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Topics for this lecture

1. Derivation of the Ordinary Kriging (OK) system: (1) regression (2) minimization

2. Simple Kriging (SK)

3. Block Kriging

4. Universal Kriging (UK)

5. Derivation of the Universal Kriging system: (1) regression (2) minimization

6. Kriging transformed variables

7. Kriging with External Drift (KED) and Regression Kriging (RK)

8. Stratified Kriging (StK)

9. Co-Kriging (Co-K)

The topics written in italic script are optional at first reading.
D G Rossiter
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Commentary

This lecture has two purposes:

1. Show how kriging is in some sense an“optimal”predictor;

2. Present various kriging variants

These many variants all are applicable in certain situations, which are explained with each variant.

D G Rossiter
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Deriving the kriging system

In the previous lecture we saw how to apply a model of local spatial dependence (i.e.
a variogram model) to prediction by kriging.

To avoid information overload, we deferred discussing the kriging equations, and in
particular in what sense kriging is an optimal local predictor.

Note: It is not necessary to understand this topic completely in order to correctly
apply kriging. The derivation is necessarily mathematical and in places requires
knowledge of matrix algebra or di↵erential calculus. Still, everyone who uses kriging
should be exposed to this at least once.

D G Rossiter



Applied geostatistics – Lecture 5 4

Two approaches

There are two approaches to this derivation:

Regression As a special case of weighted least-squares prediction in the generalized
linear model with orthogonal projections in linear algebra

Minimization Minimizing the kriging prediction variance with calculus

Approach (1) is mathematically more elegant and provides a clear link to well-established
linear modelling theory, so we present it as the main derivation.

Approach (2) is an application of standard minimization methods from di↵erential calculus;
but is not so transparent, because of the use of LaGrange multipliers.

D G Rossiter
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Topic: Regression derivation of the Ordinary Kriging equations

Here we show how to derive and solve the kriging equations in a uniform framework for
linear modelling (“regression”) and kriging.

This approach has four steps:

1. Model the spatial structure, e.g. the covariance function or semivariogram function;

2. Estimate the spatial mean (not necessary in Simple Kriging (SK));

3. Set up a kriging system to minimize the prediction variance;

4. Compute the kriging weights

Step (1) has been discussed in a previous topic.

Note: If you are more comfortable with di↵erential calculus than with linear algebra, the
minimization derivation (next section) will likely be more accessible.

D G Rossiter
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Commentary

This topic requires a knowledge of matrix algebra and some familiarity with general linear models (e.g.

weighted least-squares).

D G Rossiter
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Step 2: estimate the spatial mean

The spatial mean of the variable z to be predicted, over the study area A, with area |A|
is:

µ̂(z) = 1
|A|

Z

A
z

In practice this is discretized by summing over some fine grid:

µ̂(z) = 1
xmax ymax

X

i=1...xmax,j=1...ymax

zi,j

where zi,j is the value of the variable at grid location (i, j).

But in general we do not have measurements at all locations! That’s what we want to find
out. So this equation can’t be applied. We need to estimate the spatial mean from sparse
observations (i.e. our sample points)

D G Rossiter
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The spatial mean is not the average!

Problem: because of spatial autocorrelation, it is not correct simply to average the
observations to obtain the mean.

If there is any spatial dependence, in general:

Spatial mean 6= Average of the observations

D G Rossiter
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To check your understanding . . .

Q1 : Consider a regular grid over some area; measure the data values and compute the ordinary average.

If there is spatial dependence, what would happen to this average if we now make many observations near one
of the grid points (i.e. a cluster), and not the others? Jump to A1 •

D G Rossiter
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The spatial mean

This is solved by weighted least squares, taking into account spatial correlation:

µ̂ = (1T · C�1 · 1)�1 · (1T · C�1 · z)

1: a n⇥ 1 column vector of n 1’s; so 1T : a 1⇥n row vector of n 1’s

In Universal Kriging (see below) this will be generalized to a design matrix Q; here
just a vector of 1’s to estimate the mean

C: the covariance matrix (n⇥n) among known points;

Note that C(0) ⌘ 1 so all diagonals are 1.

z: the n⇥ 1 column vector of the n known data values

This is a special case of Generalized Least Squares (GLS).

D G Rossiter



Applied geostatistics – Lecture 5 11

To check your understanding . . .

Q2 : How is the covariance matrix C computed? Jump to A2 •

D G Rossiter



Applied geostatistics – Lecture 5 12

Breaking this down . . .

Two quadratic forms; both are 1⇥n ·n⇥n ·n⇥ 1 and so end up as scalars; multiply
two scalars to get the spatial mean:

(1T · C�1 · 1)�1

(1T · C�1 · z)

Note: Let quadratic form (1T · C�1 · 1)�1 = V in subsequent formulas.

If there is no spatial correlation, C reduces to I: all diagonals are 1, all o↵-diagonals
are 0, the inverse I�1 = I, and this reduces to Ordinay Least Squares (OLS) estimation.

In this case (design matrix Q = 1), the OLS estimation of the spatial mean becomes the
arithmetic average: the first quadratic term is 1/(

P
1) = 1/n and the second

P
z;

their product is 1/n ·
P
z

D G Rossiter
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Spatial mean computed with semivariances

Recall: the semivariance is the deviation of the covariance at some separation h from the
total variance:

�(h) = C(0)� C(h)
i.e.

C(h) = C(0)� �(h)

But C(0) is constant (1) in the covariance functions; further, both quadratic forms include
the C matrix, so using its negative (plus a constant term), e.g. – , does not change the
solution.

In fact, we can replace C by its di↵erence from an arbitrary scalar ↵ (element-wise):

C ! ↵ · 1 · 1T � C

So semivariances may be used rather than covariances in the formula for the spatial
mean.

D G Rossiter
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Step 3: Kriging prediction

Once we know the spatial mean, a kriging system can be set up without any additional
constraints.

The special property of this system is that it is BLUP: “Best Linear Unbiased Predictor”,
given the modelled covariance structure.

D G Rossiter
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Formula for kriging prediction variance

By definition, this is:
Var(Ẑ0 � Z0)

where Ẑ0 is the predicted value and Z0 is the (unknown) true value.

For any weighted average, with weights �i, this is:

Var(
X
�i · Zi � Z0)

Kriging selects the weights � to minimize this expression.

D G Rossiter
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Continued . . .

To make the division of weights clear, define two vectors of length n+ 1:

v =
 
�
�1

!
Z =

 
Z
Z0

!

where the first n elements relate to the observation points and the last element to the
prediction point. Then

Var
�X

�i · Zi � Z0
�
= vTvar(Z)v

= vT
 
C c0

cT0 c00

!
v

= �TC�� 2�Tc0 + c00

The key point here is that the variance-covariance matrix var(Z) is broken down into
submatrices: C for the covariances between sample points, c0 for the covariance of each
sample point with the prediction point, and c00 for the variance at a point (the nugget).

D G Rossiter
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Formula for kriging prediction

ẐOK = µ̂ + cT0 · C�1 · (z� µ̂1)

ẐOK is the prediction at the prediction point

µ̂ is the spatial mean computed in the previous step

c0 is a n⇥ 1 column vector of the covariance between each sample point and the
point to be predicted

C: the covariance matrix (n⇥n) among known points

z: the n⇥ 1 column vector of the n known data values

1: a n⇥ 1 column vector of n 1’s, so that µ̂1 is a column vector of the means, and
(z� µ̂1) is a column vector of the residuals from the spatial mean

D G Rossiter
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To check your understanding . . .

Q3 : How is the covariance vector c0 computed? Jump to A3 •

D G Rossiter
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Breaking this down . . .

Note that the spatial mean µ̂ is subtracted from each data value; so the right summand

cT0 · C�1 · (z� µ̂1)

is the deviation from the spatial mean at the prediction point.

The spatial mean is added back in the left summand.

If there is no spatial dependence, c0 = 0 and the prediction is just the spatial mean
(which would then just be the average).

D G Rossiter
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Step 4: Kriging weights

The OK prediction equation just derived does not explicitly give the weight to each
observation; the kriging system can be used directly without computing these.

But we would often like to know the weights, to see the relative importance of each
observation; also it may be more e�cient to compute these and then the prediction as the
weighted average.

Recall: the vector of kriging weights, is what to multiply each observation by in the
weighted sum (prediction).

We get this by collecting all the terms that multiply the observed values z in the OK
prediction equation:

�T = cT0 · C�1 � 1T · V1T · C�1

D G Rossiter
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Kriging variance without weights

Above the prediction variance was computed for any set of weights; now we’ve selected
weights to minimize the variance. Then the variance can be expressed without explicitly
showing the weights.

We do this by substituting the expression for weights (previous step) into the expression for
prediction variance (Step 3), to obtain:

Var(Ẑ0 � Z0) = c00 � cT0 · C�1 · c0 + xTa ·V · xa

where:

c00 is the nugget covariance (at separation 0).

xa = 1� (cT0 · C�1 · 1)

Note: For block kriging, replace c00 with cBB, the average within-block variance (which
will in general be smaller than the at-point variance); replace c0 and C with block-to-block
covariances (see topic“Block Kriging”).

D G Rossiter
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Kriging variance in terms of semivariances

Because of the relation
�(h) = C(0)� C(h)

the kriging variance can also be expressed as:

Var(Ẑ0 � Z0) = c00 � �T0 · –�1 · �0 � xa/V

where:

– is the matrix of semivariances between sample points

�0 is the vector of semivariances between sample points and the point to be predicted

Note the change of sign, and that c00 is now implicit.

D G Rossiter
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Topic: Minimization derivation of the Ordinary Kriging equations

This optional topic presents another apporach to deriving the kriging equations.

If you are more comfortable with di↵erential calculus than with linear algebra, this
derivation will likely be more accessible.

D G Rossiter
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Commentary

In the detailed derivation that follows, keep your eye on the big picture:

We want an optimal linear predictor, i.e. we want to compute the best possible weights for each
sample point, to make each prediction;

“Optimal”depends on some objective function which can be minimized with the best weights;

We choose the variance of the prediction as the objective function; i.e. we want to minimize the
uncertainty of the prediction.

Given all this, we can derive a set of linear equations to derive the weights; this is known as the kriging
system.

The kriging system takes into account the relative spatial positions of each sample point, and their
positions with respect to the prediction point.

It does this with a model of spatial covariance.

D G Rossiter
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Prediction Variance

For any predictor (not just the kriging predictor):

The prediction ẑ(x0) at a given location x0 may be compared to the true value
z(x0); note the“hat”symbol to indicate an estimated value rather than a measured
one.

Even though we don’t know the true (measured) value, we can write the expression for
the kriging variance

This is defined as the expected value of the squared di↵erence between the
estimate and the (unknown) true value:

� 2(Z(x0)) ⌘ E
⇥
{Ẑ(x0)� Z(x0)}2⇤

If we can express this in some computable form (i.e. without the unknown true value)
we can use it as an optimality criterion

D G Rossiter



Applied geostatistics – Lecture 5 26

Derivation of the kriging variance for OK

(Derivation based on P K Kitanidis, Introduction to geostatistics: applications to
hydrogeology, Cambridge University Press, 1997; §3.9)

1. In OK, the estimated value is a linear combination of data values xi , with weights �i
derived from the kriging system:

ẑ(x0) =
NX

i=1

�iz(xi)

2. We don’t yet know the weights � but we do know how to compute the estimated
value given the weights.

3. So, we can re-write the kriging variance with this weighted sum:

� 2(Z(x0)) = E
⇥
{
NX

i=1

�iz(xi)� Z(x0)}2⇤

D G Rossiter
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Expanding into parts

4. Add and subtract the (unknown but stationary) mean µ:

� 2(z(x0)) = E
⇥
{
NX

i=1

�i(z(xi)� µ)� (Z(x0)� µ)}2⇤

5. Expand the square:

� 2(Z(x0)) = E[(
NX

i=1

�iz(xi)�µ)2�2
NX

i=1

�i(z(xi)�µ)(Z(x0)�µ)+ (Z(x0)�µ)2]

6. Replace the squared single summation (first term) by a double summation, i.e. with
separate indices for the two parts of the square:

(
NX

i=1

�iz(xi)� µ)2 =
NX

i=1

NX

j=1

�i�j(z(xi)� µ)(z(xj)� µ)

D G Rossiter
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Bring expectations into each term

7. Bring the expectation into each term (n.b. expectation of a sum is the sum of
expectations):

� 2(Z(x0)) =
NX

i=1

NX

j=1

�i�jE[(z(xi)� µ)(z(xj)� µ)]

�2
NX

i=1

�iE[(z(xi)� µ)(Z(x0)� µ)]+ E[(Z(x0)� µ)2]

D G Rossiter
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From expectations to covariances

8. Now, the three expectations in the previous expression are the definitions of
covariance or variance:

(a) E[(z(xi)� µ)(z(xj)� µ)] : covariance between two sample points
(b) E[(z(xi)� µ)(Z(x0)� µ)] : covariance between one sample point and the

prediction point
(c) E[(Z(x0)� µ)2] : variance at the prediction point

9. So, replace the expectations with covariances and variances:

� 2(Z(x0)) =
NX

i=1

NX

j=1

�i�jCov(z(xi), z(xj))

�2
NX

i=1

�iCov(z(xi), Z(x0))+ Var(Z(x0))

D G Rossiter
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How can we evaluate this expression?

Problem 1: how do we know the covariances between any two points?

Answer: by applying a covariance function which only depends on spatial
separation between them.
– Authorized functions e.g. spherical, exponential, . . .

Problem 2: how do we find the correct covariance function?

Answer: this is the subject of variogram analysis

Problem 3: how do we know the variance at any point?

Answer: The actual value doesn’t matter (it will be eliminated in the following
algebra) but it must be the same at all points: this is the assumption of
second-order stationarity.

D G Rossiter
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Stationarity

This is a term for restrictions on the nature of spatial variation that are required
for OK to be correct

First-order stationarity: the expected values (mean) at all locations in the field are
the same:

E[Z(xi)] = µ,8xi 2 R

Second-order stationarity:

1. The variance at any point is finite and the same at all locations in the field
2. The covariance structure depends only on separation between point pairs

Note: it is easy to overcome problems with first-order stationarity (changing expected
value across the field) but not second-order (changing variance and covariance)

D G Rossiter
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Commentary

The concept of stationarity is often confusing, because stationarity refers to expected values, variances, or
co-variances, rather than observed values.

In particular, of course the actual values change over the field! That is exactly what we want to use to predict
at unsampled points. First-order stationarity just says that before we sampled, the expected value at all
locations was the same.

That is, we assume the values result from a spatially-correlated process with a constant mean – not
constant values!

Once we have some sample values, these influence the probability of finding values at other points, because of

spatial covariance.

D G Rossiter
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Unbiasedness

An unbiased estimate is one where the expectation of the estimate equals the
expectation of the true (unknown) value: E

⇥
ẑ(x0

⇤
⌘ E

⇥
Z(x0)

⇤

For OK, we have assumed E
⇥
Z(x0)

⇤
is some unknown but constant µ. We have also

decided to estimate E
⇥
ẑ(x0

⇤
as a weighted sum, i.e. linear combination; see Step 1

previous slide. So we must have:

E
⇥
ẑ(x0

⇤
=

NX

i=1

�iE
⇥
z(xi)

⇤
=

NX

i=1

�iµ = µ
NX

i=1

�i

because all the expected values are the same µ by first-order stationarity.

Since E
⇥
ẑ(x0)] = µ (unbiasedness), we must have

PN
i=1�i = 1.

This will be an additional restriction in the kriging system.

D G Rossiter
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From point-pairs to separation vectors

As written above, the expressions are huge! The covariances between all point-pairs must
be determined separately.

However, because of second-order stationarity, we assume that the covariances between
any two points depend only on their separation and a single covariance function.

So rather than try to compute all the covariances, we just need to know this function, then
we can apply it to any point-pair, just by knowing their separation.

We continue the derivation . . .

D G Rossiter
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Replace point-pairs with separation vectors

10. Substitute the covariance function of separation h into the expression; note that at
separation zero (a point) this is the variance:

� 2(Z(x0)) =
NX

i=1

NX

j=1

�i�jCov(h(i, j))� 2
NX

i=1

�iCov(h(i,0))+ Cov(0)

h(i,0) is the separation between sample point xI and the point to be predicted x0.
h(i, j) is the separation between two sample points xi and xj.

D G Rossiter
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From covariances to semi-variances

11. Replace covariances by semivariances, using the relation Cov(h) = Cov(0)� �(h):

� 2(Z(x0)) = �
NX

i=1

NX

j=1

�i�j�(h(i, j))+ 2
NX

i=1

�i�(h(i,0))

Note that replacing covariances by semivariances changes the sign.

Done! This is now a computable expression for the kriging variance at any point x0,
given the locations of the sample points xi, once the weights �i are known.

Next we will see how to use this expression to select optimum �i.

D G Rossiter
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To check your understanding . . .

Q4 : Does the kriging variance depend on the data values at the sample points, or on the predicted data
value? How can you see this from the equation? Jump to A4 •

D G Rossiter
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Summary: OK Kriging Variance

Depends on the variogram function �(h) and the point configuration around each
point to be predicted; we have derived this as:

� 2(Z(x0)) ⌘ E[{ẑ(x0)� Z(x0)}2] = 2
NX

i=1

�i�(xi,x0)�
NX

i=1

NX

j=1

�i�j�(xi,xj)

First term: lower semi-variances between a point and the sample points
leads to a lower kriging variance; di↵erent for each point to be predicted
Second term: respect the co-variance structure of the sample points;
depends on configuration of sample points only

We do not yet know what are the optimal weights �, but once we do, we can calculate
this kriging variance; so we can selected the � to minimize it.

D G Rossiter
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‘Model globally, predict locally’

The kriging equations are solved separately for each point x0, using the
semivariances around that point, in a local neighbourhood; this gives a di↵erent set of
weights � for each point to be predicted.

However, the variogram model �() used in these equations is estimated only once,
using information about the spatial structure over the whole study area.

Q: How is this possible?

A1: Assume second-order stationarity
A2: Assume at least local first-order stationarity (local weights will be high
enough to mask long-distance non-stationarity)

D G Rossiter
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Computing the weights

There is one important piece of the puzzle missing: How do we compute the
weights � to predict at a given point?

(Recall the ad-hoc method: some power of inverse distance)

We want these to be the“best”, based on a computable objective function.

There will be an optimum combination of weights at the point to be predicted, given
the point configuration and the modelled variogram

We compute these weights for each point to be predicted, by an optimization
criterion, which in OK is minimizing the kriging variance.

The previous slides have shown how to derive a computable expression for the
kriging variance.

D G Rossiter
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Commentary

The next several slides require a knowledge of di↵erential calculus; however the central idea is simple: to
minimizing an objective function (which we have just derived, i.e. the kriging variance).

The techniques of di↵erential calculus are used to do the minimization.

D G Rossiter
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Objective function (1): Unconstrained

In a minimization problem, we must define an objective function to be minimized. In
this case, it is the kriging variance in terms of the N weights �i:

f(�) = 2
NX

i=1

�i�(xi,x0)�
NX

i=1

NX

j=1

�i�j�(xi,xj)

But this is unbounded and can be trivially solved by setting all weights to 0. We must
add another constraint to bound it.

D G Rossiter
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Objective function (2): Constrained

To bound the objective function, we need another constraint; here it is naturally
unbiasedness; that is, the weights must sum to 1.

This is added to the system with a LaGrange multipler  :

f(�, ) = 2
NX

i=1

�i�(xi,x0)�
NX

i=1

NX

j=1

�i�j�(xi,xj)� 2 

8
<
:
NX

i=1

�i � 1

9
=
;

Note that the last term ⌘ 0, i.e. the prediction is unbiased. The LaGrange multiplier may
be changed (we will see how) but that final term always drops out of the prediction.

Note: It is possible to derive the kriging system in other ways, without the LaGrange
multipliers and in terms of covariances. See Topic“Regression approach to kriging”below.

D G Rossiter
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Minimization

This is now a system of N + 1 equations in N + 1 unknowns.

Minimize by setting all N + 1 partial derivatives to zero:

@f(�i, )
@�i

= 0,8i

@f(�i, )
@ 

= 0

In the di↵erential equation with respect to  , all the � are constants, so the first two terms
di↵erentiate to 0; in the last term the  di↵erentiates to 1 and we are left with the
unbiasedness condition:

NX

i=1

�i = 1

D G Rossiter
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The Kriging system

In addition to unbiasedness, the partial derivatives with respect to the �i give N equations
(one for each �i) in N + 1 unknowns (the �i plus the LaGrange multiplier  ):

NX

j=1

�j�(xi,xj)+ = �(xi,x0), 8i

This is now a system of N + 1 equations in N + 1 unknowns and can be solved by
linear algebra.

The semivariances between sample points �(xi,xj) are computed only once for
any point configuration; however the semivariances at a sample point �(xi,x0) must
be computed separately for each point to be predicted.

D G Rossiter
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Solving the Kriging system

At each point to be predicted:

1. Compute the semivariances � from the separation between the point and the
samples, according to the modelled variogram

2. Solve simultaneously for the weights and multiplier

3. Compute the predicted value as the weighted average of the samples

4. Compute the variable term of the kriging variance

5. Add the constant term of the kriging variance to get the total variance.

D G Rossiter



Applied geostatistics – Lecture 5 47

Importance of the variogram model

The kriging system is solved using the modelled semi-variances

Di↵erent models will give di↵erent kriging weights to the sample points . . .

. . . and these will give di↵erent predictions

Conclusion: bad model ! bad predictions

D G Rossiter
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Matrix form of the Ordinary Kriging system

A� = b

A =

2
6666664

�(x1,x1) �(x1,x2) · · · �(x1,xN) 1
�(x2,x1) �(x2,x2) · · · �(x2,xN) 1

... ... · · · ... ...
�(xN,x1) �(xN,x2) · · · �(xN,xN) 1

1 1 · · · 1 0

3
7777775

� =

2
6666664

�1

�2
...
�N
 

3
7777775

b =

2
6666664

�(x1,x0)
�(x2,x0)

...
�(xN,x0)

1

3
7777775

D G Rossiter
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Inside the Matrix

The block matrix notation shows the semivariances and LaGrange multiplier explicitly:

A =
 

– 1
1T 0

!

� =
"
”
 

#

b =
"
–0
1

#

D G Rossiter
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Solution

This is a system of N + 1 equations in N + 1 unknowns, so can be solved uniquely, as long
as A is positive definite; this is guaranteed by using authorized models. This has the
solution (in matrix notation):

� = A�1b

Now we can predict at the point, using the weights:

Ẑ(x0) =
NX

i=1

�iz(xi)

The kriging variance at a point is given by the scalar product of the weights (and
multiplier) vector � with the right-hand side of the kriging system: Note that � includes as
its last element  , which depends on covariance structure of the sample points:

�̂ 2(x0) = bT�
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Exercise

At this point you should do the first section of Exercise 5: Predicting from point
samples (Part 2) which is provided on the module CD:

§1 Kriging weights

This should take less than an hour.

As in all exercises there are Tasks, followed by R code on how to complete the task, then
some Questions to test your understanding, and at the end of each section the Answers.
Make sure you understand all of these.
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Topic: Simple Kriging

Recall that In OK:

We must estimate the regional (stationary) mean along with the predicted values, in
the OK system.

However, there may be situations where the regional mean is known. Then we can
use so-called Simple Kriging (SK)

Similarly for UK or KED:

We must estimate both the intercept (�0) and all other trend coeficients (�i), along
with the predicted values, in the UK system.

Similarly, if the trend is known, we can use“Simple”variants of UK and KED.
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Simple Kriging (SK)

The (stationary) regional mean must be known a priori

in Regression Kriging, by definition the residuals have mean 0.
in Indicator Kriging we expect each quantile to have the corresponding proportion
of 1’s (if the sample was unbiased)
Note: the mean of a spatial sample is generally not the spatial mean, precisely
because the observations are spatially-correlated.

The mean may also be known from previous studies that give a better estimate than
the (small) sample size we are working with; this could be a study of a larger area
enclosing our study area.

A non-stationary (moving) mean may be known from external evidence, e.g. a
modelling exercise or regression analysis.

D G Rossiter



Applied geostatistics – Lecture 5 54

SK Predictions

We reformulate the OK estimate without the constraint that weights sum to 1

So, any bias from the weights must be compensated with respect to the known mean µ
when predicting at a point:

ẐSK(x0) =
NX

i=1

�iz(xi)+ {1�
NX

i=1

�i}µ

I.e. Estimate = Weighted Sum + Bias Correction

The correction term is not present in OK prediction; its analog is the constraint that the
weights sum to 1.
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The SK system

There is no need for a LaGrange multipler in the SK system, since there is no
unbiasedness condition on the weights at any point. The system thus has one less row and
column than the OK system.

A� = b
A =

2
64
�(x1,x1) �(x1,x2) · · · �(x1,xN)
�(x2,x1) �(x2,x2) · · · �(x2,xN)
�(xN,x1) �(xN,x2) · · · �(xN,xN)

3
75

� =

2
66664

�1

�2
...
�N

3
77775

b =

2
66664

�(x1,x0)
�(x2,x0)

...
�(xN,x0)

3
77775
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Solution of the SK system

This is a system of N equations in N unknowns, so can be solved uniquely, as long as A is
positive definite (as in OK); this is guaranteed by using authorized models.

However, since the weights �i are not constrained to sum to 1, in addition the variogram
must be bounded (e.g. an exponential or spherical model; but not a power model).
Then:

� = A�1b

Estimate at the point, using the weights and the known mean:

ẐSK(x0) =
NX

i=1

�iz(xi)+ {1�
NX

i=1

�i}µ

Note that the unbiasedness at each prediction point is restored here; if the � did not sum
to 1, it is corrected.
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SK variance

The kriging variance at a point is given by:

�̂ 2
SK(x0) = bT�

=
NX

i=1

�i�(xi,x0)

This formula has a simple interpretation:

the kriging variance is the weighted sum of the semivariances between each sample
point and the prediction point;

the weights are the kriging weights found by solving the kriging system.
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Topic: Block Kriging

Often we want to predict average values of some target variable in blocks of some
defined size, not at points.

Example: average woody biomass in a forest block of 40ha, if this is a mimimum
management unit, e.g. we will decide to harvest or not the whole block. We don’t
care about any finer-scale information, we wouldn’t use it if we had it.

Block kriging (BK) is quite similar in form to OK, but the kriging variances are
lower, because the within-block variability is removed.
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Commentary

There is only one new idea in this section: by predicting an average over some block larger than the
support, we reduce the kriging variance.

Most of this section shows how this is expressed mathematically.

The practical implication is shown in the comparative figures at the end of the section.
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Block Ordinary Kriging (BK)

Estimate at blocks of a defined size, with unknown mean (which must also be
estimated) and no trend

Each block B is estimated as the weighted average of the values at all sample points
xi:

Ẑ(B) =
NX

i=1

�iz(xi)

As with OK, the weights �i sum to 1, so that the estimator is unbiased, as for OK
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The Block Kriging system

The same derivation as for the OK system produces these equations:

NX

j=1

�j�(xi,xj)+ (B) = �(xi, B), 8i

The semivariances in the right-hand side, i.e., the b vector, are now between sample
points and the block to be predicted

The semivariance with a block is written as �, the overline indicating an average

The left-hand side, i.e., the A matrix (semivariances between known observation
points), is the same as in OK
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Matrix form of the Block Kriging system

A� = b

A =

2
6666664

�(x1,x1) �(x1,x2) · · · �(x1,xN) 1
�(x2,x1) �(x2,x2) · · · �(x2,xN) 1

... ... · · · ... ...
�(xN,x1) �(xN,x2) · · · �(xN,xN) 1

1 1 · · · 1 0

3
7777775

� =

2
6666664

�1

�2
...
�N
 (B)

3
7777775

b =

2
6666664

�(x1, B)
�(x2, B)

...
�(xN, B)

1

3
7777775
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Solution

� = A�1b

Now we can estimate at the block, using the weights:

Ẑ(B) =
NX

i=1

�iz(xi)

The kriging variance for the block is given by:

�̂ 2(B) = bT�� �(B, B)

Note that the variance is reduced by the within-block variance.
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Commentary

The semivariances � in the above formulation are not just a function of separation, because they are not
between points. Instead, they are between sample points and prediction blocks. This is illustrated in the
following figure (left side).

In addition, the variance at the prediction location is now not at a point, but rather at a block. So some of
the kriging variance must be accounted for within that block, i.e. the variance that is due to short-range
variability at distances shorter than the block size. This is illustrated in the following figure (right side).

We will then discuss in detail how to compute these two.
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Integration of semivariances for block kriging
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Computing the semivariance between a point and a block

The complication here, compared to OK, is that the semivariances in the b vector are
between sample points and the entire block to be predicted: �(xi, B)

(Note that in the A matrix the semivariances are between known sample points, so the
point-to-point semivariance �(xi,xj) is used, as in the OK system.)

So there is not a single distance than can be substituted into the variogram model. We
have to integrate over the block:

�(xi, B) =
1
|B|

Z

B
�(xi,x) dx

where |B| is the area of the block, and x is a point within the block.

As written all points in the block (conceptually, an infinite number!) would be used; n
practice, this is done by discretization of the block into a set of points.
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Computing the within-block variances

This is the factor by which the estimation variance is reduced:

�(B, B) = 1
|B|2

Z

B

Z

B
�(x,x0) dxdx0

As the block size |B| approaches zero, the double integral also approaches zero; in fact this
is the limit. This shows that OK is a special case of BK.

In practice, this is also calculated by discretizing the block into n points:

�(B, B) ⇡ 1
|B|2

nX

i=1

nX

j=1

wiwj�(xi,xj)

where of course
P
i wi = 1; the weights are set by their position within the unit block.
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Visualizing the e↵ect of block size

The following graphs show the changing predictions and their variances as the block size
is increased. This is from the Meuse soil pollution study; target variable is log10(Cd).

Each graph uses one scale, to allow direct comparaison.
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Predictions: OK, BK10 x

y
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To check your understanding . . .

Q5 : What are the di↵erences between the predictions with di↵erent block sizes? Jump to A5 •

D G Rossiter



Applied geostatistics – Lecture 5 71

Variances: OK, BK10 x

y
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To check your understanding . . .

Q6 : What are the di↵erences between the kriging variances with di↵erent block sizes? Jump to A6 •

D G Rossiter



Applied geostatistics – Lecture 5 73

Topic: Universal Kriging (UK)

This is a mixed predictor which includes a global trend as a function of the
geographic coördinates in the kriging system, as well as local spatial dependence.

Example: The depth to the top of a given sedimentary layer may have a regional
trend, expressed by geologists as the dip (angle) and strike (azimuth). However, the
layer may also be locally thicker or thinner, or deformed, with spatial covariance in
this local structure.

UK is recommended when there is evidence of first-order non-stationarity, i.e. the
expected value varies across the map, but there is still second-order stationarity of
the residuals from this trend.

Note: The“global” trend can also be fitted locally, within some user-defined radius,
so that this interpolator can range from local (immediate neighbourhood) to global
(whole area), according to the analyst’s evidence on spatial structure.
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Terminology: UK vs. KED vs. RK

In these notes, we restrict the term“Universal Kriging”(UK) to the use of a
geographic trend as co-variate

The term“UK”is used by some authors also to include a trend in one or more
feature-space predictors, i.e. co-variables.

In this course we call this use of feature-space predictors Kriging with External Drift
(KED)

The mathematics are the same; it is the co-variables that are di↵erent:

UK : only geographic coördinates;
KED : also (or only) feature-space co-variables; solve trend and local structure in one
kriging system;
RK (Regression Kriging): may also solve trend and local structure separately.
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An abstract view of UK/KED/RK

The realization of variable Z at spatial location s can be considered as the result of three
distinct processes:

Z(s) =m(s)+ ✏0(s)+ ✏00(s)

m a deterministic component; e.g., a regional trend, or the e↵ect of some forcing
variable;

✏0 a spatially-correlated stochastic process;

✏00 pure noise, not spatially-correlated, not deterministic

Note that all three processes are distributed in space, i.e., vary by location.
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Relation of this formulation to trends and OK

OK:

Z(s) = µ + ✏0(s)+ ✏00(s)

i.e., the deterministic part m(s) is just a single expected value µ, the overall level of
the target variable, with no spatial structure

The noise term ✏00(s) is the nugget variance

Trend surface:

Z(s) =m(s)+ ✏00(s)

i.e., a deterministic trend (modelled from the coordinates) and noise

The noise term ✏00(s) is the lack of fit
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Visualizing the abstract model

Source: Hengl, T. (2009). A Practical Guide to Geostatistical Mapping. Amsterdam.
Retrieved from http://spatial-analyst.net/book/; Figure 2.1

Note this figure uses the term“regression kriging” for the abstract model.
D G Rossiter
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Prediction with UK

In UK, we model the value of variable z at location xi as the sum of:

a regional non-stationary trend m(xi) and a

a local spatially-correlated random component e(xi); the residuals from the
regional trend

Z(xi) =m(xi)+ e(xi)
Note that the random component is now expected to be first-order stationary,
because non-stationarity is all due to the trend

Here m(x) is not a constant as in OK, but instead is a function of position, i.e. the
global trend.
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Base functions

The trend is modelled as a linear combination of p known base functions fj(s) and
p unknown constants �j (these are the parameters of the base functions):

Z(xi) =
pX

j=1

�jfj(xi)+ e(xi)
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Examples of base functions

For linear drift:
f0(x) = 1, f1(x) = x1, f2(x) = x2

where x1 is one coördinate (say, E) and x2 the other (say, N)

Note that f0(x) = 1 estimates the global mean (as in OK).

For quadratric drift: also include second-order terms:

f3(x) = x2
1, f4(x) = x1x2, f5(x) = x2

2
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Predictions at points

A point is predicted as in OK:

Ẑ(x0) =
NX

i=1

�iz(xi)

But, the weights �i for each sample point take into account both the global trend and
local e↵ects.

We need to set the UK system up to include both of these.
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Unbiasedness of predictions

The unbiasedness condition is expressed with respect to the trend as well as the overall
mean (as in OK):

NX

i=1

�ifk(xi) = fk(x0), 8k

The expected value at each point of all the functions must be that predicted by that
function. The first of these is the overall mean (as in OK).

Example: If f1(x0) = x1 (linear trend towards the E), then at each point x0 the expected
value must be x1, i.e. the point’s E coördinate:

NX

i=1

�ixi = x1

This is a further restriction on the weights �.
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Computing the experimental semivariogram for UK

The semivariances � are based on the residuals, not the original data, because the
random field part of the spatial structure applies only after any trend has been
removed.

How to obtain?

1. Calculate the best-fit surface, with the same base functions to be used in UK;
2. Subtract the trend surface at the data points from the data value to get residuals;
3. Compute the variogram of the residuals.

Note: Some programs, e.g. gstat, will do these all in one step.
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Characteristics of the residual variogram

If there is a strong trend, the variogram model parameters for the residuals will be very
di↵erent from the original variogram model, since the global trend has taken out
some of the variation, i.e. that due to the long-range structure.

The ususal case is:

lower sill (less total variability)

shorter range (long-range structure removed)
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Example original vs. residual variogram
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To check your understanding . . .

Q7 : What are the approximate sill and range of the original (blue) and residual (green) variograms?

The first-order trend surface in this example explained about 40% of the overall variance in the target
variable. How is this reflected in the variogram of the residuals from this surface (as shown)? Jump to A7 •

Q8 : What is the relation between the nugget variance of the original (blue) and residual (green)
variograms? What should the relation be, in theory? Jump to A8 •
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Universal Kriging: Local vs. Global trends

As with OK, UK can be used two ways:

Globally: using all sample points when predicting each point

Locally, or in patches: restricting the sample points used for prediction to some
search radius (or sometimes number of neighbours) around the point to be
predicted

We now discuss the properties of each:
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UK over the region

Using all sample points when predicting each point:

Appropriate if there is a regional trend across the entire study area

Agrees with the global computation of the residual variogram

This gives the same results as Regression Kriging on the coördinates
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UK in a neighbourhood

Using just the points in some neighbourhood:

This allows the trend surface to vary over the study area, since it is re-computed
at each prediction point

Appropriate to smooth away some local variation in a trend, di�cult to justify
theoretically

Note that the residual variogram was not computed in patches, but assuming a
global trend

Leads to some patchiness in the map

There should be some evidence of patch size, perhaps from the original (not
residual) variogram; this can be used as the search radius.
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Compare UK to OK on the next page; the NW-SE trend somewhat modifies the
predictions. Note the lower kriging variances with UK, due to the trend surface.

UK with a local trend is intermediate between global UK and OK.

All predictions are shown with the same scale, similarly for variances.
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OK prediction, log10(Cd)
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To check your understanding . . .

Q9 : What are the major di↵erences in the above figure between OK, global UK, and neighbourhood UK
predictions? Jump to A9 •
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Commentary

UK in a neighbourhood is more di�cult to justify than OK in a neighbourhood.

In the case of OK, we have a variogram showing the e↵ective range of the local spatial dependence, so that
points further than this from the prediction point only contribute to the expected value.

In the case of UK, the residual variogram is computed from the global, not local, trend. The range is

generally much shorter than the“e↵ective trend”near a prediction point.
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Topic: Derivation of the Universal Kriging (UK) system

Again, two approaches:

1. Regression (linear algebra)

2. Minimization (di↵erential calculus)

These are generalizations of the derivations of the OK system, above.
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Regression approach to UK

The general linear model applied to OK can be extended to UK (or
mathematically-equivalent KED). Instead of a vector of 1’s we have the design matrix Q
and the values x0 of the basis functions at the prediction point.

The spatial mean µ̂ is replaced by all the parameters �̂ of the trend:

�̂ = (QT · C�1 ·Q)�1 · (QT · C�1 · z)

Note that the GLS trend surface coe�cients are indeed produced by this method;
analogous to the spatial mean in the regression formulation of OK.

This is an advantage of this formulation compared to the minimization approach.

(continued . . . )
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UK prediction (regression formulation)

Then the kriging prediction becomes:

ẐOK = xT0 �̂+ cT0 · C�1 · (z�Q�̂)

xT0 �̂ here replaces the single estimate of the spatial mean µ̂ in OK; this term is the
prediction from the GLS trend at the point.

(z�Q�̂) here replaces (z� µ̂1) in OK; this is again the residual from the GLS model.
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UK weights (regression formulation)

From this we derive the vector of kriging weights, i.e. what to multiply each observation
by in the weighted sum (prediction):

�T = cT0 · C�1 � xT0 · (QT · C�1 ·Q)�1QT · C�1

Note: derive this by collecting all the terms that multiply the observed values z in the OK
prediction.
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UK prediction variance (regression formulation)

And similarly for the kriging variance:

Var(Ẑ0 � Z0) = c00 � cT0 · C�1 · c0 +
x0 � (cT0 · C�1 ·Q)

QT · C�1 ·Q

Note that this variance includes that due to the global trend; we can see this from the
presence of the Q (design) matrix, which includes the coordinates of each point.

For block kriging, replace c00 with cBB, the average within-block variance (which will in
general be smaller than the at-point variance).
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Minimization approach to UK

As for OK, there is also a minimization approach to formulating the UK system.

The objective function to be minimized is the kriging variance; in addition to the
unbiasedness constraint on the mean, there are unbiasedness constraints on the values of
the base functions:

NX

j=1

�j�(xi,xj)+ 0 +
KX

k=1

 kfk(xi) = �(x0,xi),8i (sample points) (1)

NX

i=1

�i = 1 (unbiasedness of mean) (2)

NX

i=j
�jfk(xj) = fk(x0),8k (base functions) (3)
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Where is the trend surface?

Note that the coe�cients � of the global trend surface are not mentioned in the UK
system.

However, they are implicit in the solution and will a↵ect the �i at each prediction point;
that is, the local weights around each point will take into account the global trend.

(This has the advantage that we can restrict the search neighbourhood and fit the“global”
trend only in a user-defined neighbourhood, i.e. in patches.)
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The UK system (minimization formulation) (1)

We now present the mathematics of the UK system; it is not necessary to fully understand
this in order to apply UK correctly.

The discussion uses similar notation to that for the OK system in the previous lecture.
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Solve: AU�U = bU, where

AU =

2
666666666664

�(x1,x1) ··· �(x1,xN) 1 f1(x1) ··· fk(x1)
... ··· ... ... ... ··· ...

�(xN,x1) ··· �(xN,xN) 1 f1(xN) ··· fk(xN)

1 ··· 1 0 0 ··· 0

f1(x1) ··· f1(xN) 0 0 ··· 0
... ... ... ... ... ... ...

fk(x1) ··· fk(xN) 0 0 ··· 0

3
777777777775

The upper-left block N ⇥N block is the spatial correlation structure (as in OK); the
lower-left k⇥n block (and its transpose in the upper-right) are the trend predictor values
at sample points; the rest of the matrix fits with �U and bU to set up the solution.
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The UK system (minimization formulation) (2)

�U =

2
666666666664

�1

···
�N

 0

 1

···
 k

3
777777777775

bU =

2
666666666666666664

�(x1,x0)
...

�(xN,x0)

1

f1(x0)
...

fk(x0)

3
777777777777777775

The �U vector contains the N weights for the sample points and the k+ 1 LaGrange
multipliers (1 for the overall mean and k for the trend model), and bU is structured like an
additional column of Au, but referring to the point to be predicted.
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UK system as an extension of OK (minimization formulation):
(1) Semivariance matrix

AU =

0
B@

– 1 F
1T 0 0T

FT 0 0

1
CA

Only the upper-left is used in OK:

AO =
 

– 1
1T 0

!

Dimensions:

(n+ 1+ k)2 =

0
B@
n⇥n n⇥ 1 n⇥ k
1⇥n 1⇥ 1 1⇥ k
k⇥n k⇥ 1 k⇥ k

1
CA
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UK system as an extension of OK (minimization formulation):
(2) Weights and RHS

�U =

2
64

”
 0

Ÿ

3
75 �O =

"
”
 0

#

bU =

2
64
–0
1
F0

3
75 bO =

"
–0
1

#
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UK (minimization formulation): Solution & kriging variance

Exactly as for OK:

�U = AU
�1bU

� 2
U = bU

T�

This gives the Lagrange multiplers  for the overall mean and the trend, but not the trend
surface coe�cients � as they would be computed by the linear model. The prediction
variance does include uncertainty in the trend.
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Exercise

At this point you should do the last sections of Exercise 5: Predicting from point
samples (Part 2) which is provided on the module CD:

§2 Block kriging

§3 Universal kriging

This should take about an hour.

As in all exercises there are Tasks, followed by R code on how to complete the task, then
some Questions to test your understanding, and at the end of each section the Answers.
Make sure you understand all of these.

Then do the self-test at the end of Exercise 5.
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Topic: Kriging transformed variables

It may be desireable to transform a variable prior to variogram analysis and kriging.
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Why transform?

Ordinary Kriging assumes that the distribution of deviations from the single
expected value is Gaussian

The theory depends second-order stationary Gaussian random fields.
Otherwise the kriging predictions (expected values) are unbiased but the prediction
variance is not correct
Confidence intervals can not be computed.

OK is a weighted average of nearby values. A distribution that is not symmetric
may present problems:

In a highly positively-skewed distribution (often found in earth sciences) the few
high values will overwhelm the others and lead to over-predictions.

In a multi-modal distribution, the weighted average will predict intermediate values
that fit none of the modes.

Thus, non-normal irregular distributions are often transformed to (approximate) normality.
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Transformations

The most commonly-applied transformations are:

Logarithmic for highly-skewed unimodal distributions

Only if all values > 0; can add an o↵set before transforming

For non-negative variables with some 0’s, quite common to add half the
detection/measurement limit

Square root for 0 left-limited variables
Box-Cox: logarithm and any power are special cases
Normal-score, rank-order, or Hermite polynomials to convert irregular histograms
to a normal distribution

Some attributes are already reported in transformed units – for example pH.
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Lognormal kriging

1. The target variable is transformed as the natural logarithm: y(x)i = logz(xi); this
should be then approximately symmetrically distributed.

2. Model and interpolate with the transformed variable (OK, block kriging, UK, KED,
. . . ); at each point we get a predicted values Ŷ (x0) instead of Ẑ(x0)

3. Back-transform to original units.

The last step is optional if the transformed estimates can be used directly. For example, a
regulatory threshold may be expressed directly in transformed units.
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Back transformation

For the kriged estimate Ŷ (x0), we want the back-transfomed estimate Ẑ(x0). We can not
just exponentiate the estimate, because the estimate is a weighted sum (not product!) of
logarithms. Further, the back-transformation (exponentiation) of a symmetric (Gaussian)
prediction variance is right-skewed.

The back transformation is considered for two cases:

1. Simple Kriging (i.e. mean was known a priori)
2. Ordinary Kriging (i.e. mean was estimated with the prediction)

The derivations of these equations are found in:

Journel, A.G., 1980. The lognormal approach to predicting local distributions of selective
mining unit grades. Mathematical Geology, 12(4): 285-303.

They are also found in:

Webster, R., and M.A. Oliver. 2008. Geostatistics for environmental scientists. 2
ed. John Wiley & Sons Ltd.
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Back-transformation of log-SK

For SK, where the mean µ is known:

Ẑ(x0) = exp

 
Ŷ (x0)+

� 2
SK(x0)

2

!

The estimate is increased always, because the prediction variance � 2
SK must be positive.

This increase is a result of the skewed distribution of the back-transformed prediction
variance.

var[Ŷ (x0)] = µ2e�
2
SK

h
1� exp

⇣
�� 2

SK(x0)/2
⌘i

The back-transformed prediction variance depends on the mean.

D G Rossiter



Applied geostatistics – Lecture 5 114

Back-transformation of log-OK

For OK, where the true spatial mean µ is not known:

Ẑ(x0) = exp

 
Ŷ (x0)+

� 2
OK(x0)

2
� 

!

The estimate is increased by the prediction variance � 2
OK must be positive; but also notice

that the LaGrange multiplier decreases the prediction.

For OK, it is not possible to back-transform the variance in the original units,
because µ is unknown (see formula for SK variance back-transformation, above).
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Computing confidence limits

It is not necessary to back-transform the prediction variance in order to compute the
confidence limits of a prediction in terms of the original variable. Instead:

1. Compute the prediction and its variance in the transformed (e.g., logarithmic) space.

This assumes that the random field is Gaussian.

2. Compute the confidence interval in the transformed space.
3. Back-transform the ends of the confidence intervals, simply by exponentiating.
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Topic: Kriging with External Drift (KED)

This is a mixed interpolator that includes feature-space predictors that are not geographic
coordinates.

The mathematics are exactly as for UK, but the base functions are di↵erent.

In UK, the base functions refer to the grid coordinates; these are by definition known at
any prediction point.

In KED, the base functions refer to some feature-space covariate . . .

. . . measured at the sample points (so we can use it to set up the predictive equations)
and
also known at all prediction points (so we can use it in the prediction itself).
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Base functions for KED

There are two kinds of feature-space covariates:

1. strata, i.e. factors. Examples: soil type, flood frequency class

Base function: fk(x) = 1 i↵ sample or prediction point x is in class k, otherwise 0
(class indicator variable)

2. continuous covariates. Examples: elevation, NDVI

Base function: fk(x) = v(x), i.e. the value of the predictor at the point.

Note that f0(x) = 1 for all models; this estimates the global mean (as in OK).

Compare KED to OK on the next page; the distance from the river somewhat modifies the
predictions. Note the lower kriging variances with KED; this because the residual variogram
has lower sill.

D G Rossiter



Applied geostatistics – Lecture 5 118

KED (distance to river) x

y
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Topic: Regression Kriging (RK)

Regression Kriging (RK), also called“kriging after de-trending”models the trend
(geographic or feature space) and its residuals separately.
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UK/KED vs. RK (1)

Two methods for incorporating a trend in geographic or feature space:

1. UK or KED: Compute trend along with residuals in one UK/KED system

UK/KED gives a combined kriging variance

Recall: kriging systems are the same, the base functions are di↵erent

2. RK

(a) Calculate trend (or strata) ! prediction variance of linear model

(b) subtract trend to get residuals

(c) model & krige residuals using Simple Kriging (SK) with known mean of residuals
= 0; ! kriging variance of residuals

(d) add trend back to get estimate

(e) sum the two prediction variances at each point to get the overall error
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UK/KED vs. RK (2)

The coe�cients � of the global trend surface are not explicit in the UK/KED system;
they are implicit in the solution and will a↵ect the �i at each prediction point

By contrast, in RK we first find the best trend surface, by fitting coe�cients �
required by the linear model; then we model the residuals with SK

The UK/KED trend is implicitly computed by generalized least squares because the
covariance structure is specified

By contrast, the RK trend surface is usually computed without knowing the
covariance structure, although that can be estimated by an iterative process.

The variable being kriged is di↵erent with the two approaches: original data values (OK)
vs. residuals after fit (RK)
The � are di↵erent with the two approaches
There are more  (LaGrange multipliers) in UK, and  0 is di↵erent in any case
The RK system does not account for the variance of the feature-space model; in the
UK/KED system this is built-in.
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Näıve RK : Using Ordinary Least Squares (OLS)

The trend is computed by Ordinary Least Squares (OLS).
This assumes no correlation between residuals (“errors” in statistical terminology):
Computation:

ẑRK(x0) =
pX

k=0

�̂k · qk(x0)+
nX

i=0

�iz(xi)

The two terms are the trend and local interpolation:

p is the degree of the trend surface

the �̂k are estimated by OLS and multiply the covariates qk evaluated at the
prediction point

n is the number of sample points

the �i are estimated from the SK system of the residuals and multiply the sampled
value of the target variable z at each sample point.
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Problems with the näıve RK approach (1)

Once the trend is removed, the residuals are supposed to be independent samples
from the same error distribution.
However, we have evidence from their variogram that the regression residuals are
in fact correlated – this is the reason for RK instead of just using the trend.

Goodness-of-fit measure (R2) of the OLS trend is too optimistic

The trend surface coe�cients may be wrong

! the residuals may be wrong

! the variogram of the residuals may be poorly-modelled

! the SK of the residuals may be wrong.

! the prediction may be wrong.

Four wrongs don’t make a right . . . what do we do?
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Problems with the näıve RK approach (2)

In practice, if the sample points are well-distributed spatially (not clustered), the
correlated residuals will be about the same everywhere, so that the OLS fit is
satisfactory and näıve RK will give good results.
However, if the sample points are clustered in some parts of the map (or feature
space), we may well have mis-estimated the regression coe�cients because we didn’t
weight the sample points.

N.b. This can happen in non-spatial regression also, where observations in feature
space are clustered at certain predictor values.

In particular, a large number of close-by points with similar values (as is expected by
spatial dependence) will “pull”a trend surface or regression towards them
This will tend also to lower the R2 (supposed goodness-of-fit) ! over-optimistic
prediction variance

Thought experiment: add many close-by observations to one of the sample points; if
their data values are quite similar (as expected if there is spatial correlation) these
will all be well-fit, thereby decreasing the R2 arbitrarily.
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A more sophisticated RK approach: GLS/RK

Use Generalised Least Squares (GLS), which allows a covariance structure between
residuals to be included directly in the least-squares solution of the regression
equation.
This is a special case of Weighted Least Squares (WLS), in this case where samples
are weighted according to the spatial structure using the theory of random fields.
The GLS estimate of the regression coe�cients is:

�̂gls = (qT · C�1 · q)�1 · qT · C�1 · z

where:

z is the data vector (observations)

q is the design matrix ;

C is the covariance matrix of the (spatially-correlated) residuals, i.e. deviations from
the trend.
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GLS/RK (2)
Example: for a first-order trend, q consists of three column vectors:

q =
⇥
1xy

⇤

where x is one geographic coördinate and y the other.
Reference: Cressie, N., 1993. Statistics for spatial data. John Wiley & Sons, New York.
The covariance structure must be known (or modelled).
If there is no spatial dependence among the errors, C reduces to I� 2 and the estimate
to OLS.

D G Rossiter



Applied geostatistics – Lecture 5 127

Problem implementing GLS/RK

The covariance structure refers to the residuals, but we can’t compute these until we fit
the trend . . . but we need the covariance structure to fit the trend . . .“which came first,
the chicken or the egg?”
In particular, the covariance structure must be modelled from the variogram
of residuals; but the residuals can only be obtained after the trend has been
computed.
These are solved together in UK or KED, but not in RK; here an iterative approach is
used.
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Procedure with GLS/RK

1. Compute the OLS trend either on geographic coordinates (as in UK) or on some
feature-space covariates (as in KED).

2. Subtract OLS trend from sample points to obtain OLS residuals.
3. Model the covariance function C of OLS residuals.
4. Compute the GLS trend on the geographic- or feature-space covariates using

covariance function C to weight the observations.

So the trend is modelled twice, first with OLS just to get the residuals to model the
spatial covariance, and second with GLS using this modelled covariance.

5. Subtract GLS trend from sample points to obtain GLS residuals.
6. Model the semi-variance function �(h) of GLS residuals . . .
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7. Predict GLS residuals at prediction points by SK (µ ⌘ 0)
8. Predict GLS trend at prediction points from the GLS regression equation
9. Add predicted GLS trend and predicted GLS residuals at prediction points

! final prediction

10. Add GLS prediction variance and SK kriging variance at prediction points

! final kriging variance
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Visualizing GLS/RK (1)

OLS and GLS trend surfaces compared
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Visualizing GLS/RK (2)

Residuals, SK

Residuals from 2nd−order GLS surface, log(Cd ppm)
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Visualizing GLS/RK (3)

Trend surface, SK S.E.

S.E. from 2nd order GLS trend surface, log(Cd ppm)
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An even more sophisticated approach – REML

Generalized Least Squares (GLS) is an iterative procedure (“chicken-and-egg”), so there is
no assurance we know the correct covariance structure among the regression residuals.

It does provide unbiased estimates of the fixed e↵ects (i.e., regression coe�cients) but the
variance parameters of these (e.g., standard errors of coe�cients, goodness-of-fit) are
biased. For large datasets this bias becomes small, so the above approach in practice
usually performs well.

A sophisticated approach is to use Restricted Maximum Likelihood (REML) to estimate
both the spatial structure and regression parameters together; see the clear explanation in:

Lark, R. M., & Cullis, B. R. (2004). Model based analysis using REML for inference from
systematically sampled data on soil. European Journal of Soil Science, 55(4), 799-813.
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Topic: Stratified Kriging (StK)

Stratified Kriging (StK) first stratifies an area according to some classified factor, and then
predicts within each stratum separately.

The per-stratum results are then combined for a final map.
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StK vs. KED with a classified predictor

One variant of Kriging with Externel Drift is for the“drift” to be represented by some
classifying factor which is mapped as polygons.

Examples: soil types; lithological units; political subdivisions

In this form of KED, the mean is expected to di↵er among strata.

This restores first-order stationarity to the residuals, which are then modelled and
predicted by Simple Kriging.

StK also allows the spatial structure within strata to di↵er.

That is, it does not assume second-order stationarity of the residuals.
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Example

On a steep hillslope the target varible ‘depth to a root-restricting layer’ may be not only . . .

less (shallower soils) ! di↵erent expected value), but also
variable at shorter ranges ! reduced range of the variogram model, and perhaps
more variable overall ! higher sill of the variogram model

. . . than the depth on a gently-sloping area.

Even the variogram form may di↵er between strata.

Example application: Stein, A., Hoogerwerf, M., & Bouma, J., 1988. Use of soil-map
delineations to improve (co)kriging of point data. Geoderma, 43, 163–177.
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Procedure for StK

1. Delineate contrasting areas as strata (i.e., a polygon map);
2. Model within each stratum separately;

(a) Empirical variogram

(b) Fitted variogram model

3. Use these models to map by OK within each stratum separately;
4. Combine the per-stratum maps into a single map.
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Applicability of StK

This approach is not much used, because of the following di�culties:

The requirement to model per-stratum variograms

the number of sample points is often quite small when the area is stratified;

polygons of the stratum may be small and widely-spaced, so the variogram is limited
to short-range and may not reach a sill or have a clear model form within that range;

Predictions use only the known points within each stratum, so are based on limited
information;
If the polygons are widely-spaced, only points within a polygon have large weight, so the
prediction is strongly local;
Abrupt changes in both values and prediction variances at stratum boundaries.

Note this last may be desireable if the strata are strongly-contrasting. Example: depth to
bedrock at the interface of a steep hillside and an alluvial plain.

D G Rossiter



Applied geostatistics – Lecture 5 139

Example: Jura Co concentration, rock type strata

Jura rock types Per-stratum empirical variograms

Jura 50m prediction grid, Rock type
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Stratified Kriging results – per-stratum
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Stratified Kriging results – combined

Combined StK prediction Combined StK prediction variances
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Comparing OK, KED, StK (1)

Comparing OK, KED, StK predictions
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Comparing OK, KED, StK (2)

Comparing OK, KED, StK prediction variances
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Topic: Cokriging (CoK)

Often we have several related sets of point observations of di↵erent attributes:

co-located: all attributes at all locations

e.g.: geochemical soil or rock samples with many measured elements

partially co-located: some same locations and all attributes; but additional locations
with only some attributes

e.g.: soil moisture at instrumented locations, clay and organic matter at many others

the under-sampled attribute is usually the target

disjunct locations: each attribute is collected at di↵erent location sets
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Coregionalization and Cokriging

These two concepts are related in the same way as the theory of regionalized variables and
(univariate) kriging :

1. Coregionalization is a theoretical model of how several variables spatially co-vary;
this is used for . . .

2. Cokriging (CK), which is a method of using:

supplementary information on a co-variable . . .

. . . to improve the prediction of a target variable . . .

or to predict several related variables at the same time
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Steps in Cokriging

1. Extend the theory of regionalised variables to several variables
2. Examine spatial structure with direct and cross-variograms

show that there is a multivariate spatial cross-correlation . . .

. . . as well as the univariate spatial auto-correlation

These are then called co-regionalised variables

3. Model this spatial structure (direct and cross-variogam models)
4. Build the cokriging system of equations
5. Use it to predict at unsampled locations.
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When to consider CoK?

When the target attribute is undersampled, and:

there are one or more other attributes co-variables measured at more locations
(maybe some co-located)

there is a strong spatial cross-correlation between the target and co-variables (see
below)

generally the under-sampled target is more expensive/di�cult to measure

– e.g.: a set of lab. determinations of soil organic matter vs. a larger set of
spectroscopic measurements

When several targets are all to be mapped, and:

they are closely-related in feature space (strong feature-space correlation)

there is a strong spatial cross-correlation between the target and co-variables (see
below)

– e.g.: a set of closely-related geochemical elements in soil/rock samples
D G Rossiter
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Example of under-sampling

Full and subset sample points
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Main di�culty of CoK

Building an authorized model of spatial covariance that results in a positive-definite
CoK system
This because the covariables may have a di↵erent spatial structure

they may each be auto-correlated, but may have diferent structures

so the linear model of co-regionalization can not be used

other models are quite di�cult to formulate
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Alternatives to CoK with covariables

If the covariable(s) is (are) known at all prediction locations, use
Kriging with External Drift (KED) or Regression Kriging (RK)

These do not require a model of spatial covariance, they just use feature-space
correlation.

E.g.: soil clay content (measured at points) is the target; MODIS day-night
temperature di↵erences for some days after a rain are the covariable(s); MODIS is
available over the whole prediction grid.

This is a typical example when remote-sensing data are covariables.

Reference: Zhao, M.-S., D.G. Rossiter, D.-C. Li, Y.-G. Zhao, F. Liu, and G.-L. Zhang.
2014. Mapping soil organic matter in low-relief areas based on land surface diurnal
temperature di↵erence and a vegetation index. Ecological Indicators 39: 120–133.
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Correlation in feature space vs. geographic space

In feature space, the correlation is between the two variables at co-located points
only
In geographic space, the correlation is between the two variables at point-pairs
separated by a distance and summarized in distance classes

The absolute value of the correlation is expected to be greatest if points are
co-located, and then decrease with separation – if the variables are
co-regionalized

Otherwise there should be no relation between variables that are not co-located
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Variograms

Two types of variograms:

1. direct: single regionalised variables, one variogram per variable

compute in the usual way for a univariate empirical variogram

2. cross: per pair of regionalised variables
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Empirical cross-variogram

This is analogous to the standard Matheron estimator for the direct variogram.

For the two variables u and v with values zu and zv respectively:

b�uv,h =
1

2m(h)

m(h)X

i=1

{zu(xi)� zu(xi + h)} {zv(xi)� zv(xi + h)}

where m(h) is the number of point-pairs separated by vector h; for an omnidirectional
variogram this is the distance class

In words: if high di↵erences between point-pairs of one variable are positively associated
with high di↵erences between point-pairs of the other variable, they will have a high
positive cross-correlation.

This can also be a negative cross-correlation!

If the di↵erences are randomly associated, there will be on average no spatial
cross-correlation in this distance class.
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Empirical direct- and cross-variograms
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Here a strong positive cross-correlation (soil Pb vs. organic matter)
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Modelling the variograms

The direct and cross-variograms must be modelled together, with some
restrictions to ensure that the resulting CK system can be solved.

The simplest way to ensure this is to assume a linear model of co-regionalisation: all
variograms are linearly related

Same model, same range (i.e., same spatial structure)
May have di↵erent sills (i.e., overall variability)
May have di↵erent nuggets (i.e., uncertainty at sample point)

Other models are possible but much more complicated to estimate, while ensuring a
positive definite cokriging system
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Direct- and cross-variograms with fitted models
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Reasonable fit, although range of the cross-variogram seems shorter. Fits well at shorter
ranges, where most of kriging weights are determined.
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Co-Kriging : Prerequisites

1. Two point data sets, usually with some observations co-located:

(a) the target variable z at locations x1 . . .xNz

(b) the co-variable w at locations y1 . . .yNw

2. Spatial structure in both variables separately (i.e. non-nugget variograms);
3. Spatial structure between the variables (cross-variograms); this can be either a

positive or negative spatial correlation;
4. Certain restrictions on the joint spatial structure.

(N.b. can use more than one co-variable but we will only cover the case where there is only
one.)
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The Co-kriging predictor

Prediction of the target variable at an unknown point x0 is computed as the sum of two
weighted averages:

1. one of the Nz sample values of the target variable z; and
2. one of the Nw sample values of the co-variable w

z(x0) =
NzX

i=1

�iz(xi)+
NwX

j=1

µjw(yj)

We want to find the weights � (for the target variable) and µ (for the co-variable) which
minimize the prediction variance; this will then be the BLUP.
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Unbiasedness

Two conditions:

NzX

i=1

�i = 1

NwX

j=1

µj = 0

That is, the weights from the target variable sum to 1, as in OK.

The weights from the co-variable sum to 0, so that there is no overall e↵ect (n.b., this
variable may well have di↵erent units).
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The Co-kriging variance

Suppose there are V variables (target and co-variables), which are indexed from 1 . . . l;
each has nl observations.

Variable u is the target, one of the V .

we want to minimize the variance.

� 2
u =

VX

l=1

nlX

j=1

�jl�ul(xj,x0)+ u

So the semivariance of all observations of all variables with the point to be estimated is
minimized.

There is one of these equations for each variable.
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The Co-Kriging system (1)

Solve: AC�C = bC, where AC is built up from the direct and cross-semivariances of the
sample points (both target and co-variable):

AC =

2
66664

–zz –zw 1 0
–wz –ww 0 1
1T 0T 0 0
0T 1T 0 0

3
77775

The vectors of 1’s and 0’s control which of the semi-variances are included in each equation.

The – are the matrices of semi-variances (next slide)

By linear algebra, the solution is: �C = AC
�1bC
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The Co-Kriging system (2)

The – are the matrices of semi-variances:

1. –zz (dimension Nz ⇥Nz) between the locations of the target variable, computed from
the direct variogram for z;

2. –ww (dimension Nw ⇥Nw) between the locations of the co-variable, computed from
the direct variogram for w;

3. –wz (dimension Nw ⇥Nz)between the locations of the target and co-variables,
computed from the cross-variogram:

4. –zw = –Twz
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Example of a cross-variable matrix

–zw =

2
66664

�zw(x1,y1) �zw(x1,y2) · · · �zw(x1,yNw)
�zw(x2,y1) �zw(x2,y2) · · · �zw(x2,yNw)

... ... · · · ...
�zw(xNz,y1) �zw(xNz,y2) · · · �zw(xNz,yNw)

3
77775
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The Co-Kriging system (3)

�C =

2
66666666666664

�1

· · ·
�Nz
µ1

· · ·
µNw
 z
 w

3
77777777777775

bC =

2
66666666666664

�zz(x1,x0)
...

�zz(xNz,x0)
�wz(y1,x0)

...
�wz(yNw,x0)

1
0

3
77777777777775

Note that bC uses direct semivariances between the prediction point and the target
variable, but cross-semivariances between the prediction point and the co-variable. Note
also one LaGrange multiplier for each variable.

The cokriging prediction variance is then:

�̂ 2
z (x0) = bT

C�C
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Example cokriging results

Co-kriging predictions and prediction variance, log10(Pb)

log10(Pb), CK predictions, OM covariable
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log10(Pb), CK errors, OM covariable
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Di↵erence between OK and CK predictions
log10(Pb), OK
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To check your understanding . . .

Q10 : What are the di↵erences between the kriging predictions of OK and CoK? Explain the spatial
pattern of these. Jump to A10 •
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Di↵erence between OK and CK prediction variances
log10(Pb) error, OK
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To check your understanding . . .

Q11 : What are the di↵erences between the kriging variances of OK and CoK? Explain the spatial
pattern of these. Jump to A11 •
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References for Cokriging

The mathematics of this topic is necessarily quite involved, and there are di↵erences in
notation, theory, and practice.

Goovaerts, P., 1997. Geostatistics for natural resources evaluation. Oxford University
Press, Oxford and New York; Chapter 6

Webster, R., & Oliver, M. A., 2001. Geostatistics for environmental scientists. Wiley &
Sons, Chichester; Chapter 9

Papritz, A., & Stein, A, 1999. Spatial prediction by linear kriging. In: A. Stein, F. v. d.
Meer & B. G. F. Gorte (Eds.) Spatial statistics for remote sensing (pp. 83-113).
Dordrecht: Kluwer Academic.

Isaaks, E.H. and Srivastava, R.M., 1990. An introduction to applied geostatistics. Oxford
University Press, New York.

Rossiter, D.G., 2012. Technical Note: Co-kriging with the gstat package of the R
environment for statistical computing. ITC, Enschede.
http://www.itc.nl/personal/rossiter/teach/R/R_ck.pdf
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Answers

Q1 : Consider a regular grid over some area; measure the data values and compute the ordinary average.

If there is spatial dependence, what would happen to this average if we now make many observations near one
of the grid points (i.e. a cluster), and not the others? •

A1 : The average will get closer and closer to the average of the points in the cluster, which, because of
spatial autocorrelation, will not necessarily be the average over the whole area. Return to Q1 •
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Answers

Q2 : How is the covariance matrix C computed? •

A2 : This is derived from the modelled covariance function: each matrix entry cij is computed from the
separation hij between the two observations zi and zj (in the simple case, the distance between them),
which is then used as an argument to the covariance function.

For example, for an exponential model: cij = ce(�hij/a) Return to Q2 •

Q3 : How is the covariance vector c0 computed? •

A3 : As for the covariance matrix, but the separations are between each known point zj and the point to be
predicted, z0. Return to Q3 •
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Answers

Q4 : Does the kriging variance depend on the data values at the sample points, or on the predicted data
value? How can you see this from the equation? •

A4 : No and no. There is no reference to any data value on the right-hand side of the equation.

Thus the kriging variance depends only on the (1) sample point configuration and the (2) spatial
covariance model. Return to Q4 •
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Answers

Q5 : What are the di↵erences between the predictions with di↵erent block sizes? •

A5 : There not much di↵erence, but as the block size increases the extremes are a bit softened; i.e. the hot
and cold spots are a bit less pronounced. Return to Q5 •
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Answers

Q6 : What are the di↵erences between the kriging variances with di↵erent block sizes? •

A6 : There is a very large reduction in variance with BK; increasing the block size reduces this still more but
not as dramatically. Return to Q6 •
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Answers

Q7 : What are the approximate sill and range of the original (blue) and residual (green) variograms?

The first-order trend surface in this example explained about 40% of the overall variance in the target
variable. How is this reflected in the variogram of the residuals from this surface (as shown)? •

A7 : Sill: 65 CEC-units squared (original) vs. 45 65 CEC-units squared (residual)

Range: 550 m (original) vs. 350 m (residual).

The trend surface removed much of the total variability, thereby lowering the total sill by about 20/65 =
30%. The global trend model acts across the entire area, so that long-range variability due to the trend is
removed, hence the shorter range of residuals. Return to Q7 •
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Answers

Q8 : What is the relation between the nugget variance of the original (blue) and residual (green)
variograms? What should the relation be, in theory? •

A8 : The nugget variance is almost the same, approx. 28 CEC-units squared. This agrees with theory: a
trend surface can not take out the variability at a single point.

Technical note: this is because a trend surface is by definition smooth (all partial derivatives are defined).
Return to Q8 •
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Answers

Q9 : What are the major di↵erences in the above figure between OK, global UK, and neighbourhood UK
predictions? •

A9 : The NW-SE trend somewhat modifies the OK predictions. In particular, notice the lower UK
predictions in the area near (180 600, 331 800). This is because the trend surface, which dips towards the SE,
is not corrected by nearby observations. Also notice the smaller“halo”of high values in UK near the two high
observations on the river bend near (180 200, 330 200). This is because the SE-dipping trend surface predicts
low values in this area; the two high points compensate for this in their neighbourhood. In OK they have
more influence because there is no contrary trend.

UK has lower kriging variances than OK, especially at prediction locations with few observations nearby, due
to the trend surface.

UK with a local trend is intermediate between global UK and OK in both predictions and variances. In some
cases the local trend is even stronger than for UK, for example at the previously-mentioned“cold spot”
centred on (180 600, 331 800). Return to Q9 •
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Answers

Q10 : What are the di↵erences between the kriging predictions of OK and CoK? Explain the spatial
pattern of these. •

A10 : There are fairly large di↵erences between OK and CK in under-sampled areas where the co-variable
provides information. For example, near (331200,179200) (along the river) the under-sampled OK gave
under-predictions because of the exclusion of high metal and OM points along the river; when these are added
back in the CoK prediction is higher by about 0.3 units log(Pb mg kg-1). The reverse is true near
(332000,179600). Return to Q10 •
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Answers

Q11 : What are the di↵erences between the kriging variances of OK and CoK? Explain the spatial
pattern of these. •

A11 : Prediction variances are in general larger with CK, with this co-variable; reason: imperfect
feature-space correlation as shown also by high nugget in the variogram for OM.

However, prediction variances are lower in under-sampled areas where a covarible point is available, because
the extra information from the co-variable reduces uncertainty. For example, at the extreme SE of the area.

Return to Q11 •
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