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What is stochastic simulation?

Simulation is the process or result of representing what
reality might look like, given a model of the
system.
• studying a system without physically

implementing it
• future scenarios; possible realities

Stochastic random

Stochastic simulation there is a random component to the
simulation model
• each simulation is different
• random components are from assumed

probability distribution
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What are the stochastic components?

Model parameters → sensitivity analysis
• Which parameters most affect the model

output?
• How much does the uncertainty in

parameter values affect model output?

Model inputs uncertain data items
• How much does the uncertainty in

observation values affect model output?

Spatial position of observations (for spatial models)
• How much does the uncertainty in the

observation location affect model output?

Time of observations (for temporal models)
• How much does the uncertainty in

observation time affect model output?
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General procedure

1 Assume a model

2 Identify the stochastic components

3 Assume a statistical distribution for the stochastic
component

4 Assume values of the parameters for each distribution

5 Repeat:
1 Sample from the distribution of the stochastic component
2 Run the model with the sampled values
3 Collect the results of the model

6 Summarize the set of results → quantified uncertainty,
alternate realities
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Random numbers generators

• Stochastic (= “random”) simulation requires random
numbers, from various probability distributions

• Truly random: from apparently random physical
processes, e.g., radioactive decay

• Pseudorandom: computed deterministically from a
starting seed, but appear to be random
• A large number of tests for apparent randomness, e.g., lack

of serial correlation
• See ?Random for a description of R random number

generators, with references for the algorithms
• set.seed function to initialize the random number

generator (to reproduce examples)
• otherwise, an initial seed is created from the current time

and the process ID, and then updated as numbers are
generated
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Random numbers from probability
distributions

• R has a set of functions to draw randomly from many
probability distributions

• These each have appropriate parameters

• Some R functions and their parameters:

runif Uniform distribution; all values on [0 . . .1]
equally likely

rnorm Normal (Gaussian) distribution: mean µ,
standard deviation σ

rbinom Binomial distribution: probability of success
in one trial θ

rpois Poisson distribution: mean (and variance!)
number of occurrences in a time period λ

rbeta Beta distribution: two shape parameters α
and β
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Probability distribution density functions

runif f (x | a,b) = 1/(b − a)); special case for b = 1,
(a = 0): density is 1 everywhere.

rnorm f (x | µ,σ) = 1√
2πσ2

exp
{
−1

2
(x−µ)2
σ2

}
rbinom f (k,n | θ) =

(
n
k

)
θk(1− θ)n−k

rpois p(k | λ) = e−λ λ
k

k!

rbeta f (x | α,β) = Γ(α+β)Γ(α)Γ(β)xα−1(1− x)β−1
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Generating uniform random numbers on
[0 . . .1]

Conceptually (various clever algorithms make this more
efficient):
• Generate pseudo-random integers on [0 . . .2W − 1], where

W is the computer word length in bits
• W = 16→ 65535, W = 16→ 4294967295,

W = 64→ 1.844674 · 1019

• various algorithms, e.g., 32-bit Mersenne Twister

• Convert to fractions by dividing by the word length
• precision even for 16 bits is 0.000015
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Examples of R random numbers

> runif(10)
[1] 0.9064575 0.8595720 0.5118016 0.8829810 0.3210650
[6] 0.2674023 0.6485969 0.9319358 0.3415350 0.6231881
> rnorm(10, mean=10, sd=1)
[1] 11.254860 9.538351 10.511656 9.759389 9.222882
[6] 10.747971 11.317742 10.659810 10.538297 11.172101
> rbinom(10, size=24, prob=0.5)
[1] 15 15 11 13 11 15 15 11 8 13
> rpois(10, lambda=3)
[1] 9 3 2 3 1 1 6 1 0 0
> rbeta(10, shape1=10, shape2=3)
[1] 0.7365506 0.6838790 0.7447469 0.5507566 0.4955479
[6] 0.6605212 0.9126238 0.8364062 0.6262444 0.8169596
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Random numbers: uniform distribution

Uniform [0..1], n=32
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Generating random numbers from probability
distributions

Conceptually: (various clever algorithms make this more
efficient)

1 Start with Uniformly-distributed variates U

2 Find inverse F−1 of of Cumulative Distribution Function
(CDF) F
• e.g.: Normal: F−1 = µ + σ

√
2erf−1(2u− 1)

• erf(x) = 2√
π

∫ x
0 e−t2

dt

3 Inverse transform
• continuous: X = F−1(U)
• discrete: X = min {x : F(x) ≥ u}
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Random numbers: normal distribution

Normal(0,1), n=32
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Correlated random numbers

• If several variables must be simulated together, they may
be correlated
• i.e., can not draw independent random numbers

• R function MASS::mvrnorm
• argument Sigma = symmetric covariance matrix of the

variables
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Example of bivariate normal random sample
From the Meuse soil pollution dataset:
> require(sp); data(meuse)
> (C <- cov(meuse[, c("lnCd", "lnCu", "lnPb", "lnZn")]))

lnCd lnCu lnPb lnZn
lnCd 1.5004999 0.5207751 0.6632594 0.7626343
lnCu 0.5207751 0.2584080 0.2855571 0.3292186
lnPb 0.6632594 0.2855571 0.4441557 0.4652994
lnZn 0.7626343 0.3292186 0.4652994 0.5211123
> head(samp <- mvrnorm(n = 24, mu = rep(0,4), Sigma = C),2)

lnCd lnCu lnPb lnZn
[1,] 0.2065929 0.2299837 -0.21064460 -0.04947368
[2,] -0.3021739 -0.4133015 -0.06062289 0.09304178
> plot(samp[, "lnCd"], samp[, "lnCu"])
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Use of random samples in simulation

• Assume a model with stochastic components

• Assume a probability distribution for each component
• Assume values of the parameters

• Usually from previous experiments
• Or, from a hypothesis to test
• May have correlations between these, i.e., conditional

distributions

• Make many random draws from these distributions; each
is equally likely

• Run the model many times, each with different random
values
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Non-spatial simulation

• Simple example: simulating a binomial outcome
• The number k of “successes” in n independent,

exchangeable1 Bernoulli trials
• two mutually-exclusive possible outcomes conventionally

referred to as 1=“successes” and 0=“failures”
• the process is stochastic: a given probability of success of

any one trial
• One model parameter: θ ∈ [0 . . .1],
• result follows the Binomial distribution:

p(k) =
(

n
k

)
θk(1− θ)n−k

• Typical example: a set of flips of a coin (if fair, θ = 0.5),
where “heads” is counted as a success.

1i.e., their order does not matter
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Binomial simulation
Simulate 1024 sets of 24 flips of a fair coin:
> sample <- rbinom(1024, size=24, prob=0.5); head(sample, n=20)
[1] 10 8 9 15 14 14 12 12 10 12 10 11 9 10 13 11 9 12 14 14
> (table.k <- table(sample))
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
2 2 9 26 49 69 104 167 162 159 116 66 52 27 12 2

> plot(table.k/1024, xlab="k", ylab="density")

Note that although 12 of 24 are expected, outcomes from 4 to
19 are possible if we do this 1024 times!
In this simulation 12 is not the mode (most frequent)! It is 11.
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A simple non-spatial simulation

• Risk of an overweight airplane on full 19-seat plane
• Passengers weights assumed to follow a normal

distribution
• Estimate mean and standard deviation from measurements

from the target population
• separate distributions for males/females; hierarchical model

gender binomial → gender-specific normal

• Estimate mean proportion of female passengers (parameter
of binomial)

• Simulate number of females/males of the 19, from
binomial distribution

• Simulate each individual’s weight; sum all 19

• Compare to maximum allowable weight; find proportion
overweight
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# parameters: mean, s.d. of fe/male weights, kg
mu.m <- 80; sd.m <- 14; mu.f <- 65; sd.f <- 12
# parameter: mean proportion of female passengers
prop.f.mu <- 0.35
# Fairchild Metro II: empty 3380 kg, max takeoff 5670kg
load.wt <- (5670-3380); pilots.wt <- 200; fuel.wt <- 600
n <- 19 # number of passengers

nsim <- 2048 # number of simulations
n.females <- vector(mode="integer", length=nsim)
wt.sum <- vector(mode="integer", length=nsim)
for (run in 1:nsim)

num.f <- rbinom(n=1, size=n, prob=prop.f.mu)
num.m <- n - num.f
wts.f <- rnorm(num.f, mean=mu.f, sd=sd.f)
wts.m <- rnorm(num.m, mean=mu.m, sd=sd.m)
n.females[run] <- num.f
wt.sum[run] <- ceiling(sum(wts.f) + sum(wts.m))

(n.overweight <- sum(wt.sum > (load.wt-pilots.wt-fuel.wt)))
(prob.overweight <- round(n.overweight/nsim,3))
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2048 simulations; number of females

Per 19 passengers; θ = 0.35.
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2048 simulations; proportion overweight 4.5%
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Spatial simulation

• The simulation is spatial when:
• The model is explicitly spatial (observations, covariates,

predictions); or
• The model depends on spatial location and/or covariation

• Spatial correlograms and variograms depend on the spatial
separation between observations

• Kriging depends on the fitted model of spatial correlation,
and the positions of the observations

• Provides a hypothetical map of a possible reality . . .
• . . . or the results of some process assuming that

hypothetical map
• Example: future land use patterns assuming some process
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Simulation of a random spatial sample

• Purpose: simulate a random process over space
• Assume a probability distribution in two coördinates

• These could be correlated! → anisotropic sample

• For completely random: independent uniform
distributions

> bbox(ne.m)
min max

E -536347.6 617037.2
N -454496.7 515513.2
> (e <- runif(10, min=bbox(ne.m)["E","min"],

max=bbox(ne.m)["E","max"]))
[1] 257361.16 -436644.63 -329367.76 66955.62 228298.45
[6] -292064.55 82650.80 584037.55 97505.06 -379035.29
> (n <- runif(10, min=bbox(ne.m)["N","min"],

max=bbox(ne.m)["N","max"]))
[1] 72812.16 -229296.74 289742.70 -15162.03 134348.71
[6] 119672.13 167620.98 334487.12 -313401.27 377473.12
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A simpler approach for a spatial object

> class(ne.m)
[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"
> (spsample(ne.m, n=10, type="random"))
SpatialPoints:

E N
[1,] -252995.9 -226379.683
[2,] -269383.8 -245869.032
[3,] -412918.2 -431693.047
[4,] 143967.9 326646.091
[5,] -462451.8 186514.584
[6,] 523919.4 198377.268
[7,] -439342.0 -203956.861
[8,] -254776.4 139335.270
[9,] 145935.7 -2113.977
[10,] -251060.5 -19041.134
Coordinate Reference System (CRS) arguments: +proj=aea
+lat_0=44.5 +lat_1=42 +lat_2=47 +lon_0=-90 +ellps=WGS84
+units=m
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Simulating a completely random spatial
sample

> points <- spsample(ne.m, n=124, type="random")
> plot(coordinates(points)); grid()
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Comparing simulations

• Equally probable results of the same spatial process

• Same geostatistical properties
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Geostatistical simulation

The spatial simulation is geostatistical when the model is
geostatistical.

• Possible models of spatial correlation, given the
uncertainty in the observations (positons and/or data
values)

• Possible predictive maps made by geostatistical methods
(e.g., kriging)

• Deeper reason: the theory of regionalized random
variables
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What is geostatistical simulation?

• the construction of a gridded surface corresponding to a
random function, i.e., model of spatial correlation

• the statistical properties of the surface match those of the
sample: spatial mean, spatial variance, semivariogram
(model, partial sill, nugget variance, range parameter)

• Gaussian simulation assumes that the target field is
multivariate Gaussian, with a defined stationary spatial
mean and covariance structure

• This generates multiple, equally probable “realities”, i.e.,
the spatial distribution of the target attribute
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Why geostatistical simulation? (1)

• The theory of regionalized variables assumes that the
values we observe come from some random process
• simplest case: one expected value (first-order stationarity)

with a spatially-correlated error that is the same over the
whole area (second-order stationarity).

• The one reality we observe is the results of a random
process

• There are “alternative realities”; that is, spatial patterns
that, by this theory, could have occurred in another
realization of the same spatial process.
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Why geostatistical simulation? (2)

• Maps made by kriging are unrealistically smooth,
especially in areas with low sampling density.
• The nugget variance is not reflected in adjacent prediction

points, since they are computed from the same
observations, with almost the same weights.

• So, any 2D process model using these maps as an input
will not be able to properly account for local noise in the
input
• Example: hydraulic conductivity in soils, if water flows

laterally as well as vertically
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When must geostatistical simulation be used?

• Goovaerts: “Smooth interpolated maps should not be used
for applications sensitive to the presence of extreme
values and their patterns of continuity.” (p. 370)
• Example: ground water travel time depends on sequences

of large or small values (“critical paths”), not just on
individual values.

• Example application: Lin, Y.-P., Lee, C.-C., & Tan, Y.-C.
(2000). Geostatistical approach for identification of
transmissivity structure at Dulliu area in Taiwan.
Environmental Geology, 40(12), 111120.
https://doi.org/10.1007/s002540000150

https://doi.org/10.1007/s002540000150
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Applications of geostatistical simulation

• If the distribution of the target variable(s) over the study
area is to be used as input to a model, then the
uncertainty is represented by a number of simulations.

• Procedure:
1 Simulate a “large” number of realizations of the spatial field
2 Run the model on each simulation
3 Summarize the output of the different model runs

• The statistics of the output give a direct measure of the
uncertainty of the model in the light of the sample and
the model of spatial variability.
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Local vs. global uncertainty

• Kriging prediction also provides a kriging prediction
variance at each prediction location. This is assumed to
represent the variance of a normally-distributed target.

• At each prediction location we obtain a probability
distribution of the prediction, a measure of its
uncertainty. This is sufficient to evaluate each prediction
individually.

• It is not valid to evaluate the set of predictions! Reason:
Errors are by definition spatially-correlated (as shown by
the fitted variogram model), so we can’t simulate the error
in a field by simulating the error in each point separately.

• Global uncertainty is a representation of the error over
the entire field of prediction locations at the same time.
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Conditional geostatistical simulation

• This simulates the field, while respecting the sample,
i.e., the known observed values.

• The simulated maps resemble the best (kriging)
prediction, but usually much more spatially-variable
(depending on the magnitude of the nugget).
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What is preserved in conditional simulation?

1 Mean over field

2 Spatial correlation structure

3 Observations (sample points are predicted exactly)

See figures on the next page.

The OK prediction is then reproduced for comparison.
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Same model, different realizations

Jura Co concentration; known points over-printed as post-plot
Q: How are the similar? How are they different?
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OK prediction – single “best” prediction

Q: What are the similarities and differences between the
conditional simulations and the OK prediction?
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OK prediction standard deviation
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OK vs. conditional simulation maps

• Simulations are much noisier, OK is smooth

• Near known points the predicted values are similar in OK
and all the simulations

• Further than the variogram range from known points: OK
predicts the spatial mean, simulation shows a possible
reality

• All simulations have a similar spatial pattern, but not the
same locations for the pattern
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Unconditional geostatistical simulation

• In unconditional simulation, we simulate the field with no
reference to the actual sample, i.e. the data we have. (It’s
only one realisation, no more valid than any other.)

• This is used to visualise a random field as modelled by a
variogram, not for prediction.

• Commonly used to investigate sampling plans, assuming a
spatial structure of the target variable.
• Example: how many points are needed for a reliable

variogram?
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What is preserved in unconditional simulation?

1 Mean over field

2 Covariance structure

See figure on the next page. Note the similar degree of spatial
continuity, but with no regard to the values in the sample.
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Same model, different realizations

Q: In what respect do the unconditional simulations resemble
each other? In what respect do they not? Why?
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Unconditional simulation: increasing nugget
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Q: What is the effect on the simulated random field of
increasing the nugget variance?
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Unconditional simulation: different models
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Q: What is the effect on the simulated random field of
assuming different models of spatial correlation?



Spatial
stochastic
simulation

DGR

Stochastic
simulation

Random
number
generators

Non-spatial
simulation

Spatial
simulation

Geostatistical
simulation

Unconditional simulation to test sampling
strategies

• Simulate a random field with an assumed spatial
correlation structure

• Place sample points on the field according to some
sampling plan
• completely random, gridded, clustered . . .

• Extract the simulated data values at the sample points

• Use these to compute some statistic of interest (e.g.,
mean) or to build a variogram model

• Repeat steps (2)-(4) and summarize the results
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Simulate a completely random sample

128 points, values obtained from simulated field
Variogram model: spherical, total sill=1, nugget=0, range=10
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How well does the simulation reproduce the
non-spatial statistics?

These should all be (µ = 0, σ = 1)
[1] -0.04172984 0.97304138
[1] -0.1178978 0.9096889
[1] -0.06316958 0.98974256
[1] 0.1151962 1.0269684
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How well does the simulation reproduce
spatial covariance structure?

These should all be psill=(0, 1) (i.e., no nugget), range=(0,
10)

model psill range
1 Nug 0.1619946 0.00000
2 Sph 0.8610614 10.82296

model psill range
1 Nug 0.000000 0.00000
2 Sph 0.812842 11.31871

model psill range
1 Nug 0.0000000 0.00000
2 Sph 0.9125189 10.51511

model psill range
1 Nug 0.000000 0.000000
2 Sph 1.017288 7.371042
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Variogram models fit from sample
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Known variogram models vs. empirical
variogram from sample
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Spatial simulation algorithms

So, how are these simulated random fields calculated?
Conditional sequential simulation as used in the gstat
package; in simplified form:

1 Place the data on the prediction grid

2 Pick a random unknown point; make a kriging prediction
from the known points, along with its prediction variance

3 Assuming a normally-distributed prediction variance,
simulate one value from this; add to the kriging prediction
and place this at the previously-unknown point

4 This point is now considered “known”; repeat steps (2)-(3),
following a random path through the locations, until no
more points are left to predict
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Unconditional simulation

• The idea here is to simulate the entire field at once, given
a covariance structure, e.g., exponential with a range
constant.

• Algorithm for small, square random fields:
1 set up a square matrix to represent the field; these are the

prediction points
2 compute the inverse distances between each point, as a

symmetric square matrix
3 convert the distances to covariances between points, using

the covariance function: matrix C
4 decompose (Cholesky) into lower triangular and its

conjugate: C = AAT

5 multiply each row of the upper triangle with a vector z of
random normal variates with σ 2 = 1: y∗ = AT z

6 Var(y∗) = Var(Az) = AVar(z)AT = C because Var(z) = 1

• This preserves the correlation structure! but has a
(spatially-correlated) stochastic part.
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Some unconditional simulations

Exponential covariance; range parameter=4
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R/gstat code for simulation

> library(gstat); library(sp)
> data(jura)
> coordinates(jura.cal) <- ~Xloc + Yloc # known points
> coordinates(jura.grid) <- ~Xloc + Yloc # grid to predict over
> ## empirical variogram
> v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)
> ## fitted variogram model
> vmf <- fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5))
> ## conditional simulation
> k.sim.4 <- krige(Co ~ 1, loc = jura.cal, newdata = jura.grid,

model = vmf, nsim = 4, nmax = 128)
> ## unconditional simulation
> k.sim.4.u <- krige(z ~ 1, loc = NULL, newdata = jura.grid,

model = vmf, nsim = 4, nmax = 128,
beta = mean(jura.cal$Co), dummy = TRUE)

Note that unconditional simulation requires a known spatial
mean beta, as well as the fitted variogram model
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