Spatial analysis with the R Project for Statistical Computing

D G Rossiter Cornell University ISRIC-World Soil Information

December 26, 2022

Copyright © 2018-22 Cornell University

All rights reserved. Reproduction and dissemination of the work as a whole (not parts) freely permitted if this original copyright notice is included. Sale or placement on a web site where payment must be made to access this document is strictly prohibited. To adapt or translate please contact the author (http://www.css.cornell.edu/faculty/dgr2/).

Topics

- 1. Spatial analysis in R
- 2. The sf and sp packages: spatial classes
- 3. The **raster** and **terra** packages: complete, efficient "raster" GIS functions
 - e.g., for image processing
- 4. The stars package for space-time cubes (can also handle raster stacks).
- 5. External file formats
- 6. Interfaces with other spatial analysis tools; Coördinate Reference Systems
- 7. The gstat package: geostatistical modelling, prediction and simulation

Topic: Spatial analysis in R

- 1. Spatial data
- 2. R approaches to spatial data

Spatial data – definition

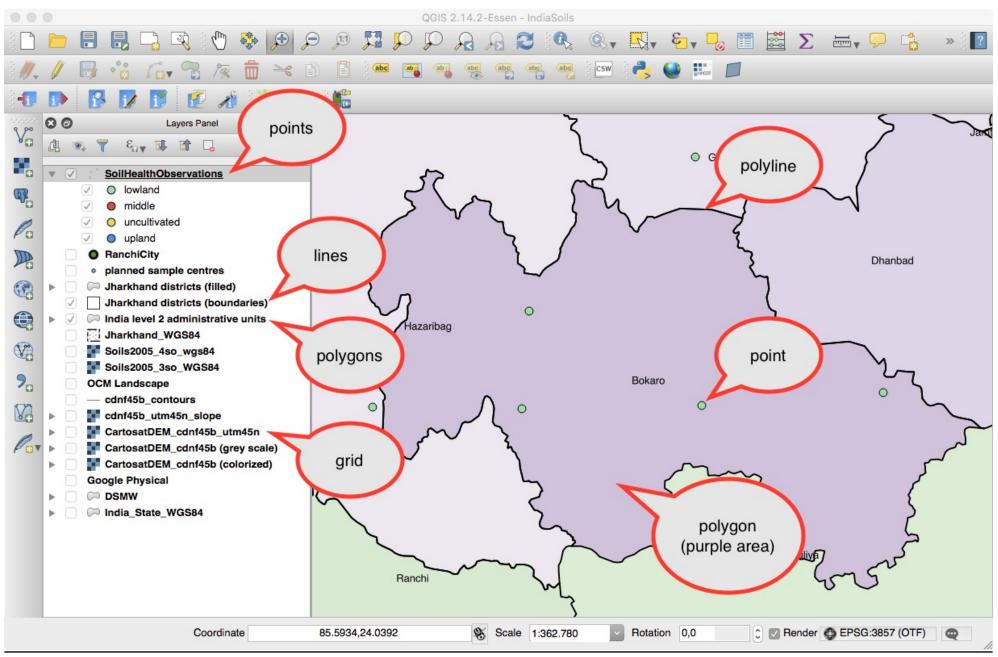
- Spatial data have **coördinates**, i.e. known locations
 - The location itself is **spatial information**
 - Often have **attributes** other information about the spatial object
- Coördinates are **absolute locations** in one, two or three dimensions
 - ... in some defined **coördinate reference system** (CRS)
 - If referring to real objects referenced to the Earth, must have a defined projection and datum
- **Gridded data** ("rasters") have an absolute location as an **origin**, other locations are found by **row/column**, each with a **resolution**
 - One attribute per raster layer; may be a code linking to a database or a stack of co-located attributes.

Spatial objects: location and attributes

		QGIS 2.14.2-Essen - IndiaSoils	
	📁 🔒 🛃 🖓 👘 🍕	🕨 🗩 🔎 🎵 💭 💭 🖓 🔗 🎜 🔍 🔍 🖳 🍢 😓 📰 🖉 🗩 🛶 🔹 📗	?
i //_	/ 🕞 📸 🐻 🗟 🖄	j 😪 🗈 🖺 🗰 👜 🧠 🦛 🦛 🦛 🐨 🖓 🕒 🎫 📁	
-	🕞 📴 🗗 🛃 🦽		
V°	S	s FU	Į
¥.	🐺 🟦 🔅 🗃 😓 🖻 🖨		C
	Feature	Value Coordinates:	3
	 SoilHealthObservations feature id 	43 long/lat on WGS84	_
P	 (Derived) (clicked coordinate X) 	85.7608	
Po	(clicked coordinate Y)	22.5631 85.7586 Saraikela Kharsawan	
	Ŷ	22.5603	
	feature id ▶ (Actions)	43	
	vllg_nm	khairajara 12.1 Chakradharpur	
	nw_ggl_ CSHT_LA	Nn_442 Attributes of the Selected point in	
	smpl_ID elevatn	49 245 GIS point layer	A
	AB Indscp_	1 Uncultivated	
	texture	loam Pashchim Singhbhum	
20	sand silt	36.439999999 38.45000000	st
V	clay agstab	25.10999999 18.67000000	
	AWC	0.21000000	
Por	OM actC	2.71000000	
	prot	3.790000000	
	Mode Top down	Auto open form	
	View Tree	Help © OpenStreetMep contribut	utors
	Coordinate	85.7602,22.5623 📎 Scale 1:312.869 🔽 Rotation 0,0 🗘 🖉 Render 🚭 EPSG:3857 (OTF) 🗨	/

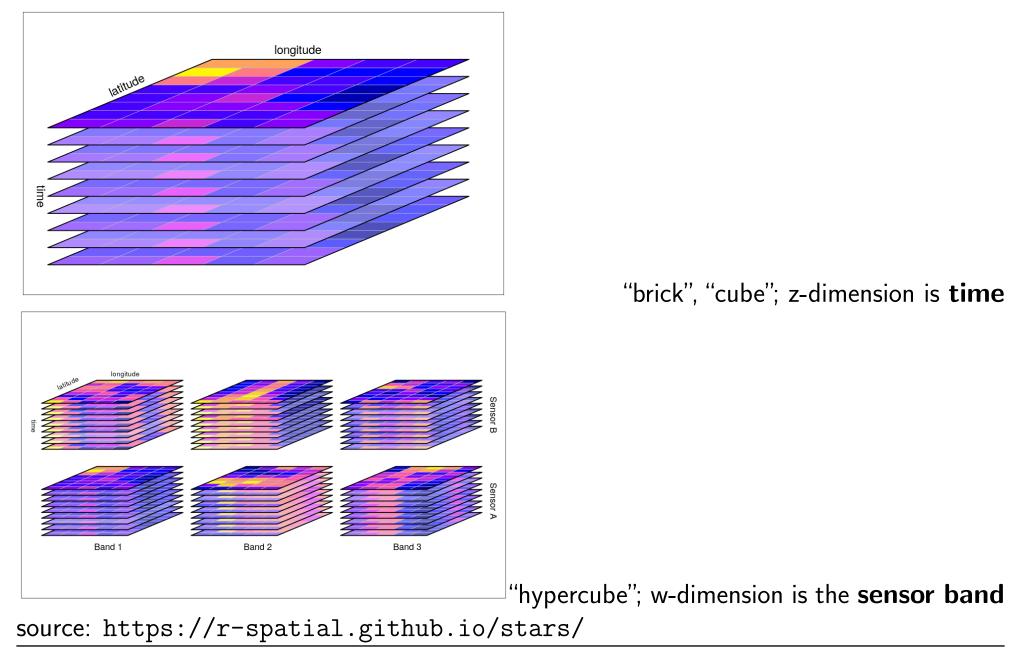
Types of spatial objects

Points 0-dimensional


Lines 1-dimensional, defined by points, linked as polylines

Polygons area enclosed by connected polylines

Curves defined by control points and piecewise polynomials of the coördinates


Grid cells "rasters"; (usually regular) tesselation of space

Types of spatial objects

D G Rossiter

Grid objects

Spatial data – what is special?

- Points are implicitly related by **distance** and **direction** of **separation**
- Polygons are implicitly related by adjacency, containment, distance between centroids
- Polygons have shape, perimeter, compactness ...
- Such data requires **different** analysis than non-spatial data
 - e.g. can't assume independence of observations (**spatial dependence/correlation**)
- All objects with the same CRS are implicitly related, can be **overlayed**
- Some analysis is **purely spatial** (e.g., point-pattern analysis)
- They need special data structures which recognize the special status of coördinates

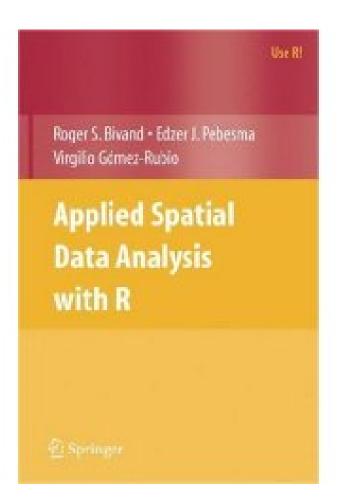
R approaches

- No native S classes for these, but S is **extensible** with new classes, methods and packages
- Add-in package which defines spatial classes and methods: sf (Simple Features), sp (Spatial classes), raster and terra; stars (Spatiotemporal Arrays, Raster and Vector Data Cubes)
- Add-in packages to **access external files**: e.g., ncdf4 (netCDF)
- Add-in packages for **spatial analysis**, e.g., (among many others):
 - spatial (Ripley)
 - gstat (Pebesma)
 - spatstat (Baddeley & Turner): point patterns
 - RandomFields (Schlather)
 - geoR, geoRglm (Ribeiro & Diggle Model-based geostatistics)
 - circular: directional statistics

— ...

Interface to GIS

- Add-in packages:
 - sf: interface to Simple Features specification¹
 - sp: interface to Spatial* structures
 - stars: interface to space-time structures
 - rgdal: interface to Geospatial Data Abstraction Library (GDAL) (*deprecated*)
 - * Coördinate Reference Systems, transformations
 - * Read/write to foreign files
 - raster, terra read, write, manipulate grid ("raster") data structures
 - ncdf4 read, write, manipulate netCDF data structures (large raster "bricks")
 - maptools: interface to external spatial data structures e.g. shapefiles (*deprecated*)


CRAN Task View: Analysis of Spatial Data

http://cran.r-project.org/web/views/Spatial.html explains which packages are
available:

- Classes for spatial data
- Handling spatial data
- Reading and writing spatial data
- Point pattern analysis
- Geostatistics
- Disease mapping and areal data analysis
- Spatial regression
- Ecological analysis

Textbook with examples and code

Bivand, R. S., Pebesma, E. J., & Gómez-Rubio, V. (2013). *Applied Spatial Data Analysis* with R, 2nd ed.: Springer. http://www.asdar-book.org/; ISBN 978-1-4614-7617-7; 978-1-4614-7618-4 (e-book)

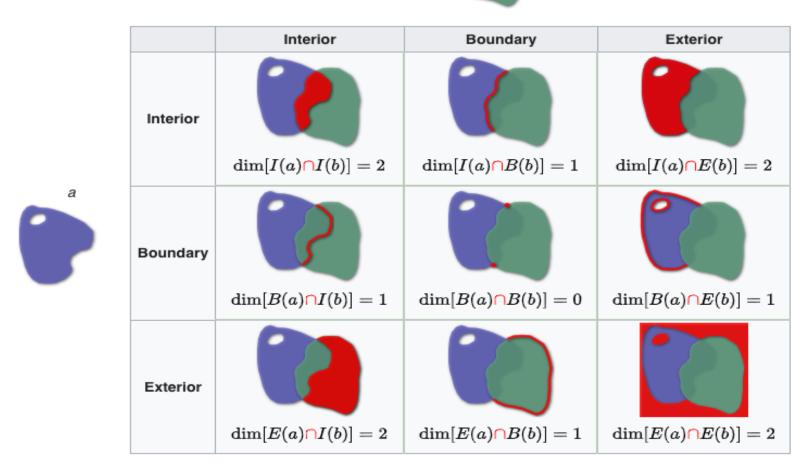
Topic: The sf package

- sf = "Simple Features"
- Extensive documentation (including tutorials) at the "Simple Features for R"² R-spatial project

"Simple features ... refers to a formal standard (ISO 19125-1:2004) that describes how **objects in the real world** can be **represented in computers**, with emphasis on the **spatial geometry** of these objects. It also describes how such objects can be **stored in and retrieved from databases**, and which **geometrical operations** should be defined for them."³

²https://r-spatial.github.io/sf/index.html

³https://r-spatial.github.io/sf/articles/sf1.html


Simple features

- specifies a common storage and access model of geometries used by GIS
 - e.g., 2D point, line, polygon, multi-point, multi-lines; also 3D
- geometric information contained in a special geometry field in a data.frame structure
 - does not require a hierarchy of S4 classes (see sp, below)
- supports the Dimensionally Extended nine-Intersection Model (DE-9IM), which specifies topological relations
 - replaces rgeos "Interface to Geometry Engine Open Source (GEOS)"

Dimensionally Extended nine-Intersection Model (DE-9IM)

b

source: https://en.wikipedia.org/wiki/DE-9IM

Building spatial objects in sf

- All methods begin with $st_{-} =$ "space-time"
- st_sfc: "Create simple feature geometry list column, set class, and add coordinate reference system and precision"
- st_crs: "Specify a Coördinate Reference System" → relates coördinates to the real world

```
geometry type: POINT
dimension: XY
bbox: xmin: 0 ymin: 1 xmax: 1 ymax: 1
CRS: WGS84
POINT (-76 42)
POINT (-77 43)
```

Working with spatial objects in sf

- See the "cheat sheet"⁴ and the tutorial introduction⁵
- topology: st_contains, st_covers, st_intersects
- operations: st_intersection, st_difference, st_crop ...
- new geometry: st_centroid, st_buffer, st_make_grid, st_coordinates ...
- coördinate systems: st_crs, st_transform

⁴https://github.com/rstudio/cheatsheets/blob/main/sf.pdf ⁵https://r-spatial.github.io/sf/articles/sf1.html

Topic: External file formats

R can deal with geographic data in "all" file formats.

- vector
- gridded ("raster")

Vector data structure: ESRI shapefiles

- Proprietory format, but reasonably well-documented⁶
- Geometry + attributes of 2D geometries
- Does not explicitly store topology, must be built on-the-fly

Vector data structure: File Geodatabases

- Originally from ESRI
- Allows storage of multiple data layers; allows very large data layers
- Specification is known, so drivers developed for GDAL (rGDAL package, QGIS ...)

Grid data structures

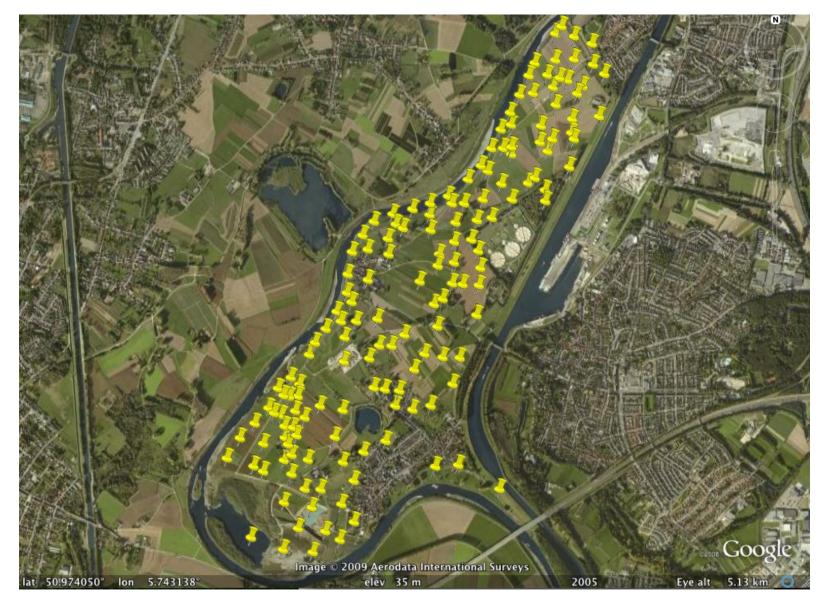
- Many standards: GeoTIFF, ASCII, NetCDF (Network Common Data Form, from UCAR [University Corporation for Atmospheric Research])⁷...
- represented in R as (sparse) matrices, sometimes implicit by the grid topology (e.g., sp package)
- raster package⁸; now updated as terra⁹; both from Robert Hijmans
- stars "space-time data structures"; includes space-time **cubes**
- fields package from NCAR "curve and function fitting with an emphasis on spatial data and spatial statistics."
- analysis of grids also in sp, spatial

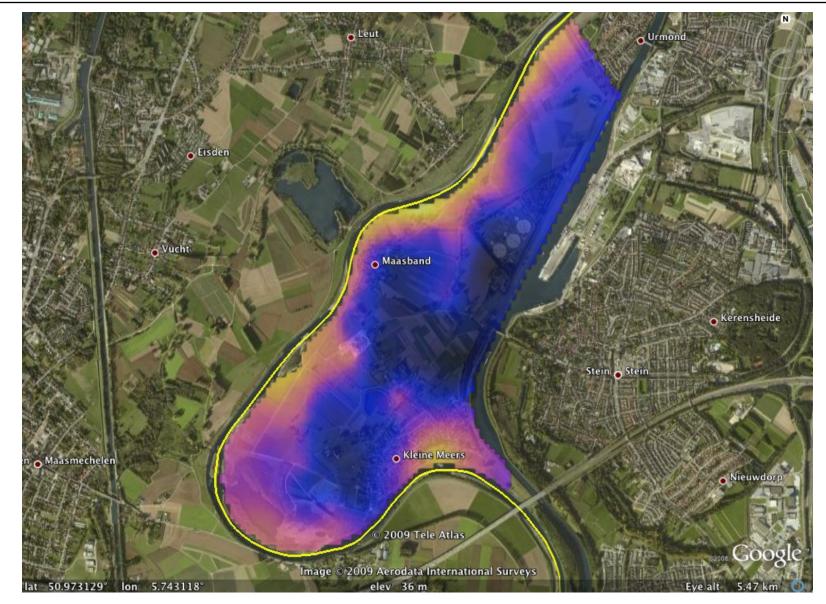
⁷https://www.image.ucar.edu/GSP/Software/Netcdf/ ⁸https://rspatial.org/raster/pkg/index.html ⁹https://rspatial.org/terra/pkg/index.html

Topic: Interfaces with support libraries

Most spatial data is prepared outside of R, usually in a GIS or spreadsheet.

Results of R analyses are often presented outside of R, e.g., as GIS maps. How is information exchanged?


- Import and export
- Projections and Datums
- Transformations


GDAL

GDAL is the **Geospatial Data Abstraction Library**¹⁰, an open-source **translator** library for geospatial data formats. It is accessed from almost all geospatial programs (GIS, spatial statistics).

- The sf package uses this, it has functions to interact with GDAL not meant to be called directly by users
 - Various stars functions, e.g. read_stars to read rasters
- R has a *deprecated* rgdal package, which uses the sp classes.
 - readGDAL; writeGDAL: Read/write between GDAL grid maps and Spatial objects
 - readOGR, writeOGR: Read/write spatial vector data using OGR (including KML for Google Earth)

Example Google Earth layers created with writeOGR

Converting between CRS

- The st_transform method of the sf R package
- The spTransform method of the rgdal R package
- implement the PROJ.4 system¹¹ also found in the GDAL "Geospatial Data Abstraction Library" program¹²
- can convert between projections, backwards and forwards to/from geodetic coördinates
- with or without a datum transformtation

11 http://trac.osgeo.org/proj/

12 http://www.gdal.org/

Example – Meuse River soil pollution dataset (NL)

```
> require(sp)
> ## load an example dataset from the sp package
> data(meuse)
> ## convert to a spatial object; we must know which fields represent coordinates
> coordinates(meuse) <- ~x + y</pre>
> proj4string(meuse)
[1] NA
> ## no CRS yet; define the CRS from metadata; first load GDAL
> require(rgdal)
> proj4string(meuse) <- CRS("+init=epsg:28992")</pre>
> proj4string(meuse)
   [1] "+init=epsg:28992 +proj=sterea
   +x_0=155000 +y_0=463000 +ellps=bessel
   +towgs84=565.417,50.3319,465.552,-0.398957,0.343988,-1.8774,4.0725
   +units=m +no_defs"
```

> ## EPSG database contained all required parameters

... continued

> ## un-project to geodetic system, also changing the datum

> meuse.wgs84 <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))</pre>

> proj4string(meuse.wgs84)

[1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

> ## now this could be forward-projected into, e.g., UTM 31N on the WGS84 datum > ## we find the appropriate initialization in the EPSG database > meuse.wgs84.utm31 <- spTransform(meuse.wgs84, CRS("+init=epsg:32631")) > proj4string(meuse.wgs84.utm31)

[1] "+init=epsg:32619 +proj=utm +zone=31 +datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

> ## note the origin is implicit in the definition of UTM31N > ## now go directly from RDH to geographic coords, keeping the ellipsoid > meuse.rdh.geo <- spTransform(meuse, CRS("+proj=longlat")) > ## and to UTM31N on that ellipsoid > meuse.rdh.utm31 <- spTransform(meuse, CRS("+proj=utm +zone=31"))</pre>

Spatial analysis with R

Compare coördinates of the first point in different CRS:

> coordinates(meuse)[1,] # RDH 181072 333611 > coordinates(meuse.wgs84)[1,] # WGS84 datum long/lat 5.758536 50.991562 > coordinates(meuse.rdh.geo)[1,] # RDH datum long/lat 5.759029 50.992415 > coordinates(meuse.wgs84.utm31)[1,] # UTM31N on WGS84 datum 693585 5652509 > coordinates(meuse.rdh.utm31)[1,] # UTM31N on RDH datum 693616 5652605 Discrepency in UTM coördinates $\sqrt{(585 - 616)^2 + (509 - 605)^2} = 100.9$ m

Example – with sf

> (meuse.sf <- st_as_sf(meuse, coords=c("x", "y"))) # specify columns with coords > st_crs(meuse.sf) <- 28992 # set CRS from the EPSG code > meuse.sf

Simple feature collection with 155 features and 12 fields geometry type: POINT dimension: XY bbox: xmin: 178605 ymin: 329714 xmax: 181390 ymax: 333611 projected CRS: Amersfoort / RD New First 10 features: cadmium copper lead zinc elev dist om ffreq dist.m geometry 85 299 1022 7.909 0.00135803 13.6 1 50 POINT (181072 333611) 11.7 1 2 81 277 1141 6.983 0.01222430 14.0 1 30 POINT (181025 333558) 8.6 3 6.5 68 199 640 7.800 0.10302900 13.0 1 150 POINT (181165 333537).

Topic: The gstat package

- R implementation of the stand-alone **gstat** package for geostatistics
- Author and maintainer Edzer Pebesma
 - mostly developed at Physical Geography, University of Utrecht (NL)
 - since Oct 2007 at Institute for Geoinformatics, University of Münster (D)
- 1992 ???
- Purpose: "modelling, prediction and simulation of geostatistical data in one, two or three dimensions"
- Can use either the sf or sp spatial data structures

There are other R packages with overlapping aims but different methods and interfaces (e.g, geoR, spatial, RandomFields).

Modelling with gstat

- variogram: Compute **experimental variograms** (also directional, residual)
 - User-specifiable cutoff, bins, anisotropy angles and tolerances
 - Can use Matheron or robust estimators
 - Optional argument to produce a variogram cloud (all point-pairs)
 - Optional argument to produce a **directional variogram surface** ("map")
- vgm: specify a **theoretical variogram model** for an empirical variogram
 - Many authorized models
 - Can specify models with **multiple structures**
- fit.variogram: least-squares adjustment of a variogram model to the empirical model
 - User-selectable fitting criteria
 - Can also use restricted maximum likelihood fit.variogram.reml
- fit.lmc: fit a linear model of coregionaliztion (for cokriging)
- gstat: complicated procedures, e.g., co-kriging.

Conclusion

- A **disadvantage** of working in R is the lack of interactive graphical analysis (e.g. in ArcGIS Geostatistical Analyst)
- The main **advantage** of doing spatial analysis in R is that the full power of the R environment (data manipulation, non-spatial modelling, user-defined functions, graphics ...) can be brought to bear on spatial analyses
- The advantages of R (**open-source**, **open environment**, packages contributed and vetted by statisticians) apply also to spatial analysis