DGR

Assessment of model quality

Internal evaluation

Empirical statistica models Machine-learning

models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actual on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Model Evaluation

D G Rossiter

Cornell University, New York State College of Agriculture & Life Sciences School of Integrative Plant Sciences, Section of Soil & Crop Sciences 南京师范大学地理学学院

February 23, 2023

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learnin

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

2 Internal evaluation

Empirical statistical models Machine-learning models Kriging models

3 External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

- **5** Cross-validation
- 6 Spatial patterns

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistic models
- Machine-learni
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actua on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

1 Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning models Kriging models

External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

- **5** Cross-validation
- 6 Spatial patterns

DGR

Assessment of model quality

Internal evaluation

- Empirical statistica models
- Machine-learnin models
- Kriging models

External evaluation

- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

• With any **predictive** method, we would like to know how good will be its predictions.

Assessment of model quality

- i.e., how well is the model expected to perform on **new** information?
- This is model **evaluation**, often called model **validation**.
- Contrast this with model **calibration**, when we are building (fitting) the model.
 - also called model training
 - i.e., how well does the model fit the training information?

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistical models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actua
- on predicted
- Linn's Concordance
- Recompling
- Cross-validation
- Spatial patterns

Why the term "evaluation"?

- We prefer the term **evaluation** because "validation" implies that the model is correct ("valid"); that of course is never the case.
- We want to **evaluate** how close it comes to reality and how **useful** it is.
- "Evaluation" has many aspects, not just statistical.
 - Oreskes, N. (1998). Evaluation (not validation) of quantitative models. *Environmental Health Perspectives*, 106(Suppl 6), 1453–1460. DOI: 10.1289/ehp.98106s61453¹
 - Oreskes, N., et al. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263, 641–646. DOI: 10.1126/science.263.5147.641²

¹https://doi.org/10.1289/ehp.98106s61453

²https://doi.org/10.1126/science.263.5147.641

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actua
- on predicted
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Non-statistical aspects of model quality

- appropriate model form
- reasonable link between model form / assumptions and what is known about the process
- fitness for use
- interpretability, communication with model users
- ...

DGR

Assessment of model quality

Internal evaluation

- Empirical statistica models
- models
- Kriging models

External evaluation

- Evaluation measures
- Model efficiency coefficient
- Regression of actua on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Internal vs. external evaluation

- Internal Only using the calibration/training information and model diagnostics
- External Using external information, not used in model calibration/training
- Cross-validation Simulating external assessment with the same dataset used for model building

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learni models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Linn's Concordanc

contasion macrie

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

2 Internal evaluation

Empirical statistical models Machine-learning models Kriging models

External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

- **5** Cross-validation
- 6 Spatial patterns

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Internal evaluation: fit to calibration set

- How well does the **calibrated model** reproduce the **calibration set**?
- This is called the **goodness-of-fit** to the calibration data set.
- e.g., for Linear models: coefficient of determination R²
 - Adding parameters to a model increases its fit; are we fitting **noise** rather than **signal**? Use adjusted measures, e.g. adjusted *R*² or Akaike Information Criterion (AIC)
- 1:1 scatterplot of actual vs. fit, compute
- no protection against over-fitting
- no evaluation of the model form

DGR

Assessment of model quality

Internal evaluation

- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Internal evaluation of empirical-statistical models

- e.g., (multiple) linear regression
- examine modelling assumptions (model diagnostics)³
 - homoscedascity, no relation between residuals and fitted values, normally-distributed residuals ...
 - spatial independence of residuals (otherwise, use GLS)
 - variance inflation factors of multiple predictors
- examine residuals does the model fit equally well throughout the range?

 $^{^3 \}text{Cook},$ R. D., & Weisberg, S. (1982). Residuals and influence in regression. Chapman and Hall. ISBN 978-0-412-24280-9

DGR

Assessment of model quality

Internal evaluation

Empirical statistical models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Non-spatial linear model diagnostics

DGR

Assessment of model quality

Internal evaluatior

Empirical statistical models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Spatial dependence of linear model residuals

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency

coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Is the model form justified? (1)

Anscombe, F. J. (1973). Graphs in Statistical Analysis. American Statistician, 27(1), 17–21. https://doi.org/10.2307/2682899

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Is the model form justified? (2)

Diagnostic: residual vs. fit

Residual

DGR

Assessment of model quality

Internal evaluation

Empirical statistical models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

coefficient

Regression of actual on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Internal evaluation of machine-learning models

Each tree makes a separate prediction, so examine and summarize the **distribution** of the predictions of individual trees

- Continuous predictions (e.g., quantile random forests)
 - summarize by the standard deviation, (non-)normality ...
- **Categorical** (class) prediction (e.g., probability classification trees)
 - summarize by maximum probability, confusion index, Shannon entropy (see below)

DGR

Internal evaluation

Empirical statistic models

Machine-learning models

Kriging models

External evaluation

Evaluation measure Model efficiency

coefficient

on predicted

Linn's Concordance

Confusion matric

Resampling

Cross-validation

Spatial patterns

Random forest: all trees

Individual tree predictions for observation 1

Summary statistics:

Min. 1st Qu. Median Mean 3rd Qu. Max. 2.348 2.976 3.026 3.057 3.155 3.265 So RF prediction is 3.057.

DGR

Assessment of model quality

Internal evaluation

Empirical statistical models

Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency

coefficient

on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Internal evaluation of classification models (1)

Maximum probability

- This shows how probable is the majority choice.
- Closer to 1 is better
- If too low, we can refuse to predict (the model is too uncertain)

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Crop classification from remote sensing using random classification forest

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learnin models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Internal evaluation of classification models (2)

Confusion index

This shows how well the majority choice is separated from the next best choice: $\!\!\!^4$

 $CI = (1 - {\mu_{max} - \mu_{(max-1)}})$

- $\mu_{
 m max}$ is the probabilty of the most probable class
- $\mu_{\max-1}$ is the probability of the second most probable class.

⁴Burrough, P. A., van Gaans, P. F. M., & Hootsmans, R. (1997). Continuous classification in soil survey: Spatial correlation, confusion and boundaries. Geoderma, 77(2–4), 115–135 https://doi.org/10.1016/S0016-7061(97)00018-9)

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Crop classification from remote sensing using random classification forest

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency coefficient

Regression of actual on predicted Linn's Concordance

Confusion matrice

Resampling

Cross-validation

Spatial patterns

Internal evaluation of classification models (3)

Shannon entropy

A measure of overall uncertainty⁵

For a variable *z* with *n* classes, each of which has estimated proportion $\hat{\pi}(z_i)$:

$$H_z = -\sum_{i=1}^n \hat{\pi}(z_i) \cdot \log_n \hat{\pi}(z_i)$$

The reason to use base-n logarithms is that 0 represents no uncertainty, and 1 maximum.

⁵Kempen, B., Brus, D. J., Heuvelink, G. B. M., & Stoorvogel, J. J. (2009). Updating the 1:50,000 Dutch soil map using legacy soil data: A multinomial logistic regression approach. Geoderma, 151(3-4), 311-326. https://doi.org/10.1016/j.geoderma.2009.04.023

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Crop classification from remote sensing using random classification forest

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learnin models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Internal evaluation of Kriging predictions

- Because of its model structure, Kriging automatically computes a **kriging prediction variance** to go with each prediction.
- This is because that variance is **minimized** in kriging, *assuming the model of spatial dependence is correct*!
 - Variogram form, variogram parameters
 - OK: Assumptions of 1st and 2nd order stationarity (mean, covariance among point-pairs)
 - KED/UK: Assumptions of 2nd order stationarity (covariance among point-pairs model *residuals*)
- This kriging prediction variance depends *only* on the **point configuration** of the known points, and the **model of spatial correlation**, *not* on the data values!

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actu on predicted

Confusion matrice

Resampling

Cross-validation

Spatial patterns

Kriging predictions and variance at points

Jura (CH) topsoil heavy metals - Ordinary Kriging

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Kriging predictions and variance over a grid

Jura (CH) topsoil heavy metals – Ordinary Kriging

Prediction outside the range of spatial dependence is the *spatial mean* and *covariance*

DGR

Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning

models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actual on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Numerical summaries of kriging variance

- **Overall**: Mean, maximum kriging prediction variance
 - mean: on average, how precise is the prediction?
 - maximum: what is the worst precision?
- Spatial distribution of kriging prediction variance
 - Where is the prediction more or less precise?
 - These can be used as *optimization criteria* for comparing sampling plans, for samples to be used for Kriging

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learnin models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning models Kriging models

3 External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

5 Cross-validation

6 Spatial patterns

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learni
- models
- External
- evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actua on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

- This requires an **independent data set** that represents the **target population**
 - thus we can compare model predictions with reality.
- Two types:
 - Completely separate evaluation dataset from a target population to be evaluated
 - specific to this population
 - 2 Cross-validation using the calibration dataset, leaving parts out or resampling
 - the calibration dataset must represent the target population

External evaluation

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learnii models

Kriging models

External evaluation

- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Model evaluation with an independent dataset

Compare model **predictions** with **measured values** from an **independent data set**.

- This set can *not* be used in the calibration procedure!
- This set *must* be from the **target population** for the evaluation statistics
- Advantages:
 - objective measure of quality
 - can be applied to a separate population to determine extrapolation power of the model
- Disadvantages:
 - Higher cost
 - Poorer model? Not all observations can be used for modelling.

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learnin models
- Kriging models

External evaluation

- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Selecting the evaluation data set

- It must be a **representative** and **unbiased** sample of the **population** for which we want these statistics.
- Two methods:

Completely independent

- This can be from a different population than the calibration sample: we are testing the applicability of the fitted model for a different target population.
- 2 A representative subset of the original sample.
 - A random splitting of the original sample
 - This evaluates the population from which the sample was drawn, only if the original sample was unbiased
 - If the original sample was taken to emphasize certain areas of interest, the statistics do *not* summarize the validity in the whole study area
 - i.e., *biased* calibration sample → *biased* evaluation statistics!
 - Cross-validation (see below) is often preferable

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

models

Kriging models

External evaluation

Evaluation measures Model efficiency

coefficient Regression of actu

on predicted

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Probability vs. non-probability sample sets

- For evaluation statistics to represent the target population, the independent dataset must be from a **probability sample**⁶
- Otherwise, the statistics refer to a non-probability sample and **no inferences about the population** can be derived

 $^{^{6}\}text{e.g.},$ Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for validation of digital soil maps. European Journal of Soil Science, 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- D-----!!--
- Cross-validatio
- Spatial patterns

- The fundamental measure: (actual predicted = residual)
- For each evaluation observation i:

$$r_i = (\hat{y}_i - y_i)$$

where: \hat{y}_i is a prediction; y_i is an actual (measured) value

- The entire **distribution** of the residuals can also be examined (max, min, median, quantiles) to make a statement about the model quality
- **unusual** individual residuals can be identified and examined in which cases does the model fail badly?

Evaluation measures

Actual

4000 3000 2000 1000

Annual GDD50

Actual vs. predicted

Note 1:1 line: residual is the vertical distance to this line.

2000

Model fit, N only

3000

4000

1000

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistic models
- Machine-learning models
- Kriging models
- External evaluation

Evaluation measures

Model efficiency coefficient

- Regression of actual on predicted
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Evaluation measures: ME

- Summarize the individual residuals into a composite measure: what is the **average** deviation of predictions from reality?
- This is the mean absolute error (ME) of estimated vs. actual mean of the evaluation dataset

$$ME = \frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)$$
$$ME = \frac{1}{n} \sum_{i=1}^{n} (r_i)$$

- closer to zero (0) is better
- Positive and negative residuals cancel each other
- This is the prediction bias

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

- Regression of actua on predicted
- Ellin s Concordance
- Resampling
- Cross-validation
- Spatial patterns

Evaluation measures: RMSE

• Summarize the individual residuals into a composite measure: how close **on average** are the predictions to reality?

$$\begin{aligned} \text{RMSE} &= \left[\frac{1}{n}\sum_{i=1}^{n}(\hat{y}_{i}-y_{i})^{2}\right]^{1/2}\\ \text{RMSE} &= \left[\frac{1}{n}\sum_{i=1}^{n}r_{i}^{2}\right]^{1/2} \end{aligned}$$

- lower is better
- Positive and negative residuals are equally incorrect
- This is an estimate of the average prediction error

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation

Evaluation measures

- Model efficiency coefficient
- Regression of actua on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Relative evaluation measures

- The ME and RMSE are expressed in the **original units** of the target variable, as *absolute* differences.
- These can be compared to criteria external to the model, i.e., "fitness for use".
- These can also be compared to the *evaluation dataset values*:
 - ME compared to the mean or median
 - Scales the MPE: how significant is the bias when compared to the overall "level" of the variable to be predicted?
 - RMSE compared to the range, inter-quartile range, or standard deviation
 - Scales the RMSE: how significant is the prediction variance when compared to the overall variability of the dataset?

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learnin models
- Kriging models

External evaluation

Evaluation measures

- Model efficiency coefficient
- Regression of actual on predicted
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

• The RMSE tells us how closely the model **on average** predicts to the true values

Putting RMSE in context

- But, is this significant in the real world?
 - relative to the values of the target variable;
 - relative to *precision* needed for an application of the model.
- Relative to target variable: RMSE as a **proportion** of the mean
- Relative to application: RMSE as uncertainty, e.g., deciding whether a value is above or below a *critical value*

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Example: Relative to population

- Meuse heavy metals dataset: Cross-validation RMSE from OK of log10(Zn) is 0.173.
- How does this compare to the population?
- Estimate from the sample:
 - > summary(log10(meuse\$zinc))
 Min. 1st Qu. Median Mean 3rd Qu. Max.
 2.053 2.297 2.513 2.556 2.829 3.265
 > rmse <- 0.173
 > rmse/mean(log10(meuse\$zinc))
 [1] 0.06767965
- This is about 7% of the mean value of *this* sample of *this* population.

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation

Evaluation measures

- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Resampling
- Cross-validatior
- Spatial patterns

Example: Regulatory threshold

- According to the Berlin Digital Environmental Atlas⁷, the critical level for Zn is 150 mg kg⁻¹; crops to be eaten by humans or animals should not be grown in these condition.
- $log_{10}(150) = 2.177$; suppose we have a RMSE of 0.173.
- So to be sure we are *not* in a polluted spot with 95% confidence we should measure no more than 77 mg kg⁻¹:

```
> (lower.limit <- log10(150)-(qnorm(.95)*0.173))
```

```
[1] 1.891532
```

```
> 10<sup>(lower.limit)</sup>
```

```
[1] 77.89895
```

• So we may be forcing farmers out of business for no reason.

⁷http:

//www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learnin
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted Linn's Concordance Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Model efficiency coefficient (MEC)

• This shows how much of the variability in the target population is **explained** by the model.

1 - (RMSE/SD)

- RMSE: square root of the mean-square of the residuals
- SD: standard deviation of the dataset
- MEC = 1: RMSE is 0
- MEC = 0: model explains nothing, because RMSE = SD.
- For a target dataset with low vs. high variability, the same RMSE represents a less successful model.
- Sometimes called the Nash-Sutcliffe MEC, which refers to the residual sum of squares of model residuals vs. total sum of squares of the dataset:

$$1 - \frac{\sum_i (y_i - \hat{y}_i)^2}{\sum_i (y_i - \overline{y})^2}$$

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learnin models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actual on predicted
- Linn's Concordance Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Regression of actual on predicted

- We can also compute a linear regression of actual on predicted values
 - $y = \beta_0 + \beta_1 \hat{y}$
- This shows how predictions made by the model from the calibration set could be **adjusted** to fit the evaluation set.
- β_0 is the **bias** of the fitted model; this should be 0.
- β_1 is the **gain** of the fitted model vs. the evaluation set; this should be 1.
- The *R*² of this equation is *not* an evaluation measure of the model!
 - It *does* tell us how well the adjustment equation is able to match the two sets.

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measure

Regression of actua

Linn's Concordance Confusion matrices

Resampling

Cross-validation

Spatial patterns

Scatterplot against 1:1 line

Regression

Visualizing actual vs. predicted

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistical models
- Machine-learning
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

- A measure of the deviation from the 1:1 line
 - first developed to evaluate **reproducibility** of test procedures that are supposed to give the same result⁸
 - also valid to compare **actual vs. predicted** by any model, these are supposed to be the same

$$\rho_{c} = \frac{2\rho_{1,2}\sigma_{1}\sigma_{2}}{\sigma_{1}^{2} + \sigma_{2}^{2} + (\mu_{1} - \mu_{2})^{2}}$$

Lin's Concordance (CCC) (1)

- σ_1 is the standard deviation of predictions (or "model 1")
- σ_2 is the standard deviation of actual values (or "model 2")
- *rho*_{1,2} is the Pearson's (linear) correlation coefficient between the predictions and actual (or the two model predictions)
- μ_1 , μ_2 are the two means

⁸Lin, L. I.-K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45(1), 255–268. https://www.jstor.org/stable/2532051

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learning
- Kriging models

External evaluation

- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted

Linn's Concordance

- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

• The CCC includes all sources of deviation from a perfect model:

- location shift (bias) $(\mu_1-\mu_2)/\sqrt{\sigma_1\sigma_2}$
- scale shift (slope not 1) σ_1/σ_2
- lack of correlation (spread) $1
 ho_{1,2}$
- if evaluation points are from a *probability sample*, can use the *sample* estimates $r_{1,2}$, S_1 , S_2 , $\overline{Y_1}$, $\overline{Y_2}$ in place of the *population* statistics
- if not, CCC only refers to the evaluation set and not the population

Lin's Concordance (CCC) (2)

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistica models
- Machine-learnin models
- Kriging models
- External evaluation
- Evaluation measure Model efficiency
- coefficient
- on predicted
- Linn's Concordance
- Resampling
- Cross-validation
- Spatial patterns

Concordance: 0.900 (no bias) Note same spread of values

Lin's Concordance – examples

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- coefficient Regression of actua
- on predicted
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

External evaluation of classification models

- Compare **predicted** and **actual** classes in an evaluation dataset
 - Should be a probability sample from an independent dataset
- Organize as a Confusion (cross-classification) matrix
 - Rows: predicted class
 - Columns: actual class
- Shows overall accuracy and per-class accuracy/reliability
- Information for map user (how useful is the map?) and producer (how good was the mapping procedure?).

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistical models
- Machine-learnin
- models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- coefficient
- on predicted
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

le Addish Fairah Callah Ulitasa Jawakish Mallah Caisel Sastash Ulitah Nation

Example confusion matrix

	Alfisols	Andisols	Aridisols	Entisols	Gelisols	Histosol	Inceptisols	Mollisols	Oxisol	Spodosols	Ultisols	Vertisols
Alfisols	8193	29	23	1060	7	103	1068	1822	31	81	976	273
Andisols	41	416	1	24	1	3	92	30	28	21	24	0
Aridisols	37	15	1206	414	0	1	35	145	0	1	1	33
Entisols	124	15	144	1958	71	36	430	239	56	71	102	96
Gelisols	2	13	1	92	1317	43	180	7	0	95	0	2
Histosol	3	0	1	20	2	313	15	1	0	12	7	1
Inceptisols	158	106	20	886	222	140	2802	457	11	358	142	52
Mollisols	1223	102	335	1208	70	93	1089	9265	0	66	34	347
Oxisol	169	23	4	638	0	23	312	141	4056	20	793	61
Spodosols	73	49	0	154	45	100	295	69	2	1409	2	1
Ultisols	857	42	3	618	1	91	464	231	439	65	3982	89
Vertisols	19	0	5	39	1	0	20	43	1	0	1	328

Source: SoilGrids 250 m V1⁹ internal evaluation from WoSIS soil profile dataset¹⁰, ISRIC Classes are Orders of USDA Soil Taxonomy

⁹Hengl, T., *et al.* SoilGrids250m: Global gridded soil information based on machine learning. PLOS ONE, 12(2), e0169748. https://doi.org/10.1371/journal.pone.0169748

¹⁰https://www.isric.org/explore/wosis

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learn models

Kriging models

External evaluation

Evaluation measures

Model efficiency

Regression of act

on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validatio

Spatial patterns

Symbol	Meaning	Computation		
X	confusion matrix			
	\rightarrow rows $[1r]$ are <i>classified</i> ("mapped")			
	data			
	\rightarrow columns $[1r]$ are <i>reference</i> ("true")			
	data			
r	number of rows and columns of ${f X}$			
X _{ij}	number of observations in row <i>i</i> , column <i>j</i> ,	as observed		
	i.e. in reference class <i>j</i> but mapped as class <i>i</i>			
X _{i+}	marginal sum of row (mapped class) i	$\sum_{j=1}^{r} x_{ij}$		
<i>x</i> + <i>j</i>	marginal sum of column (reference class) j	$\sum_{i=1}^{r} x_{ij}$		
n	total number of observations	$\sum_{i=1}^r \sum_{j=1}^r x_{ij}$		
	Or	$\sum_{i=1}^{r} x_{i+1}$		
	or	$\sum_{j=1}^{r} x_{+j}$		

Notation I

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learn models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua

on predicted

Confusion matrice

Resampling

Cross-validatio

Spatial patterns

Symbol Statistic Computation C_i User's 'accuracy', mapped class i x_{ii}/x_{i+} p_{ii}/p_{i+} ...or $\overline{C_i}$ Errors of commission, mapped class *i* $1 - C_i$ O_i Producer's 'reliability', reference class *j* x_{ii}/x_{+i} p_{ii}/p_{+i} ...or $\overline{O_i}$ Errors of omission, reference class *j* $1 - O_i$ $\sum_{i=1}^{r} x_{ii}/n$ **Overall accuracy** A_o $\sum_{i=1}^{r} p_{ii}$...or $\overline{A_{\alpha}}$ $1 - A_{o}$ Overall error

Notation II

Brus¹¹ uses the term "map unit purity" for C_i and "class representation" for O_j .

 $^{11}\text{e.g.},$ Brus, D. J., Kempen, B., & Heuvelink, G. B. M. (2011). Sampling for validation of digital soil maps. European Journal of Soil Science, 62, 394–407. https://doi.org/10.1111/j.1365-2389.2011.01364.x

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistical models
- Machine-learni
- inodels
- External
- Evaluation measure Model efficiency

Pre

- coefficient Regression of act
- on predicted
- Linn's Concordanc
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Example confusion matrix – with evaluation statistics

							Actual								
		Alfisols	Andisols	Aridisols	Entisols	Gelisols	Histosol	Inceptisols	Mollisols	Oxisol	Spodosols	Ultisols	Vertisols		
	Alfisols	8193	29	23	1060	7	103	1068	1822	31	81	976	273	60.0%	
	Andisols	41	416	1	24	1	3	92	30	28	21	24	0	61.1%	
	Aridisols	37	15	1206	414	0	1	35	145	0	1	1	33	63.9%	
	Entisols	124	15	144	1958	71	36	430	239	56	71	102	96	58.6%	
dicted	Gelisols	2	13	1	92	1317	43	180	7	0	95	0	2	75.2%	User's
	Histosol	3	0	1	20	2	313	15	1	0	12	7	1	83.5%	accuracy
	Inceptisols	158	106	20	886	222	140	2802	457	11	358	142	52	52.3%	
	Mollisols	1223	102	335	1208	70	93	1089	9265	0	66	34	347	67.0%	
	Oxisol	169	23	4	638	0	23	312	141	4056	20	793	61	65.0%	
	Spodosols	73	49	0	154	45	100	295	69	2	1409	2	1	64.1%	
	Ultisols	857	42	3	618	1	91	464	231	439	65	3982	89	57.9%	
	Vertisols	19	0	5	39	1	0	20	43	1	0	1	328	71.8%	
		75.2%	51.4%	69.2%	27.5%	75.8%	33.1%	41.2%	74.4%	87.7%	64.1%	65.7%	25.6%	62.2%	
						Producer's	reliability								

Q: Which Order has the poorest map unit purity (user's perspective)? Which other Orders are most incorrectly mapped as this Order?

Q: Which Order has the poorest class representation (mapper's perspective)? Which other Orders are most incorrectly predicted to be in this Order?

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learni

Kriging models

External evaluation

Evaluation measures Model efficiency coefficient

Regression of actua on predicted Linn's Concordance

Confusion matrices

Resampling

Cross-validation

1 Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning models Kriging models

External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

5 Cross-validation

6 Spatial patterns

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- coefficient Regression of actu
- on predicted
- Confusion matrices

Resampling

- Cross-validation
- Spatial patterns

- If we don't have an independent data set to evaluate a model, we can use the same sample points that were used to estimate the model to evaluate that same model.
 - For geostatistical models, see next section "Cross-validation"
 - Non-geostatisical: Do many times:
 - Randomly split the dataset into calibration and evaluation parts.

Resampling

- Build the model using only the calibration part
- Evaluate it against the evaluation part as in "independent evaluation", above

Then, summarize the evaluation statistics.

• Build a final model using all the observations; but report the evaluation statistics from resampling.

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learni

Keining medale

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Linn's Concordanc

Confusion matrices

Resampling

Cross-validation

Spatial patterns

1 Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning models Kriging models

External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

6 Spatial patterns

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learnin models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matri
- Resampling
- Cross-validation
- Spatial patterns

• For **geostatistical** models, if we don't have an independent data set to evaluate a model, we can use the **same sample points** that were used to estimate the model to validate that same model.

• With enough points, the effect of the removed point on the **model** (which was estimated using that point) is minor.

Cross-validation

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistica models Machine-learning
- models
- Kriging models

External evaluation

- Evaluation measures Model efficiency
- coefficient Regression of actu
- on predicted
- Linn's Concordance
- _ ..
- Croce validati
- с. н. н. н.

Effect of removing an observation on the variogram model

Empirical variogram, Co concentration in soils

Separation (km) black: all points; red: less largest value

hardly any effect – both empirical variogram and fitted models are nearly identical

DGR

Assessment of model quality

Internal evaluation

- Empirical statistica models
- Machine-learnin models
- Kriging models
- External evaluation
- Evaluation measures Model efficiency
- Regression of actual on predicted
- Linn's Concordance
- Contusion matric
- Resampling
- Cross-validation
- Spatial patterns

- 1 Compute experimental variogram with all sample points in the normal way; model it to get a parameterized variogram model
- 2 For each sample point
 - 1 Remove the point from the sample set;
 - Predict at that point using the other points and the modelled variogram;

Cross-validation procedure

- **③** This is called **leave-one-out cross-validation** (LOOCV).
- **4** Summarize the deviations of the model from the actual point.

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learning models

Kriging models

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Summary statistics for cross–validation (1)

Two are the same as for independent evaluation and are computed in the same way:

- Root Mean Square Error (RMSE): lower is better
- Bias or mean error (MPE): should be 0

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learnin

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns

Summary statistics for cross-validation (2)

Since we have variability of the cross-validation, and variability of each prediction (i.e. kriging variance), we can compare these:

 Mean Squared Deviation Ratio (MSDR) of residuals with kriging variance

$$\text{MSDR} = \frac{1}{n} \sum_{i=1}^{n} \frac{\{z(\mathbf{x}_i) - \hat{z}(\mathbf{x}_i)\}^2}{\hat{\sigma}^2(\mathbf{x}_i)}$$

where $\hat{\sigma}^2(\mathbf{x}_i)$ is the kriging variance at cross-validation point \mathbf{x}_i .

- The MSDR is a measure of the variability of the cross-validation vs. the variability of the sample set. This ratio should be 1. If it's higher, the kriging prediction was too optimistic about the variability.
 - The **nugget** has a large effect on the MSDR, since it sets a **lower limit** on the kriging variance at all points.

DGR

- Assessment of model quality
- Internal evaluation
- Empirical statistica models
- Machine-learning
- Kriging models
- External evaluation
- Evaluation measures
- coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Summary statistics for cross-validation (3)

• Another way to summarize the variability is the **median** of the Squared Deviation Ratio:

$$MeSDR = median\left[\frac{\{z(\mathbf{x}_i) - \hat{z}(\mathbf{x}_i)\}^2}{\hat{\sigma}^2(\mathbf{x}_i)}\right]$$

- If a correct model is used for kriging, MeSDR = 0.455, which is the median of the χ^2 distribution (used for the ratio of two variances) with one degree of freedom.
- MeSDR < 0.455 → kriging **overestimates** the variance (possibly because of the effects of outliers on the variogram estimator)
- MeSDR $> 0.455 \rightarrow$ kriging **underestimates** the variance
- *Reference*: Lark, R.M. 2000. A comparison of some robust estimators of the variogram for use in soil survey. *European Journal of Soil Science* 51(1): 137–157.

DGR

Assessment of model quality

Internal evaluation

Empirical statistica models

Machine-learnir models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

_ .

, ,

cross-validation

Spatial patterns

Spatial distribution of cross-validation residuals

-0.005 0.967

OK Cross-validation residuals

Co (ppm)

actual - predicted; green are underpredictions

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learni

Keining medale

External evaluation

Evaluation measures Model efficiency

Regression of actua on predicted

Linn's Concordanc

Paramaling

Cross-validatio

Spatial patterns

1 Assessment of model quality

Internal evaluation

Empirical statistical models Machine-learning models Kriging models

External evaluation

Evaluation measures Model efficiency coefficient Regression of actual on predicted Linn's Concordance Confusion matrices

4 Resampling

5 Cross-validation

6 Spatial patterns

DGR

Assessment of model quality

Internal evaluation

- Empirical statistical models
- Machine-learnin
- Kriging models
- External
- evaluation
- Evaluation measures Model efficiency
- coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

For models that produce a **map**, we also need a **spatial** evaluation

- If the mapping method provides a measure of uncertainty, where are the most uncertain areas?
 - (see above: Maximum Probability, Confusion Index, Shannon Entropy maps)
- what is the **spatial pattern** of the predictions?
 - Do the **patterns** agree with geographical knowledge from other sources?
 - Is the scale of the spatial variability realistic?

Spatial patterns

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistica models
- Machine-learn models
- Kriging models
- External evaluation
- Evaluation measures
- Model efficiency coefficient
- Regression of actua on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Spatial prediction pattern

Predicted sand concentration, %, 0–5 cm, ground overlay in ©Google Earth. (a) Overview; centre $\approx -77^{\circ}14$ E, 41°14 N, near Jersey Shore, PA. (b) Detail; centre $\approx -76^{\circ}56$ E, 41°33 N. Grid cells $\approx 250 \times 250$ m source: https://dx.doi.org/10.5194/soil-7-217-2021

DGR

Assessment of model quality

- Internal evaluation
- Empirical statistic models
- models
- Kriging models
- External evaluation
- Evaluation measures
- coefficient
- Regression of actual on predicted
- Linn's Concordance
- Confusion matrices
- Resampling
- Cross-validation
- Spatial patterns

Spatial uncertainty pattern

Relative uncertainty, Predicted sand concentration, %, 0–5 cm source: soilgrids.org

DGR

Assessment of model quality

Internal evaluation

Empirical statistic models

Machine-learnin models

Kriging models

External evaluation

Evaluation measures

Model efficiency coefficient

Regression of actua on predicted

Linn's Concordance

Confusion matrices

Resampling

Cross-validation

Spatial patterns