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Local vs. global

When considering spatially-distributed attributes, we can
view these in two ways:

Global all spatial units are considered together
• aim: to characterize the entire population

with one model (statistical summaries,
regressions, . . . )

Local a geographically-compact subset of spatial
units are considered together

• aim: to see if there is spatial heterogeneity
within the model . . .

• . . . and if so, at which scale
• general term: Geographically-weighted

(GW) models
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Global vs. local – example

• Closely related to the Modifiable Area Unit Problem (MAUP)
• Example: Summary statistics at different resolutions

• MAUP: nation, state, county, town, ward . . . proportion of
votes per candidate

• GW models: proportion of different soil types over the
entire map vs. sub-maps; e.g., northern vs. southern
Tompkins County

• Example: Empirical-statistical models example:
regression on covariates

• MAUP: regression model of votes vs. demography
• GW models: relation of soil properties to covariates

(elevation, slope, . . . )
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Main purpose of local models

Why build local models?

• Detect whether there is spatial heterogeneity in what is
being studied

• Detect the spatial scale of this heterogeneity

• From these, explain why
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Approaches to local models

Strata Divide area into (multi-)polygons according to
some a priori stratifying factor

• soil mapping example: pre-defined Major
Land Resource Areas

Moving window re-compute summaries, regressions etc. for
the observations within some window, i.e.,
restricted neighbourhood

• this neighbourhood moves across the study
area

Weighted moving window same, but weight the observations
• closer to the window centre receive more

weight than further
• requires a kernel function defining the

weight
• function of distance from the centre of the

window



Geographically
Weighted
Models

W'ô

Spatially-
distributed
models
Kernel functions

The bandwidth
problem

Geographically-
weighted
models
Geographically-
weighted
regression

GWR calculation

GWR example 1 –
Northeast USA
climate

GWR Example 2 –
Georgia (USA)
poverty

Extensions to
GWR

References

Locations of moving-window centres

Several possibilities:

1 regular tessellation: centres of pre-defined grids
• e.g., 10 x 10 km grid
• result is a model, statistics etc. for each pre-defined grid

2 at observation points; may be irregular
• result is a model, statistics etc. for each observation point

and its neighbourhood
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Kernel functions – concept

• These define the weights to be given to observations
within a window

• Model form: various forms of distance d decay, see next
slide

• Parameter: bandwidth h, relation to d
• Can choose between model forms and select bandwidth

by cross-validation, see next section
• But often the model form is set by the knowledge of the

target variable
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Kernel functions – model forms

boxcar wij = 1 if dij <= h, else wij = 0: unweighted
within a neighbourhood

bisquare wij = (1− (d2
ij/h2))2 if dij <= h, else wij = 0;

inverse square within some neighbourhood

exponential wij = e−dij/h; considers all the points, with
exponentially decaying weight; reaches a weight
of 0.5 at d = − log(0.5) ≈ 0.693h

Gaussian wij = e−d2
ij/2h2

; considers all the points, with
exponentially decaying weight; reaches a weight
of 0.5 at d = h

√
−2 log(0.5) ≈ 1.117h
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Kernel functions compared
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How “local” is local?

• Obviously, we do not want to fit too narrowly, because:
• not enough sample points to reliably calibrate a model;
• artificial local variability, not corresponding to the process.

• But we do not want to fit too broadly, because this would
miss “true” local variability

This is the bandwidth problem – it should correspond to the
process which varies locally.
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Bandwidth vs. weights

• the bandwidth h parameter in the kernel functions
determines the range of influence of points in the
regression . . .

• . . . their relative weights is determined by the kernel
function
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Fixed vs. adaptive bandwidths

The bandwidth can vary across the map or not:

fixed as the distance parameter h in the above
formulations

• This corresponds to a process with a fixed
dependence on distance

adaptive a proportion of the points to use for each local
fit

• This is appropriate if points are irregularly
spread – it ensures that there are enough
points to calibrate the regression.

• It also mitigates edge effects with fewer
points
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source: [2]
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Geographically-weighted models

These have:

• any statistical model form;

• use a weighted moving window;

• a kernel function to define the neighbourhood;

• defined centres, either on on each observation point or a
set of prediction points
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Geographically-weighted regression (GWR)

• developed by Fotheringham et al. [3];

• an extension of linear or generalized linear regression;
• GWR fits the regression equation at each data point . . .

• . . . based on some neighbourhood and . . .
• . . . a weighting scheme (kernel function).
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Why use GWR?

• GWR is appropriate if the process being modelled is
spatially non-stationary.

• i.e., the relation is not the same over the whole map.

• A single global model, although representing the overall
relation, would miss important local variations.

• There should be a physical/social basis, i.e., some
reason to think there might be non-stationarity.

• why?, and over what spatial extent? (see “bandwidth
problem”)

• GWR can detect if this is the case . . .
• . . . but careful for artefacts of the method: apparent

variability not corresponding to the process, just to random
noise.
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GWR outputs

GWR gives explicit values of:

1 the bandwidth within which a local regression should be
fit;

• this is determined by cross-validation

2 the regression coefficients at each point

3 the variability and spatial pattern of these.
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GWR example application

Voting choices:

• e.g., percent for each political party) explained by
demographic factors (income, home ownership, age . . . )

Possible model forms:

• global model, probably with an spatial autoregressive
(SAR) model to account for local correlation

• GWR model: different coefficients of each predictor;
different importance of predictors in different areas
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Improper use of GWR

• Prediction
• It is possible to predict with GWR by evaluating the local

formula at each prediction point (not necessarily
observation points)

• “Please also be aware that using GWR for prediction has no
good basis anywhere for anything - and the standard errors
should not be given any credibility. This is not what GWR is
for at all.” – Roger Bivand

• Modelling
• GWR does not account for local spatial correlation within

each window
• compare with GLS and SAR models, which do
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Spatial prediction without GWR

• Spatial Autoregressive (SAR) regression models
• account for local correlations to adjust global model

coefficients, but still one model

• Regression Kriging (RK): the global trend is fit (multiple
regression, SAR, random forests . . . ) and then adjusted
locally by kriging the residuals and adding them to the
trend prediction.

• Assumes that the global trend is correct, but affected by
local factors.

• Kriging with External Drift (KED) in a restricted
neighbourhood

• the trend is re-fit at each prediction point according to
some restricted radius;

• the residuals from this local trend, in the same
neighbourhood are at the same time kriged;

• uses a model of spatial dependence (variogram of the
residuals)
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Global linear regression

• GWR uses the normal OLS formulation:
• model: yi = β0 +

∑
k βkxik + εi

• fit from sets of known (yi ,Xi)
• the errors εi are I.I.D. and not spatially-correlated
• solution:

β̂ = (XT X)−1XT y

• GWR does not use Generalized Least Squares (GLS), no
accounting for eventual spatial correlation of residuals.

• In a global model, all observations participate equally in a
single model.

• GWR builds a set of local models, one per data point

• All observations participate in each model, but un-equally
and differently for each model
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GWR

OLS but in a moving window:

• the model is separately fit at each data point with
coordinates (ui , vi) and known values (yi ,Xi)

• W(ui ,vi) is a matrix of the weights of the known points to
be used to fit the model for observation i

• W(ui ,vi) is a diagonal matrix, no correlation between
weights (compare GLS)

• All observations are considered but some may have 0
weight

• Weights determined by a kernel function (see below)

• Solution by OLS:

β̂(ui ,vi) = (XT W(ui ,vi)X)
−1XT W(ui ,vi)y
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GWR as a special case of WLS

• GWR is a weighted least-squares regression (WLS);
• WLS: weight some observations more than others in

computing the regression coefficients
• example: inverse weight by measurement variance, gives

more weight to more reliable observations

• the weights are chosen to represent the neighbourhood;

• the weights change at each point
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R packages

spgwr Bivand [1]; one of the authors of the sp package

GWmodel Gollini et al. [5]; Lu et al. [7]
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GWR example – 4-state climate

• Four US States: VT, NY, NJ, PA

• 305 climate stations

• target variable: Growing Degree Days base-50° C
(accumulated heat units for crop growth)

• predictors: North, East, elevation (square root)
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Climate stations
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Global model

• GLS: ANN_GDD50 ~sqrt(ELEVATION_) + N

• Fitted coefficients:

(Intercept) 3136.37 (GDD50)
sqrt(ELEVATION_) -3.00 (per

√
m)

N -1.91 (per km)
spatial correlation of residuals effective range ≈ 52 km

• adjusted R2 ≈ 0.86, RMSE 217 GDD_50

• Interpretation: strong regional effect of elevation and
Northing on the annual heat units
Easting not significant in the global (regional) model



Geographically
Weighted
Models

W'ô

Spatially-
distributed
models
Kernel functions

The bandwidth
problem

Geographically-
weighted
models
Geographically-
weighted
regression

GWR calculation

GWR example 1 –
Northeast USA
climate

GWR Example 2 –
Georgia (USA)
poverty

Extensions to
GWR

References

GLS model residuals

Residuals from GLS fit, actual − predicted
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−514.041
−149.624
−3.98
160.856
653.748

Model was not equally good everywhere! And there are clear
clusters of +/- residuals.
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What to do about this model?

• The model is successful over the region . . .
. . . but there are important local variations.
What to do?

1 Krige the residuals and add to the GLS prediction (GLS-RK)
• This accounts for a local process, within the regional

process
• e.g., presence of large water bodies

2 GWR to fit the model locally
• Will miss the regional variation
• Assumes the process is local
• Maybe will better fit locally, and reveal the local importance

of the three predictors
• Does not account for spatial correlation of the residuals

• Question: which seems more appropriate in this case?
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GWR model – select a bandwidth

Use a Gaussian kernel; optimize by cross-validation

fixed 72.4 km
• at this radius a point receives e1/2 = 0.6065

weight.
• all points will be considered

adaptive 3.35% of the stations in each window, i.e., about
10 stations for each regression
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GWR model – R2

Gauss fixed bandwidth

Coefficient of determination
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Regional value shown with red vertical line
Most local models have a poorer fit
Because of the restricted range of predictors in a local window
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GWR model – intercepts - feature-space
distribution

Gauss fixed bandwidth
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GWR model – intercepts - spatial distribution

Intercept, fixed kernel
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2500

3000

3500

4000

4500

5000

Not the average! A centering constant. Note low values in
southcentral PA & the Taconics as well as northern NY/VT
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GWR model – elevation - feature-space
distribution

Gauss fixed bandwidth

sqrt(elevation) coefficient
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GWR model – elevation - spatial distribution

elevation coefficient, fixed kernel

−50

−45

−40

−35

−30

−25

−20

elevation coefficient, adaptive kernel
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Much of this pattern seems to be an artefact of GWR
Stronger vertical GDD gradient on Lake Erie plain than Lake
Ontario plain?
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GWR model – Northing - feature-space
distribution

Gauss fixed bandwidth

N coefficient

D
en

si
ty

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

Gauss adaptive bandwidth

N coefficient

D
en

si
ty

−4 −2 0 2 4

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30



Geographically
Weighted
Models

W'ô

Spatially-
distributed
models
Kernel functions

The bandwidth
problem

Geographically-
weighted
models
Geographically-
weighted
regression

GWR calculation

GWR example 1 –
Northeast USA
climate

GWR Example 2 –
Georgia (USA)
poverty

Extensions to
GWR

References

GWR model – Northing - spatial distribution

Northing coefficient, fixed kernel
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Northing coefficient, adaptive kernel
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Can be locally positive, disagrees with physical principles
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GWR model – Easting - feature-space
distribution

Gauss fixed bandwidth

E coefficient

F
re

qu
en

cy

−4 −2 0 2 4 6 8

0
50

10
0

15
0

Gauss adaptive bandwidth

E coefficient

F
re

qu
en

cy
−4 −2 0 2 4 6 8

0
20

40
60

80
10

0
12

0



Geographically
Weighted
Models

W'ô

Spatially-
distributed
models
Kernel functions

The bandwidth
problem

Geographically-
weighted
models
Geographically-
weighted
regression

GWR calculation

GWR example 1 –
Northeast USA
climate

GWR Example 2 –
Georgia (USA)
poverty

Extensions to
GWR

References

GWR model – Easting - spatial distribution

Easting coefficient, fixed kernel
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Local effect in lower Hudson valley
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Significance of coefficients

Significance N coefficient
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red: non-significant; dark green: negative; light green: positive

Intercepts are always highly significant, i.e., 6= 0; they centre
the local regression

Interpretation: most local models are fit only with the local
average (intercept)!
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Global vs. GWR model

• Global model finds the average effect, over the entire
region, of the predictors

• the physically-plausible Northing and elevation are highly
significant

• these have a wide range of values over the region
• good fit, over 85% of variance explained

• GWR model:
• local models with an effective radius ≈ 100 km
• wide range intercepts (averages) → local means

• this takes out most of the effect of Northing
• some effect of Northing, Easting near water bodies
• elevation only important in windows with significant relief

• usually much lower R2, less of each window is explained by
factors other than the local mean

• In this case the GWR model is not justified.
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Example – Georgia (USA) poverty

• Georgia (USA) counties 1990 census; originally used in [3]

• Problem: how to explain the proportion of the population
in poverty?

• Possible predictors: percent of population which is:
1 rural
2 has a bachelor’s degreee or higher
3 elderly
4 foreign-born
5 of African descent

• Practical application: if we know what is correlated with
poverty (positive or negative), we can think of
interventions
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Global model – computation (OLS)

## lm(formula = lm.formula, data = educ.spdf@data)
##
## Residuals:
## Min 1Q Median 3Q Max
## -7.8282 -2.8418 -0.2404 2.6184 17.4764
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 7.506033 2.325226 3.228 0.001525 **
## PctRural -0.007883 0.015780 -0.500 0.618121
## PctBach -0.293767 0.083418 -3.522 0.000566 ***
## PctEld 0.709494 0.126583 5.605 9.46e-08 ***
## PctFB 0.148516 0.366098 0.406 0.685549
## PctBlack 0.259411 0.019638 13.210 < 2e-16 ***
##
## Multiple R-squared: 0.7078, Adjusted R-squared: 0.6982
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Global model – interpretation

• about 70% of the variability in poverty is explained by
these factors

• The strongest predictors are education (moderately
negative), elderly (strongly postive), racial group
(moderately positive).

• Proportion of rural residents has almost no effect
• but is this because we are mixing urban (Atlanta, Savannah)

and rural areas?

• Proportion of foreign-born residents has almost no effect
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Local statistics

A null model can be used to find locally-weighted statistics of a
target variable; e.g., % rural

global mean 70.18 global s.d. 27.1

Note: bounding box about 443 x 514 km
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Comparing kernels

• GWR depends on the choice of kernel
1 functional form
2 bandwidth
3 fixed vs. adaptive

• Next slides show the difference between kernels
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GWR coefficients – education

global coefficient -0.29

Note: education is associated with increased poverty in E
central (Athens – University of Georgia)
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GWR coefficients – % elderly

Note the increased noise with the narrower kernel.
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Artefacts – foreign-born
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Interpretation - 1

Substantial differences in regression coefficients across map

• In some cases even the sign changes – this may be a true
effect

• Suggests different causes/correlations in different areas
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Interpretation - 2

Substantial differences with choice of kernel

• So what is a “local” effect?

• Question: is 50 km with Gaussian weights an appropriate
fixed bandwidth?

• Question: are 22 counties with Gaussian weights an
appropriate adaptive bandwidth?
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Mixed GWR

• GWR model with some coefficients global, i.e., not varying
with the moving window

• Allows global/regional effects
• Example: soil organic matter: affected by regional climate,

but by local topographic effects [9]

• Mixed GWR tests which predictors are fixed and which can
vary (and at which bandwidth) [8]
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Multiscale Geographically Weighted Regression
(MGWR)

• Developed by Fotheringham et al. [4]

• GWR with different bandwidths for different processes
(represented by predictors)

• computes an optimal bandwidth vector in which each
element indicates the spatial scale at which a particular
process takes place

• can interpret the various bandwidths to infer the spatial
processes
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Geographically-weighted PCA

• As with OLS regression, but now Principal Components [6]

• Look for the multivariate correlations among predictors in
a moving window

• Interpret the PC loadings, per window

• Can use the PC scores to create new, uncorrelated
variables
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GW PCA

Georgia poverty predictors, 50 km Gaussian bandwidth

PC1 much more explanatory in NW GA, i.e., predictors are
much more correlated there
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Conclusion

• A useful tool to investigate spatial heterogeneity in
regression models

• changing coefficients, changing variable importance,
changing R2

• the bandwidth reveals the spatial scale of the
heterogeneity

• This should be interpretable in terms of the
physical/social setting
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