DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistica simulation

Spatial stochastic simulation

D G Rossiter

Cornell University, Soil & Crop Sciences Section

April 17, 2023

DGR

Stochastic simulation

2 Random number generators

3 Non-spatial simulation

4 Spatial simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Stochastic simulation

2 Random number generators

On-spatial simulation

4 Spatial simulation

Simulation is the process or result of representing what reality *might* look like, given a **model** of the system.

- studying a system without physically implementing it
- future scenarios; possible realities

Stochastic random

Spatial

stochastic simulation DGR

simulation

Stochastic simulation there is a random component to the simulation model

- each simulation is different
- random components are from assumed probability distribution

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Model parameters \rightarrow sensitivity analysis

- Which parameters most affect the model output?
- How much does the uncertainty in parameter values affect model output?

Model inputs uncertain data items

• How much does the uncertainty in **observation values** affect model output?

Spatial position of observations (for spatial models)

• How much does the uncertainty in the observation **location** affect model output?

Time of observations (for temporal models)

• How much does the uncertainty in observation **time** affect model output?

General procedure

Spatial stochastic simulation

DGR

Stochastic simulation

- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

Assume a model

- Identify the stochastic components
- Assume a statistical distribution for the stochastic component
- Assume values of the **parameters** for each distribution
- 6 Repeat:
 - **1** Sample from the distribution of the stochastic component
 - 2 Run the model with the sampled values
 - 3 Collect the results of the model
- 6 Summarize the set of results → quantified uncertainty, alternate realities

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Stochastic simulation

2 Random number generators

3 Non-spatial simulation

4 Spatial simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

- Stochastic (= "random") simulation requires random numbers, from various probability distributions
- Truly random: from apparently random physical processes, e.g., radioactive decay
- **Pseudorandom**: computed deterministically from a starting **seed**, but appear to be random
 - A large number of tests for apparent randomness, e.g., lack of serial correlation
 - See ?Random for a description of R random number generators, with references for the algorithms
 - set.seed function to initialize the random number generator (to reproduce examples)
 - otherwise, an initial seed is created from the current time and the process ID, and then updated as numbers are generated

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Random numbers from probability distributions

- R has a set of functions to draw randomly from many probability distributions
- These each have appropriate parameters
- Some R functions and their parameters:
 - runif Uniform distribution; all values on [0...1] equally likely
 - rnorm Normal (Gaussian) distribution: mean $\mu,$ standard deviation σ
 - rbinom **Binomial** distribution: probability of success in one trial θ
 - **Poisson** distribution: mean (and variance!) number of occurrences in a time period λ
 - rbeta Beta distribution: two shape parameters α and β

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

runif $f(x \mid a, b) = 1/(b-a)$; special case for b = 1, (a = 0): density is 1 everywhere. rnorm $f(x \mid \mu, \sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{-\frac{1}{2}\frac{(x-\mu)^2}{\sigma^2}\right\}$ rbinom $f(k, n \mid \theta) = {n \choose k} \theta^k (1-\theta)^{n-k}$ rpois $p(k \mid \lambda) = e^{-\lambda} \frac{\lambda^k}{k!}$ rbeta $f(x \mid \alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} x^{\alpha - 1} (1-x)^{\beta - 1}$

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Generating uniform random numbers on [0...1]

Conceptually (various clever algorithms make this more efficient):

- Generate pseudo-random integers on [0...2^W 1], where W is the computer word length in bits
 - $W = 16 \rightarrow 65535$, $W = 16 \rightarrow 4294967295$, $W = 64 \rightarrow 1.844674 \cdot 10^{19}$
 - various algorithms, e.g., 32-bit Mersenne Twister
- Convert to fractions by dividing by the word length
 - precision even for 16 bits is 0.000015

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

```
Examples of R random numbers
```

> runif(10) [1] 0.9064575 0.8595720 0.5118016 0.8829810 0.3210650 [6] 0.2674023 0.6485969 0.9319358 0.3415350 0.6231881 > rnorm(10, mean=10, sd=1) [1] 11.254860 9.538351 10.511656 9.759389 9.222882 [6] 10.747971 11.317742 10.659810 10.538297 11.172101 > rbinom(10, size=24, prob=0.5) [1] 15 15 11 13 11 15 15 11 8 13 > rpois(10, lambda=3) [1] 9 3 2 3 1 1 6 1 0 0 > rbeta(10, shape1=10, shape2=3) [1] 0.7365506 0.6838790 0.7447469 0.5507566 0.4955479 [6] 0.6605212 0.9126238 0.8364062 0.6262444 0.8169596

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Random numbers: uniform distribution

Uniform [0..1], n=32

Uniform [0..1], n=32

Uniform [0..1], n=256

Uniform [0..1], n=256

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Generating random numbers from probability distributions

Conceptually: (various clever algorithms make this more efficient)

- Start with Uniformly-distributed variates U
- 2 Find inverse F^{-1} of of Cumulative Distribution Function (CDF) F
 - e.g.: Normal: $F^{-1} = \mu + \sigma \sqrt{2} \text{erf}^{-1}(2u 1)$
 - $\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$
- Inverse transform
 - continuous: $X = F^{-1}(U)$
 - discrete: $X = \min \{x : F(x) \ge u\}$

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Normal(0,1), n=32

Density

Normal(0,1), n=256

Normal(0,1), n=256

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Correlated random numbers

- If several variables must be simulated together, they may be correlated
 - i.e., can not draw independent random numbers
- R function MASS::mvrnorm
 - argument Sigma = symmetric covariance matrix of the variables

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Example of bivariate normal random sample

From the Meuse soil pollution dataset:

```
> require(sp); data(meuse)
> (C <- cov(meuse[, c("lnCd", "lnCu", "lnPb", "lnZn")]))</pre>
          1nCd
                    1nCu
                              1nPb
                                         ln7n
InCd 1.5004999 0.5207751 0.6632594 0.7626343
lnCu 0.5207751 0.2584080 0.2855571 0.3292186
InPb 0.6632594 0.2855571 0.4441557 0.4652994
lnZn 0.7626343 0.3292186 0.4652994 0.5211123
> head(samp <- mvrnorm(n = 24, mu = rep(0,4), Sigma = C),2)
           lnCd
                      1nCu
                                   1nPb
                                               1n7n
     0.2065929 0.2299837 -0.21064460 -0.04947368
[1.]
[2,] -0.3021739 -0.4133015 -0.06062289 0.09304178
> plot(samp[, "lnCd"], samp[, "lnCu"])
```


Use of random samples in simulation

DGR Stochastic

Spatial

stochastic

- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- Assume a model with stochastic components
- Assume a probability distribution for each component
- Assume values of the parameters
 - Usually from previous experiments
 - Or, from a hypothesis to test
 - May have correlations between these, i.e., **conditional** distributions
- Make many random draws from these distributions; each is **equally likely**
- Run the model many times, each with different random values

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Stochastic simulation

2 Random number generators

8 Non-spatial simulation

4 Spatial simulation

Non-spatial simulation

Spatial stochastic simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

• Simple example: simulating a **binomial outcome**

- The number *k* of "successes" in *n* independent, exchangeable¹ Bernoulli trials
- two mutually-exclusive possible outcomes conventionally referred to as 1="successes" and 0="failures"
- the process is stochastic: a given probability of success of any one trial
- One model **parameter**: $\theta \in [0...1]$,
- result follows the Binomial distribution:

$$p(k) = \binom{n}{k} \theta^k (1-\theta)^{n-k}$$

• Typical example: a set of flips of a coin (if fair, $\theta = 0.5$), where "heads" is counted as a success.

¹i.e., their order does not matter

Binomial simulation

Spatial stochastic simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistica simulation

Simulate 1024 sets of 24 flips of a fair coin:

> sample <- rbinom(1024, size=24, prob=0.5); head(sample, n=20)</pre> [1] 10 8 9 15 14 14 12 12 10 12 10 11 9 10 13 11 9 12 14 14 > (table.k <- table(sample))</pre> 4 5 6 8 9 10 11 12 13 14 15 16 17 18 19 2 2 9 26 69 104 167 162 159 116 66 52 27 12 2 49

> plot(table.k/1024, xlab="k", ylab="density")

Note that although 12 of 24 are expected, outcomes from 4 to 19 are possible if we do this 1024 times!

In this simulation 12 is not the mode (most frequent)! It is 11.

Number of successes

A simple non-spatial simulation

stochastic simulation DGR

Spatial

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

- Risk of an overweight airplane on full 19-seat plane
- Passengers weights assumed to follow a **normal** distribution
 - Estimate mean and standard deviation from measurements from the target population
 - separate distributions for males/females; hierarchical model gender **binomial** → gender-specific **normal**
 - Estimate mean proportion of female passengers (parameter of **binomial**)
- Simulate number of females/males of the 19, from binomial distribution
- Simulate each individual's weight; sum all 19
- Compare to maximum allowable weight; find proportion overweight

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistica simulation

```
# parameters: mean, s.d. of fe/male weights, kg
mu.m <- 80; sd.m <- 14; mu.f <- 65; sd.f <- 12
# parameter: mean proportion of female passengers
prop.f.mu <- 0.35
# Fairchild Metro II: empty 3380 kg, max takeoff 5670kg
load.wt <- (5670-3380); pilots.wt <- 200; fuel.wt <- 600
n <- 19 # number of passengers</pre>
```

```
nsim <- 2048 # number of simulations
n.females <- vector(mode="integer", length=nsim)
wt.sum <- vector(mode="integer", length=nsim)
for (run in 1:nsim)
    num.f <- rbinom(n=1, size=n, prob=prop.f.mu)
    num.m <- n - num.f
    wts.f <- rnorm(num.f, mean=mu.f, sd=sd.f)
    wts.m <- rnorm(num.m, mean=mu.m, sd=sd.m)
    n.females[run] <- num.f
    wt.sum[run] <- ceiling(sum(wts.f) + sum(wts.m))</pre>
```

(n.overweight <- sum(wt.sum > (load.wt-pilots.wt-fuel.wt)))
(prob.overweight <- round(n.overweight/nsim,3))</pre>

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatio

Geostatistical simulation

lemales per 19 passenge

Per 19 passengers; $\theta = 0.35$.

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatio

Geostatistical simulation

2048 simulations; proportion overweight 4.5%

Total passenger weight, kg

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Stochastic simulation

2 Random number generators

3 Non-spatial simulation

Spatial simulation

Spatial stochastic simulation

DGR

- Stochastic simulation
- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- The simulation is **spatial** when:
 - The model is explicitly spatial (observations, covariates, predictions); or
 - The model depends on spatial location and/or covariation
 - Spatial correlograms and variograms depend on the spatial separation between observations
 - Kriging depends on the fitted model of spatial correlation, and the positions of the observations
- Provides a hypothetical map of a possible reality ...
 - ... or the results of some process assuming that hypothetical map
 - Example: future land use patterns assuming some process

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

- Purpose: simulate a random process over space
- Assume a probability distribution in two coördinates
 - These could be correlated! \rightarrow anisotropic sample
- For completely random: independent uniform distributions

```
> bbox(ne.m)
        min
                 max
F -536347.6 617037.2
N -454496.7 515513.2
> (e <- runif(10, min=bbox(ne.m)["E","min"],</pre>
                  max=bbox(ne.m)["E","max"]))
 [1]
      257361.16 -436644.63 -329367.76 66955.62
                                                   228298.45
 [6] -292064.55 82650.80 584037.55 97505.06 -379035.29
> (n <- runif(10, min=bbox(ne.m)["N","min"],</pre>
                  max=bbox(ne.m)["N","max"]))
 [1]
       72812.16 -229296.74 289742.70 -15162.03
                                                   134348.71
 [6]
      119672.13
                 167620.98 334487.12 -313401.27
                                                   377473.12
```

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

A simpler approach for a spatial object

> class(ne.m) [1] "SpatialPointsDataFrame" attr(,"package") [1] "sp" > (spsample(ne.m, n=10, type="random")) SpatialPoints: F Ν [1.] -252995.9 -226379.683 [2.] -269383.8 -245869.032 [3.] -412918.2 -431693.047 [4,] 143967.9 326646.091 [5,] -462451.8 186514.584 [6.] 523919.4 198377.268 [7.] -439342.0 -203956.861 [8.] -254776.4 139335.270 [9.] 145935.7 -2113.977 [10.] -251060.5 -19041.134 Coordinate Reference System (CRS) arguments: +proj=aea +lat_0=44.5 +lat_1=42 +lat_2=47 +lon_0=-90 +ellps=WGS84 +units=m

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Simulating a completely random spatial sample

- > points <- spsample(ne.m, n=124, type="random")</pre>
- > plot(coordinates(points)); grid()

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

- Equally probable results of the same spatial process
- Same geostatistical properties

Comparing simulations

DGR

Geostatistical simulation

Stochastic simulation

2 Random number generators

3 Non-spatial simulation

4 Spatial simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

The spatial simulation is **geostatistical** when the model is geostatistical.

- Possible models of spatial correlation, given the uncertainty in the observations (positons and/or data values)
- Possible **predictive maps** made by geostatistical methods (e.g., kriging)
- Deeper reason: the **theory of regionalized random variables**

Stochastic simulation

Spatial

stochastic simulation DGR

- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- the construction of a gridded surface corresponding to a **random function**, i.e., model of spatial correlation
- the statistical properties of the surface match those of the sample: spatial mean, spatial variance, semivariogram (model, partial sill, nugget variance, range parameter)
- **Gaussian** simulation assumes that the target field is multivariate Gaussian, with a defined **stationary** spatial mean and covariance structure
- This generates multiple, **equally probable** "realities", i.e., the spatial distribution of the target attribute

DGR Stochastic simulation

Spatial

stochastic

- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- The **theory of regionalized variables** assumes that the values we observe come from some **random process**
 - simplest case: one **expected value** (first-order stationarity) with a **spatially-correlated error** that is the same over the whole area (second-order stationarity).
- The one reality we observe is the results of a random process
- There are "alternative realities"; that is, spatial patterns that, by this theory, *could have* occurred in another realization of the same spatial process.

Stochastic simulation

Spatial

stochastic simulation DGR

Random number generators

Non-spatial simulation

Spatial simulation

- Maps made by kriging are *unrealistically smooth*, especially in areas with low sampling density.
 - The nugget variance is *not* reflected in adjacent prediction points, since they are computed from the same observations, with almost the same weights.
- So, any 2D process model using these maps as an input will not be able to properly account for local noise in the input
 - Example: hydraulic conductivity in soils, if water flows laterally as well as vertically

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

- Goovaerts: "Smooth interpolated maps should not be used for applications sensitive to the presence of **extreme values and their patterns of continuity**." (p. 370)
 - Example: ground water travel time depends on sequences of large or small values ("critical paths"), not just on individual values.
 - Example application: Lin, Y.-P., Lee, C.-C., & Tan, Y.-C. (2000). Geostatistical approach for identification of transmissivity structure at Dulliu area in Taiwan. *Environmental Geology*, 40(12), 111120. https://doi.org/10.1007/s002540000150

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

- If the distribution of the target variable(s) over the study area is to be used as input to a **model**, then the uncertainty is represented by a number of simulations.
- Procedure:
 - Simulate a "large" number of realizations of the spatial field
 Run the model on each simulation
 - 3 Summarize the output of the different model runs
- The statistics of the output give a direct measure of the **uncertainty** of the model in the light of the sample and the model of spatial variability.

Local vs. global uncertainty

simulation DGR

Spatial

stochastic

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

- Kriging prediction also provides a **kriging prediction variance** at each prediction location. This is assumed to represent the variance of a normally-distributed target.
- At each prediction location we obtain a **probability distribution** of the prediction, a measure of its **uncertainty**. This is sufficient to evaluate each prediction *individually*.
- It is *not* valid to evaluate the *set* of predictions! Reason: Errors are *by definition* spatially-correlated (as shown by the fitted variogram model), so we can't simulate the error in a field by simulating the error in each point separately.
- Global uncertainty is a representation of the error over the entire field of prediction locations at the same time.

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Conditional geostatistical simulation

- This simulates the field, while **respecting the sample**, i.e., the known observed values.
- The simulated maps resemble the best (kriging) prediction, but usually much more spatially-variable (depending on the magnitude of the nugget).

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

What is preserved in conditional simulation?

1 Mean over field

2 Spatial correlation structure

6 Observations (sample points are predicted exactly) See figures on the next page.

The OK prediction is then reproduced for comparison.

Same model, different realizations

Conditional simulations, Jura Co (ppm), OK

Spatial

stochastic simulation DGR

Geostatistical simulation

Jura Co concentration; known points over-printed as post-plot Q: How are the similar? How are they different?

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

OK prediction - single "best" prediction

Ordinary Kriging prediction

Q: What are the similarities and differences between the conditional simulations and the OK prediction?

OK prediction standard deviation

Ordinary Kriging prediction standard deviation

Spatial stochastic simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatio

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

OK vs. conditional simulation maps

- Simulations are much **noisier**, OK is smooth
- Near known points the predicted values are similar in OK and all the simulations
- Further than the variogram range from known points: OK predicts the spatial mean, simulation shows a **possible** reality
- All simulations have a **similar spatial pattern**, but **not the same locations** for the pattern

Stochastic simulation

Spatial

stochastic simulation DGR

- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- In **unconditional** simulation, we simulate the field with *no reference to the actual sample*, i.e. the data we have. (It's only one realisation, no more valid than any other.)
- This is used to **visualise a random field** as modelled by a variogram, *not* for prediction.
- Commonly used to investigate sampling plans, assuming a spatial structure of the target variable.
 - Example: how many points are needed for a reliable variogram?

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

What is preserved in unconditional simulation?

1 Mean over field

Ovariance structure

See figure on the next page. Note the similar degree of spatial continuity, but with no regard to the values in the sample.

Same model, different realizations

Unconditional simulations, Co variogram model

Q: In what respect do the unconditional simulations resemble each other? In what respect do they not? Why?

Stochastic simulation

Spatial

stochastic simulation DGR

Random number generators

Non-spatial simulation

Spatial simulation

DGR

Stochastic simulation

Random number generator:

Non-spatia simulation

Spatial simulation

Geostatistical simulation

Unconditional simulation: increasing nugget

Variogram models

Simulated fields

Q: What is the effect on the simulated random field of increasing the nugget variance?

DGR

Stochastic simulation

Random number generator:

Non-spatia simulation

Spatial simulation

Geostatistical simulation

Variogram models

Simulated fields

Q: What is the effect on the simulated random field of assuming different models of spatial correlation?

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Unconditional simulation to test sampling strategies

- Simulate a random field with an assumed spatial correlation structure
- Place sample points on the field according to some sampling plan
 - completely random, gridded, clustered ...
- Extract the simulated data values at the sample points
- Use these to compute some statistic of interest (e.g., mean) or to build a variogram model
- Repeat steps (2)-(4) and summarize the results

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

Simulate a completely random sample

128 points, values obtained from simulated field Variogram model: spherical, total sill=1, nugget=0, range=10

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

How well does the simulation reproduce the non-spatial statistics?

These should all be $(\mu = 0, \sigma = 1)$

[1] -0.04172984 0.97304138 [1] -0.1178978 0.9096889 [1] -0.06316958 0.98974256 [1] 0.1151962 1.0269684

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

How well does the simulation reproduce spatial covariance structure?

These should all be psill=(0, 1) (i.e., no nugget), range=(0, 10)

	model	psill	range
1	Nug	0.1619946	0.00000
2	Sph	0.8610614	10.82296
	model	psill	range
1	Nug	0.000000	0.00000
2	Sph	0.812842 1	11.31871
	model	psill	range
1	Nug	0.0000000	0.00000
2	Sph	0.9125189	10.51511
	model	psill	range
1	Nua	0.000000 (0.00000

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Known variogram models vs. empirical variogram from sample

simulation DGR

Spatial

stochastic

simulation Random

number generator:

Non-spatial simulation

Spatial simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

So, how are these simulated random fields calculated? **Conditional sequential simulation** as used in the **gstat** package; in simplified form:

Place the data on the prediction grid

- Pick a random unknown point; make a kriging prediction from the known points, along with its prediction variance
- Assuming a normally-distributed prediction variance, simulate one value from this; add to the kriging prediction and place this at the previously-unknown point
- This point is now considered "known"; repeat steps (2)-(3), following a random path through the locations, until no more points are left to predict

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation

Geostatistical simulation

- The idea here is to simulate the entire field at once, given a **covariance** structure, e.g., exponential with a range constant.
- Algorithm for small, square random fields:
 - set up a square matrix to represent the field; these are the prediction points
 - Compute the inverse distances between each point, as a symmetric square matrix
 - convert the distances to covariances between points, using the covariance function: matrix C
 - decompose (Cholesky) into lower triangular and its conjugate: $C = AA^{T}$
 - S multiply each row of the upper triangle with a vector z of random normal variates with $\sigma^2 = 1$: $y^* = A^T z$

6 $\operatorname{Var}(y^*) = \operatorname{Var}(Az) = A\operatorname{Var}(z)A^T = C$ because $\operatorname{Var}(z) = 1$

• This **preserves the correlation structure**! but has a (spatially-correlated) stochastic part.

Unconditional simulation

DGR

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

Some unconditional simulations

Exponential covariance; range parameter=4

R/gstat code for simulation

simulation DGR

Spatial

stochastic

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulatior

Geostatistical simulation

> library(gstat); library(sp)

- > data(jura)
- > coordinates(jura.cal) <- ~Xloc + Yloc # known points</pre>
- > coordinates(jura.grid) <- ~Xloc + Yloc # grid to predict over
- > ## empirical variogram
- > v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)</pre>
- > ## fitted variogram model
- > vmf <- fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5))</pre>
- > ## conditional simulation

- > ## unconditional simulation

Note that unconditional simulation requires a known spatial mean beta, as well as the fitted variogram model

DGR

- Stochastic simulation
- Random number generators
- Non-spatial simulation
- Spatial simulation
- Geostatistical simulation

- Goovaerts, P., 1997. *Geostatistics for natural resources evaluation*. Applied Geostatistics Series. Oxford University Press, New York; Chapter 8.
- Emery, X. (2008). Statistical tests for validating geostatistical simulation algorithms. Computers & Geosciences, 34(11), 1610-1620. doi:10.1016/j.cageo.2007.12.012
- Pebesma, E. J., & Wesseling, C. G. (1998). *Gstat: a program for geostatistical modelling, prediction and simulation*. Computers & Geosciences, 24(1), 17-31.
- Ripley, B. D. (2009). *Stochastic Simulation*. John Wiley & Sons.

Stochastic simulation

Random number generators

Non-spatial simulation

Spatial simulation