area
Graph MSE vs. bandwidth, look for first minimum

Simpler: h = 1/
√

n.
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Diggle’s method – redwood trees
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0.04 on unit square ≈ 0.04 ∗ 50 = 2 m at field scale; Strauss used 1.8 m
Homogeneous density: 1/

√
195 = 0.072.

D G Rossiter (CU) Point-pattern analysis April 9, 2024 38 / 109



Complete spatial randomness (CSR)

The simplest null hypothesis of spatial distribution
Points are distributed randomly; no interaction

▶ no clustering (attraction, preferential conditions …)
▶ no dispersion (repulsion, limited resource in area …)

Produced by a (spatially) homogeneous Poisson process
Constant intensity λ(s) = λ > 0, ∀s ∈ A
The probability of any number of points in the same-sized region is the
same, across the entire field.
Simulate with the spatstat.random::rpoispp function

▶ argument is λ (process intensity)
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CSR: 100 random points in a unit square
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CSR: 30 random points in a unit square
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A naïve approach – spatially-discretized Poisson
distribution (“quadrat analysis’)’

Spatially homogeneous Poisson process: count of “rare” events (points) in a
discrete area follows the Poisson distribution

▶ f(k;λ) = Pr(X = k) = (λke−λ)/k!
a single parameter: process intensity λ = µ(X) = σ2(X)

▶ i.e., the mean count, and its variance, are the intensity
Test for Poisson process: discretize the area, compute λ, count the points,
compare to Poisson distribution

▶ Also known as quadrat analysis of a point pattern.
Q: how fine a discretization? A: about half of the cells should have Poisson
expectation 0
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Example of Poisson counts: V-1 rocket strikes

point process: WW2: German V-11 rockets aimed at England
▶ the first cruise missile
▶ later in WW2 replaced by the V-2 ballistic missle (direct precursor of US

Redstone rocket used in early manned space programm)
⋆ “once the rockets are up, who cares where they come down? / That’s not my

department, says Wernher von Braun.”
– Tom Lehrer,Wernher von Braun (1964)

timed to reach their target by running out of fuel
point pattern: clustered? dispersed? random?

▶ inference about V-1 targeting system and objectives
▶ practical implications for siting anti-aircraft guns, protecting industry,

population, civil defence, fire brigades …

1“Vergeltungswaffe” = “Vengeance Weapon”
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Fieseler Fi 103 V-1 on a Walter catapult ramp at Sperleke/Éperlecque, Pas de Calais (F)
Credit: By Murgatroyd49 - Own work, CC BY-SA 4.0,
https://commons.wikimedia.org/w/index.php?curid=97238674
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V-1 strikes point pattern – London area

Source: Metcalfe [13]
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V-1 example: computations by Clarke (1946)

source: Clarke [6]; see also Shaw and Shaw [16]
selected an area in S London where “the theoretical mean density was not
subject to material variation anywhere within the area examined”, i.e., no
reason to expect different attack intensity, e.g., due to target concentrations
Discretize 144 km2 area into n = 576 squares of 0.25 km2

▶ this corresponds to the bandwidth
Poisson distribution:

▶ Total hits 537, so intensity λ = 537/576 = 0.932 ≈ 1
▶ f(0, 0.932) = e−0.932 = 0.39377, i.e., about 40% of cells with no expected hits;

f(0, 0.932) · 576 ≈ 227 grid cells
⋆ this is probably why Clarke chose 0.25 km2 cells

▶ f(2, 0.932) = (0.9322e−0.932)/2 = 0.171; f(2, 0.932) · 576 = 98.54 ≈ 99 grid
cells with exactly 2 expected hits
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V-1 example: results

n expected actual
0 226.74 229
1 211.39 211
2 98.54 93
3 30.62 35
4 7.14 7

≥ 5 1.57 1

χ2 =
∑ (O−E)2

E = 1.17; Pr(χ2(4) > 1.17) = 0.88

Conclusion: hits are not provably different from the null hypothesis of a
homogeneous Poisson process; within the target area the distribution is CSR

D G Rossiter (CU) Point-pattern analysis April 9, 2024 47 / 109



The G function

A more sophisticated approach for evaluating CSR and deviations from it
Measures the distribution of distances from an arbitrary point to its nearest
neighbour. The empirical function is:

di = min
j
{dij, ∀j ̸= i ∈ S}, i = 1, . . . , n

Ĝ(r) =
{#di : di ≤ r, ∀i}

n

▶ this is the number (#) of points which have at least one neighbour within
some threshold distance r, normalized by the total number of points n in the
pattern S.

This is a continuous function of r – no need to discretize
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G function under CSR

The result of the homogeneous Poisson process is the theoretical function:

G(r) = 1 − eλπr2

where λ is the process intensity, i.e., mean number of points per unit area.
Clustered patterns: Ĝ(r) > G(r) (more nearby points than expected under

CSR)
Dispersed (regular) patterns: Ĝ(r) < G(r) (fewer …)

These are all evaluated at any threshold (radius) r, can infer radius of
clustering/dispersion
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Example G function
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Example G function: interpretation

All points have a nearest neighbour within 0.13 normalized units
▶ compute inter-point distances with nndist

Empirical closely follows theoretical CSR
Some deviations (dispersal, below the theoretical line) near 0.02 and
0.10 normalized units
The border has little effect
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G-function: 100 random points in a unit square
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G-function: 30 random points in a unit square
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Envelope

A method to determine confidence intervals for the G function:
1 compute overall intensity λ
2 repeatedly simulate a CSR process with this intensity
3 compute G function for each simulated process
4 the observed pattern is assumed to be a single realization of the process
5 realized G function inside the envelope → evidence that the null hypothesis

of CSR can not be rejected
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Example envelope
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Conclusion: can not reject the null hypothesis of CSR
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G-function envelope: 100 random points in a unit square
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G-function envelope: 30 random points in a unit square
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Examples of envelopes for clustered and dispersed patterns
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clustered: Ĝ(r) > G(r) dispersed: Ĝ(r) < G(r)
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The F function

another way to examine first-order properties
also called the empty space function
distribution of the distances from an arbitrary location (not necessarily a
point) to its nearest observed point

▶ measures the average empty space between observed points.
it has the same theoretical distribution as the G function
sensitive to window size if there is “empty” space at edges
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Effect of window size on F function: windows

  Meuse floodplain flood frequency class
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Effect of window size on F function: results
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The J function

Combines G (point-to-point) and F (space-to-point)
J(r) = (1 − G(r))/(1 − F(r))
Expected value under CSR = 1

▶ because G and F have the same expectation under CSR
J(r) < 1 implies clustering, J(r) > 1 implies dispersion
advantage: not sensitive to edge effects
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Second-order properties

these measure the interactions between “events” of one or more sDGP
▶ the “events” result in observed points of one or two types

competition (dispersal) within or between processes
▶ two trees can not occupy the same position (within some radius)
▶ allelopathy: chemicals from one species spread out to some radius, prevent

others from growing
synergy (clustering) within or between processes

▶ seedlings from one tree sprout nearby? seed dispersal, soil type …
▶ earthquakes facilitated by fracking wells?
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Ripley’s K function

measures the number of events (points) up to a given distance from an
event (point)

▶ so, counts all neighbours up to that distance
if E[.] is expectation, N0(s) is the number of events up to distance s from any
event, λ is process intensity:

K̂(s) = λ−1E[N0(s)]
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Computing the univariate K function

unbiased estimator:

K̂(s) = (n(n − 1))−1|A|
2∑

i=1

∑
j̸=i

w−1
ij |{xj : d(xi, xj) ≤ s}|

weights wij: proportion of |A| occupied by circle centred at xi with radius
d(xi, xj)

▶ corrects for edge effects
for a homogeneous process, K(s) = πs2

▶ i.e., number is proportional to circle area
application: graph K̂ and K vs. radius s, compare actual to theoretical at
each s
can compute envelopes as for G and F functions
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K function results
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K function envelopes
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Besag’s L function

This is a linearization of the K-function which makes it easier to compare
theoretical and actual values at narrow separations (low values of the radius):
L(r) =

√
K(r)
π
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Marked point patterns

The previous measures were just considering point location, with no
information about what the point represents.
But a point pattern can be marked: each point is labelled with some
attribute

▶ Example: tree species in a forest plot (categorical mark)
▶ Example: size of trees in a forest plot (continuous mark)
▶ Example: time of observation of a point (e.g., wildfires)

Can analyze each sub-pattern separately (as with unmarked patterns)
Can analyze interactions between patterns
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Example marked pattern
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Marked pattern divided into unmarked patterns
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Interactions in marked patterns

Q: Do patterns with different marks “influence” each other?
▶ Simpler: what is their relation?

A: Bi- and multi-variate versions of G, K, L, J functions (not F)
▶ Gij(r): the distribution of the distance from a typical point of type (mark) i to

its nearest point of type j.
▶ Kij(r): given intensity λj of type j, λjKij(r) is the expected number of

additional points of type j within a distance r of a typical point of type i.
▶ empirical > theoretical → clustering & vice-versa.
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Example marked pattern: forest fire type
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Example crossed-K function
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Marked pattern: time of occurrence

Foot-and-mouth disease, northern Cumbia (England), 2001; from R package
stpp, dataset fmd; more recent → larger symbol
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Crossed K-function
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Simple spatio-temporal analysis

Marked point-pattern, marks as time of occurrence
Use the crossed K etc. functions to assess interaction
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Models of spatial data-generating processes

We often want to infer the sDGP that produced the observed pattern
We have competing models

▶ CSR, attraction, repulsion
▶ dependence on spatially-distributed covariables
▶ interaction with other sDGP
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Model development and evaluation

formulate hypothetical model
▶ based on a priori knowledge or theory
▶ example from V-1 rockets: no in-flight guidance system
▶ example from ecology: allelopathy
▶ example from criminology: distance from source, “no action” buffer

parameterize with observed pattern(s) and possibly covariables
evaluate goodness-of-fit

▶ good fit → evidence (not “proof”!) for the hypothesized sDGP
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A general model of sDGP

spatial trend – a function of the coördinates
interaction between events
influence of covariates (other than trend) on events
General model:

λ(s, x) = exp(ψTB(s) + ϕTC(s, x))

▶ B(s): depends only on location (trend and/or spatial covariates)
▶ C(s, x) also depends on other points
▶ either may be absent (simpler process)
▶ details in Baddeley and Turner [1]

compute with spatstat package function ppm
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Example sDGP covariates – Spanish fires
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sDGP covariate – land cover classes
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sDGP models of Spanish fires to compare

1 Null: complete spatial randomness (CSR)
▶ homogeneous Poisson process

2 Trend: regional trend in the coördinates in conditional density
▶ inhomogeneous Poisson process
▶ may be due to a trend in an environmental factor, e.g., rainfall

3 Covariates: dependence on mapped covariates
▶ e.g., some land uses more prone to fire

4 Interaction: clustering or repulsion between points: Strauss processes
5 Combination of trend and/or covariates and/or interaction
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Model selection

Based on reasonable hypotheses of the sDGP
Evaluate by statistical likelihood that the observed pattern was generated by
the hypothesized sDGP
Compare alternate models by relative likelihood
Interpret parameters: strength of inter-point interaction; coefficients of
trend surfaces or covariate models; relative strength of trend and interaction
components

▶ Do we now understand the sDGP better? Are our hypotheses confirmed,
rejected, modified?
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Comparing models by likelihood – Spanish fires

1 Poisson model: CSR
2 Landuse model: observed density depends only on landuse
3 Strauss process model: observed density depends only on interaction

between events
4 Landuse + Strauss model: combined

model likelihood
1 Poisson -8562.0
2 Landuse -8532.2
3 Strauss -6749.9
4 Landuse + Strauss -6730.8

Landuse explains little; interaction explains a lot; combined is best
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Interpreting model parameters – Spanish fires

Interaction: γ > 1 suggests clustering; β is overall log-density
> exp(coef(m.strauss.4))
(Intercept) Interaction

0.017543 1.080151

Land use:
Fitted coefficients for trend formula:

(Intercept) landusefarm landuseconifer
-4.41477 0.28745 0.59341

Higher density in coniferous forest than on farms
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Trend surface model – Spanish fires

> (m.ts1 <- ppm(clmfires.i, trend = ~polynom(x, y, 1),
interaction = NULL))

Nonstationary Poisson process

Log intensity: ~x + y

Fitted trend coefficients:
(Intercept) x y
-3.2878809 -0.0057327 0.0028847

Estimate S.E. CI95.lo CI95.hi Ztest Zval
(Intercept) -3.2878809 0.07317041 -3.4312923 -3.1444695 *** -44.935
x -0.0057327 0.00027073 -0.0062633 -0.0052021 *** -21.175
y 0.0028847 0.00030260 0.0022916 0.0034778 *** 9.533
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Comparing trend surface models by ANOVA – Spanish fires

1 Poisson model: CSR
2 First-order trend in the coördinates
3 Second-order trend in the coördinates

> anova(m.ts2, m.ts1, m.pois)

Analysis of Deviance Table

Model 1: ~x + y + I(x^2) + I(x * y) + I(y^2) ^^I Poisson
Model 2: ~x + y ^^I Poisson
Model 3: ~1 ^^I Poisson

Npar Df Deviance
1 6
2 3 -3 -126
3 1 -2 -505

Second-order model is a bit better than the others.
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Prediction from sDGP models

Once an sDGP model is fit, it has parameters
▶ e.g., coefficients of a trend surface or covariate model, strength of inter-point

interaction.
This model can be applied to new situations: across an area (from trend,
points), with renewed covariates
spatstat function predict.ppm predicts from models fit with ppm.
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Example predictions – Spanish fires

> pred.lu.strauss <- predict(m.lu.strauss.4,
covariates=clmfires.extra$clmcov200)

> summary(pred.lu.strauss)

real-valued pixel image
128 x 128 pixel array (ny, nx)
enclosing rectangle: [4.1311, 391.38] x [18.565, 385.19] kilometres
dimensions of each pixel: 3.03 x 2.8642 kilometres
Image is defined on a subset of the rectangular grid
Subset area = 79462.0730449286 square kilometres
Subset area fraction = 0.56
Pixel values (inside window):
^^Irange = [2.2603e-07, 0.024494]
^^Iintegral = 1402.8
^^Imean = 0.017653
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Model predictions – covariate, Strauss process
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Model predictions – trend surface

  1st−order trend

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

  2nd−order trend

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

D G Rossiter (CU) Point-pattern analysis April 9, 2024 96 / 109



Outline
1 Point patterns

Definition and examples
2 Stochastic processes

First-order stochastic processes
Second-order stochastic processes

3 First-order properties
Intensity
Homogeneous Poisson process
The G function
The F function
The J function

4 Second-order properties
The K function

5 Marked point patterns
6 Models of spatial data-generating processes

Model development
Prediction

7 Other modelling approaches
Empirical source finding
Bayesian models of spatial point processes

8 References

D G Rossiter (CU) Point-pattern analysis April 9, 2024 97 / 109



Empirical source finding

Objective: find possible sources from a set of occurrences.
Approach: empirical criminal geographic targeting (CGT)
Approach: Dirichlet Process Mixture (DPM)

▶ no predefined number of clusters; algorithm finds most probable and their
location
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Example of source finding

139 Plasmodium vivax cases in Cairo, Egypt
observed data points; black circles; empirically-identified sources:blue squares.
source: Verity et al. [18]
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Bayesian models

Explicit probability models
Can incorporate knowledge via prior probabilities

▶ distribution and parameters, e.g., normal with a prior mean and variance
▶ e.g., weights of passengers and luggage on a flight

Update probabilities based on evidence
▶ for realistic models computationally-intensive (e.g., Markov chain Monte Carlo)

Result is a posterior probability of parameters of the chosen distribution
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Bayesian Hierarchical Models

The model of the effect (e.g., spatial pattern of a disease) is specified as a
hierarchical set of layers
Each layer accounts for different sources of spatial variation
E.g., Besag et al. [2]: sum of:

1 a spatially-correlated variable;
2 an area-independent effect (local heterogeneity)
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INLA

“Integrated Nested Laplace Approximation” to the posterior marginals of
model parameters
INLA computes only relative posterior distributions for latent Gaussian
models

▶ these are enough for many applications, e.g., relative risks in disease mapping
References: Rue et al. [15], Illian et al. [11]; Bivand et al. [4];
http://www.r-inla.org
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Further reading

Theory: Boots and Getis [5], Diggle [7], Ripley [14], Matérn [12], Illian et al. [10]
(also as e-book)

Applications: Gatrell et al. [9]

In R: Bivand et al. [3, Ch. 7] (also as e-book); Baddeley and Turner [1]
Spatial simulations of various processes (Paul Keeler):
https://github.com/hpaulkeeler/posts/tree/master from the blog
https://hpaulkeeler.com/posts/
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Web pages

Manuel Gimond (Colby College):
https://mgimond.github.io/Spatial/chp11_0.html
Roger Bivand (Norwegian School of Economics, Bergen):
https://rsbivand.github.io/ECS530_h21/ECS530_211119.
html#Point_patterns
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R packages

spatial Functions for Kriging and Point Pattern Analysis (Ripley, Bivand,
Venables)

spatstat Spatial Point Pattern Analysis, Model-Fitting, Simulation, Tests
(Baddely, Turner et al.)

splancs Spatial and Space-Time Point Pattern Analysis, within a polygonal
region of interest (Bivand, Rowlingson, Diggle et al.)

Rgeoprofile Geographic profiling in R (Stevenson, Verity, Nichols, LeComber)
R-INLA Integrated Nested Laplace Approximation (INLA)

See also https://cran.r-project.org/web/views/Spatial.html, section
“Point pattern analysis”
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