D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Trend surfaces Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

罗大维教授

Nanjing Normal University, Geographic Sciences Department 南京师范大学地理学学院 Section of Soil & Crop Sciences, Cornell University ISRIC-World Soil Information

February 11, 2021

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-orde

GLS

GLS vs. OLS results

GAM

Trend surfaces

2 Models

3 Simple linear regression

4 OLS

5 Multiple linear regression

6 Regression diagnostics

Higher-order polynomial trend surfaces

8 Generalized least squares

9 GLS vs. OLS results

Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressior

OL

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

General objective: spatial prediction

- **Objective**: Given a set of **attribute values** at **known points**, **predict** the value of that attribute at other points.
 - · Generalize: predict the mean value over some region, e.g., grid cells, polygons.
- **Objective**: **Understand** why the attribute has its spatial distribution.
 - Helps determine the **process** that produced the spatial distribution.
 - $\cdot\,$ Helps select the best modelling approaches.
- · This lecture: trend surfaces for both objectives.

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Universal model of spatial variation

$$Z(\mathbf{s}) = Z^*(\mathbf{s}) + \varepsilon(\mathbf{s}) + \varepsilon'(\mathbf{s})$$
(1)

- (s) a location in space, designated by a **vector** of coördinates
- Z(s) true (unknown) value of some property at the location
- Z*(s) deterministic component, due to some known or modelled non-stochastic process
 - $\epsilon(s)$ spatially-autocorrelated stochastic component
 - $\varepsilon'(\mathbf{s})$ pure ("white") **noise**, no structure

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Universal model of spatial variation - trend surface

The **trend surface** presented in this lecture does not separate spatially-correlated residuals from pure noise, so the model is:

$$Z(\mathbf{s}) = Z^*(\mathbf{s}) + \varepsilon'(\mathbf{s})$$
(2)

- · The deterministic function is of the **coördinates**
- The same mathematics are used if the deterministic function is from a covariate which is known at each point s.

Example target variable

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- Target variable: annual cumulative growing-degree days base 50° F (GDD50)
 - $\cdot ~50^\circ\,F\approx\,10^\circ\,C$
 - Temperature at which warm-season crop species (e.g., maize, sorghum) can grow
- Predict at every location in region, based on a set of point observations at weather stations with known locations

Example observations

GDD50, Four northeastern US states (NJ, NY, PA, VT)

Q: is there a trend with N and/or E coördinates? With elevation?

Trend surfaces

Trend surfaces - definition

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- One method of **modelling** or **predicting** the values of some **spatially-distributed** variable
- Model and predict using a continuous mathematical function of geographic position
- · Spatial "trend": varies with geographic position
 - · polynomial function of position (linear, higher-order)
 - \cdot smooth local function (splines, GAM)
- "Surface:: continuous prediction every location has a predicted value

Trend surface - physical model

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- Target variable varies over space, consistently with coördinates(E, N, H)
 - · There is a physical reason for this
 - $\cdot\,$ temperature: less solar radiation going from S \rightarrow N, in N hemisphere
 - temperature: less dense atmosphere at higher elevations, holds less heat, so cooler
 - · temperature: less seasonal/daily variation near large water bodies, more variation further away

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Trend surfaces - conceptual model

- **dependent** variable (to be predicted, to be modelled) is a **function** of the **coördinates**
 - · $y = f(x_1, x_2, x_3)$ coördinates
 - e.g., GDD50 = f(E, N, H) (easting, northing, height)
- This function has the same form everywhere in the observation/prediction area
 - · a global model (vs. local)
- $\cdot\,$ So we say the dependent variable has a geographic trend
- Example: GDD (dependent variable, to be modelled) are fewer towards the North and at higher elevations (two predictors, independent variables)

Trend surfaces - predictors

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

· Geographic coördinates

- with respect to some **origin** (0,0)
- · should be metric coördinates, with true distances
- so geographic coördinates (longitude, latitude) must be transformed
- · For data collected in 3D, include **elevation** above/below some **datum**

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Other predictors (not geographic coördinates)

- The same **model forms** can be used with other **global predictors**, not just coördinates
- Examples:
 - Distance from one or more features (urban areas, water bodies ...)
 - · Terrain (slope, aspect, curvature ...)
 - · Land cover / land use
- The mathematics is the same as will be presented in this lecture

Models

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- · A simplified representation of reality
- · Can compute with the model to make predictions
- · The model will not exactly reproduce reality \rightarrow lack of fit of observations, these are model **residuals**

D G Rossiter

Trend surfaces

Models

Simple regression

OL:

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Structure vs. noise in reality and the model

· Reality - as it exists

- Reality = *f*(Structure; Noise)
- Reality = *f*(deterministic or stochastic **processes**; **random** variation)
- · Observations what we measure
 - · Observations = f(Structure; Noise) as part of reality
 - Observations = *f*(**model**; **unexplained** variation)
- · We want to match these

Trend surface example

D G Rossiter

Models

Simple regressior

OL:

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- **Reality**: Growing Degree Days (GDD) \approx heat available for crop growth
 - GDD = f(coördinates, elevation, "random" variation)
 - · "Random variation" = unexplained + observational error
 - · Unexplained: other factors not known or not measured
 - e.g., aspect, surrounding land cover, nearby water or buildings . . .

· Trend surface model:

· GDD = f(coördinates, elevation) + noise

Model forms - 1 - Linear or not

- D G Rossiter
- Trend surfaces
- Models
- Simple regressior
- OL!
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- **Linear**: constant change in independent variable per unit of predictor, does not depend on where in the predictor range
- Linearizable: same, with a transformation of either independent or predictor variables
- Non-linear: change varies with predictor value → smooth function of predictor

Model forms - 2 - Spatial extent

- D G Rossiter
- Trend surfaces
- Models
- Simple regressior
- OL
- Multiple regression
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- **Global**: model parameters are the same throughout the range of the predictor
 - · e.g., multiple regression
- **Piecewise**: model parameters are different in different parts of the range of the predictor
 - · e.g., thin-plate splines
- **Local**: no trend, model from "nearby" observations (e.g., Kriging)

Number of predictors

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

· Univariate: single predictor

- · Bivariate: two predictors, e.g., geographic coördinates
- · Multivariate: two or more predictors
 - · Must consider non-independence of predictors
 - e.g., for linear models, (partial) **co-linearity**: the predictors themselves have a linear relation
 - · May consider interaction of predictors
 - effect of a combination is more or less than would be predicted considering them separately

Historical background

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressior
- OL:
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- Verb "to regress" = to return to a former or less developed state
- So how is predicting some response from one or more predictors "regression" in this sense?
- Original paper: Galton, F. (1886). Regression towards mediocrity in hereditary stature. Journal of the Anthropological Institute, 15, 246-263.
- Observation: children of tall parents are not all tall, and vice versa, yet every generation has the same distribution of heights (if no famine, malnutrition, epidemic etc.) – how is this possible?
- · Galton developed a **linear relation** between parent and children heights to explain this "regression"
- $\cdot\,$ Soon the term "regression" was used for the model building itself

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Simple linear regression - concept

· Linear model, one predictor

- $\cdot\,$ The dependent variable only depends on one predictor
 - $\cdot\,$ e.g., distance along a transect (1D) or one coördinate(2D)
- · The dependence is linear
 - · constant change in independent variable per unit of predictor
- The model is **global** it applies throughout the range, all observations are used to calibrate

· Are these realistic assumptions?

- · We can check with model diagnostics
- But also think beforehand, based on our knowledge of the process

Example: GDD50 physical model

- · Why could it depend on Northing?
 - · Physical principles: sum of solar radiation; longer days in northern hemisphere summer
- · Why could it depend on *Easting*?
 - · Proxy for distance from ocean with a N/S coastline?
 - · Proxy for distance from centre of continent?
- · Why could it depend on *elevation*?
 - · Physical principles: less air pressure at higher elevations, lower heat capacity
- Which of these would be the most important **single** factor to use in simple regression?
 - · Does the study area affect this answer?

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

....

GLS

GLS vs. OL results

GAM

Relation of GDD with single predictors

Linear? Which is the best single predictor?

Simple linear regression - model

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Model form: $y = \beta_0 + \beta_1 x + \varepsilon$; $\varepsilon \sim \mathcal{N}(0, \sigma^2)$

- · *y*: *dependent* variable, to be modelled/predicted
- · x: independent variable, predictor
- · ε: error, lack of fit, noise ...
 - \cdot independently and identically distributed (IID) from a 0-mean normal distribution with some error variance σ^2
- · β_1 : coefficient for *x*, "slope" for simple regression
- · β_0 : centering coefficient, "intercept" for simple regression

D G Rossiter

Trend surfaces

Models

Simple regressior

OL!

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Each observation *i*: $y_i = \beta_0 + \beta_1 x_i + r_i$

- predictor x, has a value x_i at each observation (e.g., N coördinate)
- · Same coefficients β_p at all observations \rightarrow a global model
- Once β_p are known, computed **fitted** values at each point: $\hat{y}_i = \beta_0 + \beta_1 x_i$
- At each point the **residual** lack of fit: $r_i = (y_i \hat{y}_i)$
- The *r_i* are *assumed* to be **independently and identically distributed**

Ordinary Least Squares (OLS)

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- Least squares: parameters β_0 , β_1 are selected to minimize the sum of squared residuals: $\sum_i (y_i - (\beta_0 + \beta_1 x_i))^2$
- · This is *not* the only possible optimization criterion!
 - For example, it can be greatly influenced by extreme values, so there are optimization criteria that attempt to fit "most" of the values well, ignoring extremes
 - · These are called **robust** regression methods
- "Ordinary": IID residuals, no weighting of observations, no covariance between residuals

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Fitting the simple linear regression by OLS

- Objective: select β_0 , β_1 to **optimize** the fit
- Optimization criterion: minimize the sum of squared residuals $\sum_i (y_i (\beta_0 + \beta_1 x_i))^2$
 - \cdot squared, so that \pm residuals are equally influential
 - · ordinary sum, so all residuals are equally important
- This is not the only possibility! e.g., could **weight** the residuals
 - \cdot by their observation precision, spatial correlation \dots
- · It has strong model assumptions

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression Diagnostics Higher-orde GLS GLS vs. OLS results

"Minimize the squared residuals"

A graphic representation - sum of lengths of residuals.

If we set $\hat{\beta}_0 = \overline{y}$, $\hat{\beta}_1 = 0$ (left graph) we get a "free" model; the independent variable is not used. This is the **null model**.

Fitting by OLS

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OLS
- Multiple regression Diagnostic
- GLS
- GLS vs. OL results
- GAM

- Minimize $\sum_i \varepsilon_i^2 = \sum_i (y_i (\beta_0 + \beta_1 x_i))^2$
- Method: take partial derivatives with respect to the two parameters; solve system of two simultaneous equations
- · Solution:

$$\hat{\beta}_1 = \frac{\sum_i (x_i - \overline{x}) (y_i - \overline{y})}{\sum_i (x_i - \overline{x})^2} \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

- $\cdot \overline{x}, \overline{y}$ are the **means**
- $\hat{\beta}_0$ centres the regression on $(\overline{x}, \overline{y})$

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Relation to variance/covariance

· Another way to write this:

$$\hat{\beta}_1 = \frac{s_{XY}}{s_X^2}$$

- $\cdot s_{xy}$ is the sample **covariance**
- $\cdot s_x^2$ is the sample **variance**
- These are unbiased estimates of the population variance/covariance:

$$\hat{\beta}_1 = \frac{\operatorname{Covar}(x, y)}{\operatorname{Var}(x)}$$

· Note that all the error is assumed to be in the dependent variable

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression Diagnostics Higher-orde GLS GLS vs. OLS results

GAM

OLS linear model fit – 1st order trend on one coördinate

> summary(m.ols.n)

```
Call:
lm(formula = ANN_GDD50 ~ N, data = ne.df)
```

```
Coefficients:
```

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.320e+03 2.493e+01 93.08 <2e-16
N -2.554e-03 1.379e-04 -18.52 <2e-16
```

Residual standard error: 393.7 on 303 degrees of freedom Multiple R-squared: 0.5311, Adjusted R-squared: 0.5295

Trend on N explains 53% of the variability in GDD50 over this area (see next slide)

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Evaluating the success of the model fit

Total Sum of Squares TSS: deviation of observations from a null (mean \overline{z}) model (no predictors) TSS = $\sum_i (z_i - \overline{z})^2$

Residual Sum of Squares RSS: deviation of observations z_i from fitted model predictions \hat{z}_i RSS= $\sum_i (z_i - \hat{z}_i)^2$

Coefficient of determination (Multiple) $R^2 = 1 - (RSS/TSS)$

- perfect fit: $R^2 = 1 0/1 = 1$
- no fit: $R^2 = 1 1/1 = 0$.
- proportion of the variance in the dependent variable explained by the model (i.e., *not* left in the residuals)

Adjusted evaluation of model fit

- Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OLS
- Multiple regression
- Diagnostics
- Higher-order
- GLS
- GLS vs. OL results
- GAM

- Idea: avoid over-fitting to this dataset (sample), so the model is more likely to fit the whole population from which the sample is taken
- $\cdot \,$ Idea: avoid over-optimistic estimation of model success
- Adjusted R^2 penalizes R^2 for the number of predictors p in the model (i.e., loss of degrees of freedom), compared to the number of observations n

$$R_{adj}^2 = 1 - (1 - R^2) \left(\frac{n-1}{n-p-1}\right) = 1 - \frac{\text{RSS/df}_r}{\text{TSS/df}_t}$$

- · more $p \rightarrow$ more adjustment
- · more $n \rightarrow$ less adjustment
- Somewhat *ad hoc* (empirical), there are more formal ways to evaluate this

D G Rossiter

Models

Simple regressio

OLS

Multiple regression

Diagnostic

Higher-order

GLS

GLS vs. OL results

GAM

OLS 1st order trend surface, N only

Predicted surface

Annual GDD base 50F, 1st order trend on N only

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression Diagnostic Higher-ord GLS

GLS vs. OL results

GAM

OLS 1st order trend surface, N only

Actual vs. model fit at known points

Annual GDD50

Prediction variance - I

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressior

OLS

- Multiple regression
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- The fit of the line to the points is not exact, i.e., the estimated parameters $\hat{\beta}_p$ are uncertain
- So any **predictions** made with the equation are also uncertain.
- · The prediction variance depends on
 - **1** the variance of the **regression** $s_{Y,x}^2$; and
 - 2 the distance $(x_0 \overline{x})$ of the predictand at value x_0 from the **centroid** of the regression, \overline{x}
- The first term is the uncertainty of the regression parameters.
- The second term shows that the further from the centroid of the regression, the more any error in estimating the slope of the line will affect the prediction.

Prediction variance - II

Then the estimation variance is:

$$s_{Y_0}^2 = s_{Y.x}^2 \left[1 + \frac{1}{n} + \frac{(x_0 - \overline{x})^2}{\sum_{i=1}^n (x_i - \overline{x})^2} \right]$$

This shows that if we try to predict "too far" $(x_0 - \overline{x})^2$ from the centroid \overline{x} , the uncertainty will be so large that any prediction is meaningless.

The variance of the regression $s_{Y,x}^2$ is computed from the residuals:

$$s_{Y.x}^2 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$$

The better the fit, the smaller the uncertainty in the regression parameters.

Frend surfaces Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression Diagnostic Higher-ord GLS

GLS vs. Ol results

GAM
Multiple linear regression - I

- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OLS

Multiple regression

- Diagnostics
- Higher-order
- GLS
- GLS vs. OL results
- GAM

• Extend to *p* predictors:

- $y = \beta_0 + \beta_1 \dot{x}_1 + \beta_2 x_2 + \ldots + \beta_p x_p + \varepsilon$
 - $\cdot\,$ e.g., two coördinates, maybe with their interaction or powers
- · More easily written in matrix notation
 - $\cdot \mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$
 - · $\varepsilon \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
 - · X is the design matrix
 - $\cdot \beta$ is the **coefficient vector**
 - · I is the identity matrix: diagonals all 1, off-diagonals all 0
 - Notice that this means there is **no correlation** among the errors!
 - This is the assumption we will relax in **generalized** least squares (GLS)

Multiple linear regression - II

• The matrix notation for **simple** linear regression can be expanded as:

$$\boldsymbol{\gamma} = \begin{bmatrix} 1 & \boldsymbol{x} \end{bmatrix} \begin{bmatrix} \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}_1 \end{bmatrix} + \boldsymbol{\varepsilon}$$

• The matrix notation for **multiple** linear regression can be expanded as:

Multiple

$$y = \begin{bmatrix} 1 \ x_1 \ x_2 \ \dots \ x_p \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \\ \dots \\ \beta_p \end{bmatrix} + \varepsilon$$

 $\cdot\,$ In the expanded design matrix X , the 1 and x_i are column vectors of the predictors.

Solution

- Solve for β by minimizing the sum of squares of the residuals: $S = \varepsilon^T \varepsilon = (\mathbf{y} \mathbf{X}\beta)^T (\mathbf{y} \mathbf{X}\beta)$
- This expands to

$$S = \mathbf{y}^{\mathsf{T}}\mathbf{y} - \beta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} - \mathbf{y}^{\mathsf{T}}\mathbf{X}\beta + \beta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\beta$$

$$S = \mathbf{y}^{\mathsf{T}}\mathbf{y} - 2\beta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{y} + \beta^{\mathsf{T}}\mathbf{X}^{\mathsf{T}}\mathbf{X}\beta$$

• Minimize by finding the **partial derivative** with respect the the unknown coefficients β , setting this equal to **0**, and solving:

$$\frac{\partial}{\partial \beta^{T}} S = -2\mathbf{X}^{T} \mathbf{y} + 2\mathbf{X}^{T} \mathbf{X} \beta$$
$$\mathbf{0} = -\mathbf{X}^{T} \mathbf{y} + \mathbf{X}^{T} \mathbf{X} \beta$$
$$(\mathbf{X}^{T} \mathbf{X}) \beta = \mathbf{X}^{T} \mathbf{y}$$
$$\mathbf{X}^{T} \mathbf{X})^{-1} (\mathbf{X}^{T} \mathbf{X}) \beta = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$
$$\hat{\beta}_{OLS} = (\mathbf{X}^{T} \mathbf{X})^{-1} \mathbf{X}^{T} \mathbf{y}$$

Trend surfaces Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-orde

GLS

GLS vs. OL results

GAM

Analogy with simple OLS

- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OL:
- Multiple regression
- Diagnostics
- Higher-orde
- GLS
- GLS vs. Ol results
- GAM

- $(\mathbf{X}^T \mathbf{X})$ is the matrix equivalent of s_x^2 , the variance of the predictor \mathbf{x}
 - Dimensions: $[p, n] \cdot [n, p] = [p, p]$, i.e., the product-crossproduct matrix of the predictors
 - Products are positive, crossproducts may be positive or negative
- taking the matrix inverse $(\mathbf{X}^T \mathbf{X})^{-1}$ is the matrix equivalent of division: $1/s_x^2$
- $\mathbf{X}^T \mathbf{y}$ is the matrix equivalent of s_{xy} , i.e., the covariance between predictor and predictand.
 - Dimensions: $[1, n] \cdot [n, 1] = [1, 1]$, i.e., a scalar

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-ord

GLS

GLS vs. OL results

GAM

OLS linear model fit - 1st order trend on two coördinates

> summary(m.ols.ne)

Call: lm(formula = ANN_GDD50 ~ N + E, data = ne.df)

Coefficients:

Estimate Std. Error t value Pr(>|t|)(Intercept)3.706e+036.154e+0160.21< 2e-16</td>N-2.818e-031.370e-04-20.58< 2e-16</td>E7.480e-041.210e-046.182.07e-09

Residual standard error: 371.5 on 302 degrees of freedom Multiple R-squared: 0.5837, Adjusted R-squared: 0.5809

Trend on N and E explains 58% of the variability in GDD50 over this area

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

OLS 1st order trend surface, N and E

Predicted surface

Annual GDD base 50F, 1st order trend

OLS 1st order trend surface, N and E

Annual GDD50

3000

4000

Regression diagnostics

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OL:
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- We can always solve the OLS equation! but recall that the OLS solution depends on **assumptions**.
- So, must check that the model assumptions are satisfied; including **non-spatial**:
 - residuals are approximately normally distributed
 - no relation between residuals and fitted values (i.e., mean residual should be 0 no matter what the fitted value)
 - no difference in spread of residuals at different fitted values
- ...and spatial:
 - for OLS, independent residuals (spatial, temporal, observation sequence ...)
 - · for trend surfaces this implies no spatial dependence

D G Rossiter

Trend surfaces

Models

Simple regressi

OLS

Multiple regression

Diagnostics

Higher-o

GLS

GLS vs. Ol results

GAM

Checking non-spatial diagnostics - graph

residuals vs. fits

theoretical vs. actual quantile estimating normal σ^2 from residuals

Detail: standardized residuals

Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OL:

Multiple regressior

Diagnostics

Higher-orde

GLS

GLS vs. OL results

GAM

- The Quantile-Quantile ('QQ') plot compares **standardized** residuals with the same number of points drawn from a Normal distribution
- Standardization adjusts the residuals to distribute as $\mathcal{N}(0,1)$ with equal variance.
- · They are computed as:

$$r_i' = \frac{r_i}{s \cdot \sqrt{1 - h_{ii}}}$$

r_i: unstandardized residuals; *s*: sample standard deviation of the residuals; *h_{ii}*: diagonal entries of the "hat" matrix $V = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$

D G Rossiter

Trend surfaces

Models

Simple regressio

OL!

Multiple regression

Diagnostics

Higher-ord

GLS

GLS vs. OL results

GAM

Detail: residual standard deviation

The sample standard deviation of the residuals is computed as:

$$s = \sqrt{\frac{1}{(n-p)} \cdot \sum r_i^2}$$

n: number of observations; *p* number of predictors

This is an overall measure of the variability of the residuals, and so can be used to standardize the residuals to $\mathcal{N}(0,1)$.

Detail: "Hat" matrix

- Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OL:
- Multiple regressior
- Diagnostics
- Higher-orde
- GLS
- GLS vs. OL results
- GAM

- The "hat" matrix $V = X(X'X)^{-1}X'$ is another way to look at linear regression.
- When this multiplies the observed vector y it produces the fitted values \hat{y} ; it "puts the hat symbol on" the "hat" symbol signifies "estimated" or "predicted"
- The hat value for an observation is the diagonal element $V[i, i] = h_{ii}$; it gives the overall leverage of that observation
- $\sqrt{1 h_{ii}}$ in the denominator: high influence (large h_{ii}) the denominator is small and so the standardized residual is increased.
- Thus the standardized residuals are higher for points with high influence on the regression coefficients.

D G Rossiter

Trend surfaces

Models

- Simple regressio
- OL:
- Multiple regression

Diagnostics

- Higher-order
- GLS
- GLS vs. OLS results

GAM

- Checking non-spatial diagnostics interpretation

- There is a relation between residuals and fitted values: residuals at both extremes are *positive* (under-predictions); in the mid-range most residuals are *negative* (over-predictions)
 - $\cdot\,$ Mean residual is not 0 through the range of fitted values
- · Extreme residuals are *not* from a normal distribution.
- This linear model is *not* justified it is not reliable for predictions, especially at the extremes
 - · add a quadratic term?
 - · or are E, N coördinates not sufficient predictors?
 - · add elevation?
 - · fit piecewise or with smooth function of the predictor?
 - · add local deviations by Regression Kriging (RK)?

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-orde

GLS

GLS vs. OLS results

GAM

Checking for spatial independence of residuals

"Bubble plot" of residuals (actual - predicted) N + E model

There is definitely **spatial dependence**! Positive (green)/negative (red) residuals are **spatially-clustered**

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL! results

GAM

Checking for spatial independence of residuals

Empirical variogram of residuals, ANN_GDD50 ~ N + E:

Confirms **spatial dependence**! Range about 150 km. **This OLS model is not valid**!

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Higher-order polynomial trend surfaces

- Multiple regression can also use higher-order terms of predictors in a **polynomial** of the predictors
- E.g., 2nd order:

 $y = \beta_0 + \beta_1 E + \beta_2 N + \beta_3 E^2 + \beta_4 N^2 + \beta_5 (E * N) + \varepsilon$

- Higher-order terms allow closer fit but will only be justified if the form of the surface matches the form of the phenomenon being modelled
- Should **not** be extrapolated higher-order terms lead to extreme predictions outside the range of calibration
- $\cdot\,$ Solve by OLS as with any multiple regression

Example with GDD50

D G Rossiter

Trend surfaces

Models

Simple regression

OL:

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Four orders, p-values from the nested ANOVA – is the additional complexity statistically-significant?

- · 1storder (N only), adjusted $R^2 = 0.530$, p-value ≈ 0
- · 1st order (N, E); adjusted $R^2 = 0.584$, p-value ≈ 0
- $\cdot~2^{nd}$ order (N, E); adjusted ${\it R}^2=0.687,$ p-value ≈ 0
- 3^{rd} order (N, E); adjusted $R^2 = 0.709$, p-value 0.0002
- 4th order (N, E); adjusted $R^2 = 0.718$, p-value 0.0825

Question: What physical reason could there be for a higher-order trend surface for GDD50 over this region?

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostic

Higher-order

results

GAM

Regression diagnostics – 1st order trend

Relation of fits vs. residuals: positive residuals at highest/lowest fits

D G Rossiter

Trend surfaces

Models

Simple regressi

OLS

Multiple regression

Diagnostic

Higher-order

GLS

GLS vs. OLS results

GAM

Regression diagnostics – 2nd order trend

Relation of fits vs. residuals seen in 1st order trend has been removed But systematic over-prediction of highest values

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostic

Higher-order

GLS

GLS vs. OL results

GAM

Regression diagnostics - 3rd order trend

No relation of fits vs. residuals Just a few very poor fits

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Checking for spatial independence of residuals

Empirical variogram of residuals, 1st order trend surface

Clear **spatial dependence**! I.e., closer separation in **geographic** space \rightarrow closer separation in **feature** (attribute) space. Range about 150 km.

D G Rossiler

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Checking for spatial independence of residuals

Empirical variogram of residuals, 2nd order trend surface

Same as 1 st order, spatial dependence to about 150 km. Total sill reduced from 150 000 to 120 000 ${\rm GDD}^2$

1st order trend

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

2nd order trend

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Annual GDD base 50F, 2nd order trend

3rd order trend

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

4th order trend

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Annual GDD base 50F, 4th order trend

Generalized least squares (GLS)

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OLS
- Multiple regressio
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- The OLS fit to a linear model is only optimum if the **residuals** (what the model does not explain) are **independent**.
- In most trend surfaces this is not realistic: **Nearby** residuals tend to be **similar**.
- Physical reason: the "unexplained" part of the residual is due to some spatially-correlated factor that is not in the model.
 - GDD example: model uses coördinates , but GDD also is affected by elevation, slope and aspect (solar radiation), and maybe nearby land cover (urban area, forest ...).
 - · These are not in our model.
 - But these effects are themselves **spatially correlated** at some scales.

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostic

Higher-ord

GLS

GLS vs. OL results

GAM

Evidence for spatial correlation of residuals from the OLS fit

The residuals are not independent.

Effective range 155 km: exponential model fit $a = 51\ 600\ m$; total sill 148 800 GDD², nugget 16 470 GDD²

Other uses for GLS

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- · Residuals are correlated in **time**, e.g., hydrologic or climate **time series**
- Residuals depend on the sequence of observation (e.g., an instrument drifts out of calibration)
- · Residuals depend on the observer

GLS conceptual model - I

D G Rossiter

Trend surfaces

Models

Simple regressio

OL

Multiple rearession

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

• OLS model: independent residuals:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}, \ \boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

• **GLS** model: the residuals are a **random variable** *η* that has a **covariance structure**:

$$\mathbf{y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\eta}, \ \boldsymbol{\eta} \sim \mathcal{N}(\mathbf{0}, \mathbf{V})$$

 V is a positive-definite variance-covariance matrix of the model residuals.

GLS conceptual model - II

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

This is called a **mixed** model:

- The coefficients β are **fixed** effects, because their effect on the dependent variable is fixed once the parameters are known.
- The covariance parameters η are called **random** effects, because their effect on the dependent variable is stochastic, depending on a **random variable** with these parameters.
- In the OLS conceptual model the random effects ε are the **same** for all observations, in GLS they have a **covariance** between each pair.

Variance-covariance matrix

D G Rossiter

Trend surfaces

Models

Simple regressio

OL!

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

The variance-covariance matrix of the residuals in GLS:

$$V = \begin{bmatrix} \sigma_1^2 \ \sigma_{1,2} \ \cdots \ \sigma_{1,n} \\ \sigma_{2,1}^2 \ \sigma_2^2 \ \cdots \ \sigma_{2,n} \\ & \ddots \\ \sigma_{n,1} \ \sigma_{n,2} \ \cdots \ \sigma_n^2 \end{bmatrix}$$

In the OLS case this is just:

$$V = \begin{bmatrix} \sigma^2 \ 0 \ \cdots \ 0 \\ 0 \ \sigma^2 \ \cdots \ 0 \\ \vdots \\ 0 \ 0 \ \cdots \ \sigma^2 \end{bmatrix} = \sigma^2 \mathbf{I}$$

Estimating V - 1

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- *How to estimate all these variances and covariances?* We only have one **sample**, not the whole **population**.
- Assumption 1, *homoscedascity* of the variances: $\sigma_i^2 = \sigma^2$, $\forall i$
 - · i.e., each observation's variance is from the **same** distribution
 - so $V = \sigma^2 C$, where σ^2 is the variance of the residuals and C is the correlation matrix.

Estimating V - 2

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

• Assumption 2, between-observation covariances follow some function

- so once we have one function we can compute the covariances between all the residuals
- geostatistics: covariances in *C* depend only on the **separation distance** *d* between them:

 $\cdot \ \sigma_{i,j}^2 = C(x_i, x_j) = f(d(x_i, x_j))$

 $\cdot \,$ we get this information from the variogram or correlogram

Optimization criterion - I

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- As in OLS we want to **minimize** the sum-of-squares of the residuals $S = \varepsilon^T \varepsilon$.
- However, the error vectors can now *not* be assumed to be spherically distributed around the 0 expected value
- So the distance measure, previously estimated by the sum-of-squares, must be generalized
- Generalize by taking into account the **covariance V** between error vectors.

Optimization criterion - I

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

• Generalized estimate of S:

$$\mathbf{S} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^T \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})$$

- Dimensions: $[1, n] \cdot [n, n] \cdot [n, 1] = [1, 1]$, i.e., a scalar
- This reduces to the OLS formulation of S when V = I
GLS Solution

• Expanding the equation for *S*, taking the partial derivative with respect to the parameters, setting equal to zero and solving we obtain:

$$\frac{\partial}{\partial \beta} S = -2\mathbf{X}^T \mathbf{V}^{-1} \mathbf{y} + 2\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \beta$$
$$0 = -\mathbf{X}^T \mathbf{V}^{-1} \mathbf{y} + \mathbf{X}^T \mathbf{V}^{-1} \mathbf{X} \beta$$
$$\hat{\beta}_{GLS} = (\mathbf{X}^T \mathbf{V}^{-1} \mathbf{X})^{-1} \mathbf{X}^T \mathbf{V}^{-1} \mathbf{y}$$

• This reduces to the OLS estimate $\hat{\beta}_{OLS}$ of Equation 3 if there is no covariance, i.e., $\mathbf{V} = \mathbf{I}$.

- and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OL!
- Multiple regression
- Diagnostics
- Higher-order
- GLS
- GLS vs. OL! results
- GAM

Key point GLS vs. OLS

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OLS
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- Regression coefficients $\hat{\beta}$ now depend on the **observations** and also the **covariance of the model residuals**.
- For geographic trend surfaces the covariance is the **spatial correlation**.
- So if there is spatial dependence of the residuals, the GLS regression coefficients $\hat{\beta}_{\text{GLS}}$ will differ from the OLS coefficients $\hat{\beta}_{\text{OLS}}$.
- · **Clustered** observations have less influence on the regression coefficients
 - especially at the extreme values of independent variable (high-leverage)

Computing the GLS coefficients

- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OLS
- Multiple regressio
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- Problem: we need to know **V** before we can solve the GLS equation for the the regression coefficients $\hat{\beta}_{GLS}$.
- But if **V** is estimated from the spatial correlation structure of the regression **residuals** $(\mathbf{y} \mathbf{X}\beta)$ we need to know the regression coefficients β **before** we can compute a variogram to model the spatial correlation of the residuals.
 - "Which came first, the chicken or the egg?"
- · Solution 1: iteration
- Solution 2: REML

GLS solution by iteration

1 Compute $\hat{\beta}_{OLS}$ by OLS

- 2 Compute and model the empirical variogram from the OLS residuals
- **3** Compute $\hat{\beta}_{GLS}$ by GLS, using the variogram model to build the correlation structure **V**
- A Repeat step (2) using the empirical variogram from the GLS residuals
- **§** Repeat step (3) to get a new estimate of $\hat{\beta}_{\text{GLS}}$
- **6** Repeat steps (4) and (5) until there is no significant change in $\hat{\beta}_{GLS}$.
 - In practice this almost always converges after only a few iterations.
 - · But it has no theoretical basis.

Trend surfaces Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-orde

GLS

GLS vs. OL results

GAM

GLS solution by REML - I

Additive Models

- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OLS
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- · A method to compute $\hat{\beta}_{\text{GLS}}$ and the covariance structure in one pass.
- · REML = "Residual maximum likelihood"
- Method:
 - **1** express *V* in terms of the parameters $\theta = [\sigma^2, s, a]$ of its covariance function.
 - σ^2 = total sill, s = nugget proportion, a = range.
 - 2 Maximum likelihood (MLE): find the values of θ that are most likely (in a defined probabilistic sense) to have produced the observed values, given the model.
 - **3** Once these are known, compute $\hat{\beta}_{GLS}$ by GLS.

GLS solution by REML - II

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- The trick is to reduce the unknown β to a **sufficient statistic** that allows the MLE of just the random effects θ .
- Lark, R. M., & Cullis, B. R. (2004). Model based analysis using REML for inference from systematically sampled data on soil.

European Journal of Soil Science, 55(4), 799-813.

https://doi.org/10.1111/j.1365-2389.2004.00637.x

GLS solution by REML - III

- D G Rossiter
- Trend surfaces
- Models
- Simple regressio
- OL
- Multiple regression
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

• The log-likelihood of the regression and covariance parameters is:

$$\ell(\beta, \theta | \mathbf{y}) = c - \frac{1}{2} \log |\mathbf{V}| - \frac{1}{2} (\mathbf{y} - \mathbf{X}\beta)^T \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X}\beta)$$

where *c* is a constant and **V** is built from the variance parameters θ and the distances between the observations.

• Integrate out the *nuisance parameters* β and express the likelihood as:

$$\ell(\boldsymbol{\theta}|\mathbf{y}) = \int \ell(\boldsymbol{\beta}, \boldsymbol{\theta}|\mathbf{y}) \, d\boldsymbol{\beta}$$

· This can be solved for θ by maximum likelihood.

D G Rossiter

Trend surfaces

Models

Simple regression

OL

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Difference between OLS and GLS coefficients

- This depends on the **strength of spatial correlation**. If none, OLS = GLS. As strength increases, possible change in coefficients increases
- Also depends on the configuration of the observations: If evenly-spaced grid, OLS = GLS. More clustering, more possible change in coefficients
- Also depends on the data values of the response variable at clusters – if these are extreme values the cluster has more influence on the OLS coefficients

Specifying the GLS mode in R

D G Rossiter

- Correlation structure is typically initialized from a variogram model fit to the OLS residuals, but can be directly specified.
- If there is consistent spatial structure the solution is not so sensitive to the starting values.
- The nugget, if present, is specified as a proportion of the total sill.

Example GLS R model fit

0.2104

```
Generalized
Least Squares
and
Generalized
Additive
Models
```

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-orde

GLS

GLS vs. OLS results

F

GAM

```
Model: ANN_GDD50 ~ E + N

AIC BIC logLik

4380.513 4399.065 -2185.256

Correlation Structure: Exponential spatial correlation

Formula: ~E + N

Parameter estimate: range 36007.4

Coefficients:

Value Std.Error t-value p-value

(Intercept) 3516.002 155.08352 22.671668 0.0000

N -0.002 0.00033 -7.234058 0.0000
```

0.00029 1.255212

Residual standard error: 381.3984 Degrees of freedom: 305 total; 301 residual

0.000

GLS model fit: spatial structure

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- $\cdot\,$ The REML fit found a range parameter 36 km
- Recall, the exponential model range parameter is 1/3 of the effective range, where the semivariance reaches 95% of the sill
 - The exponential model is asymptotic to the sill parameter and never reaches it
- The variogram model estimate of the range was fit to 155 km; 36 * 3 = 108 km
- So in this case the REML fit a somewhat shorter range of spatial correlation of the residuals than the estimate from the OLS residuals.
 - Note that the estimate from the OLS variogram is based on a sub-optimal model, so this correction is to be expected.

GLS trend surface

Fitting by Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

```
> round(coef(m.gls.ne) - coef(m.ols.ne),6)
(Intercept) N E
-189.859956 0.000449 -0.000380
> 100*((coef(m.gls.ne) - coef(m.ols.ne))/coef(m.ols.ne))
(Intercept) N E
-5.123233 -15.942841 -50.802335
> AIC(m.ols.ne); AIC(m.gls.ne)
[1] 4480.302
[1] 4380.513
```

GLS vs. OLS results

GAM

Coefficients change by about -16% (N) and -51% (E), so GLS surface is **less steep** in both dimensions. AIC (Akaike's Information Criterion) is lower (better) for GLS

Difference between GLS and OLS fits

GLS - OLS trend surfaces

GLS surface is higher in the NW, lower in SE

Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Conclusion

- Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models
- D G Rossiter
- Trend surfaces
- Models
- Simple regression
- OLS
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- The assumptions of OLS require that the residuals from the model fit be **independently** and **identically** distributed, usually following a **normal** distribution.
 - $\cdot\,$ In this case, OLS gives one kind of optimum fit.
 - In many geographic applications such as trend surfaces the residuals have spatial correlation – check for this with a variogram of the residuals.
 - $\cdot\,$ In that case GLS computes correct regression coefficients.
- The advantage of the REML method vs. iteration to compute the GLS fit is that REML computes both the regression parameters and the spatial correlation parameters.

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Generalized Additive Models (GAM)

- · Problem: what if a relation is:
 - not linear over the whole range of predictor/predictand ...
 - not linearizable by a transformation of the predictor over its whole range?
- $\cdot\,$ One solution: GAM as an extension of linear models

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostic

Higher-order

GLS

GLS vs. OLS results

GAM

GAM as extension of linear models

Each term in the linear sum of predictors need not be the predictor variable itself, but can be an **empirical smooth function** of it.

So instead of the **linear additive** model of *k* predictors:

$$y_i = \beta_0 + \sum_k \beta_k x_{k,i} + \varepsilon_i$$
(3)

we allow additive *functions* f_k of the predictors:

$$y_i = \beta_0 + \sum_k f_k(x_{k,i}) + \varepsilon_i \tag{4}$$

D G Rossiter

- Trend surfaces
- Models
- Simple regressio
- OLS
- Multiple regressior
- Diagnostics
- Higher-order
- GLS
- GLS vs. OLS results
- GAM

- Non-linear relations in nature can be fit, without any need to try transformations or to fit piecewise regressions.
 If this is a better model fit, it should result in better predictions.
- The model is **additive**, so the marginal contribution of each predictor to the model fit can be determined.
- · Interactions can be included via 2D (etc.) surfaces

Disadvantages

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

· An empirical fit, no theory

- \cdot but shape of marginal fits can suggest causes
- · Can not be extrapolated beyond the range of calibration.
- The choice of smooth function, and the degree of smoothness, is **arbitrary**
 - $\cdot\,$ the degree of smoothness determined by cross-validation.

Empirical smooth relations predictand/predictor

Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL results

GAM

Empirical smoothers

D G Rossiter

Trend surfaces

Models

Simple regressior

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- · loess Local Polynomial Regression Fitting
- · Fit at each point using some subset of the points
 - · fitting method: default weighted least squares
 - proportion of points to use controlled by span parameter (default 0.75)
 - · tricubic weighting, proportional to $(1 (\frac{d}{d_{max}})^3)^3$
 - · degree of polynomial, default 2 (quadratic)
- · With all these choices, fit is empirical
- · Analyst must subjectively match smoothness of fit to smoothness of real-world relation

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

GAM model formulation for the 2D trend surface

- \cdot gam function of the mgcv package
- call:

```
gam(ANN_GDD50 ~ s(E, N), data=ne.df)
```

· Predictor: 2D thin-plate spline of the coördinates s(E,N)

Trend surfaces Fitting by Ordinary and Generalized	GAM model summary - 2D trend
Least Squares and Generalized Additive Models	
D G Rossiter	
Trend surfaces	
Models	Parametric coefficients:
Simple regression	Estimate Std. Error (Intercept) 2517.518 9.986
OLS	
Multiple regression	Approximate significance of smooth terms: edf Ref.df F
Diagnostics	s(E,N) 24.46 27.8 36.98
Higher-order	
GLS	R-sq.(adj) = 0.771
GLS vs. OLS results GAM	Compare: $R^{2}_{GAM} = 0.771$, $R^{2}_{OLS} = 0.584$; adjusts "locally"

ł

Fitted 2D geographic trend

Frend surfaces Fitting by Ordinary and Generalized Least Squares and Generalized Additive Models

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-orde

GLS

GLS vs. OLS results

GAM

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-orde

GLS

GLS vs. OL results

GAM

Spatial correlation of GAM residuals

Some spatial correlation at finer scale than GAM smoother

GAM predictions - 2D trend

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Annual GDD base 50F, GAM prediction

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OL! results

GAM

Standard errors of GAM 2D trend predictions

Annual GDD base 50F, Standard error of GAM prediction

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

GAM model formulation for the trend surface – 2D trend + 1D elevation

· call:

gam(ANN_GDD50 ~s(E, N)+s(ELEVATION_),data=ne.df)

- Term 1: 2D thin-plate spline of the coördinates s(E,N)
- Term 2: 1D spline of the elevation s(ELEVATION_)

```
Trend surfaces
Fitting by
Ordinary and
Generalized
Least Squares
and
Generalized
Additive
Models
```

D G Rossiter

Trend surfaces

```
Models
```

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-or

GLS

GLS vs. OL results

GAM

GAM model summary - 2D trend + 1D elevation

```
Parametric coefficients:

Estimate Std. Error

(Intercept) 2517.518 9.986

---

Approximate significance of smooth terms:

edf Ref.df F

s(E,N) 23.529 27.300 37.8 <2e-16

s(ELEVATION_) 8.521 8.922 51.6

---

R-sq.(adj) = 0.908
```

Adding elevation greatly improves the model; it also modifies the fit for the 2D trend term

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-orde

GLS

GLS vs. OL results

GAM

Fitted 2D geographic trend - with s.e.

red/green are +/- 1.96 s.e.

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressio

Diagnostic

Higher-ord

GLS

GLS vs. OL results

GAM

Fitted 1D relation with elevation

Wide confidence interval at the high elevations – few points \rightarrow large uncertainty

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressio

Diagnostics

Higher-orde

GLS

GLS vs. C

GAM

Spatial correlation of GAM residuals

No residual spatial correlation, elevation term has removed it (finer-scale smooth)

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

GAM predictions - 2D trend + elevation

D G Rossiter

Trend surfaces

Models

Simple regressio

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Standard errors of GAM 2D trend + elevation predictions

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regressior

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

Conclusion: GAM for trend surfaces

- · Good fit, adjusts within the region
- · No theory, smoothers are empirical
- Independent marginal effect of predictors: 2D trend, 1D elevation
- · Removes spatial dependence of OLS residuals at the range of the empirical smoother, but not finer
 - $\cdot\,$ So, could refine map by OK of the residuals

GAM References

D G Rossiter

Trend surfaces

Models

Simple regression

OLS

Multiple regression

Diagnostics

Higher-order

GLS

GLS vs. OLS results

GAM

- Hastie T et al. The elements of statistical learning data mining, inference, and prediction. Springer, 2nd ed edition, 2009. ISBN 9780387848587; §9.1
- James G et al. An introduction to statistical learning: with applications in R. Springer, 2013. ISBN 9781461471370; §7.7
- Venables, W & B Ripley. Modern Applied Statistics with S. Fourth Edition. Springer, 2002. ISBN 0-387-95457-0; §8.8

	End
D G Rossiter	
GAM	