Clustering

D G Rossiter

Cornell University, Soil & Crop Sciences Section

Nanjing Normal University, Geographic Sciences Department 南京师范大学地理学学院

March 18, 2022

э

< ロ > < 同 > < 回 > < 回 > < 回 >

- Given a set of objects with some attributes (measured properties) ...
- ... group the objects into groups = "clusters" ...
- ... such that members of each cluster are "similar" and the clusters are "dissimilar"
 - i.e., internally homogeneous, externally heterogeneous
- Two types:
 - **Centroid-based**: one set of *k* classes
 - Hierarchical: increasingly-general groupings, can form any number of classes from one hierarchy

- "nature" determines the degree to which clusters can/should be formed
 - is there a natural hierarchy or not?
 - how many clusters?
 - how "confused" are they?
- the analyst tries to find clusters that match this "natural" clustering
- clustering can also be for a pre-determined purpose (e.g., fixed number of sampling strata)

- Soil profiles: measurements of many properties at several depths
- People, households, census tracts ... with attributes
- Space-time profiles of micropollutants in stream water [1]
- Metro stations: Time profiles of ridership; points of interest near stations

- How do we measure "similarity"?
- How do we build groups?
- How do we decide how many clusters k to make from n individuals?
 - hierarhical: where to cut the hierarchy
 - centroid-based: number to form

Example 1: soil profiles

- 40 soil profiles from Shanghai City
- 24 properties measured as averages or single values within surveyor-determined "genetic horizons" (layers)
- Genetic horizons not at fixed depths
 - need some way to harmonize these: by horizon type? by depth slice?
- Aim: cluster these "soil series" into functional groups, e.g., for management recommendations

Property: bulk density by depth

C

Property: free Fe by depth

Property: sand proportion (log ratio) by depth

Example 2: spatio-temporal micropollutants

source: [1], Figure 1. 17 sites, 19 sampling times

D G Rossiter (CU)

Clustering

March 18, 2022 10 / 41

∃ ► < ∃ ►

Image: A matrix and a matrix

Example 3: Syracuse (NY) census and health indicators

63 census tracts

demographic variables "proportion older than 65 years", "proportion own their home"

health-related variable "potential exposure to carcinogenic chemicals"

Leukemia incidence and possible feature-space predictors

PEXPOSURE exposure to TCE (tricholoroethylene)¹ sources

- toxic chemical linked to cancer
- PCTAGE65 % of residents > 65 years old
 - cancer incidence may increase with age

PCTOWNHOME % of homes owned

 wealthier =? better health care? less likely to have worked in a chemical plant?

https://www.cdc.gov/niosh/topics/trichloroethylene/default.html = nqc

Form groups around a centroid of the group

- one of the objects in the group, the **exemplar**
- anywhere in feature space: mean or median of the group
- Not hierarchical
- The number of clusters is selected by the analyst
 - external reason for that number, e.g., sampling strata
 - or, various methods to "optimize", see below
- Hastie et al. [2] Chapter 13 "Unsupervised Classification"
- James et al. [3] a simplified explanation

- Centroids are the means of a group of objects
 - Finds the approximate "centres" of the clusters in univariate or multivariate space
 - Criterion: *minimize* within-cluster variance; *maximize* between-cluster variance
 - > No deterministic solution, must iterate; can get stuck in local optima
 - Allocates and then re-allocates individuals to clusters; re-computes centroids

- Like k-means, but optimizes the median of the cluster
- Non-parametric, avoids problems with extreme values

- like k-means or k-medians, but the centroid must be one of the observations
- this is called the exemplar
- it is "the most typical" representative of the cluster
- useful if you want to select a representative observation in a cluster

Clustering: univariate k-means, Syracuse (1)

inare ente Only suppo	stori for conallor datasate l		
lease note: only suppo	rood for smaller datasets.)		Summary
nput:			
s	elect Variables		Hethod: Eleans
X Y POP8 TRACTCAS PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases V=			Statistication without Determine Statistication of the second of the Wind formation attacked on 15 Wind formation attacked on 15 Contact seasced on 15 Con
Use geometric cer Weighting: 0	trolds Auto Weighting		The total sum of sequeres: 62 withle-Glasser sub of sequeres: Withle-Glasser S.G. (1, 0, 1000) (2, 0, 1002) (3, 0, 1002) (3, 0, 1002) (3, 0, 1002) (3, 0, 1002) (4, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
Number of Clusters:	8	0	C6 0.123755 C5 0.144791
Minimum Bound:	X 01		C6 0.0708413 C7 0.00273966 C8 0
Transformation:	Standardize (2)		The total within-cluster sum of squares: 0.998707
Initialization Method:	KMears++	0	The ratio of between to total sum of squares: 0.98402
Initialization Re-runs:	150		
Use specified seed:	Change Seed		
Maximal Iterations:	1000		
Distance Function:	Duclidean		
Dutput:			

Minimize the within-class/maximize between-class variance of proportion 65+ years old Cluster centres; within-cluster standard deviations; ratio of between to total sum of squares

D G Rossiter (CU)

Clustering

Clustering: univariate k-means, Syracuse (2)

D G Rossiter (CU)

March 18, 2022 18 / 41

3

(日)

Clustering: multivariate geographic k-means (1)

ease note: Only support	rted for smaller datasets.)		
			Summary
nput:			
S	elect Variables		Method: KMeans
X Y POP8			Number of clusters: 8 Initialization method: KMeans++ Initialization re-runs: 150 Maximum iterations: 1000
TRACTCAS			Transformation: Standardize (Z) Distance function: Fuclidean
PROPCAS			Cluster centers:
PCTOWNHOME			POP8 PCTOWNHOME PCTAGE65P Z PEXPOSURE
PCTAGE65P			C1 -0.662873 -1.07044 -0.55199 0.0180638 0.00516395
Z			C2 0.155369 0.255717 0.338954 0.119852 -0.681504
AVGIDIST			C3 0.55939 0.0724361 -0.751509 -0.540252 0.735512 C4 -0.520506 0.766516 -0.00157755 0.0800812 1.49754
PEXPOSURE			C5 0.656831 0.659811 0.0617538 -0.34015 -1.73062
Cases			C6 0.85857 =0.305439 =0.714974 =0.467654 =0.674409 C7 0.415146 0.29515 1.59137 =0.345936 0.451505
Vm			C8 -1.75555 -0.2365 2.04196 3.16833 0.411726
			The total sum of squares: 310
🖾 Use geometric cen	troids Auto Weighting		Within-cluster sum of squares:
Weighting: 0	1 0.62E		Within cluster S.S.
			C1 12.9182
Parameters			C2 17.1273 C3 13.1004
Number of Obstance			C4 15.5716
Number of Clusters:	8	~	C5 10.423 C6 30.2564
Minimum Bound:	X 01		C7 17.2783
			C8 9.74216
Transformation:	Standardize (Z)	0	The total within-cluster sum of squares: 126.417
Initialization Method:	KMeans++	0	The between-cluster sum of squares: 183.583 The ratio of between to total sum of squares: 0.592202
L Martin R		-	and a squares of the squares of squares of states

Algorithm to minimize the within-class/between-class variance, while forcing clusters to be **spatially-continguous**

Also uses multivariate distan	· · · · · · · · · · · · · · · · · · ·	୬୯୯	
D G Rossiter (CU)	Clustering	March 18, 2022	19/41

Clustering: multivariate geographic k-means (2)

March 18, 2022 20 / 41

э

< ロ > < 同 > < 回 > < 回 >

- increasingly-general groupings
- can form any number of classes from one hierarchy
- reveals "distances" in feature space between objects

Top-down ("divisive") split the entire set into two groups, then these groups into two ...

Bottom-up ("agglomerative") group two individuals into a group, then build larger groups

- clusters at each level of the hierarchy are created by merging clusters at the next lower level.
- several "linkage" methods to merge lower-level clusters
- must specify a measure of pairwise dissimilarities among any two observations
- must specify a measure of group dissimilarity between (disjoint) groups of observations,

Pairwise dissimilarity

- "Distance" in multivariate attribute space
 - Euclidian
 - Mahalanobis (takes into account variance/covariance of attributes)
- Generally standardize all attributes to mean 0, standard deviation 1, to give equal weight
- But can use centred original values or some other weighting method

- Aim: find two groups to merge, considering all groups aleady formed. Note that "groups" here include single observations
- single linkage "nearest neighbour": most similar individuals within the two groups
- complete linkage "furthest neighbour": most dissimilar pair of individuals within the two groups
- group average linkeage average dissimilarity between all observations in one group with all observations in the other

Dendrogram - complete linkage

Cluster Dendrogram

Vertical scale is the dissimilarity measure

D G Rossiter (CU)

March 18, 2022 25 / 41

Results of different linkage strategies

source: [3]

D G Rossiter (CU)

March 18, 2022 26 / 41

Spatio-temporal hierarchical clusters

source: [1], Figure 2 core micropollutants sewage treatment plant source diffuse

D G Rossiter (CU)

March 18, 2022 27 / 41

Numerical Soil Classification (aqp R package)

Numerical soil classification

Multivariate hierarchical, shows "distance" between objects a state of the state of

D G Rossiter (CU)

Clustering

March 18, 2022 28 / 41

- Can decide how many groups, and cut the dendrogram at the level to produce that number
- Or, can decide how disimilar groups must be, and cut the dendrogram at that level

Forming different numbers of groups from one dendrogram

source: [3]

March 18, 2022 30 / 41

Example: Syracuse census and health

Clustering: multivariate hierarchical: specification and dendrogram

	rted for smaller datasets	6J	Dendrogran	n Summary	
and the second s					
Sel	lect Variables			_	
x					
Y					
POP8					
TRACTCAS				i	
PROPCAS					
PCTOWNHOME					
PCTAGE65P				- E	
2					
AVGIDIST				· ·	
PEXPOSURE				1	
Cases					
Van			1		
Transformation:	Standardize (Z)	0		- L	ŝ
Transformation: Method:	Standardize (Z) Ward's-linkage	0			È
Transformation: Method: Distance Function:	Standardize (Z) Ward's-linkage Euclidean	0			Ę
Transformation: Method: Distance Function: Spatially Constraint:	Standardize (Z) Ward's-linkage Euclidean	0 0 0			Ę
Transformation: Method: Distance Function: Spatially Constraint:	Standardize (Z) Ward's-linkage Euclidean	0		r G	E
Transformation: Method: Distance Function: Spatially Constraint:	Standardize (Z) Ward's-linkage Euclidean	0 0 0			
Transformation: Method: Distance Function: Spatially Constraint:	Standardize (Z) Ward's-linkage Euclideen	0 0 0			
Transformation: Method: Distance Function: Spatially Constraint: urput: Number of Clusters:	Standardize (Z) Ward's-linkage Euclideen	0			
Transformation: Method: Distance Function: Spatially Constraint: Arput: Number of Clusters: Sea Cluster in Elektric	Standardize (2) Ward's-Inkage Euclidean	0			
Transformation: Method: Distance Function: Spatially Constraint: urput: Number of Clusters: Save Cluster in Field:	Standardize (2) Ward's-linkage Euclidean 4 CL4	0			
Transformation: Method: Distance Function: Spatially Constraint: Number of Clusters: Save Cluster in Field:	Standardize (2) Ward's-linkage Euclidean UCL4	0			
Transformation: Method: Distance Function: Spatially Constraint: Number of Clusters: Save Cluster in Field: Run San	Standardize (2) Ward's-linkage Euclidean 4 CL4 Close				

Image: A matrix and a matrix

Group at any level of detail; see "distance" between groups in multivariate attribute space

D G Rossiter	(CU)
--------------	------

∃ ► < ∃ ►

Clustering: cluster statistics

```
Number of clusters: 6
Transformation: Standardize (Z)
Method: Ward's-linkage
Distance function: Euclidean
Cluster centers:
            PCTOWNHOME | PCTAGE65P | Z
    POP8
                                          PEXPOSURE
    -----|
C1 4.49078 -1.46223 -0.430876 -0.637778
                                          -0.309463
C2 -0.205116 -0.867063 -0.709461 -0.2613
                                          0.0199737
C3 0.345393 0.56543
                      0.0892871 -0.13715
                                          -1.08593
C4 -0.173746 0.847444 -0.137512 -0.0483164 1.28624
C5 -1.75555 -0.2365 2.04196 3.16833
                                          0.411726
C6 0.281756 -0.768694 2.39247 -0.012324 -0.00152647
```

```
The total sum of squares: 310

Within-cluster sum of squares:

| Within cluster S.S.|

|--|------

|C1|0

|C2|36.83777

|C3|33.667

|C4|27.6518

|C5|9.74216

|C6|4.68514

The total within-cluster sum of squares:
```

```
The between-cluster sum of squares: 197.416
The ratio of between to total sum of squares: 0.636827
```

112.584

D G Rossiter (CU)

March 18, 2022 32 / 41

イロト 不得 トイヨト イヨト 二日

Clustering: multivariate hierarchical: maps

Different levels of detail.

- n	\mathbf{c}	Doccitor	$(C \Pi)$
		NUSSILEI	11. U

March 18, 2022 33 / 41

3

< ロ > < 同 > < 回 > < 回 >

"Optimum" number of clusters

internal based on the between- and within-cluster variances

- How well can clustering partition the dataset?
- When does too many clusters result in partitioning "noise", not structure?

external based on the match of proposed clusters with some external classification

- How well does numerical clustering match predefined clusters?
- e.g., predefined soil classes

Internal optimization

- R package NbClust; 30 indices
- e.g. "silhouette" index: $\frac{1}{n} \sum_{i=1}^{n} S(i), \in [-1, 1]$ where:
 - $S(i) = \frac{b(i)-a(i)}{\max\{a(i);b(i)\}}$ where:
 - * $a(i) = \frac{\sum_{j \in \{C_r \setminus i\}}}{n_r 1} d_{ij}$: the average dissimilarity of the *i*th object to all *other* objects of cluster C_r
 - * $b(i) = \min_{s \neq r} \frac{\sum_{j \in C_s} d_{ij}}{n_s}$: the average dissimilarity of the *i*th object to all objects of cluster C_s
 - * *i* is a single object, of *n* total, that has been clustered into cluster C_r
 - * *j* is a single object, of *n* total, that has been clustered into class C_s
 - * *d_{ij}* is the distance in attribute space between two objects
- Choose the maximum value of the index.

- R package fpc "flexible procedures for clustering"
- adjusted Rand index (ARI)
 - range from -1 = random assignment to +1 = perfect agreement

$$ARI = \frac{\sum_{ij} \binom{n}{2} - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}{\left[\sum_{i} \binom{n_{i}}{2} + \sum_{j} \binom{n_{j}}{2}\right] / 2 - \left[\sum_{i} \binom{n_{i}}{2} \sum_{j} \binom{n_{j}}{2}\right] / \binom{n}{2}}$$
(1)

where n_{ij} is the number of observations in cluster *i* and class *j*, n_i is the total observations in cluster *i* and n_j is the total observation in class *j*.

Example: k-means clustering

Hunter Valley (NSW) landscape clustered by covariates related to soil geography. Colours are clusters. Example of over-clustering – overlap in feature space

D G Rossiter (CU)

Clustering

March 18, 2022 37 / 41

Example: Hierarchical clustering

Hierarchical clustering of spectra

Spectral clusters

source: [4]

2-8 clusters, depending on where the dendrogram is cut - which is "optimum"?

D G Rossiter (CU)	Clustering	March 18, 2022	38 / 41

- E

Internal optimization indices

Dunn

Silhouette

Frey

2 to 4 clusters are "optimal" by these internal measures

External optimization

	В	J	G	N	Α	I	Н	М
1	0	0	9	7	0	0	0	7
2	32	11	199	84	0	3	61	252
3	0	27	0	19	5	0	2	79
4	0	0	22	10	0	0	9	0

Cross-classification, e.g., 4 spectral clusters vs. 8 soil orders

Adjusted Rand Index: 0.002; 0.047; 0.069; 0.068; 0.063; 0.092; 0.091 for 2 - 8 spectral classes

- [1] Corey M. G. Carpenter and Damian E. Helbling. Widespread micropollutant monitoring in the Hudson River estuary reveals spatiotemporal micropollutant clusters and their sources. *Environmental Science & Technology*, 52(11):6187–6196, Jun 2018. doi: 10.1021/acs.est.8b00945.
- [2] Trevor Hastie, Robert Tibshirani, and J. H Friedman. *The elements of statistical learning data mining, inference, and prediction*. Springer series in statistics. Springer, 2nd ed edition, 2009. ISBN 978-0-387-84858-7.
- [3] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani. An introduction to statistical learning: with applications in R. Springer texts in statistics. Springer, 2013. ISBN 978-1-4614-7137-0.
- [4] R. Zeng, D. G. Rossiter, and G. L. Zhang. How compatible are numerical classifications based on whole-profile vis-NIR spectra and the Chinese Soil Taxonomy? *European Journal of Soil Science*, 70(1):54-65, 2019. doi: 10.1111/ejss.12771.

(日)