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Topics for this lecture

1. Trend surfaces

2. Theory of random fields

3. Models of spatial covariance

4. Variogram analysis; variogram model fitting

5. Anisotropic variogram analysis and model fitting
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Commentary

We often have a set of point observations (with some spatial support around the “point”). From these we

usually want to:

1. identify the nature of any spatial structure of one or more feature-space attributes measured at

each observation point;

2. infer what spatial processes caused the observed structure;

3. interpolate (predict) the attribute at unsampled locations, often on a regular grid to cover an entire

study area.

We divide this into two types of processes:

1. Regional, also called global by contrast to the next; the process operates over an entire region;

2. Local: the process operates over some neighbourhood (“range”) beyond which there is no influence.

D G Rossiter
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Topic 1: Trend surfaces

Regional processes operate over an entire region; that is, one mathematical model is
used to describe such a process.

The most common regional model is the trend surface.
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Regional models

� Theory: The attribute value depends on relative geographic position within a
spatial field

� That is, the process that affected the attribute value operates over the whole region; it
has one cause

* Example: thickness of a layer of volcanic ash over a buried soil: one source of ash (a
volcano), spread by prevailing winds; therefore one process

� Since there is only one process (“global”), all sample points are used to fit the model.

* Note: Sometimes the same model form is fitted piecewise over the region, e.g. in
moving trend surfaces or splines; but we will ignore that for now.

D G Rossiter
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To check your understanding . . .

Q1 : Describe a process in your field of study that would be expected to show this behaviour, i.e. the

attribute value depends on relative geographic position within a spatial field Jump to A1 •

D G Rossiter
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Commentary

There are many mathematical forms for a regional trend. We will see the most common, namely the

polynomial trend surface.

However, you should be aware that there are other forms to model surfaces.

D G Rossiter
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Trend surfaces

� A mathematical model of a regional trend

� The value of a variable at each point depends only on its coördinates and parameters
of a fitted surface

� This is modelled with a smooth function of position; in 2D this is:

z = f(x,y)

where z is the attribute value and x,y are the two coördinates, e.g. UTM E and N.

� The function f is generally differentiable at least twice, to give slopes and curvatures.

� When this function is computed on a regular grid, the result is called a trend surface.
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Polynomial trend surfaces

The most common trend surface functions are polynomials in the coördinates. These
have some good mathematical properties:

� They are differentiable to any degree (of course, beyond the degree of the polynomial
the derivative is zero).

� They are easy to fit using some variety of least-squares.

The simplest trend is the plane, also known as the first order trend:

z = β0 + βxx + βyy

D G Rossiter
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General polynomial trend surfaces

� General form: a surface of order p:

f(x,y) =
∑

r+s≤p
βr ,sxrys

� Example: full 2nd order:

z = β0 + β1,0x + β0,1y + β2,0x2 + β0,2y2 + β1,1xy

� Order should be suggested by the process

* One-way trend: 1st order (plane)
* Dome or depression: 2nd order
* Folded structure: Higher orders, depending on number of inflection points

� Higher orders always give better fits to the data, but beware that you may be fitting
noise, not structure; use the adjusted R2 or similar to evaluate.

D G Rossiter
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Fitting trend surfaces

� The trend surface is modelled by linear regression with coördinates as the
predictor variables, using data from all sample points.

� In ordinary linear regression, all samples participate equally in the prediction

� The goodness of fit of the trend surface to the sample is measured by the residual
sum of squares, or, equivalently, the R2 of the regression.

� The same cautions apply as in feature-space regression analysis!

� Ordinary Least Squares (OLS) is commonly used to compute the regression
coefficients.

* Note: OLS is not really correct, since it ignores possible correlation among
closely-spaced samples; better is Generalised Least Squares (GLS); that is an
advanced topic, see Lesson 5, “Regression Kriging”

D G Rossiter
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Commentary

In the previous lecture and exercise (“visualization”) we computed and displayed first- and second-order trend

surfaces for subsoil clay content in a region of southern Cameroon.

However, we didn’t see how to model the trend with linear regression, nor how to evaluate the model.

To refresh your memory, the next two slides are the two computed surfaces, then we examine the models

behind them, and how to interpret the models and fit.
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First-order trend surface

First−order trend surface, clay content %, 0−10~cm layer

Sample points overprinted as post−plot
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Second-order trend surface

Second−order trend surface, clay content %, 0−10~cm layer

Sample points overprinted as post−plot
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Computing a trend surface model by ordinary least squares regression

We use the Cameroon soils data of Yemefack et al. (Geoderma, 125:117)

Each observation has two UTM coördinates and two attributes:

UTM_E UTM_N clay35 pH35

1 702638 326959 78 4.80

2 701659 326772 80 4.40

3 703488 322133 66 4.20

4 703421 322508 61 4.54

5 703358 322846 53 4.40

6 702334 324551 57 4.56

...

We use the R lm (“linear models”) method; all statistical packages have an equivalent
comment to compute an ordinary least-squares (OLS) fit:

ts1 <- lm(clay35 ~ UTM_E + UTM_N, data=tcp)

The model formula clay35 ~ UTM_E + UTM_N specifies the functional form, in this
case a dependency on the two coördinates.

D G Rossiter
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Computing a trend surface (2)

The result of this computation is a fitted linear regression of the attribute (here, clay
content) on the predictors, which are the grid coördinates.

R gives us the following summary table; other statistics packages have something quite
similar:

Residuals:

Min 1Q Median 3Q Max

-31.601 -5.106 -0.363 3.607 20.467

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.50e+02 5.19e+01 -4.83 3.5e-06

UTM_E 6.51e-04 5.97e-05 10.91 < 2e-16

UTM_N -4.50e-04 9.24e-05 -4.88 2.8e-06

Multiple R-Squared: 0.506, Adjusted R-squared: 0.499

D G Rossiter
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Interpretation of the linear model output

In the summary of the linear model we see:

Residuals Lack of fit of individual observations; here from −31 to +20 percent clay;

Coefficients Multipliers of each term in the polynomial; here for every meter East, the
clay content increases by 0.00065%, i.e. 0.65% per km

Adjusted R-squared Proportion of variance explained by the model, here about
50%.

Recall: The “adjusted”R2 decreases the apparent R2, computed from the Analysis of
Variance (ANOVA) table, to account for the number of predictive factors:

R2
adj ≡ 1− [(n− 1)/(n− p)∗ (1− R2)]

where n is the number of observation and p is the number of coefficients.

D G Rossiter
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To check your understanding . . .

Q2 : What is the change in clay content for each km towards the North? Jump to A2 •

Q3 : What proportion of the residuals are between −5.106 and +3.607 % clay? Jump to A3 •

D G Rossiter
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Evaluating a trend surface fit (1)

The same tools available for any linear regression are available here:

� Numerical measures:

* Adjusted R2: Proportion of variance explained by the model
* Residuals

� Graphical method 1: “1:1” plots: Fitted vs. observed values

* Ideally all points should fall on the 1:1 line
* If not all on line, equally-spread on both sides
* If there is a “curve” apparent, probably need a higher-order polynomial

D G Rossiter
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Fitted vs. observed (1:1) plot
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To check your understanding . . .

Q4 : How well do the fitted values match the observed values? What are the deviations from the 1:1 line?

Jump to A4 •

D G Rossiter
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Evaluating a trend surface fit (2)

� Graphical method 2: Diagnostic plots of residuals

� These show whether the residuals satisfy the model assumption; in particular, they
should be normally distributed

1. Fitted values vs. residuals: residuals should show no pattern
* if they are more variable in some part of the range then you have

heteroscedascity and need a variance-stabilizing transformation
* if they are mostly on one side of the 0-axis in some range you probably need a

higher-order polynomial or non-linear model.
2. Quantile-quantile (Q-Q) plot of residuals: compares theoretical quantiles of a

normal distribution with actual quantiles
* all points should be on the line
* should be denser in the centre (median) and spread out at the two ends.

� See a good regression text for more information, e.g. Fox, J. (2008). Applied regression,
linear models, and related methods, 2nd edition. Sage.

D G Rossiter
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Diagnostic plots from linear regression of TCP clay
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To check your understanding . . .

Q5 : Is there any pattern of the residuals vs. fitted values? Jump to A5 •

Q6 : Are the residuals normally-distributed? Jump to A6 •

Q7 : Which observations are marked by the diagnostic procedure as being outliers in this linear model fit?

Jump to A7 •

D G Rossiter
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Computing a higher-order trend surface

Some trends require a higher order than a simple plane. They are fit in the same way as
the first-order surface, but include higher powers of the coördinates as predictors.

In the present example it is clear from the surface/post-plot and the regression diagnostics
that a first-order surface was not satisfactory. So we compute with the square of the
coördinates and their cross-product included in the model, and get the following summary:

ts2 <- lm(clay35 ~ I(UTM_E^2) + I(UTM_N^2) + I(UTM_E*UTM_N) + UTM_E + UTM_N, data=tcp)

Residuals:

Min 1Q Median 3Q Max

-29.48 -5.00 -0.56 4.21 20.83

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.18e+04 6.74e+03 1.75 0.0822 .

I(UTM_E^2) 1.27e-08 8.44e-09 1.50 0.1349

I(UTM_N^2) 3.58e-08 1.26e-08 2.83 0.0053 **

I(UTM_E * UTM_N) 1.02e-08 1.33e-08 0.77 0.4425

UTM_E -2.00e-02 1.48e-02 -1.35 0.1777

UTM_N -3.10e-02 1.24e-02 -2.50 0.0135 *

Multiple R-Squared: 0.534, Adjusted R-squared: 0.518
D G Rossiter
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Interpretation of the polynomial model output

Residuals Lack of fit of individual observations; here from −29.5 to +20.8 percent clay;
about the same as for the first-order surface

Coefficients Multipliers of each term in the polynomial, but now there are four: the
coördinates and their squares, and of course the intercept.

Statistical significance of coefficients The listed Pr(>|t|) gives the probability that
the coefficient is in fact 0 (the null hypothesis), i.e. that it contributes nothing to the
model. In this example the cross-product of the coördinates, i.e. I(UTM E * UTM N) is
almost surely not necessary and the model can be re-fit without it.

Adjusted R-squared Proportion of variance explained by the model, here about 52%, a
slight improvement over the first-order surface

We evaluate the fit with the same diagnostics as in the first-order model.
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Fitted vs. observed (1:1) plots
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Diagnostic plots from first- and second-order linear regressions
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To check your understanding . . .

Q8 : How much improvement is there with the second-order, compared to the first-order, trend surface?

Comment on the adjusted R2, the fitted vs. observed values, and the diagnostic plots of the residuals. Jump

to A8 •
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Commentary

In summary, there are some processes that operate over an entire region of interest. These can lead to

regional trends, where an attribute can be modelled as a function of the geographic coördinates.

A common functional form is the polynomial trend surface, which is fit to the data by some form of

regression, often ordinary least squares.

However, as the example in this section showed, the regional trend often does not explain all the variation.

We now look at the other side, namely processes that operate only locally. Later we will see how to combine

the two types of spatial structure.
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Topic 2: Theory of random fields

Now we turn to local spatial dependence. The idea here is that there is a local
process that causes nearby points to be“similar”. We will see how to quantify this and use
it in modelling and prediction.

But first we need some theoretical background: a brief explanation the theory
underlying optimal geostatistical estimation by kriging.

The presentation is based on R. Webster and M. Oliver, 2001 Geostatistics for
environmental scientists, Chichester etc.: John Wiley & Sons, Ltd.
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Commentary

This is difficult material, mainly because it is abstract and indeed quite strange at first glance. Some

modellers do not accept it at all! Our position is that this model of an essentially unobservable
hypothetical process has proven to be very useful in practice.

The important point here is that we believe that observed values in space are the result of some

spatially-correlated process (to be explained) which we can infer from the observations.

But be aware: as with many models, it is impossible to verify the underlying assumptions. If you feel

uncomfortable with this, you are not alone!
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Modelling spatial variation as a random process

Notation: A point in space of any dimension is symbolized by a bold-face letter, e.g. x.

� Key idea: The observed attribute values are only one of many possible
realisations of a random process (also called a “stochastic” process)

� This random processes is spatially auto-correlated (to be explained below), so that
attribute values are somewhat dependent.

� At each point x, an observed value z is one possiblility of a random variable Z(x)

� There is only one reality (which is sampled), but it is one realisation of a process
that could have produced many realities. µ and variance σ 2 etc.

� Cumulative distribution function (CDF): F{Z(x;z)} = Pr[Z(x ≤ zc)]

� the probability Pr governs the random process; this is where we can model spatial
dependence
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Random functions

� Each point has its own random process, but these all have the same form (same kind
of randomness)

� However, there may be spatial dependence among points, which are therefore not
independent

� As a whole, they make up a stochastic process over the whole field R

� i.e. the observed values are assumed to result from some random process but one that
respects certain restrictions, in particular spatial dependence

� The set of values of the random variable in the spatial field: Z = {Z(x),∀x ∈ R} is
called a regionalized variable

� This variable is doubly infinite: (1) number of points; (2) possible values at each point

D G Rossiter



Applied geostatistics – Lecture 3 34

Commentary

The above is a difficult point for most people to grasp. It’s always easier to visualise, so the next slide shows

four different realizations of the same random field.

These are all equally-probable realizations of Z, given a known spatially-dependent stochastic process.

(For later reference: this is a 256 x 256 grid, with a Spherical model of spatial dependence with range

25)
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Four realizations of the same random field
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To check your understanding . . .

Comparing the four realizations:

Q9 : How similar are the attribute values at any specific location? Jump to A9 •

Q10 : How similar are the patterns? Compare the patch sizes, sharpness of transitions between patches,

etc. Jump to A10 •
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Commentary

So there is a regionalized variable, i.e. where every point is the outcome of some random process with

spatial dependence.

But there is a serious problem: there is only one realization; it’s as if we had to model a trend surface from

one point!

We can get around this problem by making some assumptions, collectively known as stationarity.
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First-order stationarity

� Problem: We have no way to estimate the expected values of the random process at
each location µ(x) . . .

� . . . since we only have one realisation (what we actually measure), rather than the
whole set of realisations that could have been produced by the random process.

� Solution: assume that the expected values at all locations in the field are
the same:

E[Z(xi)] = µ,∀xi ∈ R

� This is called first-order stationarity of the random process; note that µ is now not a
function of position x.

� Then we can estimate the (common) expected value from the sample and its presumed
spatial structure
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Problems with first-order stationarity

� It is often not plausible:

1. We observe the mean value to be different in several regions (strata)
2. We observe a regional trend

� In both cases there is a process that is not stationary which we can model, so . . .

� Solutions:

1. model the strata or trend, then the residuals may be first-order stationary (leads to
Kriging with External Drift or Regression Kriging)
* this is covered in a later lecture

2. model a varying mean along with the local structure (leads to Universal Kriging)
* also covered in a later lecture

3. : Study the differences between values, not the values themselves, and in a
“small” region (Matheron 1965)
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Spatial covariance

� So far we have only estimated a mean value, like with a non-regionalized variable. But
we want to include the key idea that nearby observations may be correlated.

� Just like any other variables, the set of random variables making up the regionalized
variable may have covariance, i.e. one may be related to another (positively or
negatively).

� It’s one realisation per point, but each point is a different realisation, so in
some sense they are different variables, which then have a covariance.

� Key Insight: Under certain assumptions (see below), this covariance can be considered
to depend only on the separation between the points

* and possibly the direction.
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Commentary

We now introduce the key insight in local spatial dependence: auto-covariance, i.e. the covariance of a

variable with itself. How can this be? Patience, and all will be revealed . . .
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Covariance

� Recall from non-spatial statistics: the sample covariance between two variables z1

and z2 observed at n points is:

Ĉ(z1, z2) =
1
n

n∑
i=1

(z1i − z̄1) · (z2i − z̄2)

� Spatial version: there is only one variable x:

Ĉ(x1,x2) = E[{Z(x1)− µ(x1)} · {Z(x2)− µ(x2)}]

� Because of first-order stationarity, the expected values are the same, so:

Ĉ(x1,x2) = E[{Z(x1)− µ} · {Z(x2)− µ}]
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Second-order stationarity (1) – At one point

� Problem: The covariance at one point is its variance:

σ 2 = E[{Z(xi)− µ}2]

� This can not be estimated from one sample (of the many hypothetical realisations)

* recall: we had the same problem with estimating the mean]

� Solution: assume that the variance is the same finite value at all points.

� Then we can estimate from the sample the a priori variance of the process (i.e. the
covariance at a point) by lumping the random variables together.

� This assumption is called second-order stationarity
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Second-order stationarity (2) – Over the spatial field

� Problem: The covariance equation as written is between all the points in the field. It is
huge! And again, there is no way to estimate these from just one point pair per variable
pair.

� Solution (the key insight): Assume that the covariance between points
depends only on their separation (and not on their actual location or individuality).

� Then we can estimate their covariance from a large number of sample pairs, all
separated by (approximately) the same separation vector h (distance, possibly with
direction).

* This is exactly the empirical variogram discussed in the previous lecture.
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Derivation of covariance function

� Autocovariance (‘auto’ = same regionalized variable), at a separation h:

C[Z(x), Z(x+ h)] = E[{Z(x)− µ} · {Z(x+ h)− µ}]
= E[{Z(x)} · {Z(x+ h)} − µ2]

≡ C(h)

� Autocorrelation: Autocovariance normalized by total variance σ 2, which is the
covariance at a point:

ρ(h) = C(h)/C(0)

� Semivariance: deviation of covariance at some separation from total variance:

γ(h) = C(0)− C(h)
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Characteristics of Spatial Correlation functions

� symmetric: C(h) = C(−h) etc.

� range of ρ(h) ∈ [−1 · · ·1]

� Positive (covariance) or negative (variogram) semi-definite matrices; this restricts the
choice of models

� Continuity, especially at 0. But this is often not observed: the “nugget” effect; we will
examine this in variogram analysis
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Problems with second-order stationarity

� It assumes the existence of a covariance and, so, a finite variance Var(Z(x)) = C(0)

� This is often not plausible; in particular the covariance often increases without bound as
the area increases.

� Solutions

1. Study the differences between values, not the values themselves, and in a“small”
region; then the covariances may be bounded (Matheron 1965) → the intrinsic
hypothesis (see next);

2. So, model the semi-variance, not co-variance.
3. This is a weaker assumption.
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The Intrinsic Hypothesis

� Replace mean values Z(x) with mean differences, which are the same over the whole
random field, at least within some ‘small’ separation h. Then the expected value is 0:

E[Z(x)− Z(x+ h)] = 0

� Replace covariance of values with variances of differences:

Var[Z(x)− Z(x+ h)] = E[{Z(x)− Z(x+ h)}2] = 2γ(h)

� The equations only involve the difference in values at a separation, not the values,
so the necessary assumption of finite variance need only be assumed for the differences,
a less stringent condition.

� This is the intrinsic hypothesis.
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Using the experimental variogram to model the random process

� Notice that the semivariance of the separation vector γ(h) is now given as the estimate
of covariance in the spatial field.

� So it models the spatially-correlated component of the regionalized variable

� We must go from the experimental variogram to a variogram model in order to
be able to model the random process at any separation.
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Topic 3: Models of spatial covariance

1. Recall (lecture 2): The empirical variogram is often computed as:

γ(h) = 1
2m(h)

m(h)∑
i=1

[z(xi)− z(xi + h)]2

� m(h) is the number of point pairs separated by vector h, in practice some range
� Point-pairs indexed by i; the notation xi + h means the “tail” of point-pair i, i.e.

separated from the “head”xi by the separation vector h.
� Note the use of lower-case z to represent a specific value, as opposed to upper-case
Z for the random variable.

2. In the previous section, we derived the theoretical variogram as a continuous
function of semi-variance vs. separation h:

γ(h) = 0.5 · E[{Z(x)− Z(x+ h)}2]

How can we relate these?
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From experimental to theoretical variogram

If we assume that there is a spatially-autocorrelated process which depends on a
theoretical variogram, we can then try to estimate its form and parameters from the
empirical variogram.

But first we need to develop some models of spatial covariance, in other words, what
forms can the covariance function take?
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Commentary

We can imagine many functions of semivariance based on separation; but not all of these are:

� derived from plausible spatial processes;

� mathematically valid for interpolation (“kriging”)

The set of functions that are useful are called authorized models.

We will first see what properties they must have, then some examples, and finally visualize them.
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Authorized Models

� Any variogram function must be able to model the following:

1. Monotonically increasing
* possibly with a single fluctuation (hole) . . .
* . . . or a periodic fluctuation

2. Constant or asymptotic maximum (sill)
3. Non-negative intercept (nugget)

� Variograms must obey mathematical constraints so that the resulting kriging equations
are solvable

* e.g., positive definite between-sample covariance matrices
* the kriging equations will be developed in the next lecture

� The permitted functions are called authorized models.
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Commentary

Before we look at the various authorized model forms, we show one of the simplest models, namely the

spherical model, with the various model parameters labelled.

Note that these labels sill, range, nugget are the same we used for the empirical variogram in the previous

lecture;

However now we’ve divided the total sill into two parts: the nugget (no model) and a structural sill (can

be modelled).
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A variogram model, with parameters
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Derivation of authorized models

� Assume the underlying stochastic process

� Derive the covariance function that results from values assigned to points according
to this process.

* E.g. spherical model is derived from the intersection of random spheres of a given
size: how much will they overlap?

� Convert to variogram function

These variogram functions are generally available in geostatistical modelling and
interpolation computer programs.
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Examples of authorized models (1/4)

� Group 0: Pure nugget (no spatial structure): γ(h) = c0,∀h > 0

* interpolation is impossible . . .
* further, there is no spatial dependence between sample points, so . . .
* . . . the sample mean estimates every point

� Group 1: Unbounded models: variance increases with area; no sill or range

* Suggests that study area is smaller than the range of spatial dependence of
the process

* Power model γ(h) = whα,0 < α < 2
* α controls shape, i.e. the rate of change of the variance with distance

1. α = 1 linear: same
2. α < 1 convex: increasing
3. α > 1 concave: decreasing
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Examples of authorized models (2/4)

� Group 2a: Bounded models: variance reaches a sill at some range

1. Bounded linear, sill c, range a; only authorized for 1D (e.g. transects)

γ(h) =
{
c(h/a) : h < a

c : h ≥ a

2. Spherical, sill c, range a

γ(h) =

 c
{

3
2
h
a −

1
2

(
h
a

)3
}

: h < a

c : h ≥ a
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These two models are quite simular to the common spherical models (see previous
slide); they differ mainly in the shape of the “shoulder” transition to the sill:

3. Circular, sill c, range a

γ(h) =

 c
{

2h
πa

√
1−

(
h
a

)2
+ 2
π arcsin

(
h
a

)}
: h < a

c : h ≥ a

4. Pentaspherical, sill c, range a

γ(h) =

 c
{

15
8
h
a −

5
4

(
h
a

)3
+ 3

8

(
h
a

)5
}

: h < a

c : h ≥ a
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Examples of authorized models (3/4)

� Group 2b: Bounded asymptotic models: variance approaches a sill at some
effective range (by convention, where γ = 0.95c)

4. Exponential, sill c, effective range 3a

γ(h) = c{1− e(−
h
a)}

E.g. if the effective range is estimated as 120, the parameter a is 40.

Note: Some authors (e.g. Goovaerts) use 3h instead of h in this equation, in which
case a is the effective range itself.
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Examples of authorized models (4/4)

5. Gaussian, parameters as for exponential, but effective range is
√

3a:

γ(h) = c{1− e−
(
h
a

)2

}

E.g. if effective range is estimated as 120, the parameter a is 120/
√

3 ≈ 69

This model differs from the exponential model at small separations; semi-variances are
close to zero in a “halo” around each point.

Note: Some authors (e.g. Goovaerts) use 3h instead of h in this equation, in which
case a is the effective range itself, as in the exponential model
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Graphs of authorized variogram models
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0 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Comparison of variogram models

separation distance

se
m

iv
ar

ia
nc

e

sill

nugget

range

Exponential

Spherical

Gaussian

Pentaspherical

Circular

Linear−with−sill

Models vary considerably, from origin to range

Note effective range (95% of asymptotic sill) for exponential & Gaussian models

D G Rossiter



Applied geostatistics – Lecture 3 64

To check your understanding . . .

Q11 : In which model does the spatial dependence decay most rapidly, as separation between point-pairs

increases? Jump to A11 •

Q12 : In which model does the spatial dependence decay least rapidly, as separation between point-pairs

increases? Jump to A12 •

Q13 : What is the main difference between the three bounded models spherical, circular, and

pentaspherical? Jump to A13 •
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Models available in gstat
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Model families

The concept of a variogram model can be generalized into model families require an
additional parameter to adjust their shape.

These are able to adjust their smoothness to correspond to the nature of the process that
generated the random field.

Sophisticated automatic fitting methods can adjust the smoothness, as well as the sill and
range, so they are applicable in “black box” variogram fitting.

An example is the Matérn model, which generalizes the Exponential, Power, Logarithmic
and Gaussian models

Reference:

Minasny, B., & McBratney, A. B. (2005). The Matérn function as a general model for soil
variograms. Geoderma, 128, 192-207.
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Matérn model class, with varying smoothness parameter
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Topic 4: Variogram analysis and model fitting

From the empirical variogram we now derive a variogram model which expresses
semivariance as a function of separation vector.

The model allows us to:

� Infer the characteristics of the underlying process from the functional form and its
parameters;

� Compute the semi-variance between any point-pair, separated by any vector . . .

� . . . which is used in an ‘optimal’ interpolator (“kriging”) to predict at unsampled
locations.
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Modelling from one realisation of a random field

If we accept the theory of random functions which generated spatial fields we suppose
there’s a true variogram (covariance function) of the spatially-correlated random
process . . .

� . . . of which we have only one realisation in nature . . .

� . . . and (in addition) we have only a sample of that realisation.

So, we try to estimate it from the experimental variogram.
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Commentary

There are two steps to modelling spatial dependence from the experimental variogram:

1. Decide on the variogram model form, e.g. spherical, exponential, Gaussian . . .

2. . . . Parameterize the chosen model, i.e. fit it to the experimental variogram.

Recall: there is no objective way to do either of these! because we have only one realization of the

assumed random field.

This is then a controversial and difficult step.

Please rememember: your data set is only one of many from similar studies. So don’t put too much

emphasis on the one dataset; compare it with what you know about the process.
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Choosing a model (1)

The empirical variogram should be one realization of a random process.

So, the first question to ask when deciding on a model form is: what do we expect
from the process that is supposed to be responsible for the spatial structure represented
in the variogram?

Each model has some defining characteristics:

� Exponential: First-order autoregressive process: values are random but with
dependency on the nearest neighbour; boundaries according to a Poisson process

� Gaussian: as exponential, but with strong close-range dependency, very smooth at
each point.

(continued . . . )
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Choosing a model (1) – continued

� Spherical, circular, pentaspherical: Patches of similar values; patches have similar
size ≈ range) with transition zones (overlap of processes);

These three model forms differ mainly in the “shoulder” transition to the sill.

� Unbounded, e.g. power model: range of process larger than our sample area

� Periodic: as it says
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Examples of simulated fields

The following graphs show simulations of a random field, assuming the underlying process
is according to the two models.

1. Exponential, from short– to long–range dependence

2. Spherical, long–, medium–, short–range; also compare with pure nugget

(Simulations computed with krige method of gstat package in R.)
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Simulations of regionalised variables: Exponential

Effective Ranges 96, 48, 24, 12 on 256x256 grid
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Simulations of regionalised variables: Spherical

Ranges 50, 0 (pure nugget), 15, 25 on 256x256 grid
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To check your understanding . . .

Q14 : Which model form shows better-defined patches, the exponential or spherical? Jump to A14 •

Q15 : What happens to the patch size as the range parameter increases? Jump to A15 •
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Choosing a model (2)

� Which has been successfully applied with this kind of data?
(This is evidence for the nature of this kind of process)

� What do we expect from the supposed process? if we have some other evidence
of its spatial behaviour.

For example, a Gaussian model might be expected for a phenomenon which physically
must be continuous at each point, e.g. the surface of a ground-water table.

� Visual estimate of functional form from the variogram

* Recall: this is only one realization of the supposed underlying process; and only one
sample of that realization. A good visual fit to a single empirical variogram does not
necessarily correspond to a good fit to the actual realization of the random process.
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Choosing a model (3)

� Fit various models, pick the statistically-best fit

* This ignores all prior information about the process
* Depends heavily on the experimental variogram parameters, e.g. cutoff, bin width
* Depends also on the weighting function for the typical weighted least-squares

non-linear fitting method.

This is not by itself a good method to choose a model, although it may have to be used in
time-critical automatic variogram model fitting (i.e., with little or no analyst intervention).
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Combining models

� Any linear combination of authorized models is also authorized

� Models > 1 spatial structure at different distances

� Common example: nugget + structural

� e.g. nugget + exponential

γ(h) = c0 + c1{1− e(−
h
r )}

� Structure at two ranges: e.g. nugget + exponential + exponential

� Prefer a simpler (more parsimonious) model, but sometimes the structure calls for a
combination.
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Combining variogram models
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Combining variogram models

Nugget, c0 = 1

Exponential, c1 = 5, a = 60

Exponential, c1 = 3, a = 300

Combined model

Evidence of both short range (3a = 180) and long range (3a = 900) phenomena
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Fitting the model

Once a model form is selected, then the model parameters must be adjusted for a
‘best’ fit of the experimental variogram.

� By eye, adjusting parameters for good-looking fit

* Hard to judge the relative value of each point

� Automatically, looking for the best fit according to some objective criterion

� In both cases, favour sections of the variogram with more pairs and at shorter
ranges (because it is a local interpolator).

� Mixed: adust by eye, evaluate statistically; or vice versa
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Commentary

We now look at two models that were fitted first by eye and then automatically.

In the first case there is little dispute; the second is much more difficult to estimate and fit.

The next slide shows the “easy” case; after a discussion of automatic fit options the “hard” case is shown.
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Meuse dataset, Log(Cd): Eyeball (L) vs. automatic (R) fits
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By eye: c0 = 0.5, c1 = 1.4, a = 1200; total sill c0 + c1 = 1.9

Automatic: c0 = 0.548, c1 = 1.340, a = 1149; total sill c0 + c1 = 1.888

The total sill was almost unchanged; gstat raised the nugget and lowered the partial sill of
the spherical model a bit; the range was shortened by 51 m.
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Statistical measures of variogram fit

� Minimize the deviation of the variogram model from the sample variogram, weighted
by the number of point pairs (more → more important) and separation (closer →
more important)

b∑
j=1

Nj
hj2
[γ̂(hj)− γ(hj)]2

� The γ̂() are the experimental semivariances for a distance class

� The γ() are the modelled semivariances for a distance class

� b is the number of bins

� The weighting factor is not theoretical, but has proved good in practice

� Other weightings are possible.
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Commentary

“Automatic” fitting should always be guided by the analyst. If the variogram is quite consistent across the

range, almost any automatic fit will be the same. Otherwise, different fitting criteria will give different results.

The next page shows three different automatic fits:

1. Weights only proportional to number of point-pairs in variogram bin (gstat method 1)

2. Weights proportional to number of point-pairs in variogram bin and inversely proportional to the square

of the separation (gstat method 7, the default);

3. Weights proportional to number of point-pairs in variogram bin and inversely proportional to the square

of the semivariance (gstat method 2);

All of these weighting schemes have been used; there is no theoretical basis for choosing one of them.
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Jura Zn content; eyeball and three automatic fitting methods
Fit by eye
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Fit by gstat, method 7  (proportional to n/[h^2])
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Fit by gstat, method 1 (proportional to n)
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Fit by gstat, method 2 (proportional to n/[gamma^2])
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What sample size to fit a variogram model?

� Can’t use non-spatial formulas for sample size, because spatial samples are correlated,
and each sample is used multiple times in the variogram estimate

� No way to estimate the actual error in the variogram fit, since we have only one
realisation of the random field

� Stochastic simulation from an assumed random field with a known variogram suggests:

1. < 50 points: not at all reliable
2. 100 to 150 points: more or less acceptable
3. > 250 points: almost certaintly reliable

� More points are needed to estimate an anisotropic variogram.

This is very worrying for many environmental datasets (soil cores, vegetation plots,
. . . ) especially from short-term fieldwork, where sample sizes of 40 – 60 are typical. Should
variograms even be attempted on such small samples?
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Topic 5: Anisotropic variogram analysis and model fitting

In the previous lecture “Exploring and visualizing spatial data” we saw how to visualize
anisotropy.

Recall:

� Greek “Iso” + “tropic” = English “same” + “trend”; Greek “an-” = English “not-”;

� Variation may depend on direction, not just distance;

� Nugget variance (at zero separation) by definition the same;

� Model form and sills may be the same (geometric anisotropy) or different (zonal
anisotropy).

In this lecture we see how to model it.
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Example: Anisotropy due to linear geologic features
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Types of anisotropy – 1

Geometric: same sill, different ranges in different directions; also called affine, anisotropy

� Same total variation in any direction, but it is reached at different ranges
� Process had different ranges but overall variability the same; process has a direction
� Example: median grain size in aeolian (wind-deposited) sediments

* all sizes in major and minor directions, but dunes are elongated
� Modelled with a single variogram model, adding an anisotropy ratio (see below)
� This is related to the eccentricity of the anisotropy ellipse

* In the isotropic case, the ellipse degenerates into a circle with no eccentricity
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Types of anisotropy – 2

Zonal same range, sill varies with direction

� Variation is not the same in all directions
� Process was more variable in one direction; can also have different model forms
� Example: median grain size in sedimentary rocks in folded mountains (e.g.,

Appalachians)
* along the major axis less variability (similar grain size per geologic unit) as well as

longer range of spatial dependence
* the minor axis crosses many geologic units with variable grain size, so total

variability (sill) is more, as well as having a shorter range
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Modelling geometric anisotropy

1. Display variogram map and/or directional variograms;
2. Determine azimuth of the major axis, in degrees from N;
3. Compute empirical directional variogram for the major and minor directions

(orthogonal);
4. Determine variogram model for the major direction (model form, sill, range);
5. Determine range for the minor direction;
6. Compute the anisotropy ratio: ratio of the minor range to the major range;
7. Fit the two empirical directional variograms with a single model.
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Example: Meuse River soil pollution

� Heavy metals are presumed to be mainly from river flooding;
� The river in the study area is predominantly in one direction
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Variogram map, Meuse River, log(zinc)
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Clear directional effect on spatial dependence NNE (much lower semivariances at a given
separation) vs. ESE
Use this to estimate the major and minor orthogonal axes.
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Directional variograms – multiple directions

Directional Variograms, Meuse River, log(zinc)
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� Six directions, so each has a angular
tolerance of 90/6 = 15° on each side

� Few point-pairs within such a narrow band

� Clearly shows directional differences

� Recompute with just the suspected major
and minor axes
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Directional variograms – major and minor axes

Directional Variograms, Meuse River, log(Zn)
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default angular tolerance 90/2 = 45° on each side; all point-pairs included
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Modelling as geometric anisotropy

� The anisotropy does not appear to be geometric beyond about 550 m in the minor axis

* more variability in minor axis, as well as shorter range

� Can be modelled as geometric anyway:

1. the small sample size makes the variogram for the minor axis not very reliable;

2. the dimension of the study area in the direction of the minor axis is small

3. modelling longer ranges in the minor axis will not affect predictions much, because
most of the kriging weights are from nearby points
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Fitting a geometric anisotropic model with gstat

1. Start from visual estimate of major-axis sill, range, nugget
2. Anisotropy ratio and major axis must be specified, they are not automatically

adjusted by gstat

3. Automatic fit with gstat will adjust nugget, sill, and major range
4. Therefore the minor range is automatically adjusted: determined by the major range and

the anisotropy ratio.

> (vmf.a <- fit.variogram(v.a, vgm(0.55, "Sph", 1100, 0.05, anis=c(30, 0.5))))

model psill range ang1 anis1

Nug 0.056095 0.0 0 1.0

Sph 0.587719 1208.7 30 0.5
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Fitted variogram model

Fitted Anisotropic Variogram Model, Meuse River, log(Zn)
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To check your understanding . . .

Q16 : How well does the geometric model fit the two directional empirical variograms? Jump to A16 •
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Comparison with isotropic model

> v <- variogram(log(zinc)~1, meuse, cutoff=1600)

> (vmf <- fit.variogram(v, vgm(0.55, "Sph", 1100, 0.05)))

model psill range

1 Nug 0.05097 0.0

2 Sph 0.59140 901.8

Fitted Isotropic Variogram Model, Meuse River, log(Zn)
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� Almost identical sill and nugget
� Range is a compromise between the two directions
� In prediction, would give too much weight to point-pairs in the minor axis
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To check your understanding . . .

Q17 : Compare the fitted omnidirectional and two orthogonal directional variogram models. Explain how

the omnidirectional model is a compromise between the two directional variogram models Jump to A17 •
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Comparing predictions: anisotropic vs. isotropic

Predicted values, Zn log(ppm)
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Differences

OK predictions, Aniso − Iso

log(ppm Zn)
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To check your understanding . . .

Q18 : Describe and explain the differences between the two predictions: from the isotropic and anisotropic

models. Jump to A18 •
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Comparing prediction variances: anisotropic vs. isotropic

Prediction variances, Zn log(ppm)^2
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Differences

OK prediction variances, Aniso − Iso

log(ppm Zn)^2
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To check your understanding . . .

Q19 : Describe and explain the differences between the two prediction variances: from the isotropic and

anisotropic models. Jump to A19 •
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Modelling zonal anisotropy

Recall: this is anisotropy in the sill and/or model form.

� Combine two models, one for each of the orthogonal axes;
� In each case defining an affine (geometric) anisotropy structure with very small

semivariance ratios;
� Then the minor axis in both cases will have almost no influence on the predictions;
� Automatic fit often does not converge (numerical instability) due to the large

pseudo-range

> vm.major <- vgm(0.52, "Sph", 1100, 0.05, anis = c(30, 0.9))

> (vm.zonal <- vgm(0.45, "Sph", 1000 * 10000, Anis(30, 1e-04), add.to = vm.major))

model psill range ang1 anis1

1 Nug 0.05 0.0e+00 0 1e+00

2 Sph 0.52 1.1e+03 30 9e-01

3 Sph 0.45 1.0e+07 30 1e-04
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Zonal variogram model fit
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OK predictions and variances with zonal model
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Exercise

At this point you should complete Exercise 3: Modelling spatial structure which is
provided on the module CD.

This should take several hours.

1. Trend surfaces
2. Theory of random fields
3. Models of spatial covariance
4. Variogram analysis; variogram model fitting

In all of these there are Tasks, followed by R code on how to complete the task, then some
Questions to test your understanding, and at the end of each section the Answers. Make
sure you understand all of these.
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Answers

Q1 : Describe a process in your field of study that would be expected to show this behaviour, i.e. the

attribute value depends on relative geographic position within a spatial field •

A1 : No single answer, depends on field. For groundwater hydrology, we saw an example in Lecture 2: the

elevation of an aquifer above a base level in an area of gentle tilting and folding, without any geologic faults,

will trend in one direction (first-order trend) and possibly will show a domed or bowl structure (second-order

trend). Return to Q1 •
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Q2 : What is the change in clay content for each km towards the North? •

A2 : −0.45%; see the coefficient for UTM_N in the model summary. Return to Q2 •

Q3 : What proportion of the residuals are between −5.106 and +3.607? •

A3 : Half of them; these are the 1st and 3rd quartiles, respectively. Return to Q3 •
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Q4 : How well do the fitted values match the observed values? •

A4 : Very poorly; in particular the fitted values are clustered around 30, 45 and 55% clay (vertical “clouds”),

which pattern is not seen in the observed values. Return to Q4 •
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Q5 : Is there any pattern of the residuals vs. fitted values? •

A5 : Yes, they are more variable near fitted = 55%; there are some very poorly-modelled points in that

range. Return to Q5 •

Q6 : Are the residuals normally-distributed? •

A6 : No, the upper tail is too short and the lower tail too long. Return to Q6 •

Q7 : Which observations are marked by the diagnostic procedure as being outliers in this linear model fit? •

A7 : ‘ 84 and 145 (very large negative residuals, i.e. actual much less than fitted); 2 (very large positive

residual, actual much higher than fitted) Return to Q7 •
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Q8 : How much improvement is there with the second-order, compared to the first-order, trend surface?

Comment on the adjusted R2, the fitted vs. observed values, and the diagnostic plots of the residuals. •

A8 : There is only a 2% improvement in adjusted R2 (from 0.499 to 0.519); the fitted vs. observed values

and the diagnostic plots of the residuals are very similar in both cases. The same outliers are flagged in the

residual plots of both orders. Return to Q8 •
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Q9 : How similar are the attribute values at any specific location? •

A9 : The attribute values are in general not the same over the four realizations at any given location.

Return to Q9 •

Q10 : How similar are the patterns? Compare the patch sizes, sharpness of transitions between patches,

etc. •

A10 : However, the pattern is very similar; only the specific locations of high and low patches is different.

These look like they could be four squares cut out of some larger area. Return to Q10 •
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Q11 : In which model does the spatial dependence decay most rapidly, as separation between point-pairs

increases? •

A11 : Exponential Return to Q11 •

Q12 : In which model does the spatial dependence decay least rapidly, as separation between point-pairs

increases? •

A12 : Gaussian Return to Q12 •
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Q13 : What is the main difference between the three bounded models spherical, circular, and

pentaspherical? •

A13 : The main difference is the shape of the “shoulder”, i.e., transition to the sill; this then influences the

shape of the function as separations increase from zero. The circular model has a very narrow “shoulder” and

so is almost linear from zero separation to the range; the pentaspherical model has a very broad “shoulder”

and so the more-or-less linear portion is (1) steeper and (2) only extends to about 1/3 of the range; the

spherical model is intermediate between these two. Return to Q13 •
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Q14 : Which model form shows better-defined patches, the exponential or spherical? •

A14 : The spherical model has a patchier appearance, with sharper transition zones. The exponential has

clear “hot spots” but the transition is more diffuse. Return to Q14 •

Q15 : What happens to the patch size as the range parameter increases? •

A15 : The patch size increases accordingly. Return to Q15 •
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Q16 : How well does the geometric model fit the two directional empirical variograms? •

A16 : In general very well for the entire long-axis variogram and up to about 500 m for the short-axis

variogram. Beyond that range the short-axis variogram is not fit at all; this is especially serious where there

are still a sufficient number of point-pairs, i.e., till about 750 m.

The long-axis variogram model is slightly high (semivariance too large) because the sill is fit in common for

both variograms, and the long-range high-semivariance point-pairs of the short-axis variogram pull the sill

upwards. Return to Q16 •
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Q17 : Compare the fitted omnidirectional and two orthogonal directional variogram models. Explain how

the omnidirectional model is a compromise between the two directional variogram models •

A17 : The omnidirectional model fits very well; however note that the range of about 900 m is a compromise

between the very different ranges in the two orthogonal directions: about 1200 m (long) and 600 m (short).

The sill and range are almost identical; the small differences arise because some point-pairs are excluded from

both directional variograms due to the angle and distance tolerance used when the empirical variograms were

computed. Return to Q17 •
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Q18 : Describe and explain the differences between the two predictions: from the isotropic and anisotropic

models. •

A18 : The largest positive differences (anisotropic predicts higher) are on the E edge, especially above the

“hot spot” in the SE and in the centre-E. These are influenced by higher values along the NNE-SSW axis near

them.

The largest positive differences (anisotropic predicts lower) are at several patches just inside (SE) of the W

edge (main river) and two large patches in the centre. These are areas where low values are to the NNE

and/or SSE. Return to Q18 •
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Q19 : Describe and explain the differences between the two prediction variances: from the isotropic and

anisotropic models. •

A19 : The largest positive differences (anisotropic prediction variance higher) are along the E edge and to

the NW and SE of the “hot spot” at the first bend in the river. This is because there are few points in the

NNE-SSW direction from these locations.

The largest negative differences (anisotropic prediction variance higher) are at many locations; note that these

differences are not as large in absolute value as the positive differences. These are locations with points to the

orthogonal direction (WNW-SSE) that in the anisotropic case have less weight. Return to Q19 •
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