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1 Introduction

This tutorial introduces the R environment for statistical computing
and visualisation [24, 40] and its dialect of the S language. It is orga-
nized as a systematic analysis of a simple dataset: the Mercer & Hall
wheat yield uniformity trial (Appendix A). After completing the tutorial
you should be able to:

• use R for statistical analusis at an intermediate level;

• follow a systematic approach to analyze a simple dataset.

The tutorial is organized as a set of tasks followed by questions to check
your understanding; answers are at the end of each section. If you are
ambitious, there are also some challenges: tasks and questions with no
solution provided, that require the integration of skills learned in the
section.

Not every section is of equal importance; you should pick and choose
those of interest to you. Sections marked with an asterisk ‘*’ are in-
teresting “detours” or perhaps “scenic byways” developed to satisfy the
author’s curiosity or to answer a reader’s question.

R is an open-source environment for data manipulation, statistical anal-
ysis, and visualization. There are versions for MS-Windows, Mac OS/X,
and various flavours of Unix. It can be installed from The Comprehen-
sive R Archive Network1. That site also has manuals and an FAQ. See
especially “An Introduction to R” in the “Manuals” section.

It is most convenient to run R within an integrated development envi-
ronment (IDE), e.g., RStudio2.

Before following this tutorial, you should be familiar with the basics of
R and the use of your preferred IDE. There are many resources for this
on the web.

Note: The code in these exercises was tested on R version 4.2.3 (2023-
03-15), sp package , gstat package , spgwr package , ggplot2 package ,
MASS package , and lattice package running on Mac OS X 10.14.6. The
text and graphical output you see here was automatically generated and
incorporated into LATEX by running R source code through R and its pack-
ages with the knitr package3. Then the LATEX document was compiled
into the PDF version you are now reading. Your output may be slightly
different on different versions and on different platforms.

To illustrate the basic use of R, we draw a sample of random numbers
from the uniform probability distribution. This is a simple example of
R’s extensive facilities for simulation.

Task 1 : Draw 12 random numbers uniformly distributed from -1 to 1,

1 https://cran.r-project.org/
2 http://www.rstudio.org
3 https://yihui.org/knitr/
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rounded to two decimal places, and sort them from smallest to largest.
•

In this tutorial we show the R code like this:
sort(round(runif(12, -1, 1), 2))

We show the output printed by R like this:
## [1] -0.72 -0.58 -0.54 -0.49 -0.28 -0.11 -0.03 0.03 0.05 0.28 0.42
## [12] 0.53

The numbers in brackets, like [1], refer to the position in the output
vector.

This first example already illustrates several features of R:

1. It includes a large number of functions (here, runif to generate
random numbers from the uniform distribution; round to round
them to a specified precision; and sort to sort them);

2. These functions have arguments that specify the exact behaviour
of the function. For example, round has two arguments: the first
is the object to be rounded (here, the vector returned by the runif
function) and the second is the number of decimal places (here, 2);

3. Many functions are vectorized: they can work on vectors (and usu-
ally matrices) as well as scalars. Here the round function is modify-
ing the results of the runif function, which is a 12-element vector;

4. Values returned by a function can be immediately used as an argu-
ment to another function. Here the results of runif is the vector to
be rounded by the round function; and these are then used by the
sort function. To understand a complex expression, read it from
the inside out.

5. R has a rich set of functions for simulation of random processes.

Q1 : Your results will be different from the ones printed in this note;
why? Jump to A1 •

To see how this works, we can do the same operation step-by-step.

1. Draw the random sample, and save it in a local variable in the
workspace using the <- (assignment) operator; we also list it on
the console with the print function:
sample <- runif(12, -1, 1)
print(sample)

## [1] 0.52937 -0.60536 0.77482 0.57574 -0.36288 -0.25844 0.49635
## [8] 0.76432 0.41973 -0.35845 -0.32896 0.28464

2. Round it to two decimal places, storing it in the same variable (i.e.
replacing the original sample):
sample <- round(sample, 2)
sample
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## [1] 0.53 -0.61 0.77 0.58 -0.36 -0.26 0.50 0.76 0.42 -0.36 -0.33
## [12] 0.28

3. Sort it and print the results:
(sample <- sort(sample))

## [1] -0.61 -0.36 -0.36 -0.33 -0.26 0.28 0.42 0.50 0.53 0.58 0.76
## [12] 0.77

This example also shows three ways of printing R output on the console:

• By using the print function with the object name as argument;

• By simply typing the object name; this calls the print function;

• By enclosing any expression in parenthesis ( ... ); this forces
another evaluation, which prints its results.

R has an immense repertoire of statistical methods; let’s see two of the
most basic.

Task 2 : Compute the theoretical and empirical mean and variance of a
sample of 20 observations from a uniformly-distributed random variable
in the range (0 . . .10), and compare them. •
The theoretical mean and variance of a uniformly-distributed random
variable are [6, §3.3]:

µ = (b + a)/2
σ2 = (b − a)2/12

where a and b are the lower and upper endpoints, respectively, of the
uniform interval.

First the theoretical values for the mean and variance. Although we could
compute these by hand, it’s instructive to see how R can be used as an
interactive calculator with the usual operators such as +, -, *, /, and ˆ
(for exponentiation):
(10 + 0)/2

## [1] 5

(10 - 0)^2/12

## [1] 8.3333

Now draw a 20-element sample and compute the sample mean and vari-
ance, using the mean and var functions:
sample <- runif(20, min=0, max=10)
mean(sample)

## [1] 4.7739

var(sample)

## [1] 9.2254
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Q2 : How close did your sample come to the theoretical value? Jump
to A2 •

We are done with the local variable sample, so we remove it from the
workspace with the rm (“remove”) function; we can check the contents
of the workspace with the ls (“list”) function:
ls()

## [1] "sample"

rm(sample)
ls()

## character(0)

On-line help If you know a function or function’s name, you can get
help on it with the help function:
help(round)

This can also be written more simply as ?round.

Q3 : Use the help function to find out the three arguments to the runif
function. What are these? Are they all required? Does the order matter?

Jump to A3 •

Arguments to functions We can experiment a bit to see the effect of
changing the arguments:
runif(1)

## [1] 0.35978

sort(runif(12))

## [1] 0.0093008 0.0752677 0.0833745 0.1216402 0.2881309 0.3399259
## [7] 0.4210253 0.4507439 0.4709064 0.5454935 0.8863710 0.8872533

sort(runif(12, 0, 5))

## [1] 0.044144 0.058518 0.585817 0.926837 1.659197 1.841597 2.370519
## [8] 2.775542 3.137704 3.255377 3.945001 4.639448

sort(runif(12, min=0, max=5))

## [1] 0.21801 0.37148 0.46733 1.16944 1.22241 1.41495 1.56075 2.03484
## [9] 2.51485 3.33368 3.67937 4.08834

sort(runif(max=5, n=12, min=0))

## [1] 0.48885 0.91417 1.73342 2.55099 2.68841 3.47740 3.54962 3.59096
## [9] 4.03148 4.08869 4.80266 4.99449

Searching for a function If you don’t know a function name, but you
know what you want to accomplish, you can search for an appropriate
function with the help.search function:
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help.search("principal component")

This will show packages and functions relevant to the topic:

stats::biplot.princomp Biplot for Principal Components
stats::prcomp Principal Components Analysis
stats::princomp Principal Components Analysis
stats::summary.princomp Summary method for Principal Components Analysis

You can ask for more information on one of these, e.g.:
help(prcomp)

prcomp package:stats R Documentation

Principal Components Analysis

Description:

Performs a principal components analysis on the given data matrix
and returns the results as an object of class 'prcomp'.

Usage: ...

At this point you should leave R and re-start it, to see how that’s done.

Before leaving R, you may want to save your console log as a text file to
document what you did, and the results, or for later re-use. You can edit
this file in any plain-text editor, or include in a report,

To leave R, use the q (“quit”) function; if you are running R with a GUI,
you can use a menu command, or a “close” icon as in any GUI program.
q()

You will be asked if you want to save your workspace in the current
directory; generally you will want to do this4. The next time you start R
in the same directory, the saved workspace will be automatically loaded.

In this case we haven’t created anything useful for data analysis, so you
should quit without saving the workspace.

1.1 Answers

A1 : Random number generation gives a different result each time.5. Return
to Q1 •

A2 : This depends on your sample; see the results in the text for an example.
Return to Q2 •

A3 : There are three possible arguments: the number of samples n, the min-
imum value min and the maximum max. The last two are not required and

4 By default this file is named .RData
5 To start a simulation at the same point (e.g. for testing) use the set.seed function
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default to 0 and 1, respectively. If arguments are named directly, they can be
put in any order. If not, they have to follow the default order. Return to Q3 •

2 Loading and examining a data set

The remainder of this tutorial uses the Mercer & Hall wheat yield data
set, which is described in Appendix A. Please read this now.

There are many ways to get data into R. One of the simplest is to create
a comma-separated values (“CSV”) file in a text editor6. For this exam-
ple we have prepared the CSV file mhw.csv which is supplied with this
tutorial.

2.1 Reading a CSV file into an R object

Now we read the dataset into R.

Task 3 : Start R. •

Task 4 : If necessary, make sure R is pointed to the same working
directory where you have stored mhw.csv. You can use the getwd func-
tion to check this, and setwd to change it, or a menu command in your
favourite IDE. •
getwd()

Once the directory is changed, the contents of the file can be displayed
with the file.show function:
file.show("mhw.csv")

"r","c","grain","straw"
1,1,3.63,6.37
2,1,4.07,6.24
3,1,4.51,7.05
4,1,3.9,6.91
...

Q4 : What does the first line represent? What do the other lines repre-
sent, and what is their structure? Jump to A4
•

A CSV file can be read into R with the read.csv function and assigned
to an object in the workspace using the <- operator (which can also be
written as =):
mhw <- read.csv("mhw.csv")

6 A CSV file can also be prepared as a spreadsheet and exported to CSV format.
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Q5 : Why is nothing printed after this command? Jump to A5 •

2.2 Examining a dataset

The first thing to do with any dataset is to examine its structure with the
str function.
str(mhw)

## 'data.frame': 500 obs. of 4 variables:
## $ r : int 1 2 3 4 5 6 7 8 9 10 ...
## $ c : int 1 1 1 1 1 1 1 1 1 1 ...
## $ grain: num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...
## $ straw: num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...

Q6 : How many observations (cases) are there in this frame? How many
fields (variables)? What are the field names? Jump to A6 •

We can extract the names for each field (matrix column) with the names
function; this is equivalent to colnames:
names(mhw)

## [1] "r" "c" "grain" "straw"

colnames(mhw)

## [1] "r" "c" "grain" "straw"

Every object in R belongs to a class, which R uses to decide how to carry
out commands.

Q7 : What is the class of this object? Jump to A7 •

We can examine the class with the class function:
class(mhw)

## [1] "data.frame"

A data frame is used to hold most data sets. The matrix rows are the
observations or cases; the matrix columns are the named fields or vari-
ables. Both matrix rows and columns have names.

Fields in the data frame are commonly referred to by their matrix column
name, using the syntax frame$variable, which can be read as “extract
the field named variable from the data frame named frame.

Task 5 : Summarize the grain and straw yields. •
summary(mhw$grain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

summary(mhw$straw)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.10 5.88 6.36 6.51 7.17 8.85

A data frame is also a matrix; we can see this by examining its dimen-
sions with the dim function and extracting elements.

The two dimensions are the numbers of matrix rows and columns:
dim(mhw)

## [1] 500 4

Q8 : Which matrix dimension corresponds to the observations and
which to the fields? Jump to A8 •

Matrix rows, columns, and individual cells in the matrix can be extracted
with the [] operator; this is just like standard matrix notation in mathe-
matics:
mhw[1,]

## r c grain straw
## 1 1 1 3.63 6.37

# third column
# third column of first row

length(mhw[,3])

## [1] 500

summary(mhw[,3])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

mhw[1, 3]

## [1] 3.63

Matrix rows and columns can also be accessed by their names; here is
the grain yield of the first plot:

# a named column
mhw[1, "grain"]

## [1] 3.63

Q9 : What is the grain yield of plot 64? Where is this located in the
(experimental) field? Jump to A9 •
mhw[64,"grain"]

## [1] 4.04

mhw[64, c("r", "c")]

## r c
## 64 4 4

Note the use of the c (“catenate”, Latin for ‘build a chain’) function to
build a list of two names.
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Several adjacent rows or columns can be specified with the : “sequence”
operator. For example, to show the row and column in the wheat field
for the first three records:
mhw[1:3, 1:2]

## r c
## 1 1 1
## 2 2 1
## 3 3 1

Rows or columns can be omitted with the - “minus” operator; this is
shorthand for “leave these out, show the rest”. For example to summa-
rize the grain yields for all except the first field column7:
summary(mhw[-(1:20),"grain"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

summary(mhw$grain[-(1:20)])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

An entire field (variable) can be accessed either by matrix column num-
ber or name (considering the object to be a matrix) or variable name
(considering the object to be a data frame); the output can be limited to
the first and last lines only by using the head and tail functions. By
default they show the six first or last values; this can be over-ridden with
the optional n argument.
head(mhw[,3])

## [1] 3.63 4.07 4.51 3.90 3.63 3.16

tail(mhw[,"grain"], n=10)

## [1] 3.29 3.83 4.33 3.93 3.38 3.63 4.06 3.67 4.19 3.36

head(mhw$grain)

## [1] 3.63 4.07 4.51 3.90 3.63 3.16

The order function is somewhat like the sort function shown above,
but rather than return the actual values, it returns their position in the
array. This position can then be used to extract other information from
the data frame.

Task 6 : Display the information for the plots with the five lowest straw
yields. •
To restrict the results to only five, we again use the head function.
head(sort(mhw$straw), n=5)

## [1] 4.10 4.28 4.53 4.56 4.57

head(order(mhw$straw), n=5)

7 recall, the dataset is presented in field column-major order, and there are 20 field
rows per field column
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## [1] 470 467 441 447 427

head(mhw[order(mhw$straw), ] , n=5)

## r c grain straw
## 470 10 24 2.84 4.10
## 467 7 24 2.78 4.28
## 441 1 23 2.97 4.53
## 447 7 23 3.44 4.56
## 427 7 22 3.05 4.57

Q10 : What are the values shown in the first command, using sort?
In the second, using order? Why must we use the results of order to
extract the records in the data frame? Jump to A10 •

Task 7 : Display the information for the plots with the highest straw
yields. •
One way is to use the rev command to reverse the results of the sort or
order function:
head(rev(sort(mhw$straw)), n=5)

## [1] 8.85 8.85 8.78 8.75 8.74

Another way is to use the optional decreasing argument to sort or
order; by default this has the value FALSE (so the sort is ascending); by
setting it to TRUE the sort will be descending:
head(sort(mhw$straw, decreasing=T), n=5)

## [1] 8.85 8.85 8.78 8.75 8.74

And a final way is to display the end of the ascending order vector, in-
stead of the beginning, with the tail function; however, this shows the
last records but still in ascending order:
tail(sort(mhw$straw), n=5)

## [1] 8.74 8.75 8.78 8.85 8.85

Records can also be selected with logical criteria, for example with nu-
meric comparison operators.

Task 8 : Identify the plots with the highest and lowest grain yields and
show their location in the field and both yields. •
There are two ways to do this. First, apply the max and min functions
to the grain yield field, and use their values (i.e., the highest and lowest
yields) as a row selector, along with the == “numerical equality” compar-
ison operator.

We save the returned value (i.e., the row number where the maximum or
minimum is found), and then use this as the row subscript selector:
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(ix <- which(mhw$grain == max(mhw$grain)))

## [1] 79

mhw[ix,]

## r c grain straw
## 79 19 4 5.16 8.78

(ix <- which(mhw$grain == min(mhw$grain)))

## [1] 338

mhw[ix,]

## r c grain straw
## 338 18 17 2.73 4.77

The easier way, in the case of the minimum or maximum, is to use the
which.max (index of the maximum value in a vector) and which.min
(index of the minimum value in a vector) function
(ix <- which.max(mhw$grain))

## [1] 79

mhw[ix, ]

## r c grain straw
## 79 19 4 5.16 8.78

(ix <- which.min(mhw$grain))

## [1] 338

mhw[ix, ]

## r c grain straw
## 338 18 17 2.73 4.77

Q11 : Why is there nothing between the comma ‘,’ and right bracket ‘]’
in the expressions mhw[ix, ] above? Jump to A11 •

The advantage of the first method is that == or other numeric compari-
son operators can be used to select; operators include != (not equal), <,
>, <= (≤), and >= (≥). For example:

Task 9 : Display the records for the plots with straw yield > 8.8 lb. per
plot. •
mhw[which(mhw$straw > 8.8),]

## r c grain straw
## 15 15 1 3.46 8.85
## 98 18 5 4.84 8.85

Challenge: Extract all the grain yields from the most easterly (highest-
numbered) column of field plots, along with the straw yields and field
plot row number. Sort them from highest to lowest yields, also display-
ing the row numbers and straw yields. Does there seem to be any trend
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by field plot row? How closely are the decreasing grain yields matched
by straw yields?

6.0 6.5 7.0 7.5

Straw yields in decreasing grain−yield order

2.3 Saving a dataset in R format

Once a dataset has been read into R and possibly modified (for example,
by assigning field names, changing the class of some fields, or computing
new fields) it can be saved in R’s internal format, using the save function.
The dataset can then be read into the workspace in a future session with
the load function.

Task 10 : Save the mhw object in R format. •
It is conventional to give files with R objects the .RData extension.
save(mhw, file="mhw.RData")

2.4 Answers

A4 : The first line is a header with the variable names, in this case r, c,
grain and straw. The following lines each represent one plot; there are four
variables recorded for each plot, i.e. its row and column number in the field,
and its grain and straw yield. Return to Q4 •

A5 : Commands that store their results in an object (using the = or <- opera-
tors) do their work silently; if you want to see the results enclose the command
in parentheses ( ... ) or just type the object name at the command prompt.

Return to Q5 •
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A6 : There are 500 observations (cases), and for each 4 variables: r, c, grain
and straw. Return to Q6 •

A7 : It is in class data.frame. Return to Q7 •

A8 : Matrix rows are observations, matrix columns are fields. Return to Q8 •

A9 : Grain yield 4.04; this is located at field row 4, field column 4 Return to
Q9 •

A10 : The sort function shows the actual values of straw yield; order shows
in which records in the data frame these are found. The record numbers are
the key into the data frame. Return to Q10 •

A11 : So that all fields (matrix columns) are selected. Return to Q11 •

3 Exploratory graphics

Before beginning a data analysis, it is helpful to visualise the dataset.
This is generally the first phase of exploratory data analysis (EDA) [45].

R is an excellent environment for visualisation; it can produce simple
plots but also plots of great sophistication, information and beauty. We
look first at single variables and then at the relation between two vari-
ables.

3.1 Univariate exploratory graphics

Task 11 : Visualise the frequency distribution of grain yield with a
stem plot. •
A stem-and-leaf plot, displayed by the stem function, shows the numer-
ical values themselves, to some precision:
stem(mhw$grain)

##
## The decimal point is 1 digit(s) to the left of the |
##
## 27 | 38
## 28 | 45
## 29 | 279
## 30 | 144555557899
## 31 | 4446678999
## 32 | 2345589999
## 33 | 002455666677789999
## 34 | 00112233444444566777777888999
## 35 | 01112334444555666677789999
## 36 | 0001111133333444445666666777778889999
## 37 | 00011111122222233344444555556666667777899999
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## 38 | 0011222223334444455566667777999999
## 39 | 0111111112222233333444444555666666777777777999
## 40 | 011122333344555666666677777778888899999999
## 41 | 0001111122333445555777779999
## 42 | 00001111111222333344444466677777788999999
## 43 | 0111223333566666777778888999999
## 44 | 0011111222234445566667777899
## 45 | 0112222234445667888899
## 46 | 1344446678899
## 47 | 3356677
## 48 | 466
## 49 | 12349
## 50 | 279
## 51 | 3336

Q12 : According to the stem-and-leaf plot, what are the approximate
values of the minimum and maximum grain yields? Jump to A12 •

Q13 : What is the advantage of the stem plot over the histogram? Jump
to A13 •

Task 12 : Visualise the frequency distribution of grain yield with a
frequency histogram. •
A histogram, displayed by the hist function, shows the distribution:
hist(mhw$grain)

Histogram of mhw$grain

mhw$grain
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You can save the graphics window to any common graphics format.Saving graphic
output

• In RStudio, click on the “Export” button in the “Plots” tab.
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• In the Windows GUI, bring the graphics window to the front (e.g.,
click on its title bar), select menu command File | Save as ...
and then one of the formats.

Q14 : What are the two axes of the default histogram? Jump to A14 •

Q15 : By examining the histogram, how many observations had grain
yield below 3 lb. per plot? Jump to A15 •

3.1.1 Enhancing the histogram*

R graphics, including histograms, can be enhanced from their quite plain
default appearance. Here we change the break points with the breaks
argument, the colour of the bars with the col graphics argument, the
colour of the border with the border graphics argument, and supply a
title with the main graphics argument.

We then use the rug function to add a “rug” plot along the x-axis to show
the actual observations. This is an example of a graphics function that
adds to an existing plot; whereas hist creates a new plot. Which does
which? Consult the help.
hist(mhw$grain, breaks=seq(2.6, 5.2, by=.1),

col="lightblue", border="red",
main="Mercer-Hall uniformity trial",
xlab="Grain yield, lb. per plot")

rug(mhw$grain)

Mercer−Hall uniformity trial

Grain yield, lb. per plot
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Note the use of the seq (“sequence”) function to make a list of break
points:
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seq(2.6, 5.2, by=.1)

## [1] 2.6 2.7 2.8 2.9 3.0 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0 4.1
## [17] 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0 5.1 5.2

In this example, the colours are from a list of known names. For more
information on these names, and other ways to specify colours, see Ap-
pendix B.

3.1.2 Kernel density*

A kernel density, computed with density function, fits an empirical
curve to a sample supposed to be drawn from a univariate probability
distribution [47, §5.6]. It can be used to give a visual impression of the
distribution or to smooth an empirical distribution.

In the context of EDA, the kernel density can suggest:

• whether the empirical distribution is unimodal or multimodal;

• in the case of a unimodal distribution, the theoretical probability
density function from which it may have been drawn.

The kernel density is controlled by the kernel and adjust optional ar-
guments to the density function; see ?density for details. The default
values of "gaussian" and 1 select a smoothing bandwidth based on the
number of observations and a theoretical normal density.

A special case of the density is a histogram expressed as densities rather
than frequencies; this is selected with the optional freq (“frequency”)
argument to the hist function set to FALSE. The total area under the
histogram is then by definition 1.

The lines function can be used to add the empirical density computed
by density to a density histogram plotted with hist. Another interest-
ing view is the kernel density with a rug plot to show the actual values
of the sample.

Task 13 : Display a histogram of the grain yields as a density (propor-
tion of the total), with the default kernel density superimposed, along
with a double and half bandwidth kernel density. •
hist(mhw$grain, breaks=seq(2.6, 5.2, by=.1),

col="lavender", border="darkblue",
main="Mercer-Hall uniformity trial",
freq=F,

# probability=T,
xlab="Grain yield, lb.\ per plot")

lines(density(mhw$grain), lwd=1.5)
lines(density(mhw$grain, adj=2), lwd=1.5, col="brown")
lines(density(mhw$grain, adj=.5), lwd=1.5, col="red")
text(2.5,0.95,"Default bandwidth", col="darkblue", pos=4)
text(2.5,0.90,"Double bandwidth", col="brown", pos=4)
text(2.5,0.85,"Half bandwidth", col="red", pos=4)
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Task 14 : Repeat, but show just the kernel density with a rug plot (i.e.
no histogram). •
Here the first plot must be of the density, because rug only adds to an
existing plot.
plot(density(mhw$grain) ,xlab="Grain yield, lb.\ per plot",

lwd=1.5, ylim=c(0,1), col="darkblue",
main="Mercer-Hall uniformity trial")

rug(mhw$grain)
lines(density(mhw$grain, adj=2), lwd=1.5, col="brown")
lines(density(mhw$grain, adj=.5), lwd=1.5, col="red")
text(2.5,0.85,"Default bandwidth", col="darkblue", pos=4)
text(2.5,0.80,"Double bandwidth", col="brown", pos=4)
text(2.5,0.75,"Half bandwidth", col="red", pos=4)
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Q16 : Which bandwidths give rougher or smoother curves? What does
the curve for the default bandwidth suggest about the underlying distri-
bution? Jump to A16
•

3.1.3 Another histogram enhancement: colour-coding relative frequency*

Task 15 : Display a histogram of the grain yield with break points every
0.2 lb., with the count in each histogram bin printed on the appropriate
bar. Shade the bars according to their count, in a colour ramp with low
counts whiter and high counts redder. •
The solution to this task depends on the fact that the hist function not
only plots a histogram graph, it can also return an object which can be
assigned to an object in the workspace; we can then examine the object
to find the counts, breakpoints etc. We first compute the histogram but
don’t plot it (plot=F argument), then draw it with the plot command,
specifying a colour ramp, which uses the computed counts, and a title.
Then the text command adds text to the plot at (x, y) positions com-
puted from the class mid-points and counts; the pos=3 argument puts
the text on top of the bar.
h <- hist(mhw$grain, breaks = seq(2.6, 5.2, by=.2), plot=F)
str(h)

## List of 6
## $ breaks : num [1:14] 2.6 2.8 3 3.2 3.4 3.6 3.8 4 4.2 4.4 ...
## $ counts : int [1:13] 2 5 22 30 56 80 79 73 70 48 ...
## $ density : num [1:13] 0.02 0.05 0.22 0.3 0.56 ...
## $ mids : num [1:13] 2.7 2.9 3.1 3.3 3.5 3.7 3.9 4.1 4.3 4.5 ...
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## $ xname : chr "mhw$grain"
## $ equidist: logi TRUE
## - attr(*, "class")= chr "histogram"

plot(h, col = heat.colors(length(h$mids))[length(h$count)-
rank(h$count)+1],

ylim = c(0, max(h$count)+5),
main="Frequency histogram, Mercer & Hall grain yield",
sub="Counts shown above bar, actual values shown with rug plot",
xlab="Grain yield, lb. per plot")

rug(mhw$grain)
text(h$mids, h$count, h$count, pos=3)
rm(h)

Frequency histogram, Mercer & Hall grain yield

Counts shown above bar, actual values shown with rug plot
Grain yield, lb. per plot
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3.2 Bivariate exploratory graphics

When several variables have been collected, it is natural to compare
them.

Task 16 : Display a scatterplot of straw vs. grain yield. •
We again use plot, but in this case there are two variables, so a scatter-
plot is produced. That is, plot is an example of a generic function: its
behaviour changes according to the class of object it is asked to work
on.
plot(mhw$grain, mhw$straw)
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Q17 : What is the relation between grain and straw yield? Jump to A17
•

This plot can be enhanced with much more information. For example:

• We add a grid at the axis ticks with the grid function;

• We specify the plotting character with the pch graphics argument,

• its colours with the col (outline) and bg (fill) graphics arguments,

• its size with the cex “character expansion” graphics argument,

• the axis labels with the xlab and ylab graphics arguments;

• We add a title with the title function, and

• mark the centroid (centre of gravity) with two calls to abline, one
specifying a vertical line (argument v=) and one horizontal (argu-
ment vh=) at the means of the two variables, computed with the
mean function;

• The two lines are dashed, using the lty “line type” graphics argu-
ment,

• and coloured red using col;

• The centroid is shown as large diamond, using the points function
and the cex graphics argument;

• Finally, the actual mean yields are displayed with the text func-
tion, using the pos and adj graphic argument to position the text
with respect to the plotting position.
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plot(mhw$grain, mhw$straw, cex=0.8, pch=21, col="blue",
bg="red", xlab="Grain yield, lb.\ plot-1",
ylab="Straw yield, lb.\ per plot-1")

grid()
title(main="Mercer-Hall wheat uniformity trial")
abline(v=mean(mhw$grain), lty=2, col="blue")
abline(h=mean(mhw$straw), lty=2, col="blue")
points(mean(mhw$grain), mean(mhw$straw), pch=23, col="black",

bg="brown", cex=2)
text(mean(mhw$grain), min(mhw$straw),

paste("Mean:",round(mean(mhw$grain),2)), pos=4)
text(min(mhw$grain), mean(mhw$straw),

paste("Mean:",round(mean(mhw$straw),2)), adj=c(0,-1))
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Mercer−Hall wheat uniformity trial

Mean: 3.95

Mean: 6.51

The advantage of this programmed enhancement is that we can store
the commands as a script and reproduce the graph by running the script.

Some R graphics allow interaction.

Task 17 : Identify the plots which do not fit the general pattern. (In any
analysis these can be the most interesting cases, requiring explanation.)

•
For this we use the identify function, specifying the same plot coördi-
nates as the previous plot command (i.e. from the plot that is currently
displayed):
plot(mhw$grain, mhw$straw)
pts <- identify(mhw$grain, mhw$straw)

After identify is called, switch to the graphics window, left-click with
the mouse on points to identify them, and right-click to exit. The plot
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should now show the row names of the selected points:
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Q18 : Which observations have grain yield that is much lower than
expected (considering the straw) and which higher? Jump to A18 •
tmp <- mhw[ pts, ]
tmp[ order(tmp$grain), ]

## r c grain straw
## 337 17 17 3.05 7.64
## 15 15 1 3.46 8.85
## 295 15 15 3.73 8.58
## 311 11 16 3.74 8.63
## 284 4 15 3.75 4.62
## 35 15 2 4.42 5.20
## 184 4 10 4.59 5.41
## 292 12 15 4.86 6.39

rm(pts, tmp)

3.3 Answers

A12 : 2.73 and 5.16 lb. per plot, respectively. Note the placement of the
decimal point, as explained in the plot header. Here it is one digit to the left of
the |, so the entry 27 | 38 is to be read as 2.73,2.78. Return to Q12 •

A13 : The stem plot shows the actual values (to some number of significant
digits). This allows us to see if there is any pattern to the digits. Return to
Q13 •

A14 : The horizontal axis is the value of the variable being summarized (in
this case, grain yield). It is divided into sections (“histogram bins”) whose
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limits are shown by the vertical vars. The vertical axis is the count (frequency)
of observations in each bin. Return to Q14 •

A15 : The two left-most histogram bins represent the values below 3 lb. per
plot (horizontal axis); these appear to have 2 and 5 observations, respectively,
for a total of 7; although it’s difficult to estimate exactly. The stem plot, which
shows the values to some precision, can show this exactly. Return to Q15 •

A16 : The higher value of the adj argument to the density function gives
a smoother curve. In this case with adj=2 the curve is indistinguishable from
a univariate normal distribution. The default curve is quite similar but with a
slight asymmetry (peak is a bit towards the smaller values) and shorter tails.
But, considering the sample size, it still strongly suggests a normal distribu-
tion. Return to Q16
•

A17 : They are positively associated: higher grain yields are generally asso-
ciated with higher straw yields. The relation appears to be linear across the
entire range of the two measured variables. But the relation is diffuse and
there are some clear exceptions. Return to Q17 •

A18 : Plots 15, 337, 311 and 295 have grain yields that are lower than the
general pattern; plots 308, 292, 184 and 35 the opposite. Return to Q18 •

4 Descriptive statistics

After visualizing the dataset, the next step is to compute some numeri-
cal summaries, also known as descriptive statistics. We can summarize
all the variables in the dataset at the same time or individually with the
summary function:
summary(mhw)

## r c grain straw
## Min. : 1.00 Min. : 1 Min. :2.73 Min. :4.10
## 1st Qu.: 5.75 1st Qu.: 7 1st Qu.:3.64 1st Qu.:5.88
## Median :10.50 Median :13 Median :3.94 Median :6.36
## Mean :10.50 Mean :13 Mean :3.95 Mean :6.51
## 3rd Qu.:15.25 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:7.17
## Max. :20.00 Max. :25 Max. :5.16 Max. :8.85

# summary(scale(mhw[,c("grain","straw")]))
summary(mhw$grain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

Q19 : What are the summary statistics for grain yield? Jump to A19 •
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4.1 Other descriptive statistics*

The descriptive statistics in the summary all have their individual func-
tions: max, median, mean, max, and quantile. This latter has a second
argument, probs, with a single value or list (formed with the c function)
of the probabilities for which the quantile is requested:
max(mhw$grain)

## [1] 5.16

min(mhw$grain)

## [1] 2.73

median(mhw$grain)

## [1] 3.94

mean(mhw$grain)

## [1] 3.9486

quantile(mhw$grain, probs=c(.25, .75))

## 25% 75%
## 3.6375 4.2700

Other statistics that are often reported are the variance, standard devia-
tion (square root of the variance) and inter-quartile range (IQR).

Task 18 : Compute these for grain yield. •
The var, sd and IQR functions compute these.
var(mhw$grain)

## [1] 0.21002

sd(mhw$grain)

## [1] 0.45828

IQR(mhw$grain)

## [1] 0.6325

Other measures applied to distributions are the skewness (deviation from
symmetry; symmetric distributions have no skewness) and kurtosis (con-
centration around central value; a normal distribution has kurtosis of
3). Functions for these are not part of base R but are provided as the
skewness and kurtosis functions of the curiously-named e1071 pack-
age from the Department of Statistics, Technical University of Vienna8.

Task 19 : Load the e1071 package and compute the skewness and
kurtosis. If e1071 is not already installed on your system, you have to
install it first. •
8 This may have been the Department’s administrative code.
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Optional packages are best loaded with the require function; this en-
sures that the package is not already loaded before loading it (to avoid
duplication).

Note: Since this is the only use we make of this package, we can unload
it with the detach function. This is not necessary.

require(e1071)

## Loading required package: e1071

skewness(mhw$grain)

## [1] 0.035363

kurtosis(mhw$grain)

## [1] -0.27461

detach(package:e1071)

The kurtosis function as implemented in e1071 computes the so-called
“excess” kurtosis, i.e., the difference from the normal distribution’s value
(3). So a normally-distributed variable would have no excess kurtosis.

Q20 : How do the skew and kurtosis of this distribution compare to the
expected values for a normally-distributed variable, i.e., 0 (skew) and 0
(excess kurtosis)? Jump to A20 •

4.2 A closer look at the distribution

Q21 : What is the range in grain yields? What proportion of the median
yield is this? Does this seem high or low, considering that all plots were
treated the same? Jump to A21 •

To answer this we can use the diff (“difference”) and median functions:
diff(range(mhw$grain))

## [1] 2.43

diff(range(mhw$grain))/median(mhw$grain)

## [1] 0.61675

Q22 : Which is the plot with the lowest grain yield? Does it also have
low straw yield? Jump to A22 •

To answer this, use the which.min function to identify the record num-
ber with the lowest grain yield. We then use this record number to find
the associated grain and straw yields at the corresponding row in the
mhw data frame. Finally, we determine where the straw yield falls in the
ranked list of yields, using the order function to rank the straw yields.
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# which record has the lowest grain yield?
(ix <- which.min(mhw$grain))

## [1] 338

# what is this yield, and what is the straw yield of this plot?
mhw[ix, c("grain","straw")]

## grain straw
## 338 2.73 4.77

# what rank?
iy <- which(order(mhw$straw) == ix)
# the quantile of the straw yield in the empirical distribution
print(iy/length(mhw$straw))

## [1] 0.022

We can select cases based on logical criteria, for example, to find the
lowest-yielding plots.

Task 20 : Find all observations with grain yield less than 3 lb. per plot,
and also those with grain yield in the lowest (first) percentile. •
We can use either the subset function or direct matrix selection. The
quantile function returns a list with quantiles; here we illustrate the
default, the case where we use the seq function to ask for the ten deciles,
and finally just the 1% quantile:

# find all
row.names(subset(mhw, mhw$grain<3))

## [1] "149" "336" "338" "339" "441" "467" "470"

quantile(mhw$grain)

## 0% 25% 50% 75% 100%
## 2.7300 3.6375 3.9400 4.2700 5.1600

quantile(mhw$grain, seq(0, 1, .1))

## 0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
## 2.730 3.370 3.558 3.700 3.820 3.940 4.070 4.210 4.362 4.520 5.160

mhw[mhw$grain < quantile(mhw$grain, .01), ]

## r c grain straw
## 336 16 17 2.92 4.95
## 338 18 17 2.73 4.77
## 339 19 17 2.85 4.96
## 467 7 24 2.78 4.28
## 470 10 24 2.84 4.10

Q23 : Which plots have grain yield less than 3 lb.? Which are the lowest-
yielding 1%? Are those close to each other? Jump to A23
•

26



4.3 Answers

A19 : Minimum 2.73, maximum 5.16, arithmetic mean 3.95, first quartile 3.64,
third quartile 4.27, median 3.94. Return to Q19 •

A20 : Both skew and excess kurtosis are quite close to the expected values
(0). This strengthens the evidence of a normal distribution. Return to Q20 •

A21 : The range in grain yields is 2.43, which is about 62% of the median. This
seems quite high considering the “equal” treatment. Return to Q21 •

A22 :

The lowest-yielding plot is 338, with a grain yield of 2.73 lb. It also has a low
straw yield, 4.77 lb. This ranks 11 out of 500 yields. Return to Q22 •

A23 : Plots with yield less than 3 lb. are 149, 336, 338, 339, 441, 467, 470. The
lowest percent are plots 336, 338, 339, 467, 470. The first three are all in field
column 17 and almost adjacent field rows (16, 18, 19); this seems definitely
to be a low-yield “hot spot” in the experimental field. The last two are both in
field column 24 but a few rows apart (7 and 10). Return to Q23 •

5 Editing a data frame

If you need to fix up a few data entry errors, the data frame can be edited
interactively with the fix function:
fix(mhw)

In this case there is nothing to change, so just close the editor.

New variables are calculated in the local variable space. For example,
the grain-to-straw ratio is an important indicator of how well the wheat
plant has formed grain, relative to its size.

Task 21 : Compute the grain/straw ratio and summarize it. •
Arithmetic operations are performed on entire vectors; therefore these
are called vectorized operations. Here the division (symbolized by /)
divides each grain yield by the straw yield.
gsr <- mhw$grain/mhw$straw
summary(gsr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.391 0.574 0.604 0.611 0.642 0.850

Q24 : What is the range in grain/straw ratio? Is it relatively larger or
smaller than the range in grain? Jump to A24 •
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range(gsr)

## [1] 0.39096 0.85000

diff(range(gsr))/median(gsr)

## [1] 0.75944

diff(range(mhw$grain))/median(mhw$grain)

## [1] 0.61675

For further analysis we would like to include this in the data frame itself,
as an additional variable.

Task 22 : Add grain-straw ratio to the mhw data frame and remove it
from the local workspace. •
For this we use the cbind (“column bind”) function to add a new matrix
column (data frame field):
mhw <- cbind(mhw, gsr)
str(mhw)

## 'data.frame': 500 obs. of 5 variables:
## $ r : int 1 2 3 4 5 6 7 8 9 10 ...
## $ c : int 1 1 1 1 1 1 1 1 1 1 ...
## $ grain: num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...
## $ straw: num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...
## $ gsr : num 0.57 0.652 0.64 0.564 0.612 ...

By default, the new matrix column is automatically given the name from
the local variable.

Now we remove the local variable gsr so that we do not confuse it with
the gsr field of the mhw data frame:
ls()

## [1] "gsr" "ix" "iy" "mhw"

rm(gsr)
ls()

## [1] "ix" "iy" "mhw"

Task 23 : Save the updated mhw object in R format. •
We use a different file name to distinguish this from the original file,
without the added column.
save(mhw, file="mhw2.RData")

5.1 Answers

A24 : The range is from 0.39 to 0.85, i.e. the ratio of grain to straw doubles.
This is about 76% of the median ratio, which is considerably higher than the
comparable figure for grain yield (about 62%). Return to Q24 •
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6 Univariate modelling

After descriptive statistics and visualisation comes the attempt to build
statistical models of the underlying processes. These are empirical
mathematical relations that describe one variable in terms of some hy-
pothetical underlying distribution of which it is a realisation, or de-
scribe several variables either as equals (“correlation”) or where one is
described in terms of others (“regression”). We explore these, from sim-
ple to complex.

The simplest kind of model is about the distribution of a single variable,
i.e, univariate modelling.

We suppose that the observed sample distribution is from an underlying
probability distribution. This raises two questions: (1) what is the form
of that distribution, and (2) what are its parameters?

To decide what theoretical distribution might fit, we first visualise the
empirical distribution. This continues the ideas from §3.1.2.

Task 24 : Visualise an empirical continuous frequency distribution on
the rug plot. •
We again use the density function, with default arguments:
plot(density(mhw$grain), col="darkblue",

main="Grain yield, lb. per plot", lwd=1.5)
rug(mhw$grain, col="darkgreen")
grid()
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We can also view the distribution as a cumulative rather than density
distribution.

29



Task 25 : Visualise the empirical cumulative distribution of grain yield.
•

We use the ecdf (“empirical cumulative distribution function”) function
to compute the distribution, then plot it with the plot function. Ver-
tical lines are added to the plot with the abline (“add a straight line”)
function, at the median, extremes, and specified quantiles.
plot(ecdf(mhw$grain), pch=1,

xlab="Mercer & Hall, Grain yield, lb. per plot",
ylab="Cumulative proportion of plots",
main="Empirical CDF",
sub="Quantiles shown with vertical lines")

q <- quantile(mhw$grain, c(.05, .1, .25, .75, .9, .95))
abline(v=q, lty=2)
abline(v=median(mhw$grain), col="blue")
abline(v=max(mhw$grain), col="green")
abline(v=min(mhw$grain), col="green")
text(q, 0.5, names(q))
rm(q)
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Q25 : From the histogram, stem-and-leaf plot, empirical cumulative
distribution, and theory, what probability distribution is indicated for
the grain yield? Jump to A25 •

We can also visualise the distribution against the theoretical normal dis-
tribution computed with the sample mean and variance. There are (at
least) two useful ways to visualise this.

First, compare the actual and theoretical normal distribution is with the
qqnorm function to plot these against each other and then superimpose
the theoretical line with the qqline function:
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qqnorm(mhw$grain,
main="Normal probability plot, grain yields (lb. plot-1)")

qqline(mhw$grain)
grid()
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Q26 : Does this change your opinion of normality? Jump to A26 •

The second way to visually compare an empirical and theoretical distri-
bution is to display the empirical density plot, superimposing the normal
distribution that would be expected with the sample mean and standard
deviation.

Task 26 : Fit a normal probability distribution to the empirical distri-
bution of grain yield. •

Q27 : What are the best estimates of the parameters of a normal distri-
bution for the grain yield? Jump to A27
•

These are computed with the mean and sd functions:
mean(mhw$grain)

## [1] 3.9486

sd(mhw$grain)

## [1] 0.45828

With these in hand, we can plot the theoretical distribution against the
empirical distribution:
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Task 27 : Graphically compare the theoretical and empirical distribu-
tions. •
res <- 0.1
hist(mhw$grain, breaks=seq(round(min(mhw$grain),1)-res,

round(max(mhw$grain),1)+res, by=res),
col="lightblue", border="red", freq=F,
xlab="Wheat grain yield, lb. per plot",
main="Mercer & Hall uniformity trial",
sub="Theoretical distribution (solid), empirical density (dashed)")

grid()
rug(mhw$grain)
x <- seq(min(mhw$grain)-res, max(mhw$grain)+res, by=.01)
lines(x, dnorm(x, mean(mhw$grain), sd(mhw$grain)), col="blue", lty=1, lwd=1.8)
lines(density(mhw$grain), lty=2, lwd=1.8, col="black")
rm(res, x)
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We can also see this on the empirical density. This version also uses the
curve method to draw the theoretical curve.
plot(density(mhw$grain), col="darkblue",

main="Grain yield, lb. per plot", lwd=1.5, ylim=c(0,1),
xlab=paste("Sample mean:",round(mean(mhw$grain), 3),
"; s.d:", round(sd(mhw$grain),3)))

grid()
rug(mhw$grain)
curve(dnorm(x, mean(mhw$grain), sd(mhw$grain)), 2.5, 6, add=T,

col="darkred", lwd=1.5)
text(2.5, 0.85, "Empirical", col="darkblue", pos=4)
text(2.5, 0.8, "Theoretical normal", col="darkred", pos=4)
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There are several tests of normality; here we use the Shapiro-Wilk test,
implemented by the shapiro.test function. This compares the em-
pirical distribution (from the sample) with the theoretical distribution,
and computes a statistic (“W”) for which is known the probability that it
could occur by change, assuming the sample is really from a normally-
distributed population. The reported probability value is the chance that
rejecting the null hypothesis H0 that the sample is from a normal popu-
lation is an incorrect decision (i.e. the probability of committing a Type
I error).
shapiro.test(mhw$grain)

##
## Shapiro-Wilk normality test
##
## data: mhw$grain
## W = 0.997, p-value = 0.49

Q28 : According to the Shapiro-Wilk test, what is the probability if we
reject the null hypothesis that this empirical distribution is a realisation
of a normal distribution with the sample mean and standard deviation as
parameters, we would be wrong (i.e. commit a Type I error)? So, should
we reject the null hypothesis of normality? Should we consider grain
yield to be a normally-distributed variable? Jump to A28 •

Once we’ve established that the yields can be reasonably modelled by
a normal distribution, we can compute confidence limits on the mean
yield. Mercer and Hall used the 50% confidence level, which they called
the probable error: there is equal chance for the true yield to be inside
as outside this interval.
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Task 28 : Compute the probable error for grain yield in a 1/500 acre
plot. •
Although we’ve fitted a normal distribution, both the mean and standard
deviation were estimated from the sample. So, we should use Student’s t-
distribution (although with so many plots the difference with the normal
z-distribution will be very small).

The probable error is computed from the limits of the interquartile range
of the distribution; we get the quantiles of the t distribution with the qt
function, specifying the degrees of freedom:
(t.q13 <- qt(c(.25, .75), length(mhw$grain) - 1))

## [1] -0.67498 0.67498

This is for µ = 0, σ = 1. We then scale this to the data:
(pe <- mean(mhw$grain) + t.q13 * sd(mhw$grain))

## [1] 3.6393 4.2580

And we can express it as a relative error; conventionally this is expressed
as error ± relative to the mean:
rel.error <- (diff(pe)/2) / mean(mhw$grain)
round(100 * rel.error, 2)

## [1] 7.83

Q29 : If the true yield over the entire field is the observed mean yield,
what yields can be expected in any one 1/500 acre plot, with 50% confi-
dence that the mean is in this range? Jump to A29
•

Q30 : What is the probable error expressed as a percentage of mean
yield? Jump to A30 •

To put this in practical terms, since this was Mercer and Hall’s main
concern, we calculate the probable error in absolute kg ha-1.

We saw above that the mean grain yield in this experiment was 3.95 lb. plot-1.
Scaling this up to a hectare basis (which is how yields are normally ex-
pressed):
(yield.ha <- mean(mhw$grain)*500/(0.40469)/(2.2046226))

## [1] 2212.9

The two constants in this formula are 0.40469 ha acre-1 and 2.2046226
lb. kg-1, and there are 500 plots per acre.

Q31 : If we try to estimate the yield in kg ha-1 from a single 1/500 acre
plot in a variety trial, how much error (in absolute terms) can we expect,
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with 50% probability? What are the practical implications of this? Jump
to A31 •
round(yield.ha * rel.error, 2)

## [1] 173.35

Clean up:
rm(t.q13, pe, rel.error, yield.ha)

6.1 Answers

A25 : The Normal distribution. From theory: the addition of multiple in-
dependent sources of noise. From the plots: visual fit to simulated normal
distributions. Return to Q25 •

A26 : The distribution still looks normal, except at both tails: the highest
yields are not as high, and the lowest not as low, as expected if the yields were
normally distributed. Return to Q26 •

A27 : Parameters µ = 3.95, σ = 0.458. Return to Q27 •

A28 : According to the Shapiro-Wilk test of normality, the probability that
rejecting the null hypothesis of normality would be an incorrect decision (i.e. a
Type I error is 0.49; this is quite high, so we do not reject the null hypothesis.
So, we consider the grain yield to be a realisation of a normal distribution.

Return to Q28 •

A29 : From 3.64 to 4.36 lb. plot-1; the observed mean yield is 3.95 lb. plot-1.
Return to Q29 •

A30 : ± 7.83%. Return to Q30 •

A31 : From a true yield (estimated here from our mean) of 2213 kg wheat
grain, the probable error is 173 kg, a substantial amount. There is a 50% chance
of observing this much deviation if we estimate the per-hectare yield from
any single 1/500 acre plot. Clearly, this is where the idea of replicated plots
originated. Return to Q31 •

7 Bivariate modelling: two continuous variables

After modelling the distribution of a single variable, we now model the
joint distribution of two variables, i.e., bivariate modelling.

In §3.2 we displayed a scatterplot of straw vs. grain yield, repeated here
with some additional graphical elements:
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plot(mhw$straw ~ mhw$grain,
xlab="Grain yield (lb. plot-1)",
ylab="Straw yield (lb. plot-1)",
pch=20, col="darkblue", cex=1.2,
sub="Medians shown with red dashed lines")

title(main="Straw vs. grain yields, Mercer-Hall experiment")
grid()
abline(v=median(mhw$grain), lty=2, col="red")
abline(h=median(mhw$straw), lty=2, col="red")
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Straw vs. grain yields, Mercer−Hall experiment

The ~ formula operator is used to indicate statistical dependence, here
of straw on grain; we will explore this further just below. The centroid
is shown by intersecting horizontal and vertical lines, added with the
abline function.

Q32 : From the scatterplot of straw vs. grain yield, what functional
relation is suggested? Jump to A32 •

For a bivariate linear relation, as hypothesised here, we can view this
four ways:

1. A bivariate linear correlation between the two variables (straw and
grain yields) (§7.1);

2. A univariate linear regression of straw (dependent) on grain (inde-
pendent) yield (§7.2);

3. A univariate linear regression of grain (dependent) on straw (inde-
pendent) yield (§7.3).

4. A linear structural relation between the two yields (§7.3).

These will each be explored below.
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Bivariate correlation, bivariate structural relations and univariate regres-
sion all compare two variables that refer to the same observations, that
is, they are paired. This is the natural order in a data frame: each row
represents one observation on which several variables were measured;
in the present case, the row and column numbers of the plots, and the
grain and straw yields.

Correlation and various kinds of regression are often misused. There are
several good journal articles that explain the situation, with examples
from earth science applications [32, 48]. A particularly understandable
introduction to the proper use of regression is by Webster [49].

Note that in this case there is no evidence to suggest a non-linear or
piecewise relation; but in many cases these are possibilities that must
be compared with a linear model.

7.1 Correlation

Correlation measures the strength of the association between two vari-
ables measured on the same object, from −1 (perfect negative correla-
tion), through 0 (no correlation), to +1 (perfect positive correlation). The
two variables have logically equal status, so there is no concept of cau-
sation; in addition, there is no functional relation, so there is no way to
predict.

There are several numerical measures of correlation; we will see two:

1. Parametric: Pearson’s product moment correlation coefficient (PMCC)
r (§7.1.1);

2. Non-parametric: Spearman’s ρ (§10.3).

7.1.1 Parametric correlation

The PMCC should only be used if the two variables are distributed ap-
proximately bivariate normally. This is two normal distributions, but
with some degree of correlation. So we first check whether the relation
between grain and straw yield has this distribution.

Task 29 : Visualise a bivariate normal distribution with the parameters
of the grain and straw yields; visually compare with the actual bivariate
distribution. •
R has a rnorm function to simulate a random sample of a given size from
the normal distribution, by analogy to the runif function presented
above. However, to simulate a correlated sample of several variables,
we turn to the mvrnorm function in the MASS (“Modern Applied Statis-
tics with S”) package which corresponds to the very useful advanced text
of Venables and Ripley [47]. This function uses a vector of the variable
means, along with the variance-covariance matrix of two or more vari-
ables.

37



The variable means are computed with the vectorized colMeans func-
tion, which finds the by-column mean all or some of the columns in a
data frame:
colMeans(mhw[,c("grain","straw")])

## grain straw
## 3.9486 6.5148

The variance-covariance matrix is computed with the vectorized var
function:
var(mhw[,c("grain","straw")])

## grain straw
## grain 0.21002 0.30043
## straw 0.30043 0.80696

Q33 : What do the diagonals and off-diagonals of this matrix represent?
What are their units of measure? Jump to A33 •

From these the mvrnorm can draw a simulated random sample. We first
load the optional MASS package with the require function; the mvrnorm
function is then available.
require(MASS)
sim.sample <- mvrnorm(length(mhw$grain),

mu=colMeans(mhw[,c("grain","straw")]),
Sigma=var(mhw[,c("grain","straw")]))

head(sim.sample)

## grain straw
## [1,] 4.5501 7.0289
## [2,] 3.8159 6.6062
## [3,] 4.1549 6.7120
## [4,] 4.5992 8.1461
## [5,] 3.6605 6.1749
## [6,] 3.6809 5.8288

summary(sim.sample)

## grain straw
## Min. :2.28 Min. :3.13
## 1st Qu.:3.63 1st Qu.:5.89
## Median :3.95 Median :6.52
## Mean :3.96 Mean :6.51
## 3rd Qu.:4.33 3rd Qu.:7.18
## Max. :5.14 Max. :9.05

summary(mhw[,c("grain", "straw")])

## grain straw
## Min. :2.73 Min. :4.10
## 1st Qu.:3.64 1st Qu.:5.88
## Median :3.94 Median :6.36
## Mean :3.95 Mean :6.51
## 3rd Qu.:4.27 3rd Qu.:7.17
## Max. :5.16 Max. :8.85

We can also visualise these distributions with histograms. To ensure
that the visualisation is comparable, we compute the overall minimum
and maximum of both variables and use these to explicitly set the axis
limits.
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par(mfrow=c(2,2))
grain.lim = c(min(sim.sample[,"grain"], mhw$grain),

max(sim.sample[,"grain"], mhw$grain))
straw.lim = c(min(sim.sample[,"straw"], mhw$straw),

max(sim.sample[,"straw"], mhw$straw))
hist(mhw$grain, xlim=grain.lim,

main="Grain (actual)", col="lightyellow",
breaks=seq(grain.lim[1],grain.lim[2], length=17))

hist(sim.sample[,"grain"],xlim=grain.lim,
main="Grain (simulated)", col="cornsilk",
breaks=seq(grain.lim[1],grain.lim[2], length=17))

hist(mhw$straw, xlim=straw.lim,
main="Straw (actual)", col="lightblue",
breaks=seq(straw.lim[1],straw.lim[2], length=17))

hist(sim.sample[,"straw"],xlim=straw.lim,
main="Straw (simulated)", col="lavender",
breaks=seq(straw.lim[1],straw.lim[2], length=17))

par(mfrow=c(1,1))
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Q34 : How well do the two univariate simulations match the actual data?
Jump to A34 •

So we can simulate a sample with the same mean and standard deviation
as the grain and straw yields, and plot them against each other in a
scatterplot. We display this side-by-side with the actual scatterplot.
par(mfrow=c(1,2))
plot(sim.sample,

main="Simulated straw vs. grain yields",
xlab="Grain (lb. plot-1)", ylab="Straw (lb. plot-1)",
xlim=grain.lim, ylim=straw.lim, pch=20, col="blue")

abline(v=median(sim.sample[,1]), lty=2, col="red")
abline(h=median(sim.sample[,2]), lty=2, col="red")
plot(mhw$grain, mhw$straw,

main="Actual straw vs. grain yields",
xlab="Grain (lb. plot-1)", ylab="Straw (lb. plot-1)",
xlim=grain.lim, ylim=straw.lim, pch=20, col="black")
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abline(v=median(mhw$grain), lty=2, col="red")
abline(h=median(mhw$straw), lty=2, col="red")
par(mfrow=c(1,1))
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Q35 : Do the two relations (simulated vs. actual) look similar? Do they
support the hypothesis of a bivariate linear relation? Jump to A35 •
We delete the temporary variables used in this visualisation:
rm(sim.sample, grain.lim, straw.lim)

Challenge: The single simulation is only one realisation of the hypothet-
ical process. Repeat the simulation several times and compare (1) the
simulations with each other; (2) the simulations with the actual data.

With this evidence of bivariate normality, we are justified in computing
the parametric correlation.

Task 30 : Compute the PMCC between grain and straw yield, and its
95% confidence limit. •
The cor function computes the correlation; the cor.test function also
computes the confidence interval:
cor(mhw$grain, mhw$straw)

## [1] 0.72978

cor.test(mhw$grain, mhw$straw)

##
## Pearson's product-moment correlation
##
## data: mhw$grain and mhw$straw
## t = 23.8, df = 498, p-value <2e-16
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
## 0.68599 0.76830
## sample estimates:
## cor
## 0.72978
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Q36 : What are the lowest possible, most probable, and highest possi-
ble values of the correlation coefficient r , with 95% confidence? Do you
consider this a very strong, strong, moderately strong, weak, or no cor-
relation? Positive or negative? Jump to A36
•

7.2 Univariate linear regression

Univariate linear regression differs from bivariate correlation in that
one of the two variables is considered mathematically dependent on the
other.

An important distinction is made between predictors which are known
without error, whether fixed by the experimenter or measured, and those
that are not.

Fixed effects model Webster [49] calls the first type a “Gauss linear
model”9 because only the predictand has Gaussian or “normal” error,
whereas the predictor is known without error. The regression goes in one
direction only, from the mathematical predictor to the random response,
and is modelled by a linear model with error in the response:

yi = BXi + εi (7.1)

of which the simplest case is a line with intercept:

yi = β0 + β1xi + εi (7.2)

In this model there is no error associated with the predictors xi only
with the predictand yi. The predictors are known without error, or at
least the error is quite small in comparison to the error in the model. An
example is a designed agricultural experiment where the quantity of fer-
tiliser added (the predictor) is specified by the design and the crop yield
is measured (the predictand); there is random error εi in this response.

Further, the errors εi are considered to be identically and indepen-
dently distributed (IID):

• no relation between the magnitude of the error and that of the
predictor (homoscedascity);

• no serial correlation between errors (e.g., small errors systemati-
cally followed by another small errors) in the sequence of predic-
tors.

These assumptions can be verified after the regression parameters are
estimated, using feature-space regression diagnostics (§7.2.4) and spa-
tial analysis (§17). In the present case we will see (§17) that the residuals
are not independent and a more sophisticated model is needed to get a
proper regression equation.

9 referring to the developer of least-squares regression

41



Random effects model In the present example both variables (grain
and straw yields) were measured with error; they were not imposed by
the experimenter. Both variables should have Gaussian error, with some
correlation. This is modelled as a bivariate normal distribution of two
random variables, X and Y with (unknown) population means µX and µY ,
(unknown) population variances σX and σY , and an (unknown) correla-
tion ρXY which is computed as the standardised (unknown) covariance
Cov(X, Y):

X ∼ N (µX , σX)
Y ∼ N (µY , σY )

ρXY = Cov(X, Y)/σXσY

This is exactly what was modelled in the previous section.

In practice, the distinction between the two models is not always clear.
The predictor, even if specified by the experimenter, can also have some
measurement error. In the fertiliser experiment, even though we spec-
ify the amount per plot, there is error in measuring, transporting, and
spreading it. In that sense it can be considered a random variable. But,
since we have some control over it, the experimental error can be limited
by careful procedures. We can not limit the error in the response by the
same techniques.

7.2.1 Fitting a regression line – theory

When we decide to consider one of the variables as as a response and
the other as a predictor, we attempt to fit a line that best describes this
relation. There are three types of lines we can fit, usually in this order:

1. Exploratory, non-parametric

2. Parametric (§7.2)

3. Robust (§10)

The first kind just gives a “smooth” impression of the relation. The sec-
ond fits according to some optimality criterion; the classic least-squares
estimate is in this class. The third is also parametric but optimises some
criterion that protects against a few unusual data values in favour of the
majority of the data.

In the present case, our analysis above provides evidence that the rela-
tion is indeed well-modelled by a bivariate normal distribution, so that
a parametric approach can be taken. We will then examine regression
diagnostics to see if a robust regression is needed; these methods are
discussed below in §10.

Q37 : Is there any reason to choose grain or straw as the dependent
variable (predictand), and other as the independent (predictor)? Jump
to A37 •
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The simplest way to model a parametric linear regression is by ordinary
least-squares (OLS). The next section explains the mathematical justifi-
cation; the computation continues in §7.2.3.

7.2.2 Ordinary least-squares*

Note: This explanation is adapted from Lark and Cullis [27, Appendix]
and Draper and Smith [10, §2.6].

In the general linear model, with any number of predictors, there is a
n × p design matrix of predictor values usually written as X, with one
row per observation (data point), i.e., n rows, and one column per pre-
dictor, i.e., p columns. In the single-predictor with intercept case, it is a
n× 2 matrix with two columns: (1) a column of 1 representing the inter-
cept, and (2) a column of predictor values xi. The predictand (response
variable) is a n×1 column vector y, one row per observation. The coeffi-
cient vector β is a p × 1 column vector, i.e., one row per predictor (here,
2). This multiplies the design matrix to produce the response:10

y = Xβ+ ε (7.3)

where ε is a n× 1 column vector of residuals, also called errors, i.e., the
lack of fit. We know the values in the predictor matrix X and the response
vector y from our observations, so the task is to find the optimum values
of the coefficients vector β.

To solve this we need an optimization criterion. The obvious criterion is
to minimize the total error (lack of fit) as some function of ε = y−Xβ; the
goodness-of-fit is then measured by the size of this error. A common way
to measure the total error is by the sum of vector norms; in the simplest
case the Euclidean distance from the expected value, which we take to be
0 in order to have an unbiased estimate. If we decide that both positive
and negative residuals are equally important, and that larger errors are
more serious than smaller, the vector norm is expressed as the sum of
squared errors, which in matrix algebra can be written as:

S = (y− Xβ)T (y− Xβ) (7.4)

which expands to

S = yTy− βTXTy− yTXβ+ βTXTXβ
S = yTy− 2βTXTy+ βTXTXβ (7.5)

Note: yTXβ is a 1×1 matrix, i.e., a scalar11, so it is equivalent to its trans-
pose: yTXβ = [yTXβ]T = βTXTy. So we can collected the two identical
1× 1 matrices (scalars) into one term.

10 The dimensions of the matrix multiplication are n× 1 = (n× p)(p × 1)
11 The dimensions of the matrix multiplication are (1×n)(n× p)(p × 1)
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This is minimized by finding the partial derivative with respect the the
unknown coefficients β, setting this equal to 0, and solving:

∂
∂βT

S = −2XTy+ 2XTXβ

0 = −XTy+ XTXβ
(XTX)β = XTy

(XTX)−1(XTX)β = (XTX)−1XTy

β̂OLS = (XTX)−1XTy (7.6)

which is the usual OLS solution.

The above solution depends on an important assumption: the errors
must be identically and independently distributed (abbreviated i.i.d.). We
did not consider the direction of the error, i.e., with which yi a particular
εi is associated; all errors are considered to be drawn from the same
population. This assumption may not be tenable; we will return to this
in §17.

7.2.3 Fitting a regression line – application

Task 31 : Fit a least-squares prediction line of straw as predicted by
grain; display the model summary. •

Q38 : What is the purpose of fitting this relation? Jump to A38 •

For this we use the linear models function lm; this is the workhorse of
modelling in R. The generic summary function now produces a model
summary; the coefficients access function extracts the regression
line coefficients from the model object.
model.straw.grain <- lm(straw ~ grain, data = mhw)
summary(model.straw.grain)

##
## Call:
## lm(formula = straw ~ grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0223 -0.3529 0.0104 0.3734 3.0342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8663 0.2387 3.63 0.00031 ***
## grain 1.4305 0.0601 23.82 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.615 on 498 degrees of freedom
## Multiple R-squared: 0.533,Adjusted R-squared: 0.532
## F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

coefficients(model.straw.grain)
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## (Intercept) grain
## 0.86628 1.43050

This example illustrates the simplest S model formula, which is sig-
nalled by the ~ operator, which can be read “is modelled by”. Here
the formula straw ~ grain can be read “straw yield is modelled by
grain yield”. The optional data argument to the lm function informs
the function where to look for the variables named in the model for-
mula. The formula could also have named the fields within the object
directly: lm(mhw$straw ~ mhw$grain). It’s usually more convenient to
use the data argument.

Q39 : What is the linear least-squares relation between straw and grain
yields? Jump to A39 •

Q40 : How much straw yield is expected if there is no grain yield? Does
this seem realistic? Jump to A40 •

Q41 : How much does the straw yield increase for each extra lb. of grain
yield? Jump to A41 •

Q42 : How much of the variability in straw yield is explained by this
relation? Jump to A42 •

Task 32 : Display the scatterplot with the best-fit line superimposed. •
plot(straw ~ grain, data=mhw)
title("Straw yield predicted by grain yield")
abline(model.straw.grain)
grid()
text(4.5, 4.5, paste("slope:",

round(coefficients(model.straw.grain)[2], 2)))
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Again we use the optional data argument to plot to avoid naming the
data frame before each field, i.e., plot(mhw$straw ~ mhw$grain).

The abline function is used to add a line to the plot. The text function
places text on the plot, and the title function adds a title. The plot
function can also interpret the model formula syntax, e.g., straw ~ grain;
This is to be read “straw depends on grain”, which in graphics terms is
interpreted as a scatterplot with the dependent variable (here straw) on
the y-axis and the independent variable (here grain) on the x-axis.

7.2.4 Regression diagnostics

Of course, we have to treat any model with suspicion; for linear models
there are some standard diagnostics. In particular, the hypothesis for the
linear model is that the response is some deterministic linear function
of the predictor, plus a normally-distributed random error:

y = β0 + β1x + ϵ

We will investigate whether the model we have just fit satisfies this cri-
terion.

Task 33 : Display a histogram and quantile-quantile plot of the regres-
sion residuals; summarise these numerically. •
hist(residuals(model.straw.grain),

main="Residuals from straw vs.\ grain linear model")
rug(residuals(model.straw.grain))
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Q43 : Do the residuals appear to be normally-distributed? Are they at
least symmetrically-distributed? Jump to A43 •

We can test the normality of the residuals with a Shapiro-Wilks test:
shapiro.test(residuals(model.straw.grain))

##
## Shapiro-Wilk normality test
##
## data: residuals(model.straw.grain)
## W = 0.977, p-value = 3.6e-07
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Q44 : According to the Shapiro-Wilk test, should we reject the null
hypothesis of normality for the residuals? Jump to A44 •

Task 34 : Compare the fitted to actual values along a 1:1 line; highlight
those that are more than 1 lb. plot-1in error. •
To colour points we use the col optional argument to the plot function,
and the ifelse function to select a colour based on a logical condition:
lim <- c(min(fitted(model.straw.grain), mhw$straw),

max(fitted(model.straw.grain), mhw$straw))
plot(fitted(model.straw.grain), mhw$straw,

xlab="Modelled", ylab="Actual", asp=1,
xlim=lim, ylim=lim, pch=20,
col=ifelse(

(abs(fitted(model.straw.grain) - mhw$straw) < 1),
"gray",
ifelse(fitted(model.straw.grain) < mhw$straw, "blue","red")),

cex=ifelse(
(abs(fitted(model.straw.grain) - mhw$straw) < 1),1,1.3)

)
title("Actual vs. modelled straw yields")
grid()
abline(0,1)
rm(lim)
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Task 35 : Some of the plots are poorly-fit by this relation; identify
those with an absolute residual > 1.8 lb. straw and display their records,
sorted by grain/straw ratio. •
This example illustrates the abs (“absolute value”), which (“which record
numbers?”), sort (“sort values”) and order (“order records”) functions.
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We first identify the records with the high absolute residuals, and show
them:
which.high.res <- which(abs(residuals(model.straw.grain)) > 1.8)
sort(residuals(model.straw.grain)[which.high.res])

## 184 35 295 337 311 15
## -2.0223 -1.9891 2.3780 2.4107 2.4137 3.0342

Now we show these records in the data frame:
high.res <- mhw[which.high.res,]
high.res[order(high.res$gsr),]

## r c grain straw gsr
## 15 15 1 3.46 8.85 0.39096
## 337 17 17 3.05 7.64 0.39921
## 311 11 16 3.74 8.63 0.43337
## 295 15 15 3.73 8.58 0.43473
## 184 4 10 4.59 5.41 0.84843
## 35 15 2 4.42 5.20 0.85000

rm(which.high.res, high.res)

Q45 : Which plots have absolute residuals > 1.8 lb. straw? Which are
too high and which too low, according to the relation? Jump to A45 •

Challenge: Repeat the analysis, but reversing the variables: model grain
yield as a function of straw yield. Are the slopes inverses of each other?
Why or why not?

Further diagnostics The normality of residuals is one requirement for
linear modelling; however there are other issues.

The generic plot function applied to a model result (i.e. object returned
from a call to lm) gives a standard set of diagnostic plots, selectable with
the which argument.

Plot type 1 is a plot of residuals vs. fitted values; there should be no re-
lation between these. That is, whether a residual is high or low, positive
or negative should not depend on the value fitted by the model. There
should not be any trend; the smooth curve (fit by the lowess function)
gives a visual impression of this – it should ideally be a horizontal line
at 0.

This plot type also helps evaluate whether the variance of the residuals is
constant across the range of the predictor, i.e., are they homoscedastic
as required for fitting simple linear regression by OLS (Equation 7.1):
looking vertically at any fitted value, the spread should be identical.
plot(model.straw.grain, which=1); grid()
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Plot type 2 is the Q-Q plot as we studied in the previous section.

Plot type 5 shows the leverage of each observation and its corresponding
residual.

Observations that are far from the centroid of the regression line can
have a large effect on the estimated slope; they are said to have high
leverage, by analogy with a physical lever. They are not necessarily in
error, but they should be identified and verified; in particular, it is in-
structive to compare the estimated regression line with and without the
high-leverage observations.

The leverage is measured by the hat value, which measures the overall
influence of a single observation on the predictions. In diagnostic plot
type 5 the abscissa (‘x-axis’) is the hat value. Two things are of interest:

• No extreme leverage, compared to other observations;

• Residuals at high-leverage observations should not be too much
smaller than for other observations. Note that high-leverage obser-
vation “pull” the regression towards better fits, so their residuals
are expected to be somewhat below average.

plot(model.straw.grain, which=5); grid()
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Plot type 6 is Cook’s distance vs. leverage. Cook’s distance measures how
much the estimated parameter vector β̂ shifts if a single observation is
omitted. A high Cook’s distance means that the observation has a large
influence on the fitted model.

We also specify the number of extreme points to label with the id.n
optional argument.
plot(model.straw.grain, which=6, id.n=10); grid()
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This plot also shows contours of absolute standardised residuals, as la-
belled straight lines through the origin.
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Q46 : Which observations are flagged by their Cook’s distance as hav-
ing the most influence on the fit? Are these high-leverage observations?

Jump to A46 •

We will compare this model to more complex ones in §11, below.

7.2.5 Prediction

Once the regression model is built, it can be used to predict: in this case,
given a grain yield, what is the expected straw yield? And, how large or
small could it be?

The predict generic method specialized to predict.lm for objects of
class lm, such as the model we’ve just built. In addition to the model
name, it requires a dataframe in which predict will look for variables
with which to predict (in this case, a field named grain). In addition,
predict.lm can return the confidence interval of the prediction, either
of the fit itself or of values predicted from the equation.

There are two sources of prediction error:

1. The uncertainty of fitting the best regression line from the available
data;

2. The uncertainty in the prediction, even with a perfect regression
line, because of uncertainty in the process which is revealed by
the regression (i.e. the inherent noise in the process) These cor-
respond to the confidence interval and the prediction interval,
respectively, both at some level of risk of a Type I error, i.e., that
the true value is not in the given range. Clearly, the second must
be wider than the first.

The interpretation of these two intervals is as follows:

confidence : We are confident, with only a specified probability of being wrong,
that the expected value of the response at the given value of the
predictand is within this interval. In this case, if we sampled many
plots with the same grain yield, this is the interval where the true
mean value lies.

prediction : We are confident, with only a specified probability of being wrong,
that any single value of the response at the given value of the pre-
dictand is within this interval. In this case, any one plot with the
given grain yield should have a straw yield in this interval.

The estimation variance depends on (1) the variance of the regression
s2
Y .x and (2) the distance (x0 − x̄) of the predictand at value x0 from the

centroid of the regression, x̄. The further from the centroid, the more
any error in estimating the slope of the line will affect the prediction:

s2
Y0

= s2
Y .x

[
1+ 1

n
+ (x0 − x̄)2∑n

i=1(xi − x̄)2
]

(7.7)
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This shows that if we try to predict “too far” from the centroid, the
uncertainty will be so large that any prediction is meaningless.

Note: The variance of the regression s2
Y .x is computed from the devia-

tions of actual and estimated values at all the known points:

s2
Y .x = 1

n− 2

n∑
i=1

(yi − ŷi)2 (7.8)

Task 36 : Compute the most likely value, and the 95% confidence and
prediction intervals, of straw yields predicted by a grain yield of the
mean, and the mean ± one and two standard deviations of the predictor.

•
We first build a (very) small dataframe with the data.frame function,
with a variable of the same name, and then use it as the newdata argu-
ment to predict.lm; the other arguments are the model name, the type
of interval, and the risk of Type I error.
t1 <- mean(mhw$grain); t2 <- sd(mhw$grain);
p.frame <- data.frame(grain=seq(t1-2*t2, t1+2*t2, t2))
predict(model.straw.grain, newdata=p.frame,

interval="confidence", level=0.95)

## fit lwr upr
## 1 5.2037 5.0828 5.3245
## 2 5.8592 5.7828 5.9357
## 3 6.5148 6.4608 6.5688
## 4 7.1704 7.0939 7.2468
## 5 7.8259 7.7051 7.9468

predict(model.straw.grain, newdata=p.frame,
interval="prediction", level=0.95)

## fit lwr upr
## 1 5.2037 3.9898 6.4176
## 2 5.8592 4.6490 7.0695
## 3 6.5148 5.3057 7.7239
## 4 7.1704 5.9601 8.3806
## 5 7.8259 6.6120 9.0398

Q47 : Which interval is wider? What happens to the width of the interval
as the predictand is further from its centroid (mean)? Jump to A47 •

Task 37 : Display the scatterplot of straw vs. grain yields, with the
best-fit line and the two confidence intervals, for grain yields from 2 to
6 lb. acre-1, at 0.1 lb. resolution. •
The seq function builds the required sequence, and data.frame is again
used to build a prediction frame. The plot function initiates the plot,
and then the title, grid, lines, points, and abline functions add
graphic or text elements.
p.frame <- data.frame(grain=seq(from=2,to=6,by=0.1))
pred.c <- predict(model.straw.grain, newdata=p.frame,

interval="confidence", level=0.95)
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pred.p <- predict(model.straw.grain, newdata=p.frame,
interval="prediction", level=0.95)

plot(straw ~ grain, data=mhw, pch=20)
title(main="Straw yield predicted by grain yield",

sub="Prediction (blue) and confidence (red) intervals")
abline(model.straw.grain); grid()
lines(p.frame$grain, pred.c[, "lwr"], col = 2, lwd = 1.5)
lines(p.frame$grain, pred.c[, "upr"], col = 2, lwd = 1.5)
lines(p.frame$grain, pred.p[, "lwr"], col = 4, lwd = 1.5)
lines(p.frame$grain, pred.p[, "upr"], col = 4, lwd = 1.5)
points(mean(mhw$grain),mean(mhw$straw),pch=23,cex=2, bg="red")
abline(h=mean(mhw$straw), lty=2); abline(v=mean(mhw$grain), lty=2)
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Q48 : Why is the confidence interval so narrow and the prediction inter-
val so wide, for this relation? Jump to A48
•

Task 38 : Clean up from this subsection. •
rm(t1,t2,p.frame,pred.c,pred.p)

7.3 Structural Analysis*

In §7.2.1 we modelled one of the two variables as as a response and the
other as a predictor, and fit a line that best describes this relation. If we
reverse the relation, what happens?

Task 39 : Compare the regression of strain yield on grain yield, with
the regression of grain yield on straw yield. •
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model.grain.straw <- lm(grain ~ straw, data=mhw)
summary(model.grain.straw)

##
## Call:
## lm(formula = grain ~ straw, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.3580 -0.2011 0.0004 0.1918 1.0527
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.5231 0.1028 14.8 <2e-16 ***
## straw 0.3723 0.0156 23.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.314 on 498 degrees of freedom
## Multiple R-squared: 0.533,Adjusted R-squared: 0.532
## F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

summary(model.straw.grain)

##
## Call:
## lm(formula = straw ~ grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0223 -0.3529 0.0104 0.3734 3.0342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8663 0.2387 3.63 0.00031 ***
## grain 1.4305 0.0601 23.82 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.615 on 498 degrees of freedom
## Multiple R-squared: 0.533,Adjusted R-squared: 0.532
## F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

Q49 : Is the amount of variability explained by the two models the same?
That is, does knowing straw yield give the same amount of information
on grain yield as the reverse? Jump to A49 •

Intuitively it might seem that the slope of grain vs. straw would be the
inverse of the slope of straw vs. grain. Is this the case?

Task 40 : Compute the slope of straw vs. grain as the inverse of the
modelled slope of grain vs. straw, and compare with the modelled slope
of straw vs. grain. •
coefficients(model.straw.grain)["grain"]

## grain
## 1.4305

1/coefficients(model.grain.straw)["straw"]

## straw
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## 2.686

We can visualise these on the scatterplot of straw vs. grain. The regres-
sion line of straw on grain can be directly plotted with abline on the
model object; the reverse regression must be inverted from coefficients
extracted from its model object. The slope is just the inverse; the inter-
cept is the straw yield corresponding to zero grain yield:

grain = b0 + b1 · straw

0 = grain

⇓
0 = b0 + b1 · straw

⇓
straw = −b0/b1

plot(straw ~ grain, pch=1, data=mhw,
main="Mercer-Hall wheat yields",
xlab="grain (lb. plot-1)", ylab="straw (lb. plot-1)")

title(sub="straw vs. grain: solid; grain vs. straw: dashed")
abline(model.straw.grain)
beta <- coefficients(model.grain.straw)
abline(-beta["(Intercept)"]/beta["straw"],

1/beta["straw"], lty=2)
grid()
rm(beta)
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straw vs. grain: solid; grain vs. straw: dashed

Q50 : Do these two models give the same straw vs. grain relation? Why
not? Jump to A50 •

From the above example we see that the regression of two variables on
each other depends on which variables is considered the predictor and
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which the predictand. If we are predicting, this makes sense: we get
the best possible prediction. But sometimes we are interested not in
prediction, but in understanding a relation between two variables. In the
present example, we may ask what is the true relation between straw
and grain in this wheat variety? Here we assume that this relation has
a common cause, i.e. plant growth processes affect the grain and straw
in some systematic way, so that there is a consistent relation between
them. This so-called structural analysis is explained in detail by Sprent
[44] and more briefly by Webster [49] and Davis [8, pp. 218–219].

In structural analysis we are trying to establish the best estimate for a
structural or law-like relation, i.e. where we hypothesise that y = α+βx,
where both x and y are mathematical variables. This is appropriate
when there is no need to predict, but rather to understand. This depends
on the prior assumption of a true linear relation, of which we have a
noisy sample.

X = x + ξ (7.9)

Y = y + η (7.10)

That is, we want to observe X and Y , but instead we observe x with
random error ξ and y with random error η. These errors have (unknown)
variances σ2

ξ and σ2
η , respectively; the ratio of these is crucial to the

analysis, and is symbolised as λ:

λ = σ2
η/σ

2
ξ (7.11)

Then the maximum-likelihood estimator of the slope β̂Y .X , taking Y as
the predictand for convention, is:

β̂Y .X = 1
2sXY

{
(s2
Y − λs2

X)+
√
(s2
Y − λs2

X)2 + 4λs2
XY

}
(7.12)

Equation 7.12 is only valid if we can assume that the errors in the two
variables are uncorrelated. In the present example, it means that a
large random deviation for a particular sample of the observed straw
yield from its “true” value does not imply anything about the random
deviation of the observed grain yield from its “true” value.

The problem is that we don’t have any way of knowing the true error
variance ratio λ (Equation 7.11), just as we have no way of knowing the
true population variances, covariance, or parameters of the structural
relation. We estimate the population variances σ2

X , σ2
Y and covariance

σXY from the sample variances s2
x , s2

y and covariance sxy , but there is
nothing we’ve measured from which we can estimate the error variances
or their ratio. However, there are several plausible methods to estimate
the ratio:

• If we can assume that the two error variances are equal, λ = 1. This
may be a reasonable assumption if the variables measure the same
property (e.g. both measure clay content in different soil layers),
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use the same method for sampling and analysis, and there is an
a priori reason to expect them to have similar variability (hetero-
geneity among samples). However in this case there is no reason to
expect equal variances.

• The two error variances may be estimated by the ratio of the sam-
ple variances: λ ≈ s2

y/s2
z . That is, we assume that the ratio of

variability in the measured variable is also the ratio of variability
in their errors. For example, if the set of straw yields in a sample
is twice as variable as the set of grain yields in the same sample,
we would infer that the error variance of straw yields is also twice
as much that for grain yields, so that λ = 2. But, these are two
completely different concepts! One is a sample variance and the
other the variance of the error in some random process. However,
this ratio at least normalizes for different units of measure and for
different process intensities. Using this value of λ computes the
Reduced Major Axis (RMA), which is popular in biometrics.

• The variance ratio may be known from previous studies.

Task 41 : Compute the variance ratio of straw and grain yields. •
var(mhw$straw)/var(mhw$grain)

## [1] 3.8423

Q51 : Is straw or grain yield more variable across the 500 plots? What
is the ratio? Jump to A51 •

7.3.1 A user-defined function

R allows the programmer to write functions to perform tasks that are
not provided by base R or any packages.

A user-defined function in the S language has:

1. a name, like any R object; this is written at the left of the <- assign-
ment operator;

2. the command function;

3. a list of named arguments immediately following the function name,
written within matched parentheses ( ); if there are more than one
argument, these are separated by commas (,);

4. the function body between matched braces { and }; this is R code
which can refer to the named arguments and any other object de-
fined in the workspace at the time the function is called;

5. an optional return command, whose argument is evaluated and
returned as the value of the function; if no return command is
given the value at the end of the function is returned.
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Task 42 : Write an R function to compute β̂Y .X , given the two structural
variables in the order predictand, predictor and the ratio of the error
variances λ. •
The function command creates a function, and we know for this com-
putation it must have three arguments: the two structural variables and
the ratio of the error variances. We can name the arguments as we
wish. Here we choose y and x for the variables, and lambda for the
ratio, and refer to these names in the body of the function. We also have
to choose a name for the function object; here we choose a meaningful
name, struct.beta.
struct.beta <- function(y, x, lambda) {
a <- var(y)-lambda*var(x);
c <- var(x,y);
return((a + sqrt(a^2 + 4 * lambda * c^2))/(2*c))

}

This function is now defined in the workspace and available to be called
with the required three arguments.

Task 43 : Apply this function to the straw vs. grain yields:

1. with λ = 1; this is the orthogonal estimate;

2. with λ as the variance ratio of straw and grain yields (assuming the
error variance ratio equals the variables’ variance ratio); this is the
proportional estimate.

Compare with the slopes of the forward and reverse regressions. •
print(paste("Forward:",

round(coefficients(model.straw.grain)["grain"],4)))

## [1] "Forward: 1.4305"

print(paste("Proportional:",
round(struct.beta(mhw$straw,

mhw$grain,var(mhw$straw)/var(mhw$grain)),4)))

## [1] "Proportional: 1.9602"

print(paste("Inverse proportional:",
round(1/struct.beta(mhw$grain,mhw$straw,

var(mhw$grain)/var(mhw$straw)),4)))

## [1] "Inverse proportional: 1.9602"

print(paste("Orthogonal:",
round(struct.beta(mhw$straw,mhw$grain,1),4)))

## [1] "Orthogonal: 2.4031"

print(paste("Inverse orthogonal:",
round(1/struct.beta(mhw$grain,mhw$straw,1),4)))

## [1] "Inverse orthogonal: 2.4031"

print(paste("Reverse:",
round(1/coefficients(model.grain.straw)["straw"],4)))

## [1] "Reverse: 2.686"
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Note that all the estimates made with the struct.beta function are nu-
merically between the slopes of the forward and inverse regressions,
which can be considered the extremes (where all error is attributed to
one or the other variable).

Task 44 : Plot the forward, reverse, orthogonal and proportional re-
gression lines on one scatterplot of straw vs. grain yield. •
For the models fit with lm we can extract the coefficients; for the struc-
tural models we compute the slopes with our user-written function and
then their intercepts with the relation:

β̂0 = µ̂y − β̂y.xµ̂x (7.13)

plot(straw ~ grain, main="Mercer-Hall wheat yields",
sub="Regression slopes", xlab="grain (lb. plot-1)",
ylab="straw (lb. plot-1)", data=mhw)

abline(model.straw.grain, col="blue")
beta <- coefficients(model.grain.straw)
abline(-beta["(Intercept)"]/beta["straw"] , 1/beta["straw"],

lty=2, col="green")
beta <- struct.beta(mhw$straw, mhw$grain, 1)
abline(mean(mhw$straw)-beta*mean(mhw$grain), beta, lty=3, col="red")
beta <- struct.beta(mhw$straw, mhw$grain,var(mhw$straw)/var(mhw$grain))
abline(mean(mhw$straw)-beta*mean(mhw$grain), beta, lty=4, col="brown")
lines(c(4,4.5),c(5,5), lty=1, col="blue")
lines(c(4,4.5),c(4.4,4.4), lty=4, col="brown")
lines(c(4,4.5),c(4.6,4.6), lty=3, col="red")
lines(c(4,4.5),c(4.8,4.8), lty=2, col="green")
grid()
text(4.5,5,paste("Forward:",

round(coefficients(model.straw.grain)["grain"],4)),
col="blue", pos=4)

text(4.5,4.4,paste("Proportional:",
round(struct.beta(mhw$straw,mhw$grain,var(mhw$straw)/var(mhw$grain)),4)),

col="brown", pos=4)
text(4.5,4.6, paste("Orthogonal:",

round(struct.beta(mhw$straw,mhw$grain,1),4)),
col="red", pos=4)

text(4.5,4.8,paste("Reverse:",
round(1/coefficients(model.grain.straw)["straw"],4)),

col="green", pos=4)
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Forward: 1.4305

Proportional: 1.9602
Orthogonal: 2.4031
Reverse: 2.686

Q52 : What do you conclude is the best numerical expression of the
structural relation between straw and grain yields in this variety of wheat,
grown in this field? Jump to A52 •

Challenge: Modify function struct.beta to return both the intercept
and slope of the structural line12, and use this to simplify the display of
lines on the scatterplot.

7.4 No-intercept model*

In the simple linear regression of §7.2 the model is:

yi = β0 + β1xi + εi (7.14)

This has two parameters: the slope β1 and the intercept (value of the
predictand when the predictor is 0) β0. It is also possible to fit the model
without an intercept, i.e., the linear relation is forced through the origin
(0,0). The equation becomes:

yi = βxi + εi (7.15)

There is then only a slope to be estimated, since the intercept is fixed at
0. These are termed no-intercept models.

Q53 : Why might this have some logic in the case of predicting straw
yield from grain yield? Jump to A53 •

There are some mathematical implications of a no-intercept model.

12 Hint: use the c “make a list” function
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• The mean residual is (in general) not zero;

• The residual sum-of-squares is (in general) larger than for a model
with intercept;

• The usual formula for goodness-of-fit is not appropriate (§7.4.2).

Even if we know from nature that the relation must include (0,0), this
takes away a degree of freedom from the fit, and gives a poorer fit in the
range of observed responses, if this does not include y = 0.

A no-intercept model may be appropriate when:

1. There are physical reasons why the relation must include (0,0);
e.g., no straw → no grain is possible (but not vice-versa!);

2. If a negative prediction should be avoided; e.g., it is impossible to
have negative straw or grain in a plot13;

3. If the range of the observations covers or approaches (0,0); oth-
erwise we are assuming a linear form from the origin to the range
of our data, when it may have some other form, e.g., exponential,
power . . . ; there is no evidence for choosing a linear form near the
origin;

4. If, after fitting a with-intercept model, the null hypothesis H0 : β0 =
0 in a linear regression with intercept can not be disproven (t-test
of the coefficient), and we want to simplify the relation, we may
then choose to re-fit with a no-intercept model.

7.4.1 Fitting a no-intercept model

In a no-intercept model, the slope β̂Y .x can not be estimated from the
sample covariance sXY and variance of the predictand s2

x , because the
(co)variances are relative to means, which we can not compute; this is
because the fixed intercept removes this degree of freedom.

Instead, the slope is computed by minimizes the RSS, again by orthog-
onal projection: b = [x′x]−1[x′y], where the design matrix x here does
not have an initial column of 1’s, just a column of xi. In the univariate
case this reduces to

∑
xiyi/

∑
x2
i .

Task 45 : Fit a no-intercept model of straw yield predicted by grain
yield and summarize it. •
In the R model formulas, absence of the intercept is symbolized by the
term -1 in the formula supplied to the lm function:
model.straw.grain.0 <- lm(straw ~ grain - 1, data=mhw)
summary(model.straw.grain.0)

##
## Call:

13 But this can also be avoided by setting any negative predictions to zero.
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## lm(formula = straw ~ grain - 1, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1496 -0.3660 0.0292 0.3657 3.1515
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## grain 1.647 0.007 235 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.622 on 499 degrees of freedom
## Multiple R-squared: 0.991,Adjusted R-squared: 0.991
## F-statistic: 5.54e+04 on 1 and 499 DF, p-value: <2e-16

Q54 : What is the slope of the relation? Does this differ from the β1

coefficient of the with-intercept model? Why? Jump to A54 •

Task 46 : Display a scatterplot of the straw vs. grain yields, with the
with- and no-intercept lines superimposed. Show the origin (0,0). Also
show the centroid of the points. •
We take this opportunity to introduce an efficient way to refer to field
names within a data frame, without having to name the frame each time aThe

with
function

field is named. So, instead of writing mhw$grain anywhere in an expres-
sion, we can just write grain. This is the with function, that evaluates
its second argument (an R expression) while exposing any names within
the object named as its first argument. Here writing with(mhw, ...
exposes the field names such as grain to be used in the expression.

As a simple example, the following are equivalent:
mean(mhw$grain)

## [1] 3.9486

with(mhw, mean(grain))

## [1] 3.9486

We use this here to simplify the arguments to the following plot com-
mand:
with(mhw,

plot(straw ~ grain, main="Mercer-Hall wheat yields",
xlab="grain (lb. plot-1)", ylab="straw (lb. plot-1)",
xlim=c(0,ceiling(max(grain))),
ylim=c(0, ceiling(max(straw))), cex=0.8))

abline(model.straw.grain, col="blue")
abline(model.straw.grain.0, col="red")
grid()
text(4.5,4, paste(" With:",

round(coefficients(model.straw.grain)["grain"],2)),
col="blue", pos=4)

text(4.5,3.4,paste("Without:",
round(coefficients(model.straw.grain.0)["grain"],2)),

col="red", pos=4)
abline(v=mean(mhw$grain), col="darkgray", lty=2)
abline(h=mean(mhw$straw), col="darkgray", lty=2)
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points(mean(mhw$grain), mean(mhw$straw), cex=2, pch=23, bg="red")
abline(h=coefficients(model.straw.grain)["(Intercept)"],

col="darkgray", lty=2)
text(1,1,paste("Intercept:",

round(coefficients(model.straw.grain)["(Intercept)"],2)),
col="blue", pos=4)
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    With: 1.43

Without: 1.65

Intercept: 0.87

Task 47 : Confirm that the mean residual of the no-intercept model is
not zero, whereas that for the with-intercept model is. •
mean(residuals(model.straw.grain.0))

## [1] 0.011491

mean(residuals(model.straw.grain))

## [1] 2.8644e-16

Q55 : Is the no-intercept model appropriate in this case? Jump to A55
•

7.4.2 Goodness-of-fit of the no-intercept model

The coefficient of determination R2 for no-intercept model is in general
not a good measure of fit, and is usually massively inflated, for the fol-
lowing reason.

Since there is no intercept in the design matrix, the total sum of squares
(TSS) must be computed relative to zero: TSS = ∑n

i=1(yi − 0)2, rather
than relative to the sample mean ȳ : TSS =∑ni=1(yi−ȳ)2. We still define

64



R2 as:

R2 = 1− RSS
TSS

But since the TSS is computed relative to zero, it tends to be quite high
(no compensation for the sample mean), so even though the residual
sum of squares (RSS) is larger than if an intercept is included, the R2

tends to be very high.

Task 48 : Compute the coefficient of determination R2 and the root
mean squared error for the no- and with-intercept models. •
First, we compute R2 directly from the definitions:
(TSS <- sum((mhw$straw-mean(mhw$straw))^2))

## [1] 402.67

(TSS0 <- sum(mhw$straw^2))

## [1] 21624

(RSS <- sum(residuals(model.straw.grain)^2))

## [1] 188.22

(RSS0 <- sum(residuals(model.straw.grain.0)^2))

## [1] 193.19

(R2 <- 1 - (RSS/TSS))

## [1] 0.53258

(R20 <- 1 - (RSS0/TSS0))

## [1] 0.99107

rm(TSS, TSS0, RSS, RSS0, R2, R20)

Notice how the total sums of squares is much higher for the no-intercept
model, because it is relative to 0 rather than the sample mean. The
residual sum of squares is a bit higher, because the fit through the points
is not so close when an intercept is not allowed; however, in this case
(and in general) the RSS is only a bit higher.

Second, we show the R2 computed with the model; that this is adjusted
for the number of model parameters and sample size.
summary(model.straw.grain.0)$adj.r.squared

## [1] 0.99105

summary(model.straw.grain)$adj.r.squared

## [1] 0.53164

Q56 : (1) What is the relation between the adjusted and raw R2 for both
models? Compare the amount of adjustment; are they the same? Why
not?
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(2) What happens to the R2 in this case when the intercept is removed
from the model? Is this a realistic view of the success of the model?

Jump to A56 •

We also compute the root mean squared error (RMSE), i.e., lack of fit,
from the RSS and the number of observations, for both models.
sqrt(sum(residuals(model.straw.grain)^2)/(length(mhw$straw)))

## [1] 0.61354

sqrt(sum(residuals(model.straw.grain.0)^2)/(length(mhw$straw)))

## [1] 0.6216

Q57 : What happens to the RMSE when the model is forced through
(0,0)? Why? Jump to A57 •

7.5 Answers

A32 : Linear. Return to Q32 •

A33 : The diagonals are the variances of the two variables, both in (lb. plot-1)
squared; the off-diagonals are the covariances between the two variables, in
this case also in (lb. -1) squared, because the two variables have the same units
of measure. Return to Q33 •

A34 : The summary statistics are quite similar, for both variables; the simula-
tion reproduces the statistics of the actual data. Return to Q34
•

A35 : The relations look quite similar; this supports the hypothesis. However,
the bivariate simulation seems to have a slightly steeper slope than the actual
data. Return to Q35 •

A36 : The most probable value is 0.73 lb. plot-1; the lower and upper confi-
dence limits are 0.686 and 0.768 lb. plot-1, respectively.

Assessment of the strength is subjective and depends on the application field;
the author would call this a moderate positive correlation. Return to Q36 •

A37 : No; both are caused by the same underlying process (plant growth
in response to the environment), and neither is more under control of the
experimenter. However, see the next question. Return to Q37 •

A38 : It can be used to understand plant physiology: is grain yield a direct
result of straw yield, or at least do large plants (lots of straw) tend to have high
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yield (lots of grain)? Practically, we could use this relation to predict straw yield
on other plots where only grain was weighed; it is much easier to collect and
weigh grain than straw. Return to Q38 •

A39 : straw = 0.866+ 1.43 · grain Return to Q39 •

A40 : 0.866 lb.; maybe wheat this small would indeed have no grain, because
the plants would be too weak to form grain. Return to Q40 •

A41 : 1.43 lb. of straw increase for each lb. of grain increase. Return to Q41
•

A42 : 53.2% (the value of the adjusted R2). Return to Q42 •

A43 : It’s clear that the highest residuals are too low and vice-versa; the
histogram is somewhat peaked. The median residual is slightly biased (−0.01).
The range is quite high, from −2 to +3 lb. plot-1. Return to Q43 •

A44 : The p-value (probability that rejecting the null hypothesis would be an
error) is almost zero, so we should reject the null hypothesis: these residuals
are not normally-distributed. This is due to the deviations at both tails. Return
to Q44 •

A45 : Plots 15, 337, 311 and 295 have very low grain/straw ratios, so the
linear relation predicts too much grain; for plots 35 and 184 it’s the reverse.

Return to Q45 •

A46 : Observations 292, 184, 15, and especially 337. Plots 337 and 292 also
have high leverage. In the previous answer we saw that plots 15 and 337 have
very low grain/straw ratios, so the linear relation predicts too much grain; for
plot 184 it’s the reverse. Plot 292 has high leverage and fairly high Cook’s
distance, but its standardised residual is not so high (< 2). Return to Q46 •

A47 : The prediction intervals are much wider at all values of the predictand.
Intervals further away from the centroid are increasingly wide. Return to Q47
•

A48 : The confidence interval is narrow because the average linear relation
is very consistent across its range (although, see §17 for some exceptions at
the extreme values), so the estimate of the best-fit line is quite good. The
prediction interval is wide because there is poor correlation in the sample set,
i.e., a wide spread in straw yields for any observed grain yield. So this same
uncertainty must appear in the prediction. Return to Q48 •
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A49 : The models explain the same proportion of the total variability, 0.532.
Return to Q49 •

A50 : The slopes are very different. The forward model gives a slope of 1.43 of
straw vs. grain, whereas the inverse model gives a slope of 2.686. The reason
is that the two regressions minimise different error sums-of-squares: in the
forward model, residual straw yield, in the inverse model, residual grain yield.
Each is the best predictive relation for its target variable. Return to Q50 •

A51 : The variance ratio is 3.842, that is, straw yields are almost four times as
variable as grain yields. This is partly explained by the higher absolute values
of all the yields: the medians are 6.36 for straw vs. 3.94 for grain. Return to
Q51 •

A52 : The best estimate of the error variance ratio is the variable variance
ratio, so the structural relation is 1.96 lb. straw for each lb. grain; or equiva-
lently 0.51 lb. grain for each lb. straw. This is the best estimate of the plant
morphology. Return to Q52 •

A53 : Physically, if there is no grain, there is no straw. Thus the point (0,0)
is by definition part of the straw vs. grain response relation. Return to Q53 •

A54 : The slope is 1.65, considerably steeper than the slope of the with-
intercept model, 1.43. This compensates for the intercept (here, forced to 0)
being smaller than the fitted intercept of the full model, 0.87, which allows the
line to have a shallower slope while passing through the centroid. Return to
Q54 •

A55 : No, for three reasons. (1) The intercept from the full model is highly
unlikely to be zero, so the no-intercept model is not appropriate; (2) the range
of the observations is far from (0,0) so there is no reason to guard from neg-
ative predictions; (3) we have no evidence for the model form near the origin;
the closest points are around (2.8,4). Return to Q55 •

A56 : (1) For both models the adjusted R2 is lower than the raw R2, because
of the adjustment for the number of parameters used in the model. The dif-
ference for the no-intercept model is less, because only one, rather than two,
parameters are used in the model.

(2) The adjusted R2 increases from 0.53 to 0.99, i.e., almost 1. This is an
artefact of the calculation and does not reflect the success of the no-intercept
model. Return to Q56 •

A57 : The RMSE increases from 0.614 (with-intercept) to 0.622 (no-intercept)
lb. acre-1; this shows that the no-intercept line does not come as close, on
average, to the points in the scatterplot. This is because the slope is not free
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to float at both ends (find the optimum intercept); instead it is forced through
(0,0) as one point, and the other point is then the centroid of the point cloud
in the scatterplot. Return to Q57 •

8 Bivariate modelling: continuous response, classified predictor

A continuous variable can also be modelled based on some classified
(discrete) predictor. In the present example we will consider the field
half (North & South) to be such a predictor.

It has been suggested [46] that the North and South halves of the field
had been treated differently prior to Mercer & Hall’s experiment. To test
this suggestion, we first have to code each plot according to its location
in the field (N or S half); this is a logical variable (True or False, written
in S as TRUE or FALSE, abbreviated T and F). Then we use this variable
to split the field statistically and compare the yields for each half. Each
plot is thus in one or the other class, in this case field half.

Task 49 : Add a logical field to the data frame to codes whether each
plot falls in the north half or not. •
We first use a logical expression that evaluates to either T or F to create
a logical variable, here named in.north, as a field in the data frame.
This field codes whether teach plot falls in the north half or not.

Recall from the description of the dataset in Appendix A that the rows
ran W to E, with 25 plots in each row, beginning at 1 on the W and
running to 25 at the E, and the columns run N to S with 20 plots in each,
beginning at 1 on the N and running to to 20 at the S. So the N half of
the field consists of the plots with row numbers from 1 to 10, inclusive.
mhw <- cbind(mhw, in.north = (mhw$r < 11))
str(mhw)

## 'data.frame': 500 obs. of 6 variables:
## $ r : int 1 2 3 4 5 6 7 8 9 10 ...
## $ c : int 1 1 1 1 1 1 1 1 1 1 ...
## $ grain : num 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...
## $ straw : num 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...
## $ gsr : num 0.57 0.652 0.64 0.564 0.612 ...
## $ in.north: logi TRUE TRUE TRUE TRUE TRUE TRUE ...

summary(mhw$in.north)

## Mode FALSE TRUE
## logical 250 250

Task 50 : Display a post-plot of grain yields with the plots in the North
half coloured blue, those in the South coloured grey14. •

# plot halves in appropriate colours
with(mhw,

plot(c, r, col=ifelse(in.north,"blue","darkslategrey"),
cex=1.3*straw/max(straw), pch=1,

14 An obvious historical reference.
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xlab="Column", ylab="Row", ylim=c(20,1),
sub="North: blue; South: gray"))

title(main="Postplot of straw yields, coded by field half")
abline(h=10.5, lty=2)

5 10 15 20 25

20
15

10
5

North: blue; South: gray
Column

R
ow

Postplot of straw yields, coded by field half

Note: The ylim graphics argument specifies that the labels of the y-
axis run from 20 (lower left corner) to 1 (upper left corner); by default
scatterplots drawn by the plot function assume the lowest-numbered
row is the lower left. This is the usual case for scatterplots, but here we
know the lowest-numbered row is at the N side.

8.1 Exploratory data analysis

We first compare the two halves with exploratory graphics; a suitable
graph is the boxplot, created with the boxplot function.

Task 51 : Compare the two field halves with box plots. •
To compare these on one graph, we split the graphics frame by specify-
ing the number of rows and columns with the mfrow argument to the par
(“graphics parameters”) command. These plots look better if they are
displayed horizontally, using the optional horizontal argument with
the value TRUE. The optional names argument labels the plots; these are
S and N to represent the internal values FALSE and TRUE of the in.north
classifier.
par(mfrow=c(3,1))
boxplot(grain ~ in.north, names=c("S", "N"),

main="Grain yield", horizontal=T, data=mhw)
boxplot(straw ~ in.north, names=c("S", "N"),

main="Straw yield", horizontal=T, data=mhw)
boxplot(gsr ~ in.north, names=c("S", "N"),

main="Grain/straw ratio", horizontal=T, data=mhw)
par(mfrow=c(1,1))
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Q58 : Do the two halves appear to have different ranges? medians?
spreads? Comment for all three variables. Jump to A58 •

We then compare the two halves numerically:

Task 52 : Compare the summary statistics of the two halves for all the
variables. Also compare their variances. •
Any function can be applied to subsets of a data frame with the by func-
tion. The first argument is the argument to the function, the second is
the subset classifier, and the third the function to be applied:
with(mhw, by(grain, in.north, summary))

## in.north: FALSE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.59 3.91 3.93 4.29 5.16
## ----------------------------------------------------
## in.north: TRUE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.78 3.66 3.97 3.96 4.27 5.13

with(mhw, by(straw, in.north, summary))

## in.north: FALSE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.66 6.11 6.75 6.75 7.32 8.85
## ----------------------------------------------------
## in.north: TRUE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.10 5.73 6.14 6.28 6.86 8.64

with(mhw, by(gsr, in.north, summary))

## in.north: FALSE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
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## 0.391 0.558 0.585 0.586 0.609 0.850
## ----------------------------------------------------
## in.north: TRUE
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.482 0.596 0.635 0.636 0.669 0.848

with(mhw, by(grain, in.north, var))

## in.north: FALSE
## [1] 0.22162
## ----------------------------------------------------
## in.north: TRUE
## [1] 0.19876

with(mhw, by(straw, in.north, var))

## in.north: FALSE
## [1] 0.74777
## ----------------------------------------------------
## in.north: TRUE
## [1] 0.75985

with(mhw, by(gsr, in.north, var))

## in.north: FALSE
## [1] 0.0026123
## ----------------------------------------------------
## in.north: TRUE
## [1] 0.0030585

Q59 : Do the two halves have different summary statistics? Is one half
more variable than the other? Jump to A59 •

From the boxplots, it appears that the straw yield is, on average, higher
in the S half; can we confirm this with a statistical test?

Task 53 : Test whether the straw yield is higher in the N half. •
There are two approaches that give the same answer for a binomial clas-
sified predictor: a two-sample t-test, and a one-way ANOVA.

8.2 Two-sample t-test

The simplest way to do this is with a two-sample unpaired t test of the
difference between means, with the default null hypothesis that they are
identical. This only works when the classified variable is binary.

# compare the means with a t-test
with(mhw, t.test(straw[in.north], straw[!in.north]))

##
## Welch Two Sample t-test
##
## data: straw[in.north] and straw[!in.north]
## t = -6.02, df = 498, p-value = 3.5e-09
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
## -0.61969 -0.31455
## sample estimates:
## mean of x mean of y
## 6.2812 6.7484
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Q60 : Is there a significant difference in the means? What is the prob-
ability that this apparent difference is only by chance (i.e. a Type I error
would be committed if we reject the null hypothesis)? What is the 95%
confidence interval of the difference? Jump to A60 •

8.3 One-way ANOVA

Another way to analyse this is with a one-way Analysis of Variance
(ANOVA). This can also deal with multivalued classified predictors, al-
though in this case we only have a binary predictor.

Task 54 : Compute a one-way ANOVA for straw yield between field
halves. •
This illustrates another use of the lm function, i.e. modelling a continu-
ous response variable from a categorical (here, binary) predictor:
model.straw.ns <- lm(straw ~ in.north, data=mhw)
summary(model.straw.ns)

##
## Call:
## lm(formula = straw ~ in.north, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.181 -0.608 -0.108 0.572 2.359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7484 0.0549 122.90 < 2e-16 ***
## in.northTRUE -0.4671 0.0777 -6.02 3.5e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.868 on 498 degrees of freedom
## Multiple R-squared: 0.0677,Adjusted R-squared: 0.0659
## F-statistic: 36.2 on 1 and 498 DF, p-value: 3.48e-09

Q61 : How much of the total variability in straw yield is explained by
field half? Jump to A61 •

We can also see the results with a traditional ANOVA table:
anova(model.straw.ns)

## Analysis of Variance Table
##
## Response: straw
## Df Sum Sq Mean Sq F value Pr(>F)
## in.north 1 27 27.28 36.2 3.5e-09 ***
## Residuals 498 375 0.75
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

And of course we must check the regression diagnostics:
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qqnorm(residuals(model.straw.ns),
main="Residuals from one-way ANOVA",
sub="Straw yield vs. field half")

qqline(residuals(model.straw.ns))
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Q62 : Are the model residuals normally-distributed? What does this
imply about the process in the field? Jump to A62 •

We will compare this model to more complex ones in §11, below.

Challenge: Repeat the analysis of this section, but splitting the field into
E-W halves, rather than N-S halves.15 Do you reach similar conclusions
about the differences between the field halves?

8.4 Answers

A58 : Grain yields appear to be almost identically distributed, although the
S half is slightly more variable. Straw yields appear slightly higher in the S.
The grain/straw ratio appears higher in the N. Variability between field halves
seems similar for grain and straw, but the grain/straw ratio in the S half ap-
pears to have more total spread and boxplot outliers. Return to Q58
•

A59 : Grain: Almost identical summary statistics; Straw: The S is some-
what higher in all summary statistics, but the variability is almost the same;
Grain/straw ratio: the N is higher in all summary statistics except the maxi-
mum, which is almost the same; the N is also somewhat more variable. Return

15 Make sure to pick an appropriate colour scheme for the classified postplot.
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to Q59 •

A60 : Yes, very highly significant; the N has a higher ratio than the S. the
probability of a Type I error is almost 0. The 95% confidence interval is -0.62,
-0.315, i.e. there is only a 2.5% chance that the difference in yields is not at
least 0.315. Return to Q60 •

A61 : In the summary, the Adjusted R^2 gives this proportion; here it is
0.066, a very low proportion. This shows that a model can be highly significant
– the difference between class means is almost surely not zero – but numeri-
cally not important. Return to Q61
•

A62 : For the most part yes, but the tails (highest and lowest ratios) are not
well-modelled: the absolute residuals are too high at both tails, especially the
lower tail. This suggests that the extreme values are caused by some process
that is beyond what is causing most of the “random” variability. This is some-
times called a “contaminated” process. Return to Q62
•

9 Bootstrapping*

Most of the estimates of population statistics based on sample esti-
mates, as computed in the previous sections, rely on assumptions that
are difficult to verify.

For example, we saw in §7.1.1 that the parametric correlation coefficient
is only justified for the case of a bivariate normal distribution. Although
in this case the simulation based on the sample variance-covariance ma-
trix seemed to support this assumption, we did notice several observa-
tions well outside the “envelope” expected if the distribution of the two
variables is in fact bivariate normal. Also in the univariate modelling of
§6 we could see that the distribution of grain yield was not completely
normal: the highest yields are not as high, and the lowest not as low, as
expected if the yields were normally distributed.

Further, any confidence intervals for both parametric and non-parametric
statistics rely on a major assumption: that the sample estimate ap-
proaches the true population value asymptotically; that is, as the sam-
ple gets larger, the estimate gets more precise in a smooth manner. All
the classical confidence intervals depend on this assumption, which by
its nature can not be proven. Further, the smaller the sample (typical of
many studies), the less the asymptotic assumption is justified.

Another approach has been made possible by the advent of fast com-
puters. This is bootstrapping, first proposed by Efron in the late 1970’s
[13]. Suppose we could repeat whatever experiment gave rise to the one
dataset we have – in this case, it would be another uniformity trial with
the same design as Mercer and Hall’s original trial and under the same
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conditions (wheat variety, weather, soil, cultural practices . . . ). If we re-
peated the trial a large number of times, we’d have a direct estimate of
the confidence interval: “Out of 1 024 trials, 95% of the correlation coef-
ficients between grain and straw were above 0.67.” This is another way
of saying that we have 95% confidence that any future trial would show
a correlation that high or higher.

But of course, we can’t repeat most trials many times – either it is too ex-
pensive, would take too long, or is logistically impractical – in the present
example we couldn’t reproduce the same weather as in summer 1910 and
even in the same field the soil properties could have changed due to the
previous trial.

Efron’s idea was to simulate many trials by resampling the existing trial.
This is a subtle idea which at first seems like a trick. But, recall that the
actual sample in hand is in fact the best non-parametric information
about the true distribution in a larger population. In the present case we
have 500 valid observations of grain and straw yield.

As a simple example, suppose we want to know the worst-case grain
yield of a small plot (as in the experiment), say the yield with only 1%
chance that a given yield would be smaller. With our current sample we
can simply take the 1% quantile, symbolised as q0.01; in this case with
500 observations, this is the mean of the 5th and 6th-smallest values:
quantile(mhw$grain, p=0.01, type=5)

## 1%
## 2.945

mean(sort(mhw$grain)[5:6])

## [1] 2.945

Note: The type=5 specifies a piecewise linear function through the val-
ues; the default type=7 uses a slightly different computation; see Hynd-
man and Fan [23] for an extensive discussion of different ways to compute
quantiles of a continuous distribution from an empirical distribution.

But of course this is based on a single experiment with 500 observations.
What if we could repeat this experiment many times?

Efron proposed a non-parametric bootstrap which uses the sample in
hand as the population, and simulates a new sample from this “pop-
ulation” by picking a number of observations with equal probability,
with replacement. That is, a given observation can be picked multiple
times16. Then this simulated sample is used to estimate the statistic of
interest. We can do this 100’s or 1000’s of times and then summarise
the statistic.

Bootstrapping is nicely introduced, without formulas, by Shalizi [42] and
explained in more detail in the texts of Efron [12] and Davison and Hink-
ley [9]. The boot R package provides functions related to bootstrapping.

16 otherwise we’d just get the original sample
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The basic function of the boot package is also named boot. The de-
fault is for a non-parametric bootstrap, specified with the optional sim
argument as sim="ordinary" (the default).

Setting up the bootstrap can be quite complicated. The user must write a
function that computes the statistic of interest for each bootstrap repli-
cate. This function has a different form depending on the boot optional
arguments; in this simplest case it has two arguments:

1. the data, typically a data frame;

2. a list of the indices of the rows (observations) selected for the boot-
strap. These may be repeated; the bootstrap samples with replace-
ment.

9.1 Example: 1% quantile of grain yield

We begin with a simple example: the 1% quantile (i.e., estimate of the
lowest grain yield, with 99% being greater). We estimated this from the
single sample as:
quantile(mhw$grain, p=0.01, type=5)

## 1%
## 2.945

The bootstrapped estimate will compute this many times, each with a
different simulated sample.

Task 55 : Write a function to return the statistic “1% quantile”. •
We already wrote a user-defined function in §7.3.1. Again, we use the
function command to create a function in the workspace. In this case it
must have two arguments: the data frame and the selected indices. We
choose meaningful names data and indices, and refer to these names
in the body of the function. We choose a meaningful name for the func-
tion object: boot.q01.
boot.q01 <- function(data, indices){

obs <- data[indices,]
return(quantile(obs$grain, p=0.01, type=5))

}

In the function body, the line obs <- data[indices,] makes a data
frame with rows corresponding to the bootstrap sample, with the same
structure as the original frame. So then the function call to quantile
refers to field grain in the resampled dataframe, which has the same
structure as the original frame mhw but a different set of 500 observa-
tions from the resampling.

A function typically ends with the return command, which specifies the
value to return to the caller; here it’s the statistic of interest, computed
on the replicate.
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Task 56 : Estimate the population statistic “1% quantile” with a non-
parametric bootstrap. •
We call boot with three arguments: the data, the function to compute
the statistic on the replicate (i.e., the function we just wrote), and the
number of replicates (argument R). Before calling boot, we must first
load the optional boot package, by using the require function.
require(boot)

## Loading required package: boot

##
## Attaching package: ’boot’

## The following object is masked from ’package:lattice’:
##
## melanoma

b.q01 <- boot(mhw, boot.q01, R=1024)
print(b.q01)

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = mhw, statistic = boot.q01, R = 1024)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 2.945 -0.0031592 0.072224

The output of boot shows:

original : the statistic (here,the 1% quantile) applied to the original dataset; in
this example, this is the same as the result of the (non-bootstrapped)
R command quantile(mhw$grain, p=0.01, type=5);

bias : the average difference of the bootstrapped estimates from the orig-
inal value; this should be zero;

standard error : of the replicated statistic; the lower this is, the more consistent is
the estimate.

Note that each time that boot is called, a random set of replicates is
generated, so the statistics will vary.

The bootstrapped estimates can be summarised graphically with the
plot method; this recognises the object of class boot and produces two
plots: a histogram of the estimate (with the non-bootstrapped estimate
shown as a dashed vertical line) and its normal Q-Q plot.
plot(b.q01)
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Q63 : Describe the histogram of the 1 024 bootstrapped estimates of
q0.01, also with respect to the single (non-bootstrapped) estimate. Jump
to A63 •

Q64 : Explain the “discontinuous” form of the histogram and Q-Q plot.
Jump to A64 •

Bootstrapped confidence intervals With these in hand we can compute
the confidence intervals of the statistic. This is one of the main applica-
tions of bootstrapping.

There are various ways to compute bootstrapped confidence intervals;
the two most used are the normal approximation and the basic boot-
strapped estimate; see Davison and Hinkley [9, Ch. 5] for a lengthy dis-
cussion.

Normal : Assumes that the empirical distribution of the statistic is asymp-
totic to a normal distribution, so the bias b and standard error s
computed from the empirical bootstrap estimates can be used to
compute a normal confidence interval for the population statistic
t:

t − b − s · z1−α, t + b + s · zα (9.1)

where t is the statistic of interest and α specifies the (1 − 2α) in-
terval; e.g., α = 0.025 specifies the 0.95 (95%) interval.

Basic : When there is evidence that the empirical distribution of the statis-
tic not asymptotic to normal (e.g., as revealed by the Q-Q normal
probability plot of the estimates t∗1 , t

∗
2 , . . . t∗n ), the normal approx-

imation is not justified. Instead, the value of the quantile is ex-
tracted directly from the empirical distribution of the statistic.

Task 57 : Compute bootstrap estimates of the of the 1% quantile of
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grain yield and the bootstrap estimate of the normal approximation and
basic 95% confidence intervals. •
The original estimate of any bootstrap statistic is found in the t0 field
of the object returned by boot; the bootstrap estimates are in field t. So
to get the best estimate we average the bootstrap estimates in field t:
mean(b.q01$t)

## [1] 2.9418

b.q01$t0

## 1%
## 2.945

Q65 : How does the average bootstrapped estimate of the 1% quantile
compare to the estimate from the original sample? Jump to A65 •

The boot.ci function computes confidence intervals; the conf argu-
ment gives the probability 2α and the type argument specifies the type
of computation.
(b.q01.ci <- boot.ci(b.q01, conf = 0.95, type=c("norm","basic")))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1024 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b.q01, conf = 0.95, type = c("norm", "basic"))
##
## Intervals :
## Level Normal Basic
## 95% ( 2.807, 3.090 ) ( 2.840, 3.080 )
## Calculations and Intervals on Original Scale

Q66 : What are the bootstrapped estimates of the 95% confidence inter-
val for the 1% quantile? Jump to A66
•

Q67 : State the basic interval in terms of probability. Jump to A67 •

9.2 Example: structural relation between grain and straw

In §7.3 we investigated the structural relation between grain and straw;
this should be an inherent property of the wheat variety.

Recall that the function to compute a structural relation is:
struct.beta <- function(y, x, lambda) {
a <- var(y)-lambda*var(x);
c <- var(x,y);
return((a + sqrt(a^2 + 4 * lambda * c^2))/(2*c))

}

where the variance ratio lambda partitions the error between the two

80



variables. For the reduced major axis (RMA) structural relation, the ratio
of error variances is estimated as the ratio of sample variances; then the
structural relation is estimated as a slope and intercept of:
beta <- struct.beta(straw,grain,var(straw)/var(grain))
alpha <- mean(straw)-beta*mean(grain)

Task 58 : Determine the most likely value and 95% confidence inter-
val for the slope and intercept of the structural relation, with a non-
parametric bootstrap. •
We first use the function function (!) to write a function to compute
the statistics, naming it boot.sr. Since this function calls the function
struct.beta to compute the slope of the structural relation, that func-
tion must be already defined. The newly-defined function returns a list
of two values; the boot function will then record both of these in field t
of the boot object.
boot.sr <- function (data, indices) {

obs <- data[indices,]
beta <- struct.beta(obs$straw,obs$grain,

var(obs$straw)/var(obs$grain))
alpha <- mean(obs$straw)-beta*mean(obs$grain)
return(c(beta, alpha))

}

Then the bootstrap:
b.sr <- boot(mhw, boot.sr, R=1024)
print(b.sr)

##
## ORDINARY NONPARAMETRIC BOOTSTRAP
##
##
## Call:
## boot(data = mhw, statistic = boot.sr, R = 1024)
##
##
## Bootstrap Statistics :
## original bias std. error
## t1* 1.9602 0.00033523 0.055014
## t2* -1.2252 -0.00179998 0.216566

Visualise the bootstrap; first the slope:
plot(b.sr, index=1)
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and then the intercept:
plot(b.sr, index=2)
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Note the use of the optional index argument to select each of the two
parameters in the boot object created by boot.

Q68 : Do the bootstrap estimates of the two parameters of the structural
relation appear to be normally-distributed? Jump to A68 •

Finally, from this the normal and basic confidence intervals, along with
the mean (best estimate):
mean(b.sr$t[,1])

## [1] 1.9605

(b.sr.ci <- boot.ci(b.sr, conf = 0.95, type=c("norm","basic"), index=1))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1024 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b.sr, conf = 0.95, type = c("norm", "basic"),
## index = 1)
##
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## Intervals :
## Level Normal Basic
## 95% ( 1.852, 2.068 ) ( 1.849, 2.063 )
## Calculations and Intervals on Original Scale

mean(b.sr$t[,2])

## [1] -1.227

(b.sr.ci <- boot.ci(b.sr, conf = 0.95, type=c("norm","basic"), index=2))

## BOOTSTRAP CONFIDENCE INTERVAL CALCULATIONS
## Based on 1024 bootstrap replicates
##
## CALL :
## boot.ci(boot.out = b.sr, conf = 0.95, type = c("norm", "basic"),
## index = 2)
##
## Intervals :
## Level Normal Basic
## 95% (-1.648, -0.799 ) (-1.631, -0.795 )
## Calculations and Intervals on Original Scale

Q69 : How well do the two types of confidence intervals agree? Jump
to A69 •

Challenge: Use non-parametric bootstrapping to estimate the 95% con-
fidence interval and best estimate of the correlation coefficient between
grain and straw yields for this wheat variety grown in the conditions of
Mercer & Hall’s experiment.

You should obtain the following plot of the bootstrap:
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You should obtain these results for the basic confidence interval and
best estimate of the population correlation coefficient ρ: ρ̂ = 0.7291,
ρ ∈ (0.6814,0.7843). Compare this to the parametric (Pearson’s) esti-
mate: ρ̂ = 0.7298, ρ ∈ (0.686,0.7683). What can you conclude about the
appropriateness of the parametric test and its confidence interval com-
puted on the basis of a theoretical bivariate normal distribution, in this
experiment?
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9.3 Answers

A63 : The single (non-bootstrapped) estimate is 2.945, shown by the dashed
vertical line, is close to the middle of the histogram. The histogram of the
bootstrapped estimates of q0.01 is quite irregular. At low values there is a high
frequency of some values and none of others; at high values a fairly uniform
distribution. This is because of the few low values in the sample. Return to
Q63 •

A64 : The resampling only uses the known values; there are only 500 of these
and so are not continuous. Return to Q64 •

A65 : The bootstrapped estimate is 2.942, while the one-sample estimate is
2.945. They are quite close, although the bootstrap estimate is a bit lower (i.e.,
more conservative, predicting a lower value for the 1%-lowest grain yields).

Return to Q65 •

A66 : The normal approximation is 2.807 . . . 3.09; the basic bootstrap esti-
mate is 2.84 . . . 3.08. In this case the basic estimate is a bit narrower than the
normal approximation, probably because the very low values are not as likely
as predicted by the normal distribution see the Q-Q normal probability plot of
§6 where the lower tail is above the Q-Q line. Return to Q66 •

A67 : There is only a 5% chance that in the population of all possible small
plots grown according to the Mercer & Hall experimental protocol, under the
same conditions (weather, soil . . . ), the lowest 1% of grain yields would be lower
than 2.84 or higher than 3.08. Return to Q67 •

A68 : Yes, the parameters do seem normally-distributed. Thus the basic and
normal confidence intervals should be almost the same. Return to Q68 •

A69 : The two types of confidence intervals agree very closely; this is because
the the bootstrap estimates are almost normally-distributed. Return to Q69 •

We are done with these models, some variables, and the boot package,
so clean up the workspace:
rm(model.grain.straw)
rm(boot.q01, b.q01, b.q01.ci, boot.sr, b.sr, b.sr.ci)
detach(package:boot)

10 Robust methods*

A robust inference is one that is not greatly disturbed by:

• a few unusual observations in the dataset, so-called outliers; or

• a “small” violation of model assumptions.
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An example of the first case is a contaminated dataset, where some ob-
servations result from a different process then that which produced the
others. In the present example this could be small areas of the wheat
field with extreme stoniness, where a large amount of animal manure
was stored, or where pests attacked. The issue here is that the observa-
tions do not all come from the same population, i.e., result of a single
process. But of course that is not known prior to the experiment.

The second case (violation of model assumptions) can be the result of
the first case (outliers) but also because an incorrect model form was
selected to represent the underlying process.

Recall that in estimating linear regression parameters by least-squares,
the assumed model is:

yi = BXi + εi
where the errors are identically and independently distributed (IID). If
the regression diagnostic plots suggest that this assumption is violated,
robust methods should be used.

10.1 A contaminated dataset

To illustrate the application of robust methods, we purposely add some
contamination to our dataset. That is, we simulate the case where the
wheat plants in some of the 500 plots were subject to some process
other than “normal” growth as affected by soil, weather, management,
and small attacks by a variety of pests. The contamination is that plots
in one corner of the field were attacked by deer, who ate most of the
grain but did not affect the straw17.

Q70 : What could be some analysis options for the experimenter who
observes different processes in the field? Jump to A70 •

In the present example, we suppose that we receive the dataset without
having any opportunity to determine a priori whether several processes
were active; we need to deal with the dataset as-is. Recall, the purpose
of this experiment is to investigate the distribution of many replications
of grain and straw yields when grown under identical conditions.

• Can we determine whether the conditions were “identical” except
for identical random “noise”?

• How can we estimate true values for the “typical” situation when
there is unknown contamination from another process?

Task 59 : Make a “contaminated” version of the dataset by setting the

17 This happened to the one of author’s field experiments during his MSc research at
the Pennsylvania State University in the mid 1970’s.
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16 northwest-most plots’ grain yields (3.2%) to one-quarter of their actual
yields. •
First, make a copy the “true” dataset:
mhw.c <- mhw

Second, modify the NW corner. The dataset description (§A) states that
the rows ran W to E, with 25 plots in each row, beginning at 1 on the
W and running to 25 at the E, so that columns run S to N with 20 plots
in each, running from 1 at the N to 20 at the S. We can find the 4 x 4
NW-most plots by selecting on row and column number:
ix <- (mhw.c$r < 5) & (mhw.c$c <5)
rownames(mhw.c[ix,])

## [1] "1" "2" "3" "4" "21" "22" "23" "24" "41" "42" "43" "44" "61"
## [14] "62" "63" "64"

subset(mhw.c, ix)

## r c grain straw gsr in.north
## 1 1 1 3.63 6.37 0.56986 TRUE
## 2 2 1 4.07 6.24 0.65224 TRUE
## 3 3 1 4.51 7.05 0.63972 TRUE
## 4 4 1 3.90 6.91 0.56440 TRUE
## 21 1 2 4.15 6.85 0.60584 TRUE
## 22 2 2 4.21 7.29 0.57750 TRUE
## 23 3 2 4.29 7.71 0.55642 TRUE
## 24 4 2 4.64 8.23 0.56379 TRUE
## 41 1 3 4.06 7.19 0.56467 TRUE
## 42 2 3 4.15 7.41 0.56005 TRUE
## 43 3 3 4.40 7.35 0.59864 TRUE
## 44 4 3 4.05 7.89 0.51331 TRUE
## 61 1 4 5.13 7.99 0.64205 TRUE
## 62 2 4 4.64 7.80 0.59487 TRUE
## 63 3 4 4.69 7.50 0.62533 TRUE
## 64 4 4 4.04 6.66 0.60661 TRUE

The logical vector ix is a list of TRUE and FALSE, stating whether a given
case (row, observation) in the dataframe is in the NW corner or not.

Now adjust the grain yields:
mhw.c[ix, "grain"] <- mhw.c[ix, "grain"]/4

Task 60 : Summarize the effect of the contamination both numerically
and graphically. •
First the numeric summary, also the standard deviation:
summary(mhw$grain); sd(mhw$grain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16
## [1] 0.45828

summary(mhw.c$grain); sd(mhw.c$grain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.907 3.590 3.915 3.846 4.260 5.160
## [1] 0.67636

Second, side-by-side histograms “before” and “after”:
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par(mfrow=c(1,2))
hist(mhw$grain, xlab="Grain yield, lbs / plot",

main="Actual", breaks=seq(0,6, by=.25))
rug(mhw$grain)
hist(mhw.c$grain, xlab="Grain yield, lbs / plot",

main="Contaminated", breaks=seq(0,6, by=.25))
rug(mhw.c$grain)
par(mfrow=c(1,1))
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10.2 Robust univariate modelling

Typical parameters estimated for a single variable are some measure of
the center and spread. For a normally-distributed variable the appropri-
ate measures are the mean and variance (or standard deviation). But
these are not robust. The robust measures include the median for cen-
tral tendency and the inter-quartile range (IQR) for spread.

Task 61 : Compute the mean and standard deviation of the actual and
contaminated grain yields. Also compute the robust measures. For all,
compute the percent change due to contamination. •
The mean, sd, median, and IQR functions compute these:
mean(mhw$grain); mean(mhw.c$grain)

## [1] 3.9486
## [1] 3.8458

(mean(mhw.c$grain) - mean(mhw$grain))/mean(mhw$grain)*100

## [1] -2.6044

sd(mhw$grain); sd(mhw.c$grain)

## [1] 0.45828
## [1] 0.67636

(sd(mhw.c$grain) - sd(mhw$grain))/sd(mhw$grain)*100

## [1] 47.586

median(mhw$grain); median(mhw.c$grain)
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## [1] 3.94
## [1] 3.915

(median(mhw.c$grain) - median(mhw$grain))/median(mhw$grain)*100

## [1] -0.63452

IQR(mhw$grain); IQR(mhw.c$grain)

## [1] 0.6325
## [1] 0.67

(IQR(mhw.c$grain) - IQR(mhw$grain))/IQR(mhw$grain)*100

## [1] 5.9289

Q71 : How do the changes in the robust measures compare to those in
the non-robust measures? Jump to A71 •

10.3 Robust bivariate modelling

In §7.1.1 we estimated the correlation between grain and straw yield.
Recall that the parametric correlation (Pearson’s) should only be used if
the two variables are distributed approximately bivariate normally. In
the original dataset this seemed to be a reasonable assumption.

In case the relation can not be assumed to be bivariate normal, methods
must be used that do not depend on this assumption. These are called
non-parametric; for correlation a widely-used metric is Spearman’s ρ,
which is the PPMC between the ranks of the observations.

Task 62 : Compare the ranks of the grain and straw yields for the first
eight plots in the original data frame. •
The rank function returns the ranks of the values in a vector, from low
to high. Ties can be handled in several ways; the default is to average
the ranks. We display the data values and their ranks in a table:
head(cbind(mhw[, c("grain", "straw")],rank(mhw$grain),rank(mhw$straw)), n=8)

## grain straw rank(mhw$grain) rank(mhw$straw)
## 1 3.63 6.37 123.0 254.5
## 2 4.07 6.24 299.0 219.5
## 3 4.51 7.05 445.5 356.5
## 4 3.90 6.91 228.0 329.0
## 5 3.63 5.93 123.0 136.0
## 6 3.16 5.59 23.5 70.5
## 7 3.18 5.32 26.0 36.0
## 8 3.42 5.52 62.5 59.0

Q72 : What are the data values and ranks of the first plot? Do the ranks
of the two variables generally match? Jump to A72 •
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Task 63 : Display a scatterplot of the ranks, alongside a scatterplot
of the values of the original dataset, and below this, the same for the
contaminated dataset •
par(mfrow=c(2,2))
plot(rank(mhw$grain), rank(mhw$straw),

xlab="Grain rank", ylab="Straw rank",
pch=1, main="Original")

plot(mhw$grain, mhw$straw,
xlab="Grain (lbs / plot)", ylab="Straw (lbs / plot)",
pch=20, main="Original")

plot(rank(mhw.c$grain), rank(mhw.c$straw),
xlab="Grain rank", ylab="Straw rank",
pch=1, main="Contaminated")

plot(mhw.c$grain, mhw.c$straw,
xlab="Grain (lbs / plot)", ylab="Straw (lbs / plot)",
pch=20, main="Contaminated")

par(mfrow=c(1,1))
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Q73 : How similar are the rank and value scatterplots in both cases?
Which scatterplot type (rank or value) is more affected by contamination?

Jump to A73 •

Q74 : Does the scatterplot of values (straw vs. grain yields) of the con-
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taminated dataset appear to be bivariate normal? Jump to A74
•

Task 64 : Compute the numerical value of the Spearman’s correlation
between grain and straw yield, and compare it to the PPMC. Do this for
both the original and contaminated datasets. •
The cor and cor.test functions have an optional method argument;
this defaults to pearson but can be set explicitly:
(c.p <- cor(mhw$grain, mhw.c$straw, method="pearson"))

## [1] 0.72978

(cc.p <- cor(mhw.c$grain, mhw.c$straw, method="pearson"))

## [1] 0.35968

(c.s <- cor(mhw$grain, mhw.c$straw, method="spearman"))

## [1] 0.71962

(cc.s <- cor(mhw.c$grain, mhw.c$straw, method="spearman"))

## [1] 0.61684

Q75 : Which method is most affected by the contamination? Jump to
A75 •

10.4 Robust regression

In §7.2.1 we computed the linear regression of straw yield as modelled
by grain yield.

Task 65 : Repeat the regression fit for the contaminated dataset, and
compare it with the original estimates of the regression model parame-
ters. •
print(model.straw.grain)

##
## Call:
## lm(formula = straw ~ grain, data = mhw)
##
## Coefficients:
## (Intercept) grain
## 0.866 1.430

(model.straw.grain.c <- lm(straw ~ grain, data=mhw.c))

##
## Call:
## lm(formula = straw ~ grain, data = mhw.c)
##
## Coefficients:
## (Intercept) grain
## 4.678 0.478
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Q76 : How much did the regression parameters change? Jump to A76
•

Task 66 : Display the regression diagnostic plots for the regression fit
for the contaminated dataset. Compare these with the plots from §7.2.4.

•
par(mfrow=c(2,2))
plot(model.straw.grain.c)
par(mfrow=c(1,1))
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Q77 : Are the assumptions for a least-squares linear fit justified? Which
assumptions are violated? Jump to A77 •

Task 67 : Visualize the poor quality of the linear fit on a scatterplot of
straw vs. grain yield of the contaminated dataset. Also show the linear
fit to the original dataset. •
We use the generic plot method with a formula to specify the scatter-
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plot, the abline function to add lines extracted from the linear models,
and the legend function to place a legend on the graph. Recall, the with
function specifies an environment for the plot method, so that the field
names can be written just as field names, not as dataframe and field.
with(mhw.c, plot(straw ~ grain))
abline(model.straw.grain.c)
abline(model.straw.grain, lty=2, col="blue")
legend(1.5, 8.5, legend=c("fit", "fit to uncontaminated"),

lty=1:2, col=c("black","blue"))
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Q78 : Looking at this scatterplot and the two lines, explain how the
contamination affects the linear model fit. Jump to A78 •

Many of the problems with parametric regression can be avoided by fit-
ting a so-called “robust” regression line. There are many variants of this,
well-explained by Birkes and Dodge [4] and illustrated with S code by
Venables and Ripley [47]. Fox and Weisberg [18] is a good introduction
to the concepts, illustrated by R code.

Here we just explore one method: lqs in the MASS package; this fits
a regression to the “good” points in the dataset (as defined by some
criterion), to produce a regression estimator with a high “breakdown”
point. This method has several tuneable parameters; we will just use the
default.

This is the so-called “least trimmed squares” (LTS) estimate of the slope
vector β, by the criterion of minimizing:

q∑
i=1

|yi − xiβ|2(i)
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that is, the squared absolute deviations over some subset of the resid-
uals, indicated by the subscript (i) and the summand q in the above
formula. The smallest q residuals are chosen as some proportion, by
default:

q = ⌊(n+ p + 1)/2⌋
where p is the number of predictors and n the number of observations
(cases). In this case these are 2 and 500, so q = 251. There is no ana-
lytical solution, the method iterates: first fitting a regular linear model,
then examining the residuals and selecting the q smallest, then refitting
(thus obtaining a new set of residuals), selecting the smallest q of these,
refitting, and so on until the fit converges.

Task 68 : Load the MASS package and compute a robust regression
of straw on grain yield. Compare the fitted lines and the coefficient of
determination (R2) of this with those from the least-squares fit. •
require(MASS)
(model.straw.grain.c.r <- lqs(straw ~ grain, data=mhw.c))

## Call:
## lqs.formula(formula = straw ~ grain, data = mhw.c)
##
## Coefficients:
## (Intercept) grain
## -0.0586 1.6846
##
## Scale estimates 0.548 0.531

sqrt(mean(residuals(model.straw.grain)^2))

## [1] 0.61354

The scale estimates are the scale of the error, similar to the residual
mean square in a least-squares fit (shown above for comparison). There
are two scale estimates, the first is based on the fit and is more conser-
vative (larger).

Task 69 : Visualize the robust fit on a scatterplot of straw vs. grain yield
of the contaminated dataset. Also show the linear fit to the contaminated
and original datasets. •
with(mhw.c, plot(straw ~ grain))
abline(model.straw.grain.c.r)
abline(model.straw.grain.c, lty=3, col="red")
abline(model.straw.grain, lty=2, col="blue")
legend(1.5, 8.5,

legend=c("robust fit", "linear fit", "fit to uncontaminated"),
lty=c(1,3,2), col=c("black","red","blue"))
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Q79 : Describe the effect of the robust fit. Jump to A79 •

Challenge: Compute the robust regression for the original (uncontam-
inated) dataset. How much does the fit change? What does this imply
about the “outliers” identified in §3.2? Are they contamination (i.e., from
another process) or just unusual (extreme) observations?

Challenge: Repeat the analysis of this section with a larger contami-
nated portion of the observations. At what point do the robust estimates
also become unreliable?

10.5 Answers

A70 : Some possibilities:

(1) Remove the known contamination and analyze the “typical” case; state that
the results only apply to these.

(2) Mark observations as “typical” or “contaminated” and use this factor in
modelling. Return to Q70 •

A71 : Since the contaminated observations are smaller than the original,
the central tendency will be lower. The contaminated mean is lower by -2.6%
whereas the contaminated median is hardly affected, only -0.6% lower.

The measure of spread is much more affected by contamination: the standard
deviation increases dramatically, by 48%, whereas the IQR only increases by
6%. Return to Q71 •
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A72 : The first plot has grain and straw yields of 3.63 and 6.37, respectively;
these are ranked 123 and 254.5 in their respective vectors. The grain yield is
thus just under the first quartile (123 out of 500) whereas the straw yield is
higher, just under the median (254 out of 500). For this plot, the straw yield
ranks considerably higher than the grain yield.

Overall, in the eight displayed ranks, there is a clear correspondence, but not
very close. Return to Q72 •

A73 : In both datasets the scatterplot of ranks is more diffuse; this is because
the ranks throw away much information (the actual numeric values). In the
case of bivariate normal distributions, the tails (extreme values) contribute
disproportionately to the correlation.

The rank plots are much less affected by contamination than the value plots;
thus we expect a non-parametric correlation (based on ranks) to be less af-
fected. Return to Q73
•

A74 : The relation of straw and grain yields is definitely not bivariate normal.
The group of observations at low grain yields (around 1 lb plot-1) has very little
relation with straw yield, and also is far from the scatter of the “normal” plots.

Return to Q74 •

A75 : The parametric estimate of correlation (Pearson’s) is greatly affected,
by -51%; whereas the non-parametric estimate (Spearman’s) is only changed by
-14%. Return to Q75 •

A76 : The regression parameters (slope and intercept) both change drastically.
The slope decreased from 1.43 to 0.48, i.e., from well above unity (straw yield
increases more than grain yield) to well below (the reverse). The intercept then
is adjusted to maintain the centroid of the regression; for the original dataset
this is 0.87 lb plot-1 straw, i.e., a grain yield of zero corresponds to a straw yield
of a bit under 1 lb plot-1 straw, but to compensate for the greatly reduced slope
in the model of the contaminated dataset this increases to 4.68 lb plot-1 straw.

Return to Q76 •

A77 : Several assumptions are clearly violated:

(1) The residuals have a clear relation with the fits: low fits have very high
positive residuals (these are the plots where the deer ate most of the grain);
to compensate there is then a linear relation between residuals and fits from
about 6 to 7.5 lbs plot-1 straw, i.e, the unaffected plots.

(2) The distribution of the residuals is not normal; this is especially clear at
high residuals where the actual residuals are too high, i.e., large over-predictions
(because the model is fitting mostly the ordinary relation, the low-grain plots
are over-predicted).

(3) The high residuals are also associated with high leverage, i.e., the low-grain
plots disproportionately affect the regression parameters (which is why the
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slope is so low). Return to Q77 •

A78 : This scatterplot clearly shows what we mean by “leverage”: the 16 con-
taminated points “pull” the original line (shown as a dashed line on the plot)
towards them. The further from the original centroid, the more the leverage,
exactly as with a physical lever. Return to Q78 •

A79 : The robust fit models the uncontaminated portion of the dataset and
completely ignores the contaminated observations. Thus it gives a true model
of the dominant process of wheat growth. The robust fit is a bit different from
the fit to the uncontaminated dataset, because it also ignores the outliers in
the original dataset. Return to Q79 •

11 Multivariate modelling

In §7.2 we determined that the regression of straw yield on grain yields,
over the whole field, was significant: i.e. straw yield does vary with grain
yield. In §8 we determined that straw yields of the two field halves differ
significantly. This raises the question whether it is possible and useful
to combine these two findings, i.e. whether straw yield can be modelled
as a function of both field half and grain yield.

There are four possibilities, from simplest to most complex:

1. Straw yields can be modelled by field half only;

2. Straw yields can be modelled by grain yield only;

3. Straw yields can be modelled by field half and grain yield, additively
(i.e. with these as independent predictors);

4. Straw yields must be modelled by field half and grain yield, consid-
ering also the interaction between them (i.e. the relation between
straw and grain yield differs in the two field halves).

These are tested with increasingly-complex linear models:

1. One-way ANOVA (or, two-sample t-test) of straw yield; following
the evidence in the boxplot of §8.1 that seemed to show slightly
higher yields in the north half; this was computed in §8.3 above;

2. Linear model of straw yield predicted by grain yield only, follow-
ing the evidence of the scatterplot, ignoring field halves; this was
computed in §7.2 above;

3. Linear model of straw yield predicted by field half (a categorical
variable) and grain yield (a continuous variable), with an additive
model (§11.1, below);

4. Linear model of straw yield predicted by field half (a categorical
variable) and grain yield (a continuous variable), with an interaction
model (§11.3, below);
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We now compute all of these and compare the proportion of the total
variation in straw yield that each explains.

Task 70 : Display the results of the field-half and bivariate regression
models. •
Straw yield vs. field half was already computed in §8.3 above and saved
as model object model.straw.ns:
summary(model.straw.ns)

##
## Call:
## lm(formula = straw ~ in.north, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.181 -0.608 -0.108 0.572 2.359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.7484 0.0549 122.90 < 2e-16 ***
## in.northTRUE -0.4671 0.0777 -6.02 3.5e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.868 on 498 degrees of freedom
## Multiple R-squared: 0.0677,Adjusted R-squared: 0.0659
## F-statistic: 36.2 on 1 and 498 DF, p-value: 3.48e-09

Q80 : Is there evidence that average straw yield differs in the two field
halves? What proportion of the total variation in straw yield is explained
by field half? Jump to A80 •

Straw yield vs. grain yield was computed in §7.2 above and saved as
model object model.straw.grain:
summary(model.straw.grain)

##
## Call:
## lm(formula = straw ~ grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0223 -0.3529 0.0104 0.3734 3.0342
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.8663 0.2387 3.63 0.00031 ***
## grain 1.4305 0.0601 23.82 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.615 on 498 degrees of freedom
## Multiple R-squared: 0.533,Adjusted R-squared: 0.532
## F-statistic: 567 on 1 and 498 DF, p-value: <2e-16

Q81 : Is there evidence that straw yield varies with grain yield? What
proportion of the total variation in straw yield is explained by grain
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yield? Jump to A81 •

Since both of these predictors (field half and grain yield) do explain some
of the straw yield, it seems logical that a combination of the two, i.e. a
multivariate model, might explain more than either separately. So, we
now model straw yield vs. grain yield, also accounting for the overall
difference between field halves.

11.1 Additive model: parallel regression

The simplest multivariate model is an additive model, also called paral-
lel regression because it fits one regression line, but with the intercept
at different levels, one for each field half.

Task 71 : Model straw yield as the combined effect of two independent
predictors: field half and grain yield. •
We use the lm function, naming both predictors on the right-hand side
of the model formula, combined with the + “additive effects” formula
operator. This is not an arithmetic + (addition), because it is written in a
model formula.
model.straw.ns.grain <- lm(straw ~ in.north + grain, data=mhw)
summary(model.straw.ns.grain)

##
## Call:
## lm(formula = straw ~ in.north + grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2548 -0.3189 -0.0276 0.3042 2.7871
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0461 0.2178 4.8 2.1e-06 ***
## in.northTRUE -0.5132 0.0500 -10.3 < 2e-16 ***
## grain 1.4499 0.0546 26.5 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.559 on 497 degrees of freedom
## Multiple R-squared: 0.614,Adjusted R-squared: 0.613
## F-statistic: 396 on 2 and 497 DF, p-value: <2e-16

Q82 : Is there evidence that both field half and grain yield are needed to
predict straw yield? What proportion of the total variation in straw yield
is explained by this model? Jump to A82 •

Q83 : According to the model summary, what is the difference in overall
yields between the S and N halves? What is the slope of the regression
line for straw vs. grain yield? Is this the same as the slope for the model
that does not include field half? Jump to A83 •
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In parallel regression (additive effects of a continuous and discrete pre-
dictor) there is only one regression line, which is displaced up or down
for each class of the discrete predictor. Even though there are two pre-
dictors, we can visualize this in a 2D plot by showing the displaced lines.
# scatterplot, coloured by zone
with(mhw,

plot(straw ~ grain,
col=ifelse(in.north,"blue","slategray"),
pch=20, xlab="grain (lbs plot-1)", ylab="straw (lbs plot-1)"))

title(main="Straw vs. grain yield")
title(sub="N half: blue, S half: grey; whole-field line: red") # S
abline(coefficients(model.straw.ns.grain)["(Intercept)"] ,

coefficients(model.straw.ns.grain)["grain"], col="slategray")
# N
abline((coefficients(model.straw.ns.grain)["(Intercept)"]

+ coefficients(model.straw.ns.grain)["in.northTRUE"])
, coefficients(model.straw.ns.grain)["grain"], col="blue")

# univariate line
abline(model.straw.grain, lty=2, col="red")
grid()
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Straw vs. grain yield

N half: blue, S half: grey; whole−field line: red

In the code for this plot, note the use of the coefficients function to
extract the model coefficients.

11.2 Comparing models

Is a more complex model better than a simpler one? There are several
ways to answer this, among which are:

• Compare the adjusted R2 of the two models: this is the proportion
of the variance explained;

• Directly compare hierarchical models with an Analysis of Variance.
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Task 72 : Compare the adjusted R2 of the three models. •
We’ve already seen these in the model summaries; they can be accessed
directly as field adj.r.squared of the model summary:
summary(model.straw.ns)$adj.r.squared

## [1] 0.065864

summary(model.straw.grain)$adj.r.squared

## [1] 0.53164

summary(model.straw.ns.grain)$adj.r.squared

## [1] 0.61268

Q84 : Which model explains the most variability? Jump to A84 •

Another way to compare two hierarchical models (i.e. where the more
complex model has all the predictors of the simpler one) is with an anal-
ysis of variance: comparing variance explained vs. degrees of freedom.
This is a statistical test, so we can determine whether the more complex
model is provably better.

Task 73 : Compare the additive multivariate model to the two univari-
ate models. •
The anova function can be used to compare the models:
anova(model.straw.ns.grain, model.straw.ns)

## Analysis of Variance Table
##
## Model 1: straw ~ in.north + grain
## Model 2: straw ~ in.north
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 497 155
## 2 498 375 -1 -220 704 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(model.straw.ns.grain, model.straw.grain)

## Analysis of Variance Table
##
## Model 1: straw ~ in.north + grain
## Model 2: straw ~ grain
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 497 155
## 2 498 188 -1 -32.9 105 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The anova function compares the residual sum of squares (RSS) of the
two models; this is the amount of variability not explained by the model,
so a lower RSS is better. It then computed the F-ratio between the two
variances, and the probability that this large an F-value, with the degrees
of freedom (d.f.) could occur by chance, if the null hypothesis of no
model improvement is true. The probability of a Type I error (falsely
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rejecting a true null hypothesis) is reported as field Pr(>F); lower is
better.

Q85 : Is the multivariate additive model provably better than either
univariate model? Jump to A85 •

11.3 Interaction model

We saw that the additive model is superior to either single-predictor
model. However, there is also the possibility that both field half and
grain yield help predict straw yield, but that the relation between straw
and grain is different in the two halves; this is known as an interaction.
This allows a different linear regression in each field half, rather than a
parallel regression.

Q86 : What is the difference between an additive and interaction model,
with respect to processes in the field? Jump to A86 •

Task 74 : Model straw yield as the combined effect of two interacting
predictors: field half and grain yield. •
We use the lm function, naming both predictors on the right-hand side
of the model formula, combined with the * “interactive effects” formula
operator. This is not an arithmetic * (multiplication).
model.straw.ns.grain.i <- lm(straw ~ in.north * grain, data=mhw)
summary(model.straw.ns.grain.i)

##
## Call:
## lm(formula = straw ~ in.north * grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2242 -0.3169 -0.0398 0.3136 2.7574
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2930 0.2979 4.34 1.7e-05 ***
## in.northTRUE -1.0375 0.4350 -2.39 0.017 *
## grain 1.3872 0.0752 18.44 < 2e-16 ***
## in.northTRUE:grain 0.1328 0.1094 1.21 0.225
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.559 on 496 degrees of freedom
## Multiple R-squared: 0.615,Adjusted R-squared: 0.613
## F-statistic: 265 on 3 and 496 DF, p-value: <2e-16

Q87 : What do the four coefficients in the regression equation repre-
sent? Jump to A87
•
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Q88 : Are the two slopes (one for each field half) significantly different?
Is an interaction model indicated? What does that imply about the pro-
cesses in the field? Jump to A88
•

Even though the slopes are not significantly different, we show them
graphically, to visualize how different they are.

Task 75 : Plot the two regressions (one for each field half). •
To do this, we use the optional subset argument to the lm method to
select just some observations, in this case, those in a zone. We plot each
regression line (using the abline function on the model object returned
by lm) and its associated points in different colours, using the col graph-
ics argument. Dashed lines (using the lty graphics argument) show the
parallel regression for the two field halves.
with(mhw,

plot(straw ~ grain,
col=ifelse(in.north,"blue","slategray"),
pch=20, xlab="grain (lbs plot-1)", ylab="straw (lbs plot-1)"))

title(main="Straw vs. grain, by field half")
title(sub="Interaction: solid lines; additive: dashed lines")
abline(lm(straw ~ grain, data=mhw, subset=in.north), col="blue")
abline(lm(straw ~ grain, data=mhw, subset=!in.north), col="slategray")
abline(coefficients(model.straw.ns.grain)["(Intercept)"] ,

coefficients(model.straw.ns.grain)["grain"], col="slategray", lty=2)
# N
abline((coefficients(model.straw.ns.grain)["(Intercept)"]

+ coefficients(model.straw.ns.grain)["in.northTRUE"])
, coefficients(model.straw.ns.grain)["grain"], col="blue", lty=2)

grid()
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Straw vs. grain, by field half

Interaction: solid lines; additive: dashed lines

Is this more complex interaction model significantly better than the ad-
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ditive model?

Task 76 : Compare the interaction and additive models by their ad-
justed R2 and with an analysis of variance. •
summary(model.straw.ns.grain)$adj.r.squared

## [1] 0.61268

summary(model.straw.ns.grain.i)$adj.r.squared

## [1] 0.61305

anova(model.straw.ns.grain.i, model.straw.ns.grain)

## Analysis of Variance Table
##
## Model 1: straw ~ in.north * grain
## Model 2: straw ~ in.north + grain
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 496 155
## 2 497 155 -1 -0.46 1.47 0.23

Q89 : Does the more complex model have a higher proportion of vari-
ance explained? Is this statistically significant? Jump to A89
•

11.4 Regression diagnostics

As with univariate regression, multivariate regression models must be
examined to see if they meet modelling assumptions.

Task 77 : Display the diagnostic plots for the additive model: (1) residu-
als vs. fits; (2) normal Q-Q plot of the residuals; (3) residuals vs. leverage;
(4) Cook’s distance vs. leverage. •
These are plot types 1, 2, 5, and 6, respectively, selected with the which
optional argument to the plot function applied to linear model output.
We also specify the number of extreme points to label with the id.n
optional argument.
par(mfrow=c(2,2))
plot(model.straw.ns.grain, which=c(1,2,5,6), id.n=10)
par(mfrow=c(1,1))
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Q90 : Which observations (plots) are marked on the plots as being
potential problems? Jump to A90 •

We can identify these numerically. First, we examine plots that were not
well-modelled. We use the criterion of model residuals more than three
standard deviations from zero; we want to see if there is any pattern to
these.

We identify the plots with the large residuals, using the rstandard “stan-
dardized residuals” function, and show just these records in the data
frame, using the which function to identify their row (record) numbers:
(selected <- which(abs(rstandard(model.straw.ns.grain)) > 3))

## 15 35 184 285 292 295 311 337 362
## 15 35 184 285 292 295 311 337 362

rstandard(model.straw.ns.grain)[selected]

## 15 35 184 285 292 295 311 337
## 5.0007 -4.0459 -3.1930 3.1776 -3.0646 3.8105 3.8741 3.9068
## 362
## 3.4074

Second, build a data frame with all the information for these plots, along
with the residuals, using the cbind function to add a column:
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mhw.hires <- cbind(mhw[selected,],
sres = rstandard(model.straw.ns.grain)[selected])

rm(selected)
str(mhw.hires)

## 'data.frame': 9 obs. of 7 variables:
## $ r : int 15 15 4 5 12 15 11 17 2
## $ c : int 1 2 10 15 15 15 16 17 19
## $ grain : num 3.46 4.42 4.59 3.7 4.86 3.73 3.74 3.05 4.26
## $ straw : num 8.85 5.2 5.41 7.67 6.39 8.58 8.63 7.64 8.61
## $ gsr : num 0.391 0.85 0.848 0.482 0.761 ...
## $ in.north: logi FALSE FALSE TRUE TRUE FALSE FALSE ...
## $ sres : num 5 -4.05 -3.19 3.18 -3.06 ...

Finally, order the selected plots by the residual, using the order func-
tion:
mhw.hires[order(mhw.hires$sres),]

## r c grain straw gsr in.north sres
## 35 15 2 4.42 5.20 0.85000 FALSE -4.0459
## 184 4 10 4.59 5.41 0.84843 TRUE -3.1930
## 292 12 15 4.86 6.39 0.76056 FALSE -3.0646
## 285 5 15 3.70 7.67 0.48240 TRUE 3.1776
## 362 2 19 4.26 8.61 0.49477 TRUE 3.4074
## 295 15 15 3.73 8.58 0.43473 FALSE 3.8105
## 311 11 16 3.74 8.63 0.43337 FALSE 3.8741
## 337 17 17 3.05 7.64 0.39921 FALSE 3.9068
## 15 15 1 3.46 8.85 0.39096 FALSE 5.0007

We can also visualize the locations of these in the field: high positive
residuals green, high negative residuals red, symbol size proportional to
the grain/straw ratio:
with(mhw,

plot(c, r, ylim=c(20,1),
cex=3*gsr/max(gsr), pch=20,
col=ifelse(rstandard(model.straw.ns.grain) > 3, "brown",

ifelse(rstandard(model.straw.ns.grain) < (-3), "red",
ifelse(in.north, "lightblue", "gray"))),

xlab="column", ylab="row"))
abline(h=10.5)
title(main="Large residuals, straw yield vs.\ field half and grain yield")
title(sub="Positive: brown; negative: red")
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Note: The nested ifelse functions to select the four colours; the first
TRUE condition stops the evaluation.

Q91 : Are the high positive or negative residuals concentrated in one
part of the field? Is there anything else unusual about these? Hint: look
at the most negative and positive residuals. Jump to A91 •

The plot of leverage vs. Cook’s distance shows which plots most affect
the fit: high leverage and high distance means that removing that plot
would have a large effect on the fit.

Q92 : Do the two highest-residual plots identified in the previous ques-
tion have high leverage? Which high-residual plots also have high lever-
age? Jump to A92
•

We can examine the effect of these on the fit by re-fitting the model,
leaving out one or more of the suspect plots.

Task 78 : Fit the model without the two adjacent plots where we hy-
pothesize sloppy field procedures and compare the goodness-of-fit and
regression equations to the original model. •
To exclude some observations, we use the - operator on a list of dataframe
row numbers created with the c function:
model.straw.ns.grain.adj <- lm(straw ~ in.north + grain, data=mhw[-c(15,35),])
summary(model.straw.ns.grain.adj)
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##
## Call:
## lm(formula = straw ~ in.north + grain, data = mhw[-c(15, 35),
## ])
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7926 -0.3106 -0.0274 0.3017 2.1942
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.9528 0.2094 4.55 6.8e-06 ***
## in.northTRUE -0.5118 0.0481 -10.64 < 2e-16 ***
## grain 1.4731 0.0525 28.04 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.536 on 495 degrees of freedom
## Multiple R-squared: 0.64,Adjusted R-squared: 0.638
## F-statistic: 440 on 2 and 495 DF, p-value: <2e-16

summary(model.straw.ns.grain)

##
## Call:
## lm(formula = straw ~ in.north + grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2548 -0.3189 -0.0276 0.3042 2.7871
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.0461 0.2178 4.8 2.1e-06 ***
## in.northTRUE -0.5132 0.0500 -10.3 < 2e-16 ***
## grain 1.4499 0.0546 26.5 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.559 on 497 degrees of freedom
## Multiple R-squared: 0.614,Adjusted R-squared: 0.613
## F-statistic: 396 on 2 and 497 DF, p-value: <2e-16

Q93 : Does the model without the two plots fit the remaining plots
better than the original model? How different are the model coefficients?

Jump to A93 •

Challenge: Compare the four diagnostic plots for the adjusted additive
regression model (i.e., leaving out the “suspect” points) with the diagnos-
tic plots for the additive regression model with all points, above (§11.4).
Display the two sets of diagnostic plots together and evaluate them vi-
sually. What, if anything, has improved? Does the model now meet the
assumptions of linear regression?

11.5 Analysis of covariance: a nested model*

In the parallel-lines model there is only one regression line between the
continuous predictor and predictand, which can be moved up and down
according to different class means; this is an additive model. In the
interaction model there is both an overall line and deviations from it
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according to class, allowing different slopes, as well as differences in
class means.

Another way to look at this is to abandon the idea of a single regression
altogether, and fit a separate line for each class. This is a nested model:
the continuous predictor is measured only within each level of the clas-
sified predictor. There is no interest in the whole-field relation between
straw and grain, only the overall difference between classes (here, the
field halves), and then the best fit of the straw vs. grain relation in each
half separately.

A nested model is specified with the / formula operator (this is not math-
ematical division). This is to be read as “fit the relation after the / sep-
arately for the two values of the classified variable” and also “separate
the overall levels of the two classes”.
model.straw.ns.grain.nest <- lm(straw ~ in.north / grain, data=mhw)
summary(model.straw.ns.grain.nest)

##
## Call:
## lm(formula = straw ~ in.north/grain, data = mhw)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.2242 -0.3169 -0.0398 0.3136 2.7574
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.2930 0.2979 4.34 1.7e-05 ***
## in.northTRUE -1.0375 0.4350 -2.39 0.017 *
## in.northFALSE:grain 1.3872 0.0752 18.44 < 2e-16 ***
## in.northTRUE:grain 1.5199 0.0794 19.14 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.559 on 496 degrees of freedom
## Multiple R-squared: 0.615,Adjusted R-squared: 0.613
## F-statistic: 265 on 3 and 496 DF, p-value: <2e-16

plot(straw ~ grain, data=mhw,
col=ifelse(mhw$in.north, "blue", "slategray"),
pch=20, xlim=c(2.5,5.5), ylim=c(4,9.5))

coef <- coef(model.straw.ns.grain.nest)
abline(coef[1], coef[3], col="slategray")
abline(coef[1]+coef[2], coef[4], col="blue")
grid()
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The nested model does not compute an overall slope of straw vs. grain;
instead each half has its own regression line (intercept and slope). The
coefficient in.northTRUE gives the difference between the intercept of
the N-half regression line from the intercept of the S-half regression line.
The two coefficients in.northFALSE:grain and in.northTRUE:grain
give the computed slopes of the two regression lines of straw yield vs.
grain yield.

Q94 : What are the two slopes of straw vs. grain? Are they different? Do
they differ from the single slope found in the parallel regression model?

Jump to A94 •

Q95 : This model has the same adjusted R-squared as the interaction
model. Why? Jump to A95 •

Challenge: Compare the regression lines of this nested model with the
regression lines implied by the interaction model. Are they the same?
Why or why not?

11.6 Answers

A80 : Yes, straw yield most likely (p ≈ 0) is higher in the South half; but this
explains very little (0.066) of the total variance. Return to Q80 •

A81 : Yes, straw yield almost surely (p ≈ 0) varies with grain yield; this
explains about half (0.532) of the total variance. Return to Q81 •
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A82 : Both coefficients are highly significant (probability that they are really
zero almost nil). Coefficient in.northTRUE represents the difference between
field halves, and grain the regression between straw and grain.

This explains over 60% (0.613) of the total variance. Return to Q82 •

A83 : Coefficient in.northTRUE represents the difference between field halves;
the fitted value is -0.5132 lb. plot-1. Coefficient grain is the regression between
straw and grain; the fitted value is 1.4499 lb. straw increase per plot for each
lb grain increase per plot. This is not the same as the best-fit univariate line
(ignoring field half), which is 1.4305 Return to Q83 •

A84 : The multivariate additive model is clearly best; it explains about two-
thirds (66%) of the variability, whereas the whole-field straw vs. grain model
only explains just more than half (53%) and the field-half model very little (6%).

Return to Q84 •

A85 : Yes, in both cases the probability that we’d be wrong by rejecting the
null hypothesis of no difference is practically zero. The RSS decreases from
375.4 for the field-half model, and 188.2 for the whole-field straw vs. grain
model, to 155.3 for the combined model. That is, much less variability in
straw yield remains unexplained after the combined model. Return to Q85 •

A86 : The parallel regression models the case where one half of the field is
more productive, on average, than the other, but the relation between grain
and straw is the same in both cases (i.e. the grain/straw ratio is the same in
both field halves). There is no difference in plant morphology, just overall size.

By contrast, the interaction model allows that the two field halves may also
differ in the grain/straw ratio, i.e. the relation between grain and straw yield –
different plant morphology. Return to Q86 •

A87 : The coefficients are:

1. (Intercept): estimated straw yield at zero grain yield and in the S field
half;

2. in.northTRUE: difference in average yield in the N vs. the S;

3. grain: increase in straw yield for each unit increase in grain yield, in the
S field half;

4. in.northTRUE:grain: difference in slope (increase in straw yield for
each unit increase in grain yield) in the N vs. the S.

Return to Q87 •

A88 : The coefficient in.northTRUE:grain is not significant; the probability
of falsely rejecting the null hypothesis is quite high, 0.2255, so we should
accept the hypothesis that this difference is really 0.
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According to this test, the interaction is not significant. Plants grow with the
same morphology in the two field halves. Return to Q88 •

A89 : The interaction model has slightly higher adjusted R2: 0.61305 vs.
0.61268. However, the ANOVA table shows that this increase has a p=0.225
probability of occurring by chance, so we conclude the interaction model is not
justified. This is the same conclusion we reached from the model summary,
where the interaction term (coefficient) was not significant. Return to Q89 •

A90 : Plots labelled on the diagnostic graphs are 15, 337, 311, 295, 362,
285 (positive residuals) and 35, 184, 292, 457 (negative residuals). These have
residuals more extreme than expected by theory (normal Q-Q plot of residuals).
Plots 292, 337, 264, 184 and 309 are large residuals with high leverage. Return
to Q90 •

A91 : The highest four positive residuals are all in the S half, but otherwise do
not seem clustered. The most negative residual is from plot 35 (r=15, c=2) and
the most positive from the immediately adjacent plot 15 (r=15, c=1). Could
some of the grain from plot 15 have been accidentally measured as part of the
yield of plot 35? If these two are combined, the grain/straw ratio is 0.56085,
close to the mean grain/straw ratio of the whole field, 0.61054. Return to
Q91 •

A92 : Plots 15 and 35 do not have high leverage, i.e. their removal would not
change the equation very much. The high-leverage plots that also have high
residuals are 292 and 184 (negative residuals) and 337, 264 and 309 (positive
residuals). Return to Q92 •

A93 : The fit is considerably better without these badly-modelled plots:
0.63841 without the two plots vs. 0.61268 with them. Another 2.5% of the
variation is explained.

The coefficient for field half hardly changes, but the regression line changes
substantially: higher intercept: (0.9528 vs. 1.0461) and shallower slope (1.4731
vs. 1.4499 . As predicted by the high leverage, removing these points changes
the functional relation. Return to Q93 •

A94 : The slope in the S half is 1.3872, in the N half 1.5199. These differ
considerably from each other, and from the parallel regression slope: 1.4499.
The slope in the S half is less steep, in the N half steeper, than the parallel
regression slope. Return to Q94 •

A95 : Both models have four parameters to fit the same dataset. Both model
difference between levels (either means or intercepts) and slopes. Return to
Q95 •

We are done with these models and some other variables, so clean up
the workspace:
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rm(model.straw.ns, model.straw.grain, model.straw.ns.grain)
rm(model.straw.ns.grain.adj, model.straw.ns.grain.i, model.straw.ns.grain.nest)
rm(struct.beta, beta, mhw.hires)

12 Principal Components Analysis

In §7.1.1 and §10.3 we computed the correlation between the grain and
straw yields from each plot, i.e., the strength of their association. This
showed that they are highly-correlated. Thus there is redundancy: the
two variables are not fully independent.

Principal components analysis (PCA) is a data reduction technique. It
finds a new set of variables, equal in number to the original set, where
these so-called synthetic variables are uncorrelated. In addition, the
first synthetic variable represents as much of the common variation of
the original variables as possible, the second variable represents as much
of the residual variation as possible, and so forth. This technique thus
reveals the structure of the data. The transformation itself and the syn-
thetic variables produced by it can be interpreted by the analyst to un-
derstand the underlying processes.

In the present example, Mercer & Hall measured two variables: grain
and straw yield. However, these measured quantities are the outcomes
of processes which we can not directly observe: (1) plant growth; (2)
partition of plant growth between grain and straw. PCA can be used to
gain insight into these.

PCA is often used for data reduction in datasets with many variables;
good examples are image processing or spectroscopy with many bands,
and geochemical datasets with many measured elements. It is explained
by many textbooks on remote sensing [e.g. 1, 31]

Note: In terms of mathematics, the vector space made up of the original
variables is projected onto another space such that the projected vari-
ables are orthogonal, with descending variances. The mathematics are
well-explained in many texts, e.g., [8, 29].

PCA can be standardized or not. If so, the variables are centred to zero
mean and then scaled to unit variance, thus giving them equal impor-
tance mathematically. In the second, the original units are used after
centring; thus variables with more variance are more important. In the
present case, although the two variables are computed in the same units
of measure (lb. plot-1), they are of intrinsically different magnitude (there
is much more straw than grain). To reveal the relation between the vari-
ables they should be standardised before computing the principal com-
ponents.

Task 79 : Compute the standardized PCA of grain and straw yields. •
The prcomp function computes the PCA; with the optional scale argu-
ment the variables are first scaled, resulting in standardized PCA. The
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output is an object of class prcomp.
pc <- prcomp(mhw[,c("grain","straw")], scale=T)
# pc <- prcomp(mhw[,c("grain","straw")], scale=F)
summary(pc)

## Importance of components:
## PC1 PC2
## Standard deviation 1.315 0.520
## Proportion of Variance 0.865 0.135
## Cumulative Proportion 0.865 1.000

The standard deviations shown here are of the synthetic variables (prin-
cipal components); these re-apportion the standard deviations of the
original variables according to the redundancy.

Q96 : How much of the variance is explained by each component? How
much data redundancy is in the original two variables? Jump to A96 •

Sometimes PCA is used just for data reduction, but here our interest is in
the interpretation. One way to interpret is to examine the loadings: these
show how the synthetic variables are created from the original ones.

Note: Mathematically, these are the eigenvectors (in the columns) which
multiply the original (scaled and centred) variables to produce the syn-
thetic variables (principal components).

Task 80 : Examine the loadings of the two PC’s. •
These are in the rotation field of the PCA object.
pc$rotation

## PC1 PC2
## grain 0.70711 -0.70711
## straw 0.70711 0.70711

These can be visualized on a so-called biplot, which shows the loadings
as vectors in the space spanned by two PC’s. It also shows the location
of the 500 observations in this space, i.e., the values of the synthetic
variables (called the principal component “scores”).

Task 81 : Display the biplot. •
This is displayed with the biplot method, which when presented with
an object of class prcomp specializes to the biplot.prcomp function.
We specify the pc.biplot argument to be TRUE, to produce the biplot
as proposed by Gabriel [19], which scales the scores of the observations
and rotations by the components’ standard deviations (eigenvalues).
biplot(pc, pc.biplot=T)
abline(h=0, lty=2)
abline(v=0, lty=2)
grid()
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The biplot can be interpreted in several ways:

1. The orientation (direction) of the vector, with respect to the PC
space. The more a vector, which represents an original variable, is
parallel to a PC axis, the more it contributes to that PC.

2. The length in the space defined by the displayed PCs; the longer
the vector, the more variability of this variable is represented by
the two displayed PCs.

3. The angles between vectors of different variables show their corre-
lation in the space spanned by the two displayed PC’s: small angles
represent high positive correlation, right angles represent lack of
correlation, opposite angles represent high negative correlation.

The scaled values of the eigenvectors are shown as the top (PC1)
and right (PC2) axes.

Because of the scaling applied, the inner (vector) product between
two variables approximates their covariance (if standardized, their
correlation). Thus two vectors that are almost parallel will have
a very high covariance, and two orthogonal vectors will have no
covariance.

114



4. The location of observations in the biplot space, defined by their
scores scaled by the standard deviation of each PC, i.e., its eigen-
value: this shows the relation of observations to each other and
which observations are unusual. These values are shown on the
bottom (PC1) and left (PC2) axes.

Because of the scaling applied, the distances between observations
plotted in this space approximate the Mahalanobis distance be-
tween them; this is a common multivariate measure of similarity
between observations.

Q97 : Considering the biplot and loadings matrix, what does the first
PC represent? Jump to A97 •

To help answer this question, we can examine the field plots with the
highest and lowest scores of PC1. The scores (synthetic variables) are re-
turned in the x field of the prcomp object; this is a matrix whose columns
are the PC scores.

The which.max and which.min functions find the positions of the max-
imum and minimum values in a vector. We then extract the record from
the dataframe, and also show the PC scores:
summary(pc$x)

## PC1 PC2
## Min. :-3.6114 Min. :-1.8592
## 1st Qu.:-0.9321 1st Qu.:-0.3474
## Median :-0.0996 Median : 0.0119
## Mean : 0.0000 Mean : 0.0000
## 3rd Qu.: 0.9220 3rd Qu.: 0.3028
## Max. : 3.6521 Max. : 2.5921

mhw[ix.max <- which.max(pc$x[,"PC1"]),]

## r c grain straw gsr in.north
## 79 19 4 5.16 8.78 0.5877 FALSE

pc$x[ix.max,]

## PC1 PC2
## 3.652143 -0.086016

mhw[ix.min <- which.min(pc$x[,"PC1"]),]

## r c grain straw gsr in.north
## 470 10 24 2.84 4.1 0.69268 TRUE

pc$x[ix.min,]

## PC1 PC2
## -3.61141 -0.19024

Q98 : Which are the plots with the largest positive and negative scores
for PC1? How is this explained? Jump to A98 •

If you have looked closely at the biplot, you have surely noticed that the
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lower and left axes, which are related to the PC scores, do not corre-
spond exactly to the scores (read the values for PC1 off the graph for the
highest/lowest scores discovered just above). This is because the default
biplot is scaled by the standard deviation of each PC, i.e., its eigenvalue.
If we reverse the scaling, we see the value on the plot:
pc$sdev

## [1] 1.31521 0.51983

pc$x[ix.max,]/pc$sdev

## PC1 PC2
## 2.77685 -0.16547

pc$x[ix.min,]/pc$sdev

## PC1 PC2
## -2.74588 -0.36596

Now you can properly locate the PC scores for field plots 79 and 470 on
the biplot.

Q99 : What is the interpretation of the second PC? Jump to A99 •

To help answer this question we can again look at high– and low–scoring
observations, but this time for PC2.
mhw[ix.max <- which.max(pc$x[,"PC2"]),]

## r c grain straw gsr in.north
## 15 15 1 3.46 8.85 0.39096 FALSE

pc$x[ix.max,]/pc$sdev

## PC1 PC2
## 0.82436 4.98651

mhw[ix.min <- which.min(pc$x[,"PC2"]),]

## r c grain straw gsr in.north
## 184 4 10 4.59 5.41 0.84843 TRUE

pc$x[ix.min,]/pc$sdev

## PC1 PC2
## 0.091197 -3.576666

Q100 : Interpret the two PCs and the proportion of variance explained
by each in terms of this experiment. Jump to A100 •

So far we have only looked at the observations in PC space, shown by
the bottom (PC1) and left (PC2) axes. There is another set of axes on
the graph, and vector arrows (drawn in red). The top (PC1) and right
(PC2) axes show the eigenvector components (“rotations”, “loadings”) for
the original variables, multiplied by the standard deviation (eigenvalue)
of the corresponding component. The vector arrows, beginning at the
origin and ending in labels, show the eigenvectors for the two original
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variables, scaled as just explained. The value is at the centre of the label.
pc$rotation[,1]*pc$sdev[1]

## grain straw
## 0.93 0.93

pc$rotation[,2]*pc$sdev[2]

## grain straw
## -0.36757 0.36757

The cosine of the angle between the vectors is proportional to their cor-
relation.

Q101 : What does the biplot reveal about the correlation between grain
and straw yield? Jump to A101 •

Challenge: Repeat the analysis with unstandardized principal compo-
nents. Explain the differences with standardized PCA for the proportion
of variance explained per component, the rotations, the biplot, and the
interpretation of the two PC’s.

12.1 Answers

A96 : PC1 explains 86.5% and PC2 13.5% of the total variance. That is, about
85% of the information is in the first component; this is a measure of the
redundancy. Return to Q96 •

A97 : The first PC is made up of large contributions from the standardized
variables representing grain yield and straw yield. This is interpreted as gen-
eral plant size: high yielding-plants score higher on PC1. Return to Q97
•

A98 : The maximum score is from plot 79, the minimum from plot 470. The
first has both very high grain and straw yield, the second both very low. The
interpretation that PC1 represents overall yield is confirmed. Return to Q98 •

A99 : The second PC represents a contrast between grain and straw yield,
independent of the overall yield level. Positive values have higher-than-average
straw yields, at a given level of grain yield. In other words, the grain-to-straw
ratio (GSR) is low. The highest– and lowest– scoring plots for PC2 confirm this:
plot 15 has a very low GSR: 0.391, whereas plot 184 has a very high GSR: 0.848.

Return to Q99 •

A100 : In summary, the first PC, accounting for about 85% of the variance in
both grain and straw yield, represents the overall yield level, whereas the sec-
ond PC, accounting for about 15% of the variance, represents the grain/straw
ratio, i.e., plant morphology independent of yield. The great majority of the
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overall variability in this field is due to variable yield. However, there is still a
fair amount of variation in plant morphology that does not depend on overall
plant size. Since this is one variety of wheat (i.e., no genetic variation) and
one management, we conclude that local environmental factors affect not only
yield but also plant morphology. Return to Q100 •

A101 : The angle between the vectors representing the two yields is small,
showing that the yields are highly-correlated. Return to Q101 •

13 Model evaluation

In §7, §8 and §11 models were evaluated by the goodness-of-fit (coeffi-
cient of determination, expressed as the adjusted R2) and compared by
ANOVA. These are internal measures of model quality: the data used to
evaluate the model is also used to build it.

Of course, the main use of a model is to predict; and what we really
would like is some measure of the predictive success of a model, i.e., an
external measures of model quality, using independent data to evaluate
the model, not the data that was used to build it. The modelling steps so
far were designed to best calibrate the model; now we want to evaluate
it.

Note: What we call evaluation is often termed validation; we prefer the
first term because we can never know if the model is valid, we can only
evaluate how well it matches reality.

A common approach is to split the dataset into a calibration and an
evaluation (often called a validation) set.

1. The model is developed using only the observations in the calibra-
tion set;

2. This model is used to predict at the the observations in the eval-
uation set, using the actual (measured) values of the predictor (in-
dependent) variable(s);

3. These predicted values are compared to the actual (measured) val-
ues of the response (dependent) variable in the evaluation set.

13.1 Splitting the dataset

Splitting the dataset has two constraints:

1. The calibration set must be large enough reliable modelling;

2. The evaluation set must be large enough for reliable evaluation
statistics.

A common split in a medium-size dataset such as this one is 3 to 1, i.e.,
3/4 for calibration and 1/4 for evaluation.

The next issue is how to select observations for each set. This can be:
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• random: select at random (without replacement); this requires no
assumptions about the sequence of items in the dataset;

• systematic: select in sequence; this requires absence of serial cor-
relation, i.e., that observations listed in sequence be independent;

• stratified: first divide the observations by some factor and then
apply either a random or systematic sampling within each stratum,
generally proportional to stratum size.

To decide which strategy to use, we need to know how the dataset is
ordered, and if there are any useful stratifying factors.

The sequence of observations is given by the row.names function; to see
just the first few we use the head function with the optional n argument
to specify the number of items to view:
head(row.names(mhw), n=10)

## [1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10"

The observations correspond to these are:
head(mhw, n=10)

## r c grain straw gsr in.north
## 1 1 1 3.63 6.37 0.56986 TRUE
## 2 2 1 4.07 6.24 0.65224 TRUE
## 3 3 1 4.51 7.05 0.63972 TRUE
## 4 4 1 3.90 6.91 0.56440 TRUE
## 5 5 1 3.63 5.93 0.61214 TRUE
## 6 6 1 3.16 5.59 0.56530 TRUE
## 7 7 1 3.18 5.32 0.59774 TRUE
## 8 8 1 3.42 5.52 0.61957 TRUE
## 9 9 1 3.97 6.03 0.65837 TRUE
## 10 10 1 3.40 5.66 0.60071 TRUE

Q102 : What is the sequence of observations? Could there be serial
correlation? Jump to A102 •

Q103 : What are possible stratifying factors? Jump to A103 •

Q104 : Which of these strategies is best to apply to the Mercer-Hall
dataset, and why? Jump to A104 •

Task 82 : Select a random sample of 3/4 of the 500 observations as the
calibration set, and the rest as the evaluation set. •
The sample function selects a random sample from a vector (here, the
row numbers of the dataframe); the size argument gives the size of the
sample and the replace argument is logical: should sampling be with
replacement?
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Although we know there are 500 observations, it’s more elegant to ex-
tract the number programatically with the dim “dimensions of a matrix”
function.

Finally, we use set.seed so your results will be the same as ours; in
practice you would not use this, instead accept the random seed. The
results will be similar but different with each random sample.

Note: The argument 123 to set.seed is arbitrary, it has no meaning.
Any number can be used, the only purpose is to get the same “random”
result in the subsequent call to sample.

dim(mhw)

## [1] 500 6

(n <- dim(mhw)[1])

## [1] 500

set.seed(123)
head(index.calib <- sort(sample(1:n, size=floor(n*3/4), replace=F)), n=12)

## [1] 2 3 4 5 7 10 11 12 13 14 16 20

length(index.calib)

## [1] 375

Task 83 : Assign the remaining observations to the evaluation set. •
The very useful setdiff function selects the subset of a set that is not
in another subset:
head(index.valid <- setdiff(1:n, index.calib), n=12)

## [1] 1 6 8 9 15 17 18 19 28 29 37 38

length(index.valid)

## [1] 125

Check that the two subsets together equal the original set; this gives a
chance to introduce the union function and the setequal “are the sets
equal?” logical function.
setequal(union(index.calib, index.valid), 1:n)

## [1] TRUE

13.2 Developing the model

From §11.2 we know that the multivariate additive model (straw yield
explained by the additive effect of grain yield and field half) is clearly
best in this particular experiment. However, in any other situation the
field would be different and so would any effect of field half. We’d like a
measure of how good is a model to predict straw yield from grain yield
in general. So we work with the single-predictor model.
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Task 84 : Re-fit this model on the calibration set. •
cal.straw.grain <- lm(straw ~ grain, data=mhw, subset=index.calib)
summary(cal.straw.grain)

##
## Call:
## lm(formula = straw ~ grain, data = mhw, subset = index.calib)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.0281 -0.3561 0.0204 0.4225 2.4225
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.7931 0.2713 2.92 0.0037 **
## grain 1.4477 0.0683 21.21 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.592 on 373 degrees of freedom
## Multiple R-squared: 0.547,Adjusted R-squared: 0.545
## F-statistic: 450 on 1 and 373 DF, p-value: <2e-16

Q105 : How well do the model coefficients agree with the model based
on all observations? Jump to A105 •

To answer this, fit the model based on all observations, then compare
the absolute and relative differences of the coefficients, extracted from
the model with the coef (or, coefficients function:
model.straw.grain <- lm(straw ~ grain, data=mhw)
(coef(cal.straw.grain) - coef(model.straw.grain))

## (Intercept) grain
## -0.073206 0.017216

((coef(cal.straw.grain) - coef(model.straw.grain))
/coef(model.straw.grain))*100

## (Intercept) grain
## -8.4507 1.2035

13.3 Predicting at the evaluation observations

Now we have a model, it can be used to predict at the observations held
out from calibration, i.e., the evaluation set.

Task 85 : Predict the straw yield for the observation set. •
The predict.lm function, which can also be called as predict, uses
an object returned by lm to predict from a dataframe specified by the
newdata argument. Here the data should be the rows (cases) of the mhw
dataframe that are part of the evaluation set; these row numbers are in
the index.valid vector.
pred <- predict.lm(cal.straw.grain, newdata=mhw[index.valid,])
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Task 86 : Compare them with the actual yields in this set, both numer-
ically and graphically. •
For convenience, we first extract the vector of actual yields from the
evaluation data frame:
actual <- mhw[index.valid, "straw"]

We now compare the numeric summaries and side-by-side histograms,
using a common scales for correct visualization.
summary(pred); summary(actual)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.75 6.02 6.53 6.50 7.06 8.26
## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.10 5.87 6.33 6.53 7.26 8.85

par(mfrow=c(1,2))
hist(pred, main="", xlab="Predicted straw yields, lb / plot",

breaks=seq(4,9.2,by=0.4), freq=F, ylim=c(0,.8))
rug(pred)
hist(actual, main="", xlab="Actual straw yields, lb / plot",

breaks=seq(4,9.2,by=0.4), freq=F, ylim=c(0,.8))
rug(actual)
par(mfrow=c(1,1))
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Q106 : What are the major differences in the distributions of the mod-
elled and actual evaluation observations? Jump to A106
•

13.4 Measures of model quality*

A systematic approach to model quality was presented by Gauch Jr. et al.
[20]. This is based on a comparison of the model-based predictions and
the measured values. This should be a 1:1 relation: each model predic-
tion should equal the true value. Of course this will rarely be the case;
the decomposition proposed by Gauch Jr. et al. [20] shows the source of
the disagreement and allows interpretation.
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Note: Another commonly-used approach was proposed by Kobayashi
and Salam [26], who also wrote a letter contrasting their approach to
Gauch’s [25]; a comprehensive review of model evaluation, citing many
applications and interpretations, is presented by Bellocchi et al. [3].

Gauch Jr. et al. [20] distinguish:

MSD : Mean Squared Deviation. This shows how close, on average the
prediction is to reality. Its square root is called the Root Mean
Squared Error of Prediction (RMSEP), expressed in the same units
as the modelled variable.

SB : Squared bias. This shows if the predictions are systematically higher
or lower than reality.

NU : Non-unity slope. This shows if the relation between predicted and
actual is proportional 1:1 throughout the range of values; if not,
there is either an under-prediction at low values and corresponding
over-prediction at high variables (slope > 1), or vice-versa (slope
< 1).

LC : Lack of correlation. This shows how scattered are the predictions
about the 1:1 line.

It is quite common to report the RMSEP; this indeed is the single num-
ber that tells how closely, on average, the model predicted the evaluation
points; however the decomposition shows the reason(s) for lack of agree-
ment.

Some notation:

– there are n total evaluation observations;

– yi is the true (measured) value of evaluation observation i;

– ŷi is the predicted value of evaluation observation i;

– the overbar y indicates the arithmetic mean of the yi, etc.

Then MSD, SB, NU, and LC are computed as:

MSD = 1
n

n∑
i=1

(
yi − ŷi

)2
(13.1)

SB =
(
ŷ −y

)2
(13.2)

NU = (1− b2)
1
n

n∑
i=i

(
ŷi − ŷ

)2
(13.3)

LC = (1− r2)
1
n

n∑
i=i

(
yi −y

)2
(13.4)

where:

– b is the slope of the least-squares regression of actual values on
the predicted values, i.e.,

∑
yiŷi/

∑
ŷ2
i ; this is also called the gain.
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– r2 is the square of the correlation coefficient r1:1 between actual
and predicted, i.e.,

(∑
yiŷi

)2/(∑yi)2(∑ ŷi)2.

Thus NU is the non-unity slope in the regression of actual on predicted,
scaled by the sums of squares of the predicted values of the evaluation
observations, and LC is the lack of correlation in the regression of actual
on predicted, scaled by the sums of squares of the actual values of the
evaluation observations.

These have the relation:

MSD = SB+NU+ LC (13.5)

That is, the total evaluation error consists of bias, gain, and lack of corre-
lation. These are distinct aspects of model quality and can be interpreted
as translation (SB), rotation (NU), and scatter (LC), respectively:

Translation : The model systematically over- or under-predicts;

Rotation : The relation between actual and predicted value is non-linear, that
is, not a constant relation throughout the range of values;

Scatter : The model is not precise.

If there is significant translation or rotation, this indicates the model
form is not correct; we show an example of this below in §13.5. If there
is significant scatter, this indicates that the model does not well-describe
the system; perhaps there are missing factors (predictors) or perhaps the
system has a lot of noise that can not be modelled. Thus by examining
the model evaluation decomposition the analyst can decide on how to
improve the model.

We begin by visualizing the predictive success of the model on a 1:1
plot. Note that by convention this plot has the actual (measured) value
on the y-axis (dependent) and the predicted (modelled) value on the x-
axis (independent). That is, it shows how the prediction predicts the
actual.

Task 87 : Plot the actual vs. predicted grain yields of the evaluation set,
with a 1:1 line. •
The plot:
plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

main="Mercer-Hall trial, straw yield, lbs/plot",
xlim=c(4.5,9), ylim=c(4.5,9));

abline(0,1); grid()

124



4 5 6 7 8 9

5
6

7
8

9

Mercer−Hall trial, straw yield, lbs/plot

Predicted

A
ct

ua
l

Q107 : How well does the calibrated model predict the evaluation ob-
servations? Jump to A107
•

13.4.1 MSD

Task 88 : Compute the MSD and RMSEP. •
(valid.msd <- sum((actual - pred)^2)/length(index.valid))

## [1] 0.45932

(valid.msd <- mean((actual - pred)^2))

## [1] 0.45932

(valid.rmsep <- sqrt(valid.msd))

## [1] 0.67773

Q108 : How does the RMSEP compare to the RMSE (root mean squared
error) in the calibration linear model? What is the practical interpretation
of the RMSE? Jump to A108 •

The RMSE of the linear model is the mean of the squared residuals, ex-
tracted from the linear model with the residuals function:
(rmse <- sqrt(mean(residuals(cal.straw.grain)^2)))

## [1] 0.5907
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13.4.2 SB

Task 89 : Compute the bias and its square (SB). •
(valid.bias <- (mean(pred) - mean(actual)))

## [1] -0.020911

(valid.sb <- valid.bias^2)

## [1] 0.00043728

valid.sb/valid.msd*100

## [1] 0.095201

Q109 : What is the bias? Is it positive or negative? What does this imply
about the model? What proportion of the MSD is attributed to the SB?

Jump to A109 •

13.4.3 NU

The next component of the error the non-unity slope (NU) factor. To
compute this we first need to compute b, the slope of the least-squares
regression of actual values on the predicted values. This is an interesting
number in its own right, the gain, which we hope will be 1. The gain can
be directly with the least-squares formula

∑
yiŷi/

∑
ŷ2
i , but in practice

it’s easier to use the lm function to fit the slope and then extract that
coefficient with the coef function:

Task 90 : Compute the regression of actual straw yield on predicted
grain yield in the evaluation set, and display, along with the 1:1 line, on
a scatterplot of actual vs. predicted. •
As usual, we fit the model with the lm function, summarize it with the
summary function (to see the coefficients and scatter), and produce the
scatterplot with plot. We add text to the plot with text, and (this is new)
produce a legend with legend, also specifying the legend symbols (here,
lines using the lty “line type” argument) and colours (here, matching
the line colours, both specified with the col “colour” argument):

Now compute, summarize and plot the regression:
regr.actual.pred <- lm(actual ~ pred)
summary(regr.actual.pred)

##
## Call:
## lm(formula = actual ~ pred)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4237 -0.4085 0.0006 0.3015 2.9974
##
## Coefficients:
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## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2941 0.5675 0.52 0.61
## pred 0.9580 0.0868 11.04 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.682 on 123 degrees of freedom
## Multiple R-squared: 0.498,Adjusted R-squared: 0.494
## F-statistic: 122 on 1 and 123 DF, p-value: <2e-16

plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,
main="Mercer-Hall trial, straw yield, lbs/plot",
xlim=c(4.5,9), ylim=c(4.5,9));

abline(regr.actual.pred, col="red")
abline(0,1); grid()
text(4.5, 8.5, paste("Gain:", round(coef(regr.actual.pred)[2], 2)),

pos=4, col="red")
legend(7.5, 5, c("1:1","regression"), lty=1, col=c("black","red"))
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Q110 : What is the gain? Is it greater than or less than 1? What does
this say about the model? Jump to A110 •

The model summary shows that the gain is significantly different from
zero, which is no surprise. To assess it against a null hypothesis of β = 1,
one method is to remove the 1:1 line from the regression and then com-
pare the regression slope to zero. The 1:1 line is simply the line where
actual yield equals predicted yield, so first we subtract the predicted
from the actual; this would reduce an exact 1:1 slope to 0. Then we re-fit
and summarize the model. We also visualize the hypothesized 0 slope
and the actual negative gain.
regr.actual.pred.0 <- lm(I(actual - pred) ~ pred)
summary(regr.actual.pred.0)

##
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## Call:
## lm(formula = I(actual - pred) ~ pred)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.4237 -0.4085 0.0006 0.3015 2.9974
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 0.2941 0.5675 0.52 0.61
## pred -0.0420 0.0868 -0.48 0.63
##
## Residual standard error: 0.682 on 123 degrees of freedom
## Multiple R-squared: 0.0019,Adjusted R-squared: -0.00621
## F-statistic: 0.234 on 1 and 123 DF, p-value: 0.629

plot(I(actual - pred) ~ pred, ylab="Actual - Predicted",
xlab="Predicted",
main="Mercer-Hall trial, straw yield, lbs/plot")

grid(); abline(regr.actual.pred.0, col="red"); abline(h=0)
text(5, 1.6, paste("Slope:",

round(coef(regr.actual.pred.0)[2], 2)),
pos=4, col="red")

legend(7,3, c("1:1","regression"), lty=1, col=c("black","red"))
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The I “as-is” function specifies that the expression (actual-pred) is an
arithmetic operation, not a model formula. This is necessary because -
is a formula operator, meaning to remove a term from a model. However
here we want the - operator to have its usual (arithmetic) meaning.

The slope coefficient here is exactly 1 less than the slope coefficient from
the original regression of actual vs. predicted, as expected:
coef(regr.actual.pred)[2] - coef(regr.actual.pred.0)[2]

## pred
## 1
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Q111 : Is the gain of the regression of actual vs. predicted significantly
different from 1? Jump to A111 •

Task 91 : Compute the non-unity slope (NU) factor. •
First, extract the slope from the fitted linear model:
b <- coef(regr.actual.pred)[2]; names(b) <- NULL; print(b)

## [1] 0.958

Note: The names function retrieves the name attribute; here it was as-
signed the coefficient name pred (from the independent variable’s name)
by the lm function. We don’t need the name, so we assign it NULL.

Then we use equation (13.3). The factor 1/n ·∑ni=i(xi − x)2 is the mean
squared deviation of the predicted values from their mean:
(valid.msd.pred <- mean((pred - mean(pred))^2))

## [1] 0.49476

and this is multiplied by the squared deviation of the slope of the regres-
sion of actual on predicted from 1:1:
(valid.nu <- (1 - b)^2 * valid.msd.pred)

## [1] 0.00087292

valid.nu/valid.msd*100

## [1] 0.19005

Q112 : What is the magnitude of the non-unity factor NU? What propor-
tion of the MSD is attributed to the NU? Jump to A112
•

13.4.4 LC

The final aspect of model quality is the lack of correlation, LC.

Task 92 : Compute LC. •
We use equation (13.4). The factor 1/n · ∑ni=i(yi − y)2 is the mean
squared deviation of the measured values from their mean:
(valid.msd.actual <- mean((actual - mean(actual))^2))

## [1] 0.91208

and then this is multiplied by the lack of fit in the regression of actual
on predicted, (1−r2). The fit is a field in the model summary; it can also
be computed directly with cor function for this bivariate model:
(r2 <- summary(regr.actual.pred)$r.squared)

## [1] 0.49784
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(r2 <- cor(actual, pred)^2)

## [1] 0.49784

(valid.lc <- (1 - r2) * valid.msd.actual)

## [1] 0.45801

valid.lc/valid.msd * 100

## [1] 99.715

Q113 : What proportion of the MSD is attributed to LC? Jump to A113
•

Check that the three components add up to the MSD:
print(valid.msd - (valid.sb + valid.nu + valid.lc))

## [1] 0

Yes, within rounding error.

Q114 : What is the weak point of the model? Is the linear form justified?
Jump to A114 •

Challenge: Repeat the above analysis for several more random selec-
tions (splits 3/4 – 1/4) of subsets (see §13.1). Collect the statistics for
MSD and its components and summarize them (minimum, maximum,
IQR, range, mean). How much do MSD and its components change? How
reliable then is information from a single split of this size?

Challenge: Repeat the above analysis for another (or several more) split
sizes, e.g., 1/20, 1/10, 1/5, 1/3, 1/2 evaluation sets. Again, take sev-
eral selections at each split, and summarize them as in the previous
challenge. Also summarize the calibrations (model coefficients and their
standard errors). At what splits are the calibration and evaluation results
(considered separately) least variable? For this dataset what is the best
balance?

13.5 An inappropriate model form*

The main use of the evaluation analysis is to discover an inappropriate
model form. We can see how this works by fitting such a model. The ex-
ample we choose is a linear model without an intercept. That is, we force
a zero grain yield to also have a zero straw yield. This was discussed
above in §7.4, where its deficiencies in this case were revealed; here we
analyze these with the model evaluation components of the previous
section.

Q115 : Would a plot with no grain yield necessarily have no straw yield?
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Jump to A115 •

Task 93 : Fit a linear model of straw predicted by grain, without an
intercept, to the evaluation subset, and summarize it. •
By default models fit with lm include an intercept; to remove it use the -
formula operator to remove the intercept, symbolized by the term 1.
cal.straw.grain.00 <- lm(straw ~ grain - 1, data=mhw, subset=index.calib)
summary(cal.straw.grain.00)

##
## Call:
## lm(formula = straw ~ grain - 1, data = mhw, subset = index.calib)
##
## Residuals:
## Min 1Q Median 3Q Max
## -2.1449 -0.3624 0.0193 0.3938 2.4742
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## grain 1.64595 0.00777 212 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.598 on 374 degrees of freedom
## Multiple R-squared: 0.992,Adjusted R-squared: 0.992
## F-statistic: 4.49e+04 on 1 and 374 DF, p-value: <2e-16

Task 94 : Plot the straw vs. grain yield of the evaluation set, with the
with-intercept and no-intercept models shown as lines; include the (0,0)
point. •
The graphing limits are specified with the xlim and ylim arguments to
plot:
plot(straw ~ grain, data=mhw, subset=index.calib, xlim=c(0,6), ylim=c(0,9))
title("Mercer-Hall trial, calibration dataset")
abline(cal.straw.grain, lty=2)
abline(cal.straw.grain.00, col="red")
grid()
legend(4, 1, c("with intercept","no intercept"),

lty=c(2,1), col=c("black","red"))
text(0, 2.5, paste("Slope:",round(coef(cal.straw.grain)[2],2)), pos=4)
text(1, 0.5, paste("Slope:",round(coef(cal.straw.grain.00)[1],2)), col="red")
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Q116 : What is the effect of forcing the regression through (0,0)? Can
you determine by eye which one fits better the observations? Jump to
A116 •

Task 95 : Compute the predicted values for the evaluation observa-
tions, using the no-intercept model. •
pred <- predict.lm(cal.straw.grain.00, newdata=mhw[index.valid,])
summary(pred)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 4.49 5.94 6.52 6.49 7.13 8.49

Task 96 : Plot the actual vs. predicted on a 1:1 graph, along with the
1:1 line and a regression of actual vs. predicted. •
regr.actual.pred.00 <- lm(actual ~ pred)
plot(actual ~ pred, ylab="Actual", xlab="Predicted", asp=1,

main="Mercer-Hall trial, straw yield, lbs/plot",
xlim=c(4.5,9), ylim=c(4.5,9));

abline(regr.actual.pred.00, col="red")
abline(0,1); grid()
text(4.5, 8.5, paste("Gain:",

round(coef(regr.actual.pred.00)[2], 2)),
pos=4, col="red")

legend(7.5, 5, c("1:1","regression"), lty=1,
col=c("black","red"))
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Task 97 : Compute the evaluation statistics. •
(msd.00 <- mean((actual - pred)^2))

## [1] 0.47487

(rmsep.00 <- sqrt(msd.00))

## [1] 0.68911

(sb.00 <- (mean(pred) - mean(actual))^2)

## [1] 0.0010228

(nu.00 <- (1 - coef(regr.actual.pred.00)[2])^2 * mean((pred - mean(pred))^2))

## pred
## 0.015841

(lc.00 <- (1 - cor(actual, pred)^2) * mean((actual - mean(actual))^2))

## [1] 0.45801

Task 98 : Compute the relative contribution of the model evaluation
elements to the overall quality. •
sb.00/msd.00*100

## [1] 0.21538

nu.00/msd.00*100

## pred
## 3.3358

lc.00/msd.00*100

## [1] 96.449
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msd.00 - (sb.00 + nu.00 + lc.00)

## pred
## -4.996e-16

Q117 : How do these statistics compare with those for the with-intercept
model? Interpret them geometrically – what could be wrong with this
model? Jump to A117 •

13.6 Answers

A102 : By row, within each column in the field. Adjacent plots, i.e., adjacent
observations in the data frame, may not be independent. Thus there could be
serial correlation. Return to Q102 •

A103 : Possible stratifying factors are field half (in.north), row, and column.
But we saw in §8.3 that field half only explains a small amount of the variance,
well under 10%; below in §16 we will see the same result for row and column.

Return to Q103 •

A104 : A random sampling is indicated: (1) there is no useful stratifying
factor; (2) there may be serial autocorrelation. Return to Q104 •

A105 : The coefficients agree fairly well; the percentage change from the full
model to the calibration model is -8.5% for the intercept, 2% for the grain yield,

Return to Q105 •

A106 : The actual yields are spread over a wider range, especially the maxi-
mum, and less concentrated at the central value (about 6.5 lbs plot-1). Return
to Q106 •

A107 : For the most part fairly well (points are bunched around the 1:1 line)
but several points are very badly predicted. There does not appear to be any
gain. Return to Q107 •

A108 : The RMSEP of evaluation is 0.678 lbs plot-1; the residual mean square
error of the model is 0.591 lbs plot-1. These are similar but in this evaluation
the RMSEP is a somewhat higher. The RMSEP is the mean prediction error of
straw yield that we expect for the “same” experimental structure where we
measure grain yield and use it to predict straw yield. Return to Q108 •

A109 : There is a small bias: -0.0209. This negative bias shows that the actual
is a bit greater than the predicted, i.e., on average the model slightly under-
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predicts. But the squared bias SB is a very small proportion of the total error,
0.095%. This is not a weak point of the model. Return to Q109 •

A110 : The gain is greater than 1: 0.96. So, high straw yields are somehwat
under-predicted, and lowstraw yields are somewhat over-predicted – the model
fits well in the middle of the range, but smooths out the extreme highs and
lows, predicting towards the mean.A Thus part of the model imprecision is
due to rotation: there is Return to Q110 •

A111 : Yes, the probability that it would be a Type I error to reject the null
hypothesis that the coefficient of the 1:1 model is in fact 1 (i.e., the coefficient
of the 0:1 model is in fact 0) is 0.63, so we can safely reject the null hypothesis.

Return to Q111 •

A112 : The non-unity factor NU is 8.7292× 10−4. This is a fairly small part of
the MSD, namely 0.19%. This is not the weakest point of the model, although
it is significant. Return to Q112 •

A113 : The lack of correlation LC is 0.458; this is most of the MSD, namely
99.715% of it. Return to Q113 •

A114 : The major problem with the model is lack of correlation (LC), i.e., the
prediction precision. There is almost no bias and little gain. Thus the linear
model form is well-justified. Return to Q114 •

A115 : No, a plant could grow vegetatively but never flower or produce grain.
Return to Q115 •

A116 : The line through (0,0) has a steeper slope to reach the “cloud” of
points, whereas the line with intercept has a positive intercept and so can have
a gentler slope. It seems difficult to tell by eye which better fits the point cloud.

Return to Q116 •

A117 : The no-intercept model has higher overall error: its RMSEP is 0.689
compared to 0.678 for the full model. But, this is not due to lack of correlation
(LC): these are 0.458 and 0.458 respectively, i.e., identical! This shows nicely
the value of the decomposition – the problem with the no-intercept model
is not its lack of precision, this is exactly the same as for the with-intercept
model.

Both squared biases (SB): are quite small: 0.00102 (no-intercept) and 4.37×10−4

(intercept). Thus neither systematically over- or under-predicts.

This means the problem with the no-intercept model is in the non-unity slope
(NU): 0.01584 (no-intercept) vs. 8.7292×10−4. In the no-intercept model this is
now a recognizable proportion (3.336%) of the total error. This is interpreted as

135



a rotation; this is in fact what happens when we forced the regression through
the origin. Return to Q117 •

We are done with these models and some other variables, except for
the main model of straw yield and its RMSEP (see §14), so clean up the
workspace:
rm(n, index.valid, index.calib, actual)
rm(cal.straw.grain, pred)
rm(valid.msd, rmse)
rm(regr.actual.pred, regr.actual.pred.0, valid.bias, valid.sb, valid.lc)
rm(b, valid.nu, valid.msd.pred, valid.msd.actual, r2)
rm(cal.straw.grain.00, regr.actual.pred.00, msd.00, rmsep.00, sb.00, nu.00, lc.00)

14 Cross-validation*

In §13 the predictive success of a model was evaluated by evaluation
against an independent dataset. Since we only had one dataset (the 500
plots), we were forced to create this set by a random split into calibration
and evaluation sets. There are several problems here:

1. We lose precision in the model, because it’s based on fewer obser-
vations;

2. The split is random, so that a different split (with the same propor-
tions) would give different results.

An approach to evaluation that uses the insight of point (2) but retains
precision is leave-one-out cross validation, abbreviated LOOCV. This is
also known as leave-one-out jackknifing [11, 13], where our main inter-
est is in the accuracy of the prediction.

Note: The term “cross-validation” is used consistently in texts, papers
and computer programs, so we use the term; however we consider it a
form of evaluation, as explained in the previous §13.

The concept is simple:

1. For each observation:

(a) remove it from the dataset, i.e., “leave one out”;

(b) compute the model parameters (e.g., slope and intercept of a
simple linear regression);

(c) use this model to predict at the left-out point;

(d) calculate the prediction error for this one point.

2. Compute the evaluation statistics for the set of prediction errors
(one for each observation), as in §13.4.

These evaluation statistics are assumed to apply to the single equation
(parameterization) computed from all observations.

Task 99 : Write a function to compute the LOOCV fits for the linear
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model of straw yield predicted by grain yield. This function should take
as arguments: (1) a model to cross-validate and (2) the dataset on which
to cross-validate it. It should return (1) the LOOCV predictions and (2)
the coefficients for each LOOCV model fit. •
We use the function command to define a function; this was explained
in §7.3.1. We define two arguments: (1) the model form to be cross-
validated, named model within the function; (2) the dataset where the
model should be applied, named dset.

This is the most complex function we’ve defined; here are some points
of interest:

• The function is defined with the function command and stored in
a workspace object with a name of our choosing; this name is then
used to call the function;

• At the end of the function we use the return function to return
a list, build with the list function, of (1) the LOOCV predictions
as a vector named pred, (2) the coefficients of each of the models
built omitting one observation as a matrix with one column per
model coefficient, named coef. The former is used for the cross-
validation, the latter to evaluate the robustness of the model to any
unusual single observations.

• Both of the returned variables must be initialized before the for
loop, which will fill in the rows one-by-one as each observation is
omitted.

• The colnames function is used to assign names to the columns of
the coefficients vector, using the paste function to create a list of
coefficient names of the correct length, depending on the number
of model parameters.

• The type conversion function as.character convert as sequence
of numbers into a character vector, suitable to be used in paste.

• The for flow control structure defines a for-loop: the first expres-
sion after the for is the list of indices which are used inside the
loop. Here we specify the sequence 1: nrow(dset); this uses the :
operator, shorthand for a continuous integer sequence which could
also be specified with the seq command, i.e., seq(1, nrow(dset),
by=1).

• The value from this sequence is assigned to variable which we name
i. This is only defined in the loop, and is used to specify observa-
tion numbers, both for omitting a row from the dataframe, i.e.,
[-i,], and selecting just the one row, i.e., [i,]; both use the []
matrix selection operator.

• The results of each model fit (prediction and coefficients) are stored
in the initialized vectors, at the correct slot, again using the loop
index i.
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Here is the function:
Xval <- function(model, dset) {
pred <- rep(0, nrow(dset))
n <- length(coefficients(model))
coef <- matrix(0, nrow=nrow(dset), ncol=n)
colnames(coef) <- paste("b", as.character(0:(n-1)) , sep="")
for (i in 1:nrow(dset)) {
m <- lm(formula(model), data=dset[-i,]);
pred[i] <- predict(m, newdata=dset[i,])
coef[i,] <- coefficients(m)

}
return(list(pred=pred, coef=coef))

}

Task 100 : Apply this function to the model of straw yield predicted by
grain yield, and display the structure of the returned object. •
xval.fit <- Xval(model.straw.grain, mhw)
str(xval.fit)

## List of 2
## $ pred: num [1:500] 6.06 6.69 7.32 6.44 6.06 ...
## $ coef: num [1:500, 1:2] 0.862 0.865 0.861 0.864 0.868 ...
## ..- attr(*, "dimnames")=List of 2
## .. ..$ : NULL
## .. ..$ : chr [1:2] "b0" "b1"

Task 101 : Display the actual observations of straw yield against the
LOOCV fits, on a 1:1 line. •
lim <- range(xval.fit$pred, mhw$straw)
plot(mhw$straw ~ xval.fit$pred, asp=1, xlim=lim, ylim=lim,

xlab="LOOCV prediction", ylab="Actual")
abline(0,1)
grid()
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Task 102 : Compute the cross-validation residuals, i.e., the actual straw
yields less the LOOCV fits; summarize them and display as a histogram.

•
xval.res <- xval.fit$pred - mhw$straw
summary(xval.res)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.04724 -0.37483 -0.01042 -0.00009 0.35523 2.03432

hist(xval.res, main="LOOCV residuals")
rug(xval.res)
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Recall, the RMSEP is the square root of the sum of squared residuals
divided by the number of observations.

Q118 : What is the LOOCV RMSEP? How does this compare to the RMSE
of the fit (the internal measure) and the independent evaluation RMSE?

Jump to A118 •

Recall, the single estimate of independent evaluation RMSE was com-
puted in §13.4.

Here are (1) RMSEP from cross-validation; (2) RMSE from the internal fit;
(3) RMSEP from the single evaluation:
sqrt(sum(xval.res^2)/nrow(mhw))

## [1] 0.61597

sqrt(sum(residuals(model.straw.grain)^2)/(model.straw.grain$df.residual))

## [1] 0.61477

print(valid.rmsep)
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## [1] 0.67773

Challenge: Compute and interpret the measures of model quality devel-
oped in §13.4, i.e., the RMSEP broken down into bias, gain and scatter.

The function also returned the LOOCV model coefficients.

Task 103 : Summarize the LOOCV model coefficients, and compare
with the best-fit coefficients (using all observations). •
summary(xval.fit$coef, digits=5)

## b0 b1
## Min. :0.77899 Min. :1.4214
## 1st Qu.:0.86293 1st Qu.:1.4296
## Median :0.86674 Median :1.4304
## Mean :0.86628 Mean :1.4305
## 3rd Qu.:0.87003 3rd Qu.:1.4313
## Max. :0.90307 Max. :1.4514

coefficients(model.straw.grain)

## (Intercept) grain
## 0.86628 1.43050

The optional digits argument to summary is used here to show more
than the default three significant digits.

Q119 : How consistent are the LOOCV coefficients? Which one varied
more? Why? Jump to A119 •

14.1 Answers

A118 : The LOOCV RMSEP is 0.616 lb. plot-1. The single-estimate evaluation
RMSEP is 0.6777 lb. plot-1. The internal RMSE of the fit is 0.6148 lb. plot-1.

The single evaluation RMSEP is the most conservative; this is because the evalu-
ation is based on a large number of observations and a single model. Adjusting
the model for each omitted observation (LOOCV) reduces the RMSEP to just a
bit greater than the internal estimate.

There is only one LOOCV estimate and only one internal fit estimate, whereas
the single evaluation by splitting the dataset could be done many times, each
with a different random split. This is similar to K-fold cross-validation, where
K is the proportion of the observations omitted each time. Return to Q118 •
## [1] 0.616
## [1] 0.6777
## [1] 0.6148
## [1] 0.03
## grain
## 1.4305
## [1] 0.1241
## (Intercept)
## 0.8663
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A119 : The slopes are very consistent; that is, leaving out any one observation
hardly changes it: the total range is 0.03 compared to the single “best” value
1.4305. The intercepts are less consistent: the total range is 0.1241 compared
to the single “best” value 0.8663. This shows that leaving out one very high or
very low straw yield can move the line up or down. Return to Q119 •

15 Spatial analysis

To this point we have only considered the wheat yields in feature space
(also known as attribute or property space). For example, the grain
and straw yields form a two-dimensional ‘space’. But we have ignored
an additional piece of information: the relative location of the plots in
the field. Mercer & Hall clearly stated that there could be hot spots or
geographic trends, meaning that the plots are not necessarily spatially
independent. We now investigate this.

15.1 Geographic visualisation

We begin by visualisaing the agricultural field:

Task 104 : Make a correctly-scaled map of the plot locations in the
field, showing the plot numbers. •
The plots are rectangular (longer N-S than wide E-W), so that by plotting
the 25 columns and 20 rows in a square (the shape of the field, and
the default for a bivariate plot), we get a geometrically-correct map.
However, the default plotting function is from low to high indices, so
that row 1 would be plotted at the bottom, when in fact it is at the top.
We can specify the axis with the ylim argument, reversing the row order:
with(mhw, plot(c, r, type="n", xlab="column", ylab="row", ylim=c(20,1),

main="Layout of the Mercer-Hall uniformity trial"))
abline(v=1:25, lty=1, col="darkgray")
abline(h=1:20, lty=1, col="darkgray")

# rownames() gives the plot number
with(mhw, text(c,r, rownames(mhw), cex=.5))
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The xlab and ylab graphics parameters are used to specify the axis
names. Also, the type of plot is specified with the type graphics argu-
ment, here set to "n", meaning “no plot” (yet) – this just sets up the
plot area and axes. The actual plotting is then done with the text func-
tion, using the rownames function to extract the plot number from the
dataframe.

Task 105 : Make a post-plot of the grain yield, i.e. a map of the plot
locations with symbol size proportional to the data value. •
with(mhw,

plot(c, r, pch=21, col="black", bg="lightblue", ylim=c(20,1),
xlab="column", ylab="row",
main="Mercer-Hall uniformity trial",
sub="Area of circles proportional to grain yield",
cex=2*grain/max(grain)))
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We can visualise this better by displaying each point in a colour ramp.
First we classify the observations into octiles (eight groups) with the cut
function, using the quantile function to compute the octiles.

# compute cutoff points for the octiles
(q8 <- quantile(mhw$grain, seq(0, 1, length=9)))

## 0% 12.5% 25% 37.5% 50% 62.5% 75% 87.5% 100%
## 2.7300 3.4238 3.6375 3.7812 3.9400 4.0900 4.2700 4.4700 5.1600

# classify each observation
grain.c <- cut(mhw$grain, q8, include.lowest=T, labels=F)
sort(unique(grain.c))

## [1] 1 2 3 4 5 6 7 8

So the 500 yields have been grouped into eight classes.

A colour ramp is a list of colours in some visually-meaningful sequence.
One example is produced by the terrain.colors function; the colours
are given as hexidecimal numbers from 00 (absence of colour) to FF (sat-
uration with the colour), for the three primary colours Red, Green and
Blue:

# look at the colour ramp: these are RRGGBB from 00 to FF (hex)
terrain.colors(8)

## [1] "#00A600" "#3EBB00" "#8BD000" "#E6E600" "#E9BD3A" "#ECB176"
## [7] "#EFC2B3" "#F2F2F2"

For example, the final colour in this ramp is #F2F2F2, which is a dark
gray: equal saturations of the three primaries, and each of these has
#F2/#FF, i.e. 95% saturation:
print(0xf2/0xff)

## [1] 0.94902
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This example shows that hexidecimal numbers may be used in R; they
are indicated with the prefix 0x.

Now we use this colour ramp, selecting the appropriate colour for each
quantile: dark green is lowest, white is highest.
with(mhw,

plot(c, r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),
xlab="column", ylab="row",
main="Mercer-Hall uniformity trial",
sub="Colour of circles from low yield (green) to high (gray)",
col=terrain.colors(8)[grain.c]))
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Another way to visualize the field is with a 3D plot using the wireframe
graphics function of the lattice package. The optional aspect argu-
ment controls ratio between the horizontal axes, as well as the vertical
exaggeration; the optional screen argument controls the viewing angle;
this is a list of rotation from looking across the rows, and the rotation
from vertical viewing. We use a different colour ramp, obtained by a call
to the bpy.colors function of the sp package:
plot(wireframe(grain ~ r + c, data=mhw, drape=T,

aspect=c(1,.2), col.regions=sp::bpy.colors(128),
main="Grain yield, lb. per plot",
screen= c(z=30, x=-60),
xlab="N to S", ylab="W to E",
sub="Looking SE from NW corner of field"))
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Q120 : Does there appear to be local spatial dependence, i.e. similar
values near each other? Does this appear to vary over the field? Jump
to A120 •

We view this from another perspective: from the S (so, W to the left, E to
the right), from somewhat a lower viewing angle, and with less vertical
exaggeration; this corresponds to figure 1 of McBratney and Webster
[33]:
plot(wireframe(grain ~ r + c, data=mhw, drape=T,

aspect=c(1,.08), col.regions=bpy.colors(128),
main="Grain yield, lb. per plot",
screen= c(z=270, x=-75), zlab="",
xlab="N to S", ylab="W to E",
sub="Looking N from S end of field"))
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15.2 Setting up a coördinate system

Analysis of the spatial structure requires metric coördinates, rather than
row and column numbers, since the plots are not square.

Task 106 : Determine the field size and the plot dimensions. •
The original experiment was in English units, but we will use metres. So,
we start with some conversions to get the dimensions of each plot:

First, some conversion factors; note that 1 ha = 10 000 m2:
ha2ac <- 2.471054
ft2m <- .3048
(field.area <- 10000/ha2ac)

## [1] 4046.9

Then we divide the side of the 1-acre field evenly into 20 rows and 25
columns to obtain the dimensions in meters and the area in m2:
(plot.area <- field.area/500)

## [1] 8.0937

(plot.len <- sqrt(field.area)/20)

## [1] 3.1807

(plot.wid <- sqrt(field.area)/25)

## [1] 2.5446

rm(ha2ac, ft2m, field.area)
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Task 107 : Compute the total length and width in metres, confirm they
are equal (because the field is a square, and confirm that they multiply
to 1 ha (4 045.9 m2). •
(tot.len <- plot.len*20)

## [1] 63.615

(tot.wid <- plot.wid*25)

## [1] 63.615

tot.len * tot.wid

## [1] 4046.9

rm(tot.len, tot.wid)

Task 108 : Compute coördinates for the centre of each plot. •
Coördinates are assigned from an arbitrary origin of (0,0) at the SW
corner of the field, so that the coördinates of the centre of plot [1,1] are
half the plot size in both directions:
plot.wid/2

## [1] 1.2723

plot.len/2

## [1] 1.5904

Now we build a data frame of coordinates; first with the seq function to
make vectors of the midpoints of the E and N directions, respectively;
and then with the expand.grid function to make a dataframe with one
row per combination:
nrow <- length(unique(mhw$r))
ncol <- length(unique(mhw$c))
sx <- seq(plot.wid/2, plot.wid/2+(ncol-1)*plot.wid, length=ncol)
sy <- seq(plot.len/2+(nrow-1)*plot.len, plot.len/2, length=nrow)
xy <- expand.grid(x=sx, y=sy)
rm(nrow, ncol, sx, sy)

The sequence for the y-axis starts with the highest coordinate for row 1
(which is at the top of the plot).

We save the plot.wid, plot.len, and plot.areaobjects in the workspace,
to be used later.

15.3 Loading add-in packages

For most of the spatial analysis we will use two add-in packages; these
are representative of the hundreds which have been implemented by
practising statisticians. Here we will use sf “Simple features” package,
which is a foundation for spatially-explicit analysis in R, and the gstat
package [36], which is an R implementation of the gstat geostatistics
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program [38]. For some of the graphics we will use the lattice imple-
mentation of “Trellis” graphics.

When R starts, a number of basic packages are loaded; we can see these
with the search function. Additional packages may be loaded with the
library or require functions.

Note: There is no harm in calling these functions on a package that is
already loaded.

Task 109 : Load the sf, gstat, and lattice packages. •
require(sf); require(gstat); require(lattice)

15.4 Creating a spatially-explicit object

The sf represents spatial objects by adding a special geometry field to
a data.frame.

Task 110 : Copy the mhw dataframe to a new object and convert the
copy to class sf. •
By making a copy we have the data in two forms, spatial and non-spatial,
so we don’t have to keep converting between them.

We do this by adding the computed coordinates to the data frame, and
then converting to the spatial data type defined by the sf package with
the st_as_sf function, specifying columns (fields) that hold the coordi-
nates with the coords argument.

Spatial objects have inherent properties such as their bounding box; this
can be reported with the st_bbox function.
mhw.sf <- cbind(mhw, xy)
names(mhw.sf)

## [1] "r" "c" "grain" "straw" "gsr" "in.north"
## [7] "x" "y"

mhw.sf <- st_as_sf(mhw.sf, coords = c("x", "y"))
class(mhw.sf)

## [1] "sf" "data.frame"

summary(mhw.sf)

## r c grain straw
## Min. : 1.00 Min. : 1 Min. :2.73 Min. :4.10
## 1st Qu.: 5.75 1st Qu.: 7 1st Qu.:3.64 1st Qu.:5.88
## Median :10.50 Median :13 Median :3.94 Median :6.36
## Mean :10.50 Mean :13 Mean :3.95 Mean :6.51
## 3rd Qu.:15.25 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:7.17
## Max. :20.00 Max. :25 Max. :5.16 Max. :8.85
## gsr in.north geometry
## Min. :0.391 Mode :logical POINT :500
## 1st Qu.:0.574 FALSE:250 epsg:NA: 0
## Median :0.604 TRUE :250
## Mean :0.611
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## 3rd Qu.:0.642
## Max. :0.850

st_bbox(mhw.sf)

## xmin ymin xmax ymax
## 1.2723 1.5904 62.3426 62.0245

Q121 : What is the data type of the mhw.sf object? What is the bound-
ing box, i.e. limits of the the coördinates? Jump to A121
•

Now that we’ve built the spatial object, we can save it for later use in
another session:
save(mhw.sf, file="mhw_spatial.RData")

15.5 More geographic visualisation

The sf package works well with the ggplot2 “grammer of graphics” [54]
graphics package This has a very different approach than base graphics
towards building up a plot; see the textbook by the package author Wick-
ham [53], and the online version of the 3rd edition18. We also load the
gridExtra package that provides the function grid.arrange to plot
several ggplot2 objects on one R figure.
library(ggplot2)
library(gridExtra)

The geom_sf function displays sf objects.

Task 111 : Plot the grain, straw, and their ratio, coloured by their octile.
•

We take this chance to illustrate some more colour ramps, these pro-
duced by the bpy.colors and heat.colors functions, as well as the
terrain.colors function we saw before. Different variables shown on
the same figure should use different colour ramps.

We create the ggplot2 as follows:

1. start the plot with the ggplot function with no arguments;

2. add elements one after another with the + operator, which here
means to add elements, not mathematical addition;

3. add the spatial points with the geom_sf function. This determines
the type of geometry (here, points) from the geometry field of the
sf object. This is a special case of the geom_points function used
for scatterplots.

18 https://ggplot2-book.org
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4. specify that the points should be coloured according to the values
in the grain field;

5. specify a constant shape and size for the points. Shape 15 is used
to make blocks, which correspond to field plots;

6. specify the colour scale to apply to the points, here the blue-purple-
yellow standard colour ramp;

7. specify the labels for the title and the colour scale legend.

The entire plot is saved as a workspace object, and then displayed with
the grid.arrange function. If the object were not saved it would be
printed immediately.
g1 <- ggplot() +

geom_sf(data = mhw.sf, aes(colour = grain), shape = 15, size = 3) +
scale_colour_gradientn(colours = bpy.colors(8)) +
labs(title = "Grain yield", colour = "lbs/plot")

#
g2 <- ggplot() +

geom_sf(data = mhw.sf, aes(colour = straw), shape = 15, size = 3) +
scale_colour_gradientn(colours = heat.colors(8)) +
labs(title = "Straw yield", colour = "lbs/plot")

#
g3 <- ggplot() +

geom_sf(data = mhw.sf, aes(colour = gsr), shape = 15, size = 3) +
scale_colour_gradientn(colours = terrain.colors(8)) +
labs(title = "Grain/straw ratio", colour = "")

grid.arrange(g1, g2, g3, nrow = 2)
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We can make a postplot of the octiles of the grain yield with both colour
and size, although its value for visualization is questionable:
ggplot() +

geom_sf(data = mhw.sf, aes(size=grain, colour = grain)) +
scale_colour_gradientn(colours = bpy.colors(8)) +
scale_size_binned(n.breaks = 8) +
labs(title = "Grain yield",

subtitle="Symbol size proportional to yield",
colour = "lbs/plot", size ="")
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15.6 Answers

A120 : There are clear clusters of similar values, e.g. the patch of low values
centred near (16, 18). Clusters seem more obvious in the north than the south.

Return to Q120 •

A121 : The class is sf, which extends the data.frame class. The bounding
box is 1.2723 to 62.3426 (W-E) and 1.5904 to 62.0245 (S-N) Return to Q121 •

16 Spatial structure

Now that we have a spatially-explicit object, we can examine it for its
spatial structure. This can be of two kinds: a trend across the entire
area or a local structure that does not depend on absolute location.

16.1 Spatial structure: trend

One possibility for spatial structure is a trend across the field.

Task 112 : Explore whether there is any trend in grain yield by row or
column. •
One way to do this is to compute the row and column mean yields, and
then sort them from lowest to highest with the sort function:
with(mhw, sort(by(grain, r, mean), decreasing=FALSE))

## r
## 15 16 7 8 20 17 10 4 18 14
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## 3.7072 3.7432 3.8708 3.8796 3.8816 3.9012 3.9136 3.9144 3.9164 3.9352
## 6 11 1 12 2 5 3 9 13 19
## 3.9536 3.9540 3.9576 3.9848 4.0072 4.0276 4.0420 4.0788 4.1160 4.1880

with(mhw, sort(by(grain, c, mean), d=F))

## c
## 17 15 24 14 18 22 23 5 21 16
## 3.5280 3.6075 3.6565 3.7390 3.7545 3.7585 3.7925 3.8150 3.8165 3.8635
## 19 12 13 1 9 25 8 2 20 6
## 3.8740 3.8955 3.8970 3.9165 3.9420 3.9450 3.9635 3.9650 4.0025 4.0570
## 11 3 7 10 4
## 4.1125 4.2820 4.4630 4.5280 4.5410

Q122 : Does there appear to be any trend or pattern in the sequence of
row or column numbers? Jump to A122 •

We can see both the means and variability with a grouped boxplot, first
by row and then by column.The xlim argument is used to display the
row boxplots in correct geographical order.

# show the rows horizontally
boxplot(grain ~ r, horizontal=T, data=mhw, xlim=c(20,1),

ylab="Row number", xlab="Grain yield, lb. per plot")

20
18

16
14

12
10

8
6

4
2

3.0 3.5 4.0 4.5 5.0

Grain yield, lb. per plot

R
ow

 n
um

be
r

# and the columns vertically
boxplot(grain ~ c, data=mhw,

xlab="Column number", ylab="Grain yield, lb. per plot")
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We can also show these with ggplot2 using the boxplot function. Note
the use of scale_y_discrete to place the first row on top for the “rows”
boxplot, and the use of the labs function to over-ride the default axis
labels.
g1 <- ggplot(data = mhw) +

geom_boxplot(aes(y = as.factor(r), x = grain)) +
scale_y_discrete(limits = rev) +
labs(y = "Row number", x = "Grain yield, lbs/plot")

#
g2 <- ggplot(data = mhw) +

geom_boxplot(aes(x = as.factor(c), y = grain)) +
labs(x = "Column number", y = "Grain yield, lbs/plot")

grid.arrange(g1, g2, nrow = 1)
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Q123 : Does there appear to be any pattern by row or column, either in
the median yield or the variability with each row or column? Jump to
A123 •
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Although only the columns show a slight trend, there could be a trend
not oriented with these.

Task 113 : Compute a first-order trend surface of grain yield. •
ts1 <- lm(mhw.sf$grain ~ st_coordinates(mhw.sf))
summary(ts1)

##
## Call:
## lm(formula = mhw.sf$grain ~ st_coordinates(mhw.sf))
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.1352 -0.2936 0.0069 0.3140 1.1711
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.731260 0.051850 71.96 < 2e-16 ***
## st_coordinates(mhw.sf)X -0.000664 0.001067 -0.62 0.53
## st_coordinates(mhw.sf)Y 0.007498 0.001068 7.02 7.2e-12 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.438 on 497 degrees of freedom
## Multiple R-squared: 0.0909,Adjusted R-squared: 0.0873
## F-statistic: 24.9 on 2 and 497 DF, p-value: 5.14e-11

Q124 : Is there a significant trend? How much of the variance is ex-
plained? Jump to A124
•

This is not a promising approach, so we remove the trend surface object
from the workspace:
rm(ts1)

16.2 Spatial structure: local

There is only a very weak trend in grain yield; but are there hotspots?

Task 114 : Compute and display the variogram of the grain yield. •
We use the variogram function of the gstat package to analyze the lo-
cal spatial structure. We also specify the optional plot.numbers = T
argument to print the number of point-pairs next to the variogram val-
ues; the optional width argument to specify the bin size (here, the plot
width), and the optional cutoff argument (by default it is 1/3 of the
largest distance between point pairs); here it is 10 plot widths.
v <- variogram(grain ~ 1, mhw.sf,

cutoff=plot.wid*10, width=plot.wid)
print(plot(v, plot.numbers=T, pch=20, cex=1.5))
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Q125 : Describe the shape of the variogram. Is there evidence of local
spatial structure? What is the approximate range of local spatial depen-
dence, i.e. the separation at which the experimental variogram reaches
its sill (maximum)? Jump to A125 •

Q126 : Across how many adjacent plots is there expected to be some
spatial dependence? Jump to A126 •

We now try to fit a theoretical variogram model to this empirical vari-
ogram. There appear to be two structures:

1. a short-range to about 5 m with rapid increase in semivariance with
separation; this section is difficult to model because of the few
point-pairs in the closest bin;

2. a gradual increase to a sill at about 18 m.

The total sill appears to be about 0.20, of which the nugget is about 0.02,
the first partial sill about 0.15 and the second about 0.03. We initialize
the variogram with these parameters. We use the the vgm (specify a
variogram) function twice, with the add.to argument the second time to
combine variogram models.
(vm <- vgm(0.15, "Sph", 5, 0.02))

## model psill range
## 1 Nug 0.02 0
## 2 Sph 0.15 5

(vm <- vgm(0.03, "Sph", 20, add.to=vm))

## model psill range
## 1 Nug 0.02 0
## 2 Sph 0.15 5
## 3 Sph 0.03 20

print(plot(v, model= vm, main="Estimated variogram model",
pch = 20, cex = 1.5,
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plot.numbers = TRUE))
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We then adjust the variogram with the fit.variogram function:
(vmf <- fit.variogram(v, vm))

## model psill range
## 1 Nug 0.000000 0.0000
## 2 Sph 0.166884 4.9488
## 3 Sph 0.039522 20.8112

print(plot(v, model= vmf, main="Fitted variogram model",
pch = 20, cex = 1.5,
plot.numbers = TRUE))
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The fit has reduced the nugget to zero; so at each point (inside a plot)
there should be, as theory predicts, no spatial dependence. The nested
structure clearly suggests that most of the spatial variability is within the
first 5 m, so grouping a few plots should greatly reduce the between-plot
variability of an experiment (Mercer & Hall’s objective).

Q127 : The zero nugget also implies no measurement error. Is that
a valid assumption in this case? Why or why not? What should be the
minimum nugget variance? Jump to A127 •

16.3 Absence of spatial structure*

In this section we show that spatial data does not necessarily have spatial
structure. This also is a chance to investigate some of R’s facilities for
simulation. We can see how this field might look if there were no spatial
dependence, i.e. if the variation in yields analyzed in §6 were randomly
distributed across the field. We do this by applying the sample function
to the vector of yields, to take a sample of the size as the original vector
(extracted with the length function) without replacement. This ensures
that each recorded yield appears once in the new vector.

Task 115 : Permute the vector of grain yields into a random order,
compare to the original vector. •
We do this several times to see the effect of randomization. The head
function displays the first few elements of a vector; the sort method
sorts them. The set.seed function ensures that your results match
those presented here; of course you can experiment with other random-
izations. We show the first few records of the samples, both unsorted
and sorted, with the head function.
set.seed(4502)
head(mhw$grain)

## [1] 3.63 4.07 4.51 3.90 3.63 3.16

head(s1 <- sample(mhw$grain, length(mhw$grain), replace=FALSE))

## [1] 4.69 4.07 4.10 4.20 3.66 3.96

head(s2 <- sample(mhw$grain, length(mhw$grain), replace=FALSE))

## [1] 3.82 3.87 3.25 4.52 4.09 3.68

head(s3 <- sample(mhw$grain, length(mhw$grain), replace=FALSE))

## [1] 3.85 3.75 3.73 3.29 3.67 3.18

head(s1)

## [1] 4.69 4.07 4.10 4.20 3.66 3.96

head(s2)

## [1] 3.82 3.87 3.25 4.52 4.09 3.68
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head(s3)

## [1] 3.85 3.75 3.73 3.29 3.67 3.18

Q128 : Do the permutations have the same elements as the original
vector? What is different? Jump to A128 •

Task 116 : Display the spatial pattern of the randomized yields. •
par(mfrow=c(2,2))
plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),

xlab="column", ylab="row", main="Randomization 1",
col=terrain.colors(8)[cut(s1, q8, include.lowest=T, labels=F)])

plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),
xlab="column", ylab="row", main="Randomization 2",
col=terrain.colors(8)[cut(s2, q8, include.lowest=T, labels=F)])

plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),
xlab="column", ylab="row", main="Randomization 3",
col=terrain.colors(8)[cut(s3, q8, include.lowest=T, labels=F)])

plot(mhw$c, mhw$r, pch=20, cex=2, bg="lightblue", ylim=c(20,1),
xlab="column", ylab="row", main="Actual spatial distribution",
col=terrain.colors(8)[grain.c])

par(mfrow=c(1,1))
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Q129 : How do the randomizations differ from each other and the
original spatial pattern? Jump to A129 •

It may be difficult to see that the randomizations have no spatial struc-
ture. So, we examine this with variograms, as in §16.2, after converting
the simulated objects to spatial object.
s1 <- data.frame(s1); coordinates(s1) <- xy
s2 <- data.frame(s2); coordinates(s2) <- xy
s3 <- data.frame(s3); coordinates(s3) <- xy
pv <- plot(variogram(grain ~ 1, mhw.sf, cutoff=plot.wid*10,

width=plot.wid),
main="Real", pch = 20, cex = 1.5)

p1 <- plot(variogram(s1 ~ 1, s1, cutoff=plot.wid*10,
width=plot.wid),

main="Simulation 1", pch = 20, cex = 1.5)
p2 <- plot(variogram(s2 ~ 1, s2, cutoff=plot.wid*10,

width=plot.wid),
main="Simulation 2", pch = 20, cex = 1.5)

p3 <- plot(variogram(s3 ~ 1, s3, cutoff=plot.wid*10,
width=plot.wid),

main="Simulation 3", pch = 20, cex = 1.5)

print(p1, split=c(1,1,2,2), more=T)
print(p2, split=c(2,1,2,2), more=T)
print(p3, split=c(1,2,2,2), more=T)
print(pv, split=c(2,2,2,2), more=F)
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Q130 : Are the variograms of simulated fields similar to each other?
To the variogram of the actual spatial arrangement of plots? What is the
evidence that the simulated fields (actual yields randomly assigned to
plots) has no spatial dependence? Jump to A130 •

The conclusion from this section must be that spatial dependence is not
always present! It must be verified by variogram analysis or similar (e.g.
spatial autocorrelograms) or trend surface analysis.

Remove the temporary variables from the simulation displays:
rm(xy, q8, grain.c, s1, s2, s3, pv, p1, p2, p3)

16.4 Spatial structure of field halves*

In §8 we computed an indicator variable to show which half of the field
each plot is in. In a spatial analysis we may now ask whether these two
halves have different spatial structures.

Task 117 : Separate the dataset into two halves, one for each field half.
•

To get a suitable data structure we use the split function to create one
object with a list of two sf objects, one for each half. The split object is a
list of two sf objects, named TRUE and FALSE, according to the splitting
criterion, here in.north. These can be extracted with the [[]] “list
extraction” operator.
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table(mhw.sf$in.north)

##
## FALSE TRUE
## 250 250

mhw.sf.ns <- split(mhw.sf, mhw.sf$in.north)
summary(mhw.sf.ns[["TRUE"]])

## r c grain straw
## Min. : 1.0 Min. : 1 Min. :2.78 Min. :4.10
## 1st Qu.: 3.0 1st Qu.: 7 1st Qu.:3.66 1st Qu.:5.73
## Median : 5.5 Median :13 Median :3.97 Median :6.14
## Mean : 5.5 Mean :13 Mean :3.96 Mean :6.28
## 3rd Qu.: 8.0 3rd Qu.:19 3rd Qu.:4.27 3rd Qu.:6.86
## Max. :10.0 Max. :25 Max. :5.13 Max. :8.64
## gsr in.north geometry
## Min. :0.482 Mode:logical POINT :250
## 1st Qu.:0.596 TRUE:250 epsg:NA: 0
## Median :0.635
## Mean :0.636
## 3rd Qu.:0.669
## Max. :0.848

summary(mhw.sf.ns[["FALSE"]])

## r c grain straw
## Min. :11.0 Min. : 1 Min. :2.73 Min. :4.66
## 1st Qu.:13.0 1st Qu.: 7 1st Qu.:3.59 1st Qu.:6.11
## Median :15.5 Median :13 Median :3.91 Median :6.75
## Mean :15.5 Mean :13 Mean :3.93 Mean :6.75
## 3rd Qu.:18.0 3rd Qu.:19 3rd Qu.:4.29 3rd Qu.:7.32
## Max. :20.0 Max. :25 Max. :5.16 Max. :8.85
## gsr in.north geometry
## Min. :0.391 Mode :logical POINT :250
## 1st Qu.:0.558 FALSE:250 epsg:NA: 0
## Median :0.585
## Mean :0.586
## 3rd Qu.:0.609
## Max. :0.850

Task 118 : Compute the variograms for each half, and plot these along
with the combined variogram. •
We first compute the variograms for the two field halves; we already have
the variogram for the entire field.
v.n <- variogram(grain ~ 1, mhw.sf.ns[["TRUE"]], cutoff=30)
v.s <- variogram(grain ~ 1, mhw.sf.ns[["FALSE"]], cutoff=30)

We now compute the figures, but do not print them right away; instead
we store them as plotting objects:
g.max = max(v$gamma, v.n$gamma, v.s$gamma)*1.2
plot.vgm.all <- plot(v, plot.numbers=T, pch=20,

main="All", ylim=c(0,g.max))
plot.vgm.N <- plot(v.n, plot.numbers=T, pch=20,

main="N half", ylim=c(0,g.max))
plot.vgm.S <- plot(v.s, plot.numbers=T, pch=20,

main="S half", ylim=c(0,g.max))

We compute a common vertical axis from the maximum value of all three
variograms, so we can compare them side-by-side.

162



Now we print these on one screen, specifying their positions in the plot:

# split screen and show all three
# must save the plots and then put them into one window
# make a stretched window to compare all 3

#windows(h=8, w=20) # might need smaller numbers on your screen
print(plot.vgm.all, split=c(1,1,3,1), more=T)
print(plot.vgm.N, split=c(2,1,3,1), more=T)
print(plot.vgm.S, split=c(3,1,3,1), more=F)
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We now try to model the half-field variograms, as we did for the whole
field in the previous section. The half-field variograms do not seem to
show the nested structure of the whole-field variogram.
(vmS <- vgm(.14, "Sph", 20, .09))

## model psill range
## 1 Nug 0.09 0
## 2 Sph 0.14 20

(vmN <- vgm(.08, "Sph", 13 , .11))

## model psill range
## 1 Nug 0.11 0
## 2 Sph 0.08 13

(vmSf <- fit.variogram(v.s, vmN))

## model psill range
## 1 Nug 0.076024 0.000
## 2 Sph 0.141284 13.787

(vmNf <- fit.variogram(v.n, vmS))

## model psill range
## 1 Nug 0.112956 0.000
## 2 Sph 0.081287 14.747

plot.vgm.all <- plot(v, plot.numbers=T, pch=20,
main="All", model=vmf, ylim=c(0,g.max))

plot.vgm.N <- plot(v.n, plot.numbers=T, pch=20,
main="N half", model=vmNf, ylim=c(0,g.max))

plot.vgm.S <- plot(v.s, plot.numbers=T, pch=20,
main="S half", model=vmSf, ylim=c(0,g.max))
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print(plot.vgm.all, split=c(1,1,3,1), more=T)
print(plot.vgm.N, split=c(2,1,3,1), more=T)
print(plot.vgm.S, split=c(3,1,3,1), more=F)
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Remove the plotting objects and scale:
# when done examining, clean up

rm(g.max, plot.vgm.all, plot.vgm.N, plot.vgm.S)

Q131 : Do the two halves appear to have different local spatial struc-
ture? Jump to A131
•

Remove the variograms and models from the workspace:
rm(v, v.n, v.s, vm, vmf, vmN, vmNf, vmS, vmSf)

We are also done with the field halves:
rm(mhw.sf.ns)

Challenge: Repeat the analysis of this section with E-W field halves,
instead of N-S field halves. Do you reach similar conclusions about the
differences between the spatial structure of the field halves?

16.5 Answers

A122 : The row and column numbers don’t seem to show any pattern or
trend. Return to Q122 •

A123 : Although there are differences among rows and columns, there does
not appear to be a trend. The higher-numbered columns (East half of the field)
appear to be slightly lower (as a group) than the lower-numbered columns.
There appears to be some short-range periodicity at a one-plot range (high
followed by low) in both dimensions, although this is not regular. Return to
Q123 •
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A124 : Only about 9% of the variance is explained; only the x-coördinate (E-
W, across the columns from low- to high-numbered) is significant; it shows a
slight trend towards the East; this agrees with the by-column boxplot. This
trend was also noted by Patankar [35]. Return to Q124 •

A125 : There is evidence of spatial structure: the semivariance increases up
to about 13 m separation; the semivariance then fluctuates around a total sill
of about γ = 0.21lb2 There appears to be a “nugget” effect (semivariance at
zero separation) of about γ = 0.05lb2. Return to Q125 •

A126 : Plot size is (3.18 m long x 2.55 m wide) (§A), so the range of about
13 m corresponds to about four adjacent plots column-wise and five adjacent
plots row-wise. Return to Q126 •

A127 : Strictly speaking, this is not a valid assumption: we know from the
description of the experimental protocol that the measurement precision was
0.01 lb (§A), so the minimum nugget should be 0.0001 lb2. However, this is
very close to zero, in relation to the total sill of about 0.20 lb2. This reported
precision assumes that all other operations were carried out perfectly: the plot
was exactly delineated, all grain and straw in the plot was harvested, the air-
drying brought all samples to the same moisture level, and the hand-threshing
did not lose any grain. The zero fitted nugget suggests that the experimental
protocol was very carefully carried out. Return to Q127 •

A128 : The elements of the permuted and original vectors are the same, all
that changes is their sequence. Return to Q128 •

A129 : The randomizations have a similar pattern but different locations
of high and low values; there is no apparent spatial pattern. The actual spa-
tial distribution shows clear concentrations of high and low values (“hot” and
“cold” spots) with a spatial dependence of about 4 plots. Return to Q129 •

A130 : The three simulations have very similar variograms: they all fluctuate
around the sill (representing the total variability in the field), which is the same
as for the variogram of actual data. This latter is quite different from the
simulations, and shows clear spatial structure up to 15 m.

The lack of spatial dependence in the “random assignment” fields is proven by
the variograms: a pure nugget effect, where the nugget variance is the same as
the sill. Return to Q130 •

A131 : There is a big difference between the structures in the two halves.
The S half is more variable overall (higher total sill, about γ = 0.22lb22), with
a longer range around 20 m; the N half reaches a lower total sill (about γ =
0.19lb2) at a shorter range, about 12 m. Both have a nugget effect, about
γ = 0.075lb2 in the S and γ = 0.011lb2 in the N. Return to Q131 •
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17 Generalized least squares regression*

In §7.2 we computed a relation of straw yield modelled from grain yield,
which could then be applied to predict the straw yield of any plot, under
similar conditions, with a measured grain yield:
coef(model.straw.grain <- lm(straw ~ grain, data=mhw.sf))

## (Intercept) grain
## 0.86628 1.43050

Clearly, however, this relation is not the same at each plot: that’s why
there are non-zero residuals from the linear regression. But is there
a spatial relation here? That is, are the residuals from the regression
spatially correlated? If they are, they violate one of the assumptions of
ordinary least-squares (OLS) linear regression, namely, the independence
of and identical distribution (i.i.d) of the residuals. In that case, the
solution by OLS presented in §7.2.2 is not valid and must be modified.

So, we now determine whether there is any evidence of non-independence
of the residuals due to spatial correlation. The first step is visualization;
afterwards we will model the suspected spatial correlation.

Task 119 : Add the OLS model residuals to the spatial points data
frame and show as a post-plot. •
Here we use the scale_colour_distiller function to specify a contin-
uous colour ramp from the “ColorBrewer” set of palettes19. We choose
a “diverging” scale, where the centre (0) is almost invisible and the ex-
tremes are highlighted.
mhw.sf$gls.res <- residuals(model.straw.grain)
.lim <- round(max(abs(mhw.sf$gls.res)),2) + 0.1
ggplot() +

geom_sf(data = mhw.sf, aes(colour = gls.res), shape = 15, size = 3) +
scale_colour_distiller(palette = "RdBu", limits = c(-.lim, .lim)) +
labs(title = "straw ~ grain residuals, lb. per plot", colour = "")

19 https://ggplot2.tidyverse.org/reference/scale_brewer.html
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Q132 : Does there appear to be spatial correlation among the residuals?
At what scale? Jump to A132 •

The post-plot suggests that the residuals are spatially-correlated. In
§16.2 we saw how to reveal spatial structure of a variable with a vari-
ogram; here we apply that method to the residuals, to see if they are
spatially-correlated.

Task 120 : Compute and display their empirical variogram. •
As in §16.2 we compute the variogram to a radius of 10 plot widths, with
bins of plot width size:
vr <- variogram(gls.res ~ 1, loc=mhw.sf, cutoff=plot.wid*10, width=plot.wid)
plot(vr, pl=T, pch=20, cex=1.5)
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Q133 :

(1) How does the empirical variogram support the inference from the
post-plot that there is spatial correlation among the residuals?

(2) Approximately how much of the residual variance is spatially-correlated
at the shortest separation?

(3) What is the approximate range of spatial correlation? Jump to A133
•

Task 121 : Model the variogram. •
(vgmr <- fit.variogram(vr, model=vgm(0.15, "Sph", 20, 0.05)))

## model psill range
## 1 Nug 0.16901 0.0000
## 2 Sph 0.19183 7.4714

plot(vr, model=vgmr, pch=20, cex=1.5)
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Q134 : Describe the spatial structure of the model residuals. Is this
evidence of spatial correlation? Jump to A134 •

We conclude that the model residuals are not independent – they are spa-
tially correlated. Although the regression coefficients computed in §7.2
are unbiased, the standard errors are too small and so the significance
is over-estimated, since there are effectively fewer degrees of freedom
(plots partially duplicate each other’s information). Further, the coeffi-
cients may not be optimal.

The key difference here is that in the linear model, the residuals ε are
independently and identically distributed with the same variance σ2:

y = Xβ+ ε, ε ∼N (0, σ2I) (17.1)

Whereas, now the residuals are considered themselves a random variable
η that has a covariance structure:

y = Xβ+ η, η ∼N (0,V) (17.2)

where V is a positive-definite variance-covariance matrix of the model
residuals.

Continuing with the derivation from §7.2.2, Lark and Cullis [27, Appendix]
point out that the issue here is that the error vectors can now not be as-
sumed to be spherically distributed around the 0 expected value, but
rather that error vectors in some directions are longer than in others.
So, the measure of distance (the vector norm) is now a so-called “gen-
eralized” distance20, taking into account the covariance between error

20 This is closely related to the Mahalanobis distance
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vectors:
S = (y− Xβ)TV−1(y− Xβ) (17.3)

Comparing this to the OLS equivalent (Equation 7.4), we see here the
variance-covariance matrix of the residuals V = σ2C , where σ2 is the
variance of the residuals and C is the correlation matrix. This reduces to
the OLS formulation of Equation 7.4 if there is no covariance, i.e., V = I.

Expanding Equation 17.3, taking the partial derivative with respect to the
parameters, setting equal to zero and solving we obtain:

∂
∂β
S = −2XTV−1y+ 2XTV−1Xβ

0 = −XTV−1y+ XTV−1Xβ
β̂GLS = (XTV−1X)−1XTV−1y (17.4)

This reduces to the OLS estimate β̂OLS of Equation 7.6 if there is no co-
variance, i.e., V = I.

In the case of spatial correlation, we ensure positive-definiteness (i.e., al-
ways a real-valued solution) by using an authorized covariance function
C and assuming that the entries are completely determined by the vector
distance between points xi − xj :

Ci,j = C(xi − xj) (17.5)

In this formulation C has a three-parameter vector θ, as does the corre-
sponding variogram model: the range a, the total sill σ2, and the pro-
portion of total sill due to pure error, not spatial correlation s21.

In modelling terminology, the coefficients β are called fixed effects, be-
cause their effect on the response variable is fixed once the parameters
are known. By contrast the covariance parameters η are called random
effects, because their effect on the response variable is stochastic, de-
pending on a random variable with these parameters.

Models with the form of Equation 17.2 are called mixed models: some
effects are fixed (here, the relation between the straw and grain yields)
and others are random (here, the error variances) but follow a known
structure; these models have many applications and are extensively dis-
cussed in Pinheiro and Bates [39]. Here the random effect η represents
both the spatial structure of the residuals from the fixed-effects model,
and the unexplainable (short-range) noise. This latter corresponds to the
noise σ2 of the linear model of Equation 17.1.

Q135 : If s = 1, what does this imply? Jump to A135 •
21 In variogram terms, this is the nugget variance c0 as a proportion of the total sill
(c0 + c1).
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To solve Equation 17.4 we first need to compute V, i.e., estimate the
variance parameters θ = [σ2, s, a], use these to compute C with equa-
tion 17.5 and from this V, after which we can use equation 17.4 to es-
timate the fixed effects β. But θ is estimated from the residuals of the
fixed-effects regression, which has not yet been computed. How can this
“chicken-and-egg”22 computation be solved?

The answer is to use residual (sometimes called “restricted”) maximum
likelihood (REML) to maximize the likelihood of the random effects θ
independently of the fixed effects β. We continue with this in §17.2
below.

17.1 A detour into Maximum Likelihood*

To understand REML, we first explain the basics of ML, the Maximum
Likelihood estimation, which is the derivation of the most “likely” values
of model parameters, consistent with a set of observations.

There are three steps:

1. Specify a model with parameters.

For example, the linear model with i.i.d. residuals of Equation 17.1:
y = Xβ + ε, ε ∼ N (0, σ2I). In the single-predictor case the pa-
rameter vector is β = (β0, β1), the intercept and slope of the linear
model.

All model forms are assumptions: we fit parameters given obser-
vations, but the model form is set by us. For this linear model, we
are assuming that the observed values are the result of a linear de-
terministic process with coefficients β, with stochastic errors with
zero mean and a given variance, uncorrelated with each other. If
this assumption is not valid, the rest of the analysis is invalid.

Note: We can specify several models, fit their parameters, and com-
pare their likelihoods.

We can rewrite the single-predictor linear model as the residuals
expressed as the fits ε = y−Xβ. That is, for any chosen regression
parameters β, these are the errors ε ∼ N (0, σ2I). Clearly, the we
want to minimize the errors; we express this as the squared error
(y−Xβ)T (y−Xβ) to give equal weight to the positive and negative
residuals.

Now, the probability of observing a specific response yi from the
random variable Y , once β is fixed, is given by the normal prob-
ability of the associated residual, which we assume is normally-
distributed with mean 0 and standard deviation σ :

Pr(Y = yi|β,σ2) = 1√
2πσ2

e−
1

2σ2 (yi−Xiβ)T (yi−Xiβ) (17.6)

22 from the question “which came first,the chicken or the egg?”
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This probability depends on the residual εi = (yi − Xiβ), which
can be directly calculated from the chosen regression parameters
β, but also on the standard deviation of the errors σ , which must
also be estimated from the observations.

The matrix product in the final term can be written as the squared
residual:

(yi − Xiβ)T (yi − Xiβ) = (yi − β0 − β1xi)2 = ε2
i (17.7)

so Equation 17.6 can be written as:

Pr(Y = yi|β,σ2) = 1√
2πσ2

e−
1

2σ2 ε
2
i (17.8)

This probability can be computed with the dnorm function; here the
mean residual is 0.

Task 122 : For a fixed (assumed) value of the standard deviation,
say the default 1, compute some probabilities of observed residu-
als. •
dnorm(x=c(-1.96,-1,-0.5,0,.5,1,1.96), mean=0, sd=1)

## [1] 0.058441 0.241971 0.352065 0.398942 0.352065 0.241971 0.058441

Task 123 : For a fixed (assumed) observed residual, say 1, com-
pute the probability of observing that value, for several assumed
values of the population standard deviation σ . •
s <- seq(0.4, 2, by=.2)
data.frame(sd=s, p=dnorm(x=1, mean=0, sd=s))

## sd p
## 1 0.4 0.043821
## 2 0.6 0.165795
## 3 0.8 0.228311
## 4 1.0 0.241971
## 5 1.2 0.234927
## 6 1.4 0.220797
## 7 1.6 0.205101
## 8 1.8 0.189940
## 9 2.0 0.176033

The probability of observing this fixed value of the residual (i.e.,
deviation from zero) increases until standard deviation 1 and then
decreases, as the normal “bell-shaped” curve becomes flatter.

Task 124 : Visualize the normal curves for the different standard
deviations, and show the probability of the selected residual for
each. •
We can visualize this by applying the curve plotting function to
values calculated with dnorm, with different standard deviations:
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tmp <- rainbow(length(s))
curve(dnorm(x, mean=0, s[1]), -3, 3, col=tmp[1],

main="Normal probability density",
sub="Varying the standard deviation",
ylab="density",xlab="residual")

for (i in 2:length(s))
curve(dnorm(x, mean=0, sd=s[i]), -3, 3,

col=tmp[i], add=T)
grid()
abline(v=1, lty=2)
legend(-3, 1, s, lty=1, col=tmp)
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2. Write an equation to compute the likelihood of observing the known
values, given specific values of the parameters. This is the same
conditional probability, but this time considering the observations
y as fixed and the β as unknowns, to be solved for.

In the case where the observations are independent, the likelihood
of the set of observations y, given fixed β, is defined as the product
of their individual probabilities from Equation 17.6. This is because
independent observations implies independent residual errors, so
the joint probability of observing the actual vector y is the product
of the probability of observing each one:

L(β,σ2|y) =
n∏
i=1

1√
2πσ2

e−
ε2i

2σ2

= 1
(2πσ2)n/2

n∏
i=1

e−
ε2i

2σ2 (17.9)

This is now a function of the model parameters; as we vary these,
the regression residuals ε change, so the the likelihood changes;
when it is a maximum, these are the most probable values of the
parameters. The variance σ2 also can vary, and also affects the
likelihood.

The likelihood function is usually written as a logarithm to al-
low easy differentiation; recall that log(ab) = log(a) + log(b) and
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log(ac) = c log(a), so that the product becomes a sum and an ex-
ponentiation becomes a product.

Note: The choice of parameters that maximizes the log-likelihood
also maximizes the likelihood, because the logarithm is a monoton-
ically increasing function.

Taking logarithms of both sides of Equation 17.9 we obtain:

ℓ(β,σ2|y) = log
(

1
(2πσ2)n/2

)
−

n∑
i=1

ε2
i

2σ2
(17.10)

= −n
2

log(2π)− n
2

log(σ2)− 1
2σ2

n∑
i=1

ε2
i

The first term depends only on the sample size; the second term
depends on the sample size and the population variance; and the
third term depends on the population variance and the regression
coefficients (because they are used to compute εi).

3. Solve for the maximum value of the log-likelihood, either analyti-
cally or numerically.

Since this is an optimization problem, the obvious way to solve
analytically is to differentiate Equation 17.10 with respect to each
parameter and set to zero; then check if this is a maximum by the
second derivative.

Note: Many likelihood functions can not be solved analytically, in
which case numerical optimization methods must be used, system-
atically varying the parameters, computing the likelihood, and look-
ing for a maximum.

Here we have three partial derivatives, with respect to each of the
three parameters to be estimated:

∂ℓ
∂β0

= 1
σ2

∑
i
(yi − β0 − β1xi) (17.11)

∂ℓ
∂β1

= xi
σ2

∑
i
xi(yi − β0 − β1xi) (17.12)

∂ℓ
∂σ2

= − 1
σ2

+ 1
n

∑
i
(yi − β0 − β1xi)2 (17.13)

Setting these equal to zero and simplifying:
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∑
i
(yi − β0 − β1xi) = 0 (17.14)

∑
i
xi(yi − β0 − β1xi) = 0 (17.15)

∑
i
(yi − β0 − β1xi)2 = nσ2 (17.16)

Solving these three equations, we obtain the familiar least-squares
estimators for the slope β1 and the intercept β0:

β̂1,ML =
∑
i(xi − x̄)(yi − ȳ)∑

i(xi − x̄)2
= SXY
SXX

(17.17)

β̂0,ML = ȳ − β̂1,MLx̄ (17.18)

The most likely variance of the residuals is:

σ̂2
ML =

1
n

∑
i
e2
i =

1
n

∑
i
(yi − β0 − β1xi)2 (17.19)

17.1.1 Numerical solution

In this case the solution can be found analytically; in general a numerical
solution is required. For illustration we show a brute-force approach,
trying various values of the three parameters and then finding the max-
imum log-likelihood. In practical computations, gradient methods are
used, e.g., a multivariate version of Newton-Raphson root finding. In
complicated problems the likelihood surface may not be convex and
there is a danger of finding only a local maximum.

Task 125 : Write a function to compute log-likelihood for simple lin-
ear regression according to Equation 17.10; its arguments should be the
parameter values and the observations (both predictor and predictand).

•
like <- function(beta0, beta1, sigma, x, y) {

s2 <- sigma^2; n <- length(y)
# compute fits given the coefficients
pred <- beta0 + beta1 * x
loglike <- -(n/2)*(log(2*pi)) -

(n/2)*(log(s2)) -
(1/(2*s2))*(sum((y-pred)^2))

return(loglike)
} # like

Task 126 : Set up arrays of possible parameter values to be tested for
their likelihood. •
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These should be based on guesses from the scatterplot or previous in-
formation; here we use the results of the linear model fit and vary them
by ±10%:
coefficients(lm(straw ~ grain, data=mhw))

## (Intercept) grain
## 0.86628 1.43050

summary(lm(straw ~ grain, data=mhw))$sigma

## [1] 0.61477

We create the three vectors and then all possible combinations, using the
expand.grid function, and add a placeholder column for the computed
log-likelihood:
coef <- round(coefficients(lm(straw ~ grain, data=mhw)),5)
(beta0 <- coef[1]*seq(0.9,1.1,by=.02))

## [1] 0.77965 0.79698 0.81430 0.83163 0.84895 0.86628 0.88361 0.90093
## [9] 0.91826 0.93558 0.95291

(beta1 <- coef[2]*seq(0.9,1.1,by=.02))

## [1] 1.2875 1.3161 1.3447 1.3733 1.4019 1.4305 1.4591 1.4877 1.5163
## [10] 1.5449 1.5736

(sigma <- round(summary(lm(straw ~ grain, data=mhw))$sigma,5)*
seq(0.9,1.1,by=.02))

## [1] 0.55329 0.56559 0.57788 0.59018 0.60247 0.61477 0.62707 0.63936
## [9] 0.65166 0.66395 0.67625

beta <- expand.grid(beta0=beta0, beta1=beta1, sigma=sigma)
beta$loglik <- 0
dim(beta)

## [1] 1331 4

rm(coef, beta0, beta1, sigma)

Task 127 : Compute the log-likelihood for each combination of pa-
rameters, given the observed wheat yield data, and find the maximum.

•
This is a “brute-force” computation of all combinations, using a for loop
and then finding the maximum with the which.max function:
for (i in 1:length(beta$loglik))
beta$loglik[i] <- like(beta[i,"beta0"], beta[i,"beta1"], beta[i,"sigma"],

mhw$grain, mhw$straw)
summary(beta$loglik)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -821 -614 -530 -556 -484 -465

(beta.mle <- beta[which.max(beta$loglik),])

## beta0 beta1 sigma loglik
## 666 0.86628 1.4305 0.61477 -465.22

As expected, these optimal parameter values are identical to those com-
puted by lm using least squares.
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Task 128 : Visualize the likelihood surface, first 1D for each parameter
separately and then 2D for a combination of two parameters. •
First, the three per-parameter one-dimensional plots, holding the other
two parameters constant:

par(mfrow=c(1,3))
tmp <- beta[(beta$sigma==beta.mle$sigma),]
tmp <- tmp[(tmp$beta1==beta.mle$beta1),]
plot(tmp$loglik ~ tmp$beta0, type="b", xlab="intercept", ylab="log-likelihood",

main="Constant slope, s.d.")
grid()
abline(v=beta.mle$beta0)
tmp <- beta[(beta$sigma==beta.mle$sigma),]
tmp <- tmp[(tmp$beta0==beta.mle$beta0),]
plot(tmp$loglik ~ tmp$beta1, type="b", xlab="slope", ylab="log-likelihood",

main="Constant intercept, s.d.")
grid()
abline(v=beta.mle$beta1)
tmp <- beta[(beta$beta1==beta.mle$beta1),]
tmp <- tmp[(tmp$beta0==beta.mle$beta0),]
plot(tmp$loglik ~ tmp$sigma, type="b", xlab="s.d.", ylab="log-likelihood",

main="Constant intercept, slope")
grid()
abline(v=beta.mle$sigma)
par(mfrow=c(1,1))

0.80 0.85 0.90 0.95

−
47

0
−

46
9

−
46

8
−

46
7

−
46

6

Constant slope, s.d.

intercept

lo
g−

lik
el

ih
oo

d

1.30 1.35 1.40 1.45 1.50 1.55

−
65

0
−

60
0

−
55

0
−

50
0

Constant intercept, s.d.

slope

lo
g−

lik
el

ih
oo

d

0.56 0.58 0.60 0.62 0.64 0.66 0.68

−
47

1
−

47
0

−
46

9
−

46
8

−
46

7
−

46
6

−
46

5

Constant intercept, slope

s.d.

lo
g−

lik
el

ih
oo

d

Second, a two-dimensional surface, holding one parameter constant, us-
ing the wireframe function of the lattice package:
tmp <- beta[(beta$sigma==beta.mle$sigma),]
wireframe(loglik ~ beta0 + beta1,

data = tmp, aspect=c(1,.5), drape=T,
main="Log-likelihood, constant s.d.")
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rm(like, beta, i, beta.mle, tmp)

17.2 Residual Maximum Likelihood

We first complete the theoretical derivation of REML (§17.2.1), and then
show how to compute the GLS relation using this method (§17.2.2).

17.2.1 REML – theory

Returning now to Equation 17.2, where we can not assume i.i.d. residuals
as in Equation 17.1, Lark and Cullis [27, Eq. 12] show that the likelihood
of the parameters is now expanded to include the spatial dependence
implicit in the variance-covariance matrix V, rather than a single residual
variance σ2. The log-likelihood is then:

ℓ(β, θ|y) = c − 1
2

log |V| − 1
2
(y− Xβ)TV−1(y− Xβ) (17.20)

where c is a constant (and so does not vary with the parameters) and V
is built from the variance parameters θ and the distances between the
observations. By assuming second-order stationarity23, the structure can
be summarized by the covariance parameters θ = [σ2, s, a], i.e., the total
sill, nugget proportion, and range.

However, maximizing this likelihood for the random-effects covariance
parameters θ also requires maximizing in terms of the fixed-effects re-
gression parameters β, which in this context are called nuisance parame-
ters since at this point we don’t care about their values; we will compute
them after determining the covariance structure.

Both the covariance and the nuisance parameters β must be estimated,
it seems at the same time (“chicken and egg” problem) but in fact the
technique of REML can be used to first estimate θ without having to
know the nuisance parameters. Then we can use these to compute C

23 that is, the covariance structure is the same over the entire field, and only depends
on the distance between pairs of points

178



with equation 17.5 and from this V, after which we can use equation
17.4 to estimate the fixed effects β.

The maximum likelihood estimate of θ is thus called “restricted”, be-
cause it only estimates the covariance parameters (random effects). Con-
ceptually, REML estimation of the covariance parameters θ is ML estima-
tion of both these and the nuisance parameters β, with the later inte-
grated out [39, §2.2.5]:

ℓ(θ|y) =
∫
ℓ(β, θ|y) dβ (17.21)

Pinheiro and Bates [39, §2.2.5] show how this is achieved, given a likeli-
hood function, by a change of variable to a statistic sufficient for β.

Lark and Cullis [27, Eq. 15], following Smyth and Verbyla [43], show that
the log-likelihood of θ is then conditional on the sufficient statistic t for
β:

ℓ(θ|t) = c − 1
2

log |V| − 1
2

log |XTV−1X| (17.22)

−1
2

yTV−1(I−Q)y

where Q = X(XTV−1X)−1XTV−1

Since the nuisance parameters β are not present in Equation 17.22, the
likelihood of the covariance parameters θ, which determine the variance-
covariance matrix V, can be maximized independently of the nuisance
(regression) parameters.

17.2.2 REML – computation

Equation 17.22 must be maximized by varying the three parameters in
θ which determine V, there is no analytic solution. This is is a non-
linear optimization problem over a large parameter space, and there is
no guarantee of finding the true optimum. This is in contrast to ordinary
least squares, which is a direct computation from the model matrix and
observation values. This problem can be partially addressed by starting
the solution with reasonable covariance parameters, for example, those
inferred from a variogram fit to the OLS residuals. But even this is no
guarantee; Lark and Cullis [27] used simulated annealing, which can es-
cape local minima. We use a gradient method, a multivariate version of
Newton-Raphson minimization.

In the R environment REML by the gradient method is implemented with
the gls “Generalized Least Squares” function of the nlme “Linear and
Nonlinear Mixed Effects Models” package, based on the text by Pinheiro
and Bates [39]. See Bates [2] for a simple introduction to the concepts,
and how to use them in the R environment.

Task 129 : Load the nlme package and examine the help for the gls
function. •
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require(nlme)
help(gls)

As with the lm function, the gls requires a formula (here called a ‘model’)
and a dataframe in which to find variables. In addition, it requires either
a correlation structure or a weights matrix. In our case we have a known
spatial correlation, so we need to specify how the residuals may be cor-
related. Note that the spatial correlation form must refer to fields in a
data frame, so here we have to use the row and columns.

The nlme package provides a number of constructors of correlation struc-
tures for both time and spatial correlation. The spatial correlation mod-
els are similar to familiar variogram models: exponential, Gaussian, and
Spherical (the structure we used to model the residuals, above). All that
is required is a starting value for the range and nugget, which we extract
from the fitted variogram model and put together in a list, and the for-
mula for spatial coordinates. These constructors are functions named
corSpher, corExp and so forth; see ?corClasses for details.

A complication is that nlme does not understand sf structures (i.e., the
geometry), so we need to convert to a dataframe, with the data.frame
function, so that the coordinate names and become visible in the data
frame. Howewver, data.frame applied to an sf object retains the geometry
field as an sfc_POINT geometry, i.e., a 2D matrix. We need to first extract
the coördinates as a matrix from the geometry field with st_coordinatesunction
and then add these as regular fields to the sf object. Then these fields
can be used in the correlation structure built by corSpher.

Note: We can not use the row and column numbers already in the data
frame because we built the residual variogram with the metric coörd-
inates.

Task 130 : Fit the regression model by GLS, using a spherical correla-
tion structure based on the variogram analysis. •
The model fitting takes a bit of time; we can see how much by enclosing
the call to gls in the system.time function:
coords <- st_coordinates(mhw.sf)
mhw.xy <- cbind(mhw.sf, coords)
names(mhw.xy)

## [1] "r" "c" "grain" "straw" "gsr" "in.north"
## [7] "gls.res" "X" "Y" "geometry"

system.time(
model.gls.straw.grain <-
gls(model = straw ~ grain,

data = mhw.xy,
correlation = corSpher(
value = c(vgmr[2,"range"],vgmr[1,"psill"]),
form = ~X + Y, nugget=T))

)

## user system elapsed
## 7.238 0.100 7.188
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Task 131 : Summarize the model. •
summary(model.gls.straw.grain)

## Generalized least squares fit by REML
## Model: straw ~ grain
## Data: mhw.xy
## AIC BIC logLik
## 853.54 874.59 -421.77
##
## Correlation Structure: Spherical spatial correlation
## Formula: ~X + Y
## Parameter estimate(s):
## range nugget
## 8.02312 0.37426
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) 1.5605 0.240165 6.4977 0
## grain 1.2557 0.059545 21.0879 0
##
## Correlation:
## (Intr)
## grain -0.978
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.114035 -0.637046 -0.010328 0.619166 4.790892
##
## Residual standard error: 0.61467
## Degrees of freedom: 500 total; 498 residual

There is quite a bit of information in the model summary:

1. the fixed-effects model form;

2. the fitting information: Akaike’s Information Criterion (AIC), Bayes’
Information Criterion (BIC) and the log-likelihood of the final REML
fit;

3. the random-effects model form, i.e., the correlation structure, with
estimates of its parameters (here, range and proportional nugget);

4. the fitted model coefficients for the fixed effects, their standard
errors and significance;

5. the correlation between parameters;

6. the residuals and residual standard error (i.e., lack of fit).

Q136 :

(1) How do the GLS linear regression coefficients compare with those
estimated by OLS?;

(2) What parameters for the specified spatial correlation structure were
fit by REML?

(3) How do these spatial structure parameters compare with the fitted
variogram model? Jump to A136 •
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coefficients(model.gls.straw.grain)

## (Intercept) grain
## 1.5605 1.2557

coefficients(model.straw.grain)

## (Intercept) grain
## 0.86628 1.43050

We now have two models to compare; which is better? One way to an-
swer this is to compute each model’s log-likelihood with the logLik “log-
likelihood” function, which can be applied to most models; but this is not
corrected for degrees of freedom. For that, we use the AIC “Akaike’s An
Information Criterion” function; this is defined as:

AIC = −2 log(likelihood)+ 2 p (17.23)

where p is the number of model parameters. Thus the AIC penalizes
models with many parameters, similarly to the adjusted R2 for linear
models. Because of the change in sign, the lower AIC is better.
logLik(model.gls.straw.grain)

## 'log Lik.' -421.77 (df=5)

logLik(model.straw.grain)

## 'log Lik.' -465.21 (df=3)

AIC(model.gls.straw.grain)

## [1] 853.54

AIC(model.straw.grain)

## [1] 936.43

This comparison can only be applied to hierarchical models, that is,
where one is an extension of the other. In this case the GLS model has
the same form for the regression parameters but an extended form for
the residual structure, so they can be compared.

Q137 : Is the GLS model more likely than the OLS model? Which model
has more parameters? Which model is better according to the AIC? Jump
to A137 •

Finally, we visualize the effect on the regression model fit of using GLS
instead of OLS.

Task 132 : Plot the straw vs. grain yield, with the OLS and GLS regres-
sion lines. •
plot(straw ~ grain, data=mhw, pch=20,

sub="black: OLS; red: GLS")
grid()
abline(model.straw.grain)
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abline(model.gls.straw.grain, col="red")
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ggplot(data = mhw.sf, aes(x = grain, y = straw)) +
geom_point() +
geom_smooth(method = "lm") +
geom_abline(aes(intercept = coefficients(model.gls.straw.grain)[1],

slope = coefficients(model.gls.straw.grain)[2]),
color = 'red', lwd = 1) +

labs(title = "GLS (red) vs. OLS (black) regressions")

## ‘geom_smooth()‘ using formula = ’y ~ x’
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GLS (red) vs. OLS (black) regressions
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Q138 : What may account for the shallower slope of the GLS line? Jump
to A138 •

Challenge: Recompute the GLS regression, but using an exponential
variogram model form – this is often used for these sorts of problems,
because it has a simple structure and interpretation.

You will first have to re-fit the residual variogram with an exponential
model to obtain starting values for gls.

Compare the GLS regression line with that obtained with the spherical
model; compare the fitted correlation structure with that from the spher-
ical model. Plot all three lines on the scatterplot and comment on the
differences. How much difference did the choice of correlation structure
make in the estimates?

Compare the log-likelihoods of the two GLS models (exponential and
spherical variogram forms); which is more likely?

Note: Recall that the reported range parameter of an exponential model
is one-third of its effective range, i.e., when the correlation is reduced to
5% of the total.

17.3 Answers

A132 : Yes, there are definitely many high (orange to yellow) and low (blue)
patches of a few adjacent plots. Return to Q132 •

A133 : (1) Yes, the variance is less at closer separations; (2) about (0.35 −
0.2)/0.35 ≈ 40% of the total sill appears to be structural (not nugget variance);
(3) the range is about 6 to 7 m, i.e., about two to three plots. Return to Q133 •

A134 : There is a fairly high nugget (theoretically, the same as for the resid-
uals of straw yield) but clear spatial structure to about 6 meters (a bit more
than two plot widths) and then some fluctuation around a sill, suggestive of
periodicity; see §20. Return to Q134 •

A135 : A proportion of pure noise s = 1 means that the nugget c0 = σ 2, i.e.,
is equal to the total sill (c0 + c1 in variogram terms), so the residuals have no
spatial correlation and the OLS solution is valid; there is no need to account
for correlation in the residuals by GLS. Return to Q135 •

A136 :

(1) The intercept is higher (1.56 vs. 0.87) and the slope is shallower (1.26 vs.
1.43).

(2) A range of just over 8 m and a nugget of about 0.37.
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(3) The range is quite comparable to the variogram model fit, just a little longer;
but the nugget has a different meaning. Here it is the proportion of the total
sill, which for the variogram fit is 0.4684; the REML fit decreases this a bit.

Return to Q136 •

A137 : The GLS model is substantially more likely than the OLS model; its log-
likelihood is -421.8 compared to -465.2 for the OLS model. The GLS model has
two more parameters, because three parameters are needed for the covariance
structure, but only one for the variance assuming i.i.d. residuals. Still, the AIC
for the GLS model, 853.5, is much superior to that for the OLS model, 936.4

Return to Q137 •

A138 : If the very high- and very low-yielding plots, with the highest leverage
on the regression line, are spatially-correlated (which seems likely), the clusters
in the scatterplot at extreme upper-right (above the average line) and extreme
lower-left (below) will have less effect; because of spatial correlation they will
be effectively clustered by the GLS fit, to some degree sharing their weights. So
the line will not be pulled so much by these high-leverage plots. Return to
Q138 •

18 Geographically-weighted regression*

Another approach to spatial correlation in regression is to use it to reveal
an underlying process. In §7.2 and §17 we implicitly assumed that the
process by which straw and grain yields are related (i.e., the plant phys-
iology in response to environmental factors) is the same everywhere.
The environmental factors could result in higher or lower yields (linear
model intercept), but the relation of straw to grain is constant (linear
model slope). But is this true?

A recently-developed technique for investigating this is “geographically
weighted regression” (GWR). This computes the coefficients of the re-
gression equation for each plot, in a local window which moves across a
spatial field. Further, it weights plots near to the target plot more than
those further away, using a density kernel. Thus the equation reported
at each point can be thought of as the local linear relation between the
response and predictor, which is now allowed to vary across the field.
The main interpretive interest in GWR is the spatial pattern of the coef-
ficients, which is taken as evidence of a spatially-varying process.

GWR is comprehensively described by Fotheringham et al. [17] and briefly
by Fotheringham et al. [16, §5.4.3]; these same authors maintain a web
page24 with tutorial material.

One implementation of GWR in the R environment is the spgwr pack-
age25, which builds on the sp package for spatial objects.

24 http://ncg.nuim.ie/ncg/GWR/whatis.htm
25 Although the package loads with the somewhat of-putting disclaimer “NOTE: This

package does not constitute approval of GWR as a method of spatial analysis”!
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Task 133 : Load the sp and spgwr packages. •
library(sp)
library(spgwr)

Since this package does not work with sf objects, we need to make a
version with the older sp representation.
mhw.sp <- as(mhw.sf, "Spatial")
str(mhw.sp)

## Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
## ..@ data :'data.frame': 500 obs. of 7 variables:
## .. ..$ r : int [1:500] 1 2 3 4 5 6 7 8 9 10 ...
## .. ..$ c : int [1:500] 1 1 1 1 1 1 1 1 1 1 ...
## .. ..$ grain : num [1:500] 3.63 4.07 4.51 3.9 3.63 3.16 3.18 3.42 3.97 3.4 ...
## .. ..$ straw : num [1:500] 6.37 6.24 7.05 6.91 5.93 5.59 5.32 5.52 6.03 5.66 ...
## .. ..$ gsr : num [1:500] 0.57 0.652 0.64 0.564 0.612 ...
## .. ..$ in.north: logi [1:500] TRUE TRUE TRUE TRUE TRUE TRUE ...
## .. ..$ gls.res : num [1:500] 0.311 -0.448 -0.268 0.465 -0.129 ...
## ..@ coords.nrs : num(0)
## ..@ coords : num [1:500, 1:2] 1.27 3.82 6.36 8.91 11.45 ...
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : NULL
## .. .. ..$ : chr [1:2] "coords.x1" "coords.x2"
## ..@ bbox : num [1:2, 1:2] 1.27 1.59 62.34 62.02
## .. ..- attr(*, "dimnames")=List of 2
## .. .. ..$ : chr [1:2] "coords.x1" "coords.x2"
## .. .. ..$ : chr [1:2] "min" "max"
## ..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot
## .. .. ..@ projargs: chr NA

This is of class SpatialPointsDataFrame. The coördinates are in the
coords slot of the S4 object.

A key issue in GWR is the size and shape of the window to be moved
over the field, and centred on each point in turn. This is closely related
to kernel density estimation of a single variable (not a regression rela-
tion). The most common kernel shape is Gaussian (bivariate normal, the
familiar bell-curve), and the bandwidth is often chosen to minimize the
average cross-validation error of all the points predicted by their own
local regression.

Task 134 : Compute the optimal bandwidth for GWR of the straw vs.
grain relation. •
The gwr.sel function does this:
(bw <- gwr.sel(straw ~ grain, data=mhw.sp, adapt=F, verbose=F))

## [1] 7.7937

Q139 : To the range of the variogram of which variable should this
bandwidth correspond? Jump to A139 •

Task 135 : Compute and model the empirical variogram of the grain/straw
ratio. •
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(vmf.gsr <- fit.variogram(v.gsr <- variogram(gsr ~ 1, loc=mhw.sf),
model=vgm(0.004, "Sph", 10, 0.002)))

## model psill range
## 1 Nug 0.0018000 0.0000
## 2 Sph 0.0016304 8.4351

Q140 : Does the effective range of the fitted variogram model of the
grain/straw ratio match the fitted bandwidth for GWR? Jump to A140 •

Task 136 : Compute the GWR for the straw vs. grain regression. •
The gwr.sg function computes this:
(gwr.sg <- gwr(straw ~ grain, data = mhw.sp, bandwidth = bw))

## Call:
## gwr(formula = straw ~ grain, data = mhw.sp, bandwidth = bw)
## Kernel function: gwr.Gauss
## Fixed bandwidth: 7.7937
## Summary of GWR coefficient estimates at data points:
## Min. 1st Qu. Median 3rd Qu. Max. Global
## X.Intercept. -0.0923 1.1565 1.6190 2.0558 3.4352 0.87
## grain 0.8949 1.1047 1.2486 1.4006 1.7064 1.43

Q141 : How much do the local slopes vary? How do they compare with
the slope computed for the relation over the whole field? Jump to A141
•

Task 137 : Plot the GWR slopes (coefficient of straw vs. grain) across
the field. •
The SDF field of the fitted object contains the fitted coefficients, the pre-
diction from the local model, the residuals, and the local goodness-of-fit.
The grain field within the SDF field is the slope coefficient.

For easier visualization, we convert the points representing plots into
pixels.
gwr.coef <- as(gwr.sg$SDF,"SpatialPixelsDataFrame")
print(spplot(gwr.coef, zcol="grain",

col.regions=bpy.colors(64),
key.space="right", cuts=8,
main="Slope: straw ~ grain"))
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Slope: straw ~ grain
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Q142 : Does the relation of straw vs. grain appear to vary across the
field? What is the interpretation? Jump to A142 •

Task 138 : Plot the GWR residuals and investigate if they have any
spatial structure. •
The gwr.e field within the SDF field contains the residuals. Use a "di-
verging" palette to visualize these, i.e., a palette with white in the middle
and contrasting colours at the positive and negative extremes.
print(spplot(gwr.coef, zcol="gwr.e",

col.regions=cm.colors(64),
key.space="right", cuts=8,
main="Slope: straw ~ grain"))
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Slope: straw ~ grain
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To check for spatial structure, we compute the empirical variogram of
these GWR residuals, and model it. A technical point: the variogram
method can not handle non-square grid cells, so we have to convert to
spatial points.
vr.gwr <- variogram(gwr.e ~ 1,

loc=as(gwr.coef, "SpatialPointsDataFrame"),
cutoff=12, width=0.5)

plot(vr.gwr, plot.numbers=TRUE, pch=20)
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This is quite irregular. Note there are no point-pairs closer than 2.1 m.

Attempt to fit a variogram model, using starting values estimated from
the empirical variogram plot:
(vmf.r.gwr <- fit.variogram(vr.gwr,

model=vgm(0.10, "Sph", 8, 0.25)))

## model psill range
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## 1 Nug 0.0000 0.0000
## 2 Sph 0.3112 4.6675

plot(vr.gwr, plot.numbers=TRUE, pch=20,
model=vmf.r.gwr)
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Q143 : Is there any spatial structure in the GWR residuals? Jump to
A143 •

Task 139 : Plot the empirical variogram and fitted variogram model for
these residuals, along with those from the OLS global fit (§7.2.1) and the
REML fit (§17) to the entire dataset. •
We first must compute and model the variogram for the REML fit:
vr.gls <- variogram(gls.res ~ 1, loc=mhw.sf,

cutoff= plot.wid*10, width=plot.wid)
(vmf.r.gls <- fit.variogram(vr.gls, model=vgm(0.1, "Sph", 5, 0.2)))

## model psill range
## 1 Nug 0.16903 0.000
## 2 Sph 0.19181 7.472

To put these on one plot it’s easiest to use the base graphics plot
method to establish the plotting axes and show one of the point sets;
we then use the lines and points functions to add more point sets and
lines. The lines are computed from the fitted variogram models with the
variogramLine function.
ylim.plot=c(0, max(vr.gwr$gamma, vr.gls$gamma, vr$gamma))
plot(gamma ~ dist, data=vr.gwr, ylim=ylim.plot,

type="b", lty=2, col="red", xlab="separation, m",
ylab="semivariance, (lbs plot-1)^2",
main="Regression model residuals")
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lines(variogramLine(vmf.r.gwr, maxdist=max(vr.gwr$dist)),
col="red")

points(gamma ~ dist, data=vr, type="b", lty=2, col="blue")
lines(variogramLine(vgmr, maxdist=max(vr.gwr$dist)),

col="blue")
points(gamma ~ dist, data=vr.gls, type="b", lty=2, col="green")
lines(variogramLine(vmf.r.gls, maxdist=max(vr.gwr$dist)),

col="green")
legend(8,0.15,c("OLS", "GLS", "GWR"), lty=1,

col=c("blue","green","red"))
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Q144 : Explain the change in spatial structure from (1) OLS residuals,
(2) GLS residuals, (3) GWR residuals. Jump to A144 •

18.1 Answers

A139 : In this case of a bivariate relation, the bandwidth might be expected
to correspond to the variogram range for the grain/straw ratio, which also
represents the same process as the straw vs. grain regression. Return to
Q139 •

A140 : The bandwidth 7.8 m is a bit less than the range for grain/straw with
a spherical model, 8.4; but they are comparable. Return to Q140 •

A141 : There is quite a wide range of both coefficients; the IQR is also wide.
The global coefficients are nowhere near the medians of the GWR coefficient
distributions. Return to Q141 •
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A142 : Most definitely. There is a very high straw yield per unit grain yield
in the NW and SE, very low in the SW. The process by which carbohydrates are
partitioned between grain and straw appears to be systematically different in
patches of about 1/5 field size, not just random noise plot-to-plot. Return to
Q142 •

A143 : The variogram is quite irregular, however there does appear to be
some structure. The fitted variogram model shows a range of 4.7 m and a
structural sill to total sill ratio of 100%, i.e., zero nugget. This is an artefact of
the automated fitting. Return to Q143 •

A144 : The OLS fit has the highest residuals; these are slightly lowered by the
REML fit, presumably because it better accounted for very high and low values
close to each other. The GWR residuals are considerably lower and are fit with
a slightly longer range. The lower residuals are because the GWR fit is local
and so can better adjust to local relations between straw and grain. Return to
Q144 •

19 Management zones*

In §15 we saw that there is spatial structure in the field, i.e., there are
clusters of similar grain yields, straw yields, and grain/straw ratios. This
observation is common for farmers, and they may attempt to divide a
seemingly homogeneous field into management zones. For example, ar-
eas with a low grain/straw ratio may have excess N, leading to exces-
sive vegetative growth, so the farmer may use less fertilizer in such a
zone. These zones may be based on covariates that are not homoge-
neous across the field (e.g., slope, surface soil texture) or by on-the-go
sensor measurements (e.g., electrical conductivity of the surface soil) but
may also be inferred from a cluster analysis of grain yields [15, 30].

The concept is that clusters in feature (attribute) space may also be clus-
tered in geographic space, leading to delineation of zones. In this section
we take a simple approach to defining management zones in the Mercer
& Hall field, mainly as an exercise in cluster analysis.

Let’s look again at the straw vs. grain scatterplot to see if we can esti-
mate how many clusters might be distinguished in feature space. We
use ggplot2 “grammer of graphics” [54] graphics for this.

Task 140 : Display a scatterplot of straw vs. grain, with the grain/straw
ratio highlighted by a colour ramp. •
library(ggplot2)
ggplot(mhw, aes(grain, straw, col=gsr)) +

geom_point()
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Clearly there is a wide range of yields of both grain and straw, as well as
a wide range of grain/straw ratios.

Q145 : How many clusters of similar yields and ratios do you see? How
could these be described? Jump to A145 •

Task 141 : Divide the plots into six feature-space clusters, based on the
grain and straw yields. •
The k-means algorithm [22] divides a multivariate dataset into an analyst-
defined k groups such that the within-cluster sum of squares is mini-
mized. It is implemented in the kmeans function. Since a true optimum
is computationally unfeasible, the algorithm repeats for a user-defined
nstart number of random starting cluster centroids, and compares the
sum-of-squares achieved for each one, taking the least as the result.
(gs.cluster <- kmeans(mhw[, c("grain","straw")],

centers=6, nstart = 20))

## K-means clustering with 6 clusters of sizes 104, 67, 98, 64, 39, 128
##
## Cluster means:
## grain straw
## 1 3.7890 6.4134
## 2 4.1525 5.9930
## 3 3.5126 5.7612
## 4 4.5784 8.0356
## 5 3.2779 4.9644
## 6 4.1949 7.1593
##
## Clustering vector:
## [1] 1 2 6 6 3 3 5 3 2 3 3 6 6 6 4 4 6 6 1 1 6 6 4 4 4 1 3 3 3 1 1 1
## [33] 1 6 2 6 1 6 6 6 6 6 6 4 4 6 6 6 4 6 1 1 6 4 6 6 6 6 4 4 4 4 4 1
## [65] 4 4 6 6 6 6 4 6 4 6 1 6 4 1 4 4 5 1 1 3 1 3 5 3 3 6 6 1 6 6 1 1
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## [97] 3 4 6 6 2 1 6 1 6 1 3 1 6 6 4 4 4 4 6 1 1 1 4 4 6 4 4 4 4 6 4 6
## [129] 4 4 4 4 4 4 6 4 6 6 4 6 2 2 3 6 6 1 6 3 5 1 6 6 1 1 6 6 6 6 6 6
## [161] 6 6 3 3 6 6 6 6 6 6 6 6 6 6 1 6 6 6 6 6 2 2 1 2 4 2 4 4 4 4 4 4
## [193] 4 4 6 4 4 6 4 6 6 2 1 2 1 3 1 2 3 1 6 6 4 6 6 3 6 4 4 6 2 1 1 3
## [225] 1 2 1 5 3 1 6 3 6 1 6 1 6 6 4 4 6 1 3 2 1 3 6 3 6 1 6 6 6 1 1 3
## [257] 1 4 6 1 1 2 6 1 2 3 3 2 1 3 3 5 3 3 3 3 1 1 6 6 5 3 3 5 6 5 3 3
## [289] 5 3 1 2 3 1 4 3 3 1 3 3 3 3 1 6 2 2 6 2 4 1 4 6 1 3 1 3 3 3 3 3
## [321] 5 5 3 2 3 3 2 1 1 2 3 3 6 3 5 5 6 5 5 3 5 2 5 3 2 2 2 3 2 2 1 3
## [353] 1 1 3 5 3 5 3 3 1 4 1 2 2 2 3 5 1 2 6 1 1 1 5 5 3 3 1 1 3 2 2 2
## [385] 3 3 2 3 2 2 6 4 6 6 1 1 1 6 6 3 5 3 2 1 3 2 3 2 2 6 6 6 1 1 1 5
## [417] 1 3 1 1 5 5 1 2 3 2 5 3 3 2 1 1 6 1 1 3 6 1 2 1 5 5 3 5 5 2 5 5
## [449] 2 2 2 2 1 2 5 3 2 3 2 5 2 2 1 3 2 3 5 3 5 5 3 1 2 3 3 1 3 1 6 1
## [481] 6 2 6 1 1 2 3 6 2 2 3 1 6 2 3 3 6 1 6 1
##
## Within cluster sum of squares by cluster:
## [1] 9.2994 7.6353 7.9847 16.3838 6.7902 14.7028
## (between_SS / total_SS = 87.6 %)
##
## Available components:
##
## [1] "cluster" "centers" "totss" "withinss"
## [5] "tot.withinss" "betweenss" "size" "iter"
## [9] "ifault"

The results show:

1. the cluster centroids;

2. the cluster to which each plot is assigned;

3. the within-cluster sum of squares for each cluster. This shows how
compact is each cluster – some may be better defined than others;

4. the proportion of the total sum-of-squares (variability among plots)
not explained by the clusters, i.e., by the between-cluster sum-of-
squares. If any cluster is too diffuse this may indicate that more
clusters should have been requested.

Q146 : How much of the total variability is explained by this clustering?
What do you conclude from this about (1) the distribution of yields; (2)
the choice of number of feature-space clusters? Jump to A146 •

Task 142 : Display a scatterplot of straw vs. grain, with the assigned
clusters shown by colour. •
We add the cluster assignment to the spatial object’s data frame, and use
this to colour the plot.
mhw.sp$cluster6 <- as.factor(gs.cluster$cluster)
ggplot(data=mhw.sp@data, aes(grain, straw, color=cluster6)) +

geom_point() +
labs(colour="cluster6")
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Q147 : Do the clusters match your answer from the previous question?
Which cluster(s) are most compact? most diffuse? Jump to A147 •

Now we want to see if these feature space zones have a geographic ex-
pression; if so, these could be managed separately.

Task 143 : Display a map of the field with the plots coloured by feature-
space cluster. •
We first create the plot and save it in workspace variable g, and then
display it. This allow us to update the plot with extra or changed infor-
mation, see below.
g <- ggplot(mhw.sp@data, aes(c, r, color=cluster6)) +

geom_point(shape=15, size=5)
print(g)
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This map is difficult to read because of the “soft” colours. We can find
more suitable palettes defined in the RColorBrewer package.

Task 144 : Display the pre-defined palettes for classified (factor) values
provided by the RColorBrewer package. •
We use the display.brewer.all function, with the type argument to
show just the palettes that apply to qualitative values.
require(RColorBrewer)
display.brewer.all(type="qual")
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Task 145 : Repeat the map display, using a stronger palette. •
The scale_colour_brewer function of ggplot2 specifies an RColorBrewer
palette. Notice how the previous plot, saved in workspace variable g, is
updated with this additional specification; there is no need to repeat the
code for the original plot.
g + scale_colour_brewer(name="cluster6", palette="Accent")
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Now the zones are much clearer.

Q148 : Do the feature-space clusters also cluster in geographic space?
Would this map be useful for management by zones? Jump to A148 •

The obvious question is how many management zones to specify. These
should be (1) relatively homogeneous in feature space, (2) relatively large
and compact in geographic space. In the present case we see that both
conditions are not well-met, perhaps specifying fewer zones would give
a better result?

Challenge: Repeat the analysis for a different number of proposed
zones and compare the results.

19.1 Answers

A145 : Of course this is subjective, but I can see (1) very low grain/straw
(upper-left of the plot), (2) very high grain/straw (lower right), (3) very high
yields of both (upper right), (4) very low yields of both (lower left), (5) and (6)
two groups of intermediate yields near the centre of the plot, one lower than
the other. Return to Q145 •

A146 : Only 12% of the variation is explained. This means that the clusters are
all diffuse and not well-separated. More clusters would of course increase the
variation explained, but might not correspond to useful distinctions. Return
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to Q146 •

A147 : No very low grain/straw (upper-left of the plot) was identified; the low
grain/straw are split, some go with cluster 1 (high yield) and some with cluster
6 (medium-high yield). The proposed two intermediate clusters were split into
three. The highest and lowest yeild clusters are the most diffuse. Return to
Q147 •

A148 : There is definite clustering in geographic space; however the “zones”
generally do not extend beyond about six plots, and there are many single-plot
“zones”. This map would not be useful for management by zones. Return to
Q148 •

20 Periodicity*

Mercer & Hall asserted that the field was uniform; however others [33,
41, 46] have suggested that the field was not as uniform as assumed,
and that there were systematic patterns of previous management that
affected yield. In §8 we determined that the field halves had signifi-
cantly different straw yields; in §16.4 we determined that the two halves
had different spatial structures, i.e., local spatial dependence. These two
findings support the idea that the two halves of the field had in the past
been managed differently. However, there is another possible manage-
ment effect: periodic variation across rows or columns due to previous
ploughing or ridging. Had this field previously been used with a ridge-
furrow system or divided into ‘lands’?

Note: There is also some evidence of periodicity in the analysis of local
spatial structure of grain yields in §16.2. The variogram shows a dip at
the 5th bin, at about 11.6 m, then an increase in the 6th (13.9 m), then
again a dip in the 7th (16.4 m).

Here we follow the analysis of McBratney and Webster [33] to investigate
this possibility. The hypothesis is that in either the W–E (column-wise)
or N–S (row-wise) direction that there is either positive or negative auto-
correlation in grain or straw yields, at some spacing between columns or
rows.

Note: The field layout is explained in §A.

To investigate this, we use the tools of one- and two-dimensional spatial
correlation analysis. Thus we analyze the W–E dimension (columns along
single rows) and the N–S dimension (rows along single columns), in all
combinations. The 1D and 2D spatial correlations are symmetric; the
same correlation is found E–W and W–E, and the same S–N as N–S; for
the 2D case the correlations are radially symmetric.

199



20.1 Visualizing periodicity

In this section we attempt to reproduce Fig. 3 from McBratney and Web-
ster [33], which shows an autocorrelation surface of grain yields, i.e.,
autocorrelations at all combinations of row and column lags. Autocor-
relation is closely related to semivariance (see Eq. 20.1, just below), and
fortunately a semivariogram surface can computed by the variogram
“compute empirical variogram” method of the gstat package, specify-
ing the map argument as TRUE; we apply this to a spatial version of the
dataset, with coördinates specified by row and column; i.e., we compute
lags in terms of rows and columns:
mhw.rc <- mhw; coordinates(mhw.rc) <- ~r +c
v.map <- variogram(grain ~ 1, loc=mhw.rc, map=TRUE, cutoff=10, width=1)
summary(v.map$map$var1)

## Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
## 0.0986 0.1834 0.2038 0.2012 0.2170 0.2622 1

class(v.map)

## [1] "variogramMap" "list"

plot(v.map, col.regions=bpy.colors(64),
xlab="Row-wise (N-S) lag", ylab="Column-wise (W-E) lag")
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To convert semivariances γ to covariances C , and then to correlations ρ,
we use the relations:

C(h) = C(0)− γ(h) (20.1)

ρ(h) = C(h)/C(0) (20.2)

By definition the autocorrelation at the origin is 1. The covariance at a
point C(0) is estimated as as the variance over the field, using the var
function. We also replace the “not applicable” semivariance at the origin
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with the known autocorrelation, i.e., 1, finding the proper location in the
matrix with the is.na and which functions:
c0 <- var(mhw$grain)
v.map$map$cov <- c0 - v.map$map$var1
v.map$map$cor <- v.map$map$cov/c0
v.map$map$cor[which(is.na(v.map$map$cor))] <- 1
summary(v.map$map$cor)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.2484 -0.0329 0.0298 0.0442 0.1321 1.0000

To view as a 3D plot, we convert the autocorrelations to a matrix using
the matrix function, since this is the form required by the wireframe
function. To get a perspective view, we use aspect (vertical and hori-
zontal axis ratio) and screen (rotation and tilt) arguments.
str(v.map$map@data)

## 'data.frame': 441 obs. of 4 variables:
## $ var1 : num 0.202 0.189 0.205 0.19 0.179 ...
## $ np.var1: num 150 165 180 195 210 225 240 255 270 285 ...
## $ cov : num 0.00776 0.02126 0.00469 0.01954 0.03102 ...
## $ cor : num 0.037 0.1012 0.0223 0.0931 0.1477 ...

n <- sqrt(length(v.map$map$cor))
v.map.mat <- matrix(v.map$map$cor, nrow=n, ncol=n)
plot(wireframe(v.map.mat, drape=T, aspect=c(1,.25),

screen=c(z=225, x=-60), ylab="Column-wise (W-E) lag",
xlab="Row-wise (N-S) lag", zlab="rho(h)",
main="Autocorrelation surface, grain yields",
col.regions=bpy.colors(72)))

Autocorrelation surface, grain yields
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This plot is diagonally symmetric. The front (positive, row-wise) half re-
sembles Fig. 3 from McBratney and Webster [33], except at the (+10,+10)
corner where our figure shows a strong low autocorrelation (correspond-
ing to a large semivariance in the variogram map) and the corresponding
figure has another positive peak.
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Q149 : Does there appear to be any periodicity in one or both direc-
tions? What does this imply about the uniformity of the field? Jump to
A149 •

Task 146 : Plot the average autocorrelation along rows and columns. •
The variogram map (surface) has this information in the central row and
column of the matrix. Since the map is symmetric, we only need to plot
from the centre out.

First, compute the correlations along the central row (E–W) and column
(N–S):
(c <- ceiling(n/2))

## [1] 11

(v.map.mat[c:n,c])

## [1] 1.00000 0.53053 0.41881 0.37809 0.36462 0.30621 0.20680 0.17216
## [9] 0.20485 0.18515 0.15488

(v.map.mat[c,c:n])

## [1] 1.00000000 0.29431834 0.14698574 0.17645418 0.08599151
## [6] 0.00029433 0.07806734 0.04102077 -0.13276224 -0.00651483
## [11] -0.02592755

Plot the autocorrelations in the two directions:
par(mfrow=c(1,2))
str(v.map.mat)

## num [1:21, 1:21] 0.037 0.1012 0.0223 0.0931 0.1477 ...

plot(v.map.mat[c,c:n], type="h", ylim=c(-.2,1),
main="Along columns (E-W)", ylab=expression(rho),
col="blue", xlab="lag (rows)")

abline(h=0)
plot(v.map.mat[c:n,c], type="h", ylim=c(-.2,1),

main="Along rows (N-S)", ylab=expression(rho),
col="darkgreen", xlab="lag (columns)")

abline(h=0)
par(mfrow=c(1,1))
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Q150 : Does there appear to be any periodicity in one or both direc-
tions? Jump to A150
•

20.2 Spectral analysis

McBratney and Webster [33] also examine the spatial autocorrelation in
the frequency domain (as opposed to the spatial domain); that is, they
consider the signal as a sum of periodic components (so-called Fourier
analysis), and examine the power spectrum, that is, the relative contribu-
tion of each period to the overall signal. This should reveal the periodic-
ity. This technique is widely used in time-series analysis, but is equally
applicable to data organized in space. The frequency is relative to a cy-
cle, which in time series is some natural cycle such as a year or day. Here
the cycle is the single field.

20.2.1 Theory

The theory of power spectra and the Fourier transform from and to the
spatial domain are explained in the text of Webster and Oliver [50, Ch. 7];
we present enough theory here to motivate and interpret our application.
We consider the 1D case, i.e., observations arranged in a line, to develop
the theory, and then extend it to the 2D case.

The fundamental transformation from covariances at each lag C(h) to
the power at each frequency R(f) is:

R(f) = 1
2π

∫∞
−∞

cos(fh)C(h)dh (20.3)

In words, the integral is of the covariances, each multiplied by the cosine
at the given frequency, over all lags. As the frequency increases, the
period of the cosine function gets shorter. If the higher covariances
coincide with that period, the power at that frequency is higher.
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Eqn. 20.3 assumes a 2nd–order stationary process in R1, in which as the
lag h gets wider, the covariance C(h) approaches 0.

This ideal equation can not be computed, for several reasons. First, we
do not have an infinite number of lags (i.e., infinite-length sequence of
observations), so the integral is restricted to some window L, after which
the covariances ≈ 0. Second, the experimental covariances are increas-
ingly unreliable at large lags, so a rule of thumb is to limit L to about one-
fifth of a 1D series length. Finally, observations are not made at infinites-
imal lags, rather they have a minimum spacing, and higher-frequency
components, if any, can not be estimated.

So, the spectrum is estimated for frequencies f , ranging from −0.5 to
0.5 cycles, from the empirical covariances Ĉ(k) estimated from the ob-
servations. So the spectrum is estimated as:

R̂(f ) = 1
2π

Ĉ(0)+ 2
L−1∑
k=1

Ĉ(k) cos(πfk)

 (20.4)

Notice that the integral of Eqn. 20.3 is replaced by a sum over the chosen
window. For correlations rather than covariances, replace C with c and
omit the term with Ĉ(0). These sums estimate the relative contribution,
also called spectral density or power, of each frequency to the overall
signal in the 2nd-order stationary series.

The cosine term varies from 0 to k for f = 0 . . .0.5, i.e., πf = 0 . . . π/2.
For example, at f = 0 (i.e., at the centre of a full cycle), in terms of
correlations c:

R̂(0) = 1
π

L−1∑
k=1

ĉ(k)

At f = 0.5 (i.e., half a cycle):

R̂(0.5) = 1
π

L−1∑
k=1

ĉ(k) cos(
π
2
k)

There is a further refinement to the estimate of Eq. 20.4: using a win-
dow that emphasizes the more reliable shorter lags, without discarding
too much information from longer lags. Webster and Oliver [50, §7.3.1]
propose several window functions w(k) to multiply the covariances in
Equation 20.4; the one used by McBratney and Webster [33, Eq. 9] is the
Bartlett window:

w(k) =
1− (|k|/L) if 0 ≤ |k| ≤ L

0 if |k| > L (20.5)

Note: Fig. 7.3 of Webster and Oliver [50] shows the relative weights of
lags within a window for the rectangular, Bartlett, and Parzen window;
these authors favour the latter.
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There is only one quantity left to estimate; this is the auto-covariance
at each lag h, including zero; this follows directly from the definition of
covariance:

Ĉ(h) = 1
N − h

N−h∑
i=1

{(z(i)− z̄)(z(i+ h)− z̄)} (20.6)

where z is the data value.

We now apply this theory to the 2D case of the Mercer & Hall wheat field.

20.2.2 Covariance surface

We first compute the auto-covariances cp,q in two dimensions as [33, Eq.
6]:

cp,q = 1
(m− p)(n− q)

(m−p)∑
i=1

(n−q)∑
j=1

(xi,j − x̄)(xi+p,j+q − x̄) (20.7)

where x̄ is the mean of the m × n matrix, and the lags in the two di-
mensions are p and q. Thus, all possible combinations cells that con-
tribute to the two-dimensional lag are included in the weighted sum.
Auto-correlations are obtained by dividing the auto-covariances by c0,0,
i.e., the overall variance.

Note: This should give identical results to the variogram surface, con-
verted to an auto-correlation surface, which was computed by the variogram
method in §20.1, above. However, its calculation is a good example of the
use of the for flow control operator.26

To compute this sum, we use the for flow control operator in a so-called
“for-loops”. These are not much used in R, since in many cases vector-
ized operators can be used, but in this case we need to step through the
matrix, and at each position compute a covariance of selected neighbour
cells.

We first convert the grain yields to a matrix matching the field shape,
and centre the yields on the mean, since the covariances are based on
differences, not absolute values:
# centre grain yields at zero
# organize as an array
m <- max(mhw$r); n <- max(mhw$c)
str(mhw.grain.matrix <- matrix(data = (mhw.rc$grain - mean(mhw.rc$grain)),

nrow = m, ncol = n))

## num [1:20, 1:25] -0.3186 0.1214 0.5614 -0.0486 -0.3186 ...

Task 147 : Write a function to implement Eqn. 20.7. •
The following functions compute covariances cp,q and cp,−q, respec-
tively, when given the the row and column lags, and the data matrix,

26 This was covered in more detail in §14.
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as arguments. The return function returns the computed covariance to
the caller.
## p, q lags in row, column direction
## positive column lags
cpq <- function(p, q, mat) {
s <- 0
for (i in 1:(m - p))
for (j in 1:(n - q))
s <- s + (mat[i,j]) * (mat[i+p, j+q])

return((1/((m - p) * (n - q))) * s)
}

## negative column lags
cpmq <- function(p, q, mat) {
s <- 0
for (i in 1:(m - p))
for (j in (q+1):n)
s <- s + (mat[i,j]) * (mat[i+p, j-q])

return((1/((m - p) * (n - q))) * s)
}

Task 148 : Apply these functions the desired combination of row and
column lags. •
Following McBratney and Webster [33] we compute up to fourteen lags
in both directions, although this is considerably more than the recom-
mended one-fifth of the overall dimension (i.e., 4 rows and 5 columns).
The matrix is radial symmetric, so we can fill in the other two quadrants
from the first two.
## symmetry relations
## c(-p,q) = c(p, -q); c(-p, -q) = c(p, q)
## compute for the desired combination of lags
max.l <- 14; d <- 2*max.l + 1
ch <- matrix(0, d, d)
for (lag.r in 1:max.l)
for (lag.c in 1:max.l) {
## c(p, -q) : lower-left
ch[(max.l+1) + lag.r, (max.l +1) - lag.c] <-

(cpmq(lag.r, lag.c, mhw.grain.matrix))
## c(-p, q) : upper-right
ch[(max.l+1) - lag.r, (max.l+1) + lag.c] <-

ch[(max.l+1) + lag.r, (max.l +1) - lag.c]
}

for (lag.r in 0:max.l)
for (lag.c in 0:max.l) {
## c(p, q) : lower-right, including centre
ch[(max.l+1) + lag.r, (max.l+1) + lag.c] <-

(cpq(lag.r, lag.c, mhw.grain.matrix))
## c(-p, -q) : upper-left
ch[(max.l+1) - lag.r, (max.l+1) - lag.c] <-

ch[(max.l+1) + lag.r, (max.l+1) + lag.c]
}

ch <- ch/var(mhw$grain)
summary(as.vector(ch))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.44978 -0.10421 -0.01259 -0.00802 0.09195 0.99800

Task 149 : Plot the autocorrelation surface. •
Again we use the wireframe function:
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plot(wireframe(ch, drape=T, aspect=c(1,.25),
screen=c(z=225, x=-60), ylab="Column-wise (W-E) lag",
xlab="Row-wise (N-S) lag", zlab="rho(h)",
main="Autocorrelation surface, grain yields",
auto.key=T,
col.regions=bpy.colors(72)))
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Row−wise (N−S) lag Column−wise (W−E) lag

rho(h)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Indeed, this is the same surface computed in §20.1, but extended to
maximum lag 14, so the stretch is somewhat different, here reaching
−0.45 at lag (−14,+14). The periodicity in the N-S direction is obvious

20.2.3 Power spectrum

The 1D spectral calculation of Eqn. 20.4 can be extended into 2D, by
considering the lags, correlations, and weights in 2D. For frequencies
from −0.5 to 0.5 cycles per sampling interval, the 2D power spectrum
(in the frequency domain) is estimated from the auto-covariances (in the
spatial domain) as [33, Eq. 8]:

Gr ,s = K−1
L∑

q=−L

L∑
p=−L

cp,qwp,q cos
{
(π/T)(rp + sq)} (20.8)

where:

• K is a normalizing constant, taken here as (2π)2 = 4π2;27

27 This constant only affects the absolute values, not the relative magnitudes, which
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• L is the maximum lag, i.e., window size, to be included in the esti-
mate;

• p,q are the lags in two dimensions (rows or columns);

• r , s = −T ,−T + 1, . . . ,0,1, T − 1, T , i.e., the number of frequency
estimates in the interval −0.5 . . .0.5 cycles;

• wp,q is Bartlett’s smoothing function (Equation 20.5), which damps
the cosine function’s amplitude at greater lags, computed in 2D as:

wp,q =
1− |h|/L if 0 ≤ |h| ≤ L

0 if |h| > L

where |h| =
√
p2 + q2, i.e., the Euclidean distance between plots,

and L is the maximum lag at which we want compute the spectral
density.

That is, the spectral estimate for a given combination of frequencies is a
weighted sum of lagged covariances multiplied by the appropriate point
in the period, i.e., the argument to the cosine function.

The number of frequency estimates T is not dependent on the number
of lags; it is set by the analyst to obtain a sufficiently fine-resolution
estimate. There is no disadvantage to a high value of T other than com-
putation time; McBratney and Webster [33] used T = 50 to obtain their
Fig. 5.

However, the choice of L is critical: small L are reliable but do not reveal
high-frequency components; large L may be unreliable. The usual pro-
cedure is to compute for a variety of L and examine the spectra to see
where sufficient detail, without excessive noise, is found. It is also possi-
ble to compute confidence intervals; see Webster and Oliver [50, §7.3.3];
we have not (yet) implemented that here.

Task 150 : Write a function to implement Eqn. 20.8, i.e., to convert
the auto-correlation surface into a spectrum Gr ,s for each combination
of frequency estimates, from −t,−t+1, . . . ,0,1, . . . t−1, t, where t is the
number of frequency estimates. •
We use the function command to write a function from the lag combi-
nation r and s, the number of frequency estimates t, the maximum lag
L, and the matrix of correlation coefficients cor.mat:

Note: This function also includes an internal function (i.e., only visible
inside the function) to compute Barlett’s weighting.

grs <- function(r=0, s=0, t, L, cor.mat) {
## smoothing function: Bartlett lag window
w <- function(x, y) {
h <- sqrt(x^2 + y^2)
return(ifelse(h <= L, 1 - (h/L),0))

are of primary interest.
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}
max.p <- dim(cor.mat)[1]; max.q <- dim(cor.mat)[2]
centre.p <- ((max.p-1)/2)+1; centre.q <- ((max.q-1)/2)+1
sum <- 0
for (q in -L:L) {
if (centre.q+q+1 > max.q) break
for (p in -L:L) {
if (centre.p+p+1 > max.p) break
## cor.mat is dimensioned 1.. 2L+1
## p, q are dimensions -L...0... L
## so add offset to the matrix subscripts, from centre out
s1 <- (cor.mat[centre.p+p,centre.q+q] *

w(p,q) * cos((pi/t)*((r*p) + (s*q))))
# print(paste("x=",centre.p+p+L+1, "y=",centre.q+q+L+1,
# "s1=",round(s1,4)))

sum <- sum + s1
}

}
return(sum/(4*pi^2))

}

Task 151 : Apply this function at a resolution of 50 estimates per
cycle, first along the 1D W-E axis, with no N-S offsets and for a window
size L = 10. •
Since the spectrum is symmetric, we only need to compute the positive
half, i.e., from s = 0 . . . T :
# theta <- 50; dens <- rep(0, 2*theta+1)
theta <- 50; dens <- rep(0, theta+1)
#for (r in -theta:theta)
# for (r in 0:theta)
# dens[theta+r+1] <- grs(r, 0, t=theta, L=10 ,cor.mat=ch)
for (s in 0:theta)
dens[s+1] <- grs(0, s, t=theta, L=10 ,cor.mat=ch)

Task 152 : Plot the spectral density as a function of frequency. •
We use the interpolating spline function spline to smooth the graph.
However, the estimates at each knot are not changed by the spline:
plot(dens ~ seq(0, 0.5, length=theta+1), type="p",

main="Spectral density, W-E", sub="window size 10",
ylab="density", xlab="frequency, cycles", pch=20, cex=0.6)

dens.smooth <- spline(dens)
lines(dens.smooth$y ~ seq(0, 0.5, length=length(dens.smooth$x)), lty=1)
grid()
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The selection of the window width L is subjective, so we now look for
the width that best reveals the spectral characteristics.

Task 153 : Compute the power spectrum along the E-W dimension for
window sizes L = 4,6,8,10,12,14 and plot their spectral densities vs.
frequency on one graph. •
We set up a matrix whose rows are the window size and whose columns
are the densities for that window size, at the chosen resolution:
l.s <- seq(4,14,by=2)
theta <- 50
dens <- matrix(rep(0, length(l.s)*(theta+1)),

nrow=length(l.s))

We then compute the spectral density for each window size, again using
a for loop to step through the window sizes, i.e., rows of the results
matrix:
for (i in 1:length(l.s)) {
for (s in 0:theta) {
dens[i,s+1] <- grs(0, s, theta, l.s[i] ,ch)

}
}

Finally, we plot them on one graph, first setting up the axes and then
using a for loop to place each curve in the figure. This corresponds to
Fig. 5 in McBratney and Webster [33].
plot(dens[1,] ~ seq(0, 0.5, length=theta+1), type="n",

main="Spectral density, W-E", ylab="density", xlab="frequency, cycles",
ylim=c(min(0,dens), max(dens)*1.1))

for (i in 1:length(l.s)) {
dens.smooth <- spline(dens[i,])
lines(dens.smooth$y ~ seq(0, 0.5, length=length(dens.smooth$x)), lty=i)
text(0,max(dens[i,]),paste("L =",l.s[i],sep=""), pos=3)

}
grid()
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Note: This figure is slightly different from Fig. 5 in McBratney and Web-
ster [33]; the reason is not clear. However the major features are similar.

Q151 : What are the outstanding features of the power spectrum? What
do they imply about periodicity in this direction? Jump to A151 •

Q152 : Which window size best reveals the features? Jump to A152 •

In §20.1 we concluded that there was periodicity in the W–E direction
(column-wise along rows) but not the N–S direction (row-wise along col-
umn); the W–E power spectrum confirms the first; now we examine the
second.

Task 154 : Compute and plot the N–S power spectrum for window
width L = 10. •
theta <- 50; dens <- rep(0, theta+1)
for (r in 0:theta)
dens[r+1] <- grs(r, 0, t=theta, L=10 ,cor.mat=ch)

plot(dens ~ seq(0, 0.5, length=theta+1), type="p",
main="Spectral density, N-S", sub="window size 10",
ylab="density", xlab="frequency, cycles", pch=20, cex=0.6)

dens.smooth <- spline(dens)
lines(dens.smooth$y ~ seq(0, 0.5, length=length(dens.smooth$x)), lty=1)
grid()
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Q153 : Is there any evidence of periodicity in this direction? Jump to
A153 •

We can visualize the power in both directions simultaneously, and also
discover if there are any interactions of the directions; for example if the
periodicity were not along rows or columns.

Task 155 : Compute and plot the two-dimensional power spectrum
for window width L = 10; this corresponds to Fig. 7 in McBratney and
Webster [33]. •
This requires O(θ2) density calculations, so we reduce the frequency
resolution to 25 to speed up the computation:
theta=25
dens <- matrix(rep(0, (theta+1)^2), nrow=theta+1)
for (s in 0:theta)
for (r in 0:theta)
dens[r+1,s+1] <- grs(r, s, theta, 10 ,ch)

wireframe(dens, drape=T, aspect=c(1,.35), screen=c(z=225, x=-60),
xlab="N-S frequency",
ylab="E-W frequency", zlab="density",
auto.key=T,
col.regions=topo.colors(72)
)
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Task 156 : Remove the variables created in this section. •
rm(mhw.rc, v.map, c0, v.map.mat, m, n, c, max.l, lag.r, lag.c)
rm(r, s, theta, dens, dens.smooth, l.s, grs, ch)

Challenge: Repeat this analysis for straw yields. Does this confirm,
weaken, or strengthen the conclusions from the analysis of grain yields?

Challenge: Recall (§16.4) that the local spatial structure is different in
the N and S field halves. Is the periodicity in the E–W direction present
in both field halves? If so, does it show the same pattern?

Challenge: Use anisotropic variogram analysis to confirm the periodic
effect.

20.3 Answers

A149 : There are clear “ripples” on the autocorrelation surface in the E–W
direction (columns along rows); these appear to be at 3-plot intervals. However,
this pattern varies somewhat with increasing separation in the N–S direction.
There seems to be no such a pattern in the N–S direction, just the expected
decreasing autocorrelation with separation. Return to Q149 •

A150 : The autocorrelation graphs show clearly the pattern of the previous
answer, i.e., along rows there is a clear dip in autocorrelation at lags 3 and 6,
and even a negative autocorrelation at lag 9. No such pattern is seen along
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columns. This implies a periodic structure along the E-W (row-wise) direction,
at an interval of approximately three rows; recalling that the row length is
3.30 m (§A), the periodicity appears to have a fundamental period of about
10 m; this is also the conclusion of McBratney and Webster [33, §4], who ex-
amine the likely causes. Return to Q150
•

A151 : The highest power is at the origin, i.e., the overall mean, representing
a full cycle. However there is significant power at approximately 0.33̄ cycles,
i.e., 20/3 = 6.6̄ plots. Return to Q151 •

A152 : L = 10 is sufficiently detailed to clearly see the spike at 0.33̄ cycles
without the small fluctuations for L > 10. At L < 4 the feature becomes
increasingly vague. Return to Q152 •

A153 : No. Return to Q153 •

21 The effect of plot size*

Mercer and Hall’s original research objective was to determine how within-
plot variability is affected by plot size. To investigate this, they grouped
the 1 acre field into plots of 1/500 acre (the original plots), 1/250 acre,
1/125 acre, 1/50 acre, 1/25 acre, and finally 1/10 acre; they measured
the variability in the resulting samples and graphed this by plot size.
They then could determine how large a plot would be necessary to re-
duce the variability to an acceptable level. We will repeat their analysis
here.

Q154 : Based on the geostatistical analysis (§16.2), what size plot would
be expected to remove most of the local variation? Jump to A154 •

Before proceeding, we need an operational definition of heterogeneity,
so we can compare the variability between different plot sizes. In §6 we
used the probable error, but that required modelling a normal distribu-
tion. A simpler, and commonly-used, measure of variability for samples
that are approximately normally-distributed is the coefficient of variation
(CV), which is defined as:

CV = s/x̄

This normalizes the sample standard deviation s by the sample mean
x̄. It is commonly expressed in percent. This measure was also used by
Mercer and Hall28.

There is no R function to compute the CV; we can compute it on any
sample by first using the mean function and then the sd function, and
then taking their ratio:

28 although they mistakenly refer to it as “standard deviation”
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round(100 * sd(mhw$grain)/mean(mhw$grain),1)

## [1] 11.6

To avoid writing this out for each vector whose CV we want to compute,
we can write a small function to do this computation on any sample; this
uses the function function to define the algorithm.

Task 157 : Write a function to compute the CV of a vector. •
cv <- function(x) { round(100*sd(x) / mean(x),1) }
class(cv)

## [1] "function"

The object cv in the workspace is a function which can now be applied
to any vector, just like a built-in R function.

Q155 : What is the CV of the grain yields of the entire set of 500 plots?
Jump to A155 •

cv(mhw$grain)

## [1] 11.6

Now we group the plots into increasingly-larger plots and see how the
CV of the set is affected. Mercer and Hall compared six sizes: 1/250,
1/125, 1/100, 1/50, 1/25 and 1/10 acre; these are all possible groupings
of rows and columns to this size, given the field layout.

Task 158 : Determine how adjacent plots can be grouped in increasingly-
large blocks, up to 1/10 acre. •
We are restricted to divisors of 20 (rows), i.e. 2, 2 and 5, and 25 (columns),
i.e. 5:

1/500 acre : Original layout; grid is (20 x 25);

1/250 acre : Combine the plots in each two adjacent rows; resulting grid is (10
x 25);

1/125 acre : Combine the plots in each four adjacent rows; resulting grid is (5 x
25);

1/100 acre : Combine the plots in each five adjacent columns; resulting grid is
(20 x 5);

1/50 acre : Combine the plots in each five adjacent columns and two adjacent
rows; resulting grid is (10 x 5);

1/25 acre : Combine the plots in each five adjacent columns and four adjacent
rows; resulting grid is (5 x 5);
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1/10 acre : Combine plots in each five adjacent columns and ten adjacent rows;
resulting grid is (2 x 5);

Three larger sizes are possible: 1/5, 1/4 and 1/2 acre; however these do
not have enough plots to evaluate variability.

Task 159 : Make a data structure with each plot size and its dimensions.
•

From §15.2 we have the plot length, width, and area:
plot.len; plot.wid; plot.area

## [1] 3.1807
## [1] 2.5446
## [1] 8.0937

We can use these to compute dimensions for each combinations.

We first make a data frame with information about the combinations,
using the data.frame function to combine three lists, each made with
the c function; we also name the rows with the row.names function
for easy reference. We name each field (column) explicitly with the
field.name = ... syntax.
plots <- data.frame(acre.fraction=c(500, 250, 125, 100, 50, 25, 10),

adj.rows=c(1, 2, 4, 1, 2, 4, 10),
adj.col=c(1, 1, 1, 5, 5, 5, 5))

row.names(plots) <- c("1/500", "1/250", "1/125", "1/100", "1/50", "1/25", "1/10")
str(plots)

## 'data.frame': 7 obs. of 3 variables:
## $ acre.fraction: num 500 250 125 100 50 25 10
## $ adj.rows : num 1 2 4 1 2 4 10
## $ adj.col : num 1 1 1 5 5 5 5

Now we can compute dimensions and add them to the frame with the
cbind function:
plots <- cbind(plots, len = plot.len*plots$adj.row)
plots <- cbind(plots, wid = plot.wid*plots$adj.col)
plots <- cbind(plots, area = plots$len * plots$wid)
plots

## acre.fraction adj.rows adj.col len wid area
## 1/500 500 1 1 3.1807 2.5446 8.0937
## 1/250 250 2 1 6.3615 2.5446 16.1874
## 1/125 125 4 1 12.7230 2.5446 32.3748
## 1/100 100 1 5 3.1807 12.7230 40.4686
## 1/50 50 2 5 6.3615 12.7230 80.9371
## 1/25 25 4 5 12.7230 12.7230 161.8742
## 1/10 10 10 5 31.8075 12.7230 404.6856

The row names are shown when the entire frame is printed; this allows
us to identify each combination.

Q156 : What are the dimensions of these in meters, and their areas in
m2? Jump to A156 •
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Task 160 : Compute the grain yields for the 1/250 acre plots made up
of two adjacent rows, and its CV. •
To group in pairs, we make use of the modulus arithmetic operator %%
to identify the odd and even rows:
head(mhw$r%%2, 20)

## [1] 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0

Now we split the plots into two groups using the unstack function and
sum the two adjacent plots:
tmp <- unstack(mhw, grain ~ r%%2); str(tmp)

## 'data.frame': 250 obs. of 2 variables:
## $ X0: num 4.07 3.9 3.16 3.42 3.4 4.43 4.46 5.13 4.38 3.61 ...
## $ X1: num 3.63 4.51 3.63 3.18 3.97 3.39 4.52 3.46 4.23 3.85 ...

grain.250 <- tmp$X0 + tmp$X1; rm(tmp)
str(grain.250)

## num [1:250] 7.7 8.41 6.79 6.6 7.37 7.82 8.98 8.59 8.61 7.46 ...

cv(grain.250)

## [1] 10.1

Q157 : Is the variation reduced, as expected, when plot size is doubled?
By how much? Jump to A157 •

We now build a data frame of the combined plots, using the data.frame
function, labelling each with its original column number and the average
of the two rows:
plots.250 <- data.frame(r = seq(1.5, 19.5, by=2),

c=rep(1:25, each=10),
grain = grain.250)

str(plots.250)

## 'data.frame': 250 obs. of 3 variables:
## $ r : num 1.5 3.5 5.5 7.5 9.5 11.5 13.5 15.5 17.5 19.5 ...
## $ c : int 1 1 1 1 1 1 1 1 1 1 ...
## $ grain: num 7.7 8.41 6.79 6.6 7.37 7.82 8.98 8.59 8.61 7.46 ...

Task 161 : Visualise the variation across the field with the 1/250 acre
plot size. •
We visualize by colour ramp:
with(mhw,

plot(plots.250$c, plots.250$r, pch=20, cex=2,
bg="lightblue", xlab="column", ylab="row",
main="Grain yield of 1/250 acre plots",
sub="Colour of circles from low yield (green) to high (gray)",
xlim=c(1, 25), ylim=c(20, 1),
col=terrain.colors(8)[cut(grain,

quantile(grain, seq(0, 1, length=9)),
include.lowest=T, labels=F)]))
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These figures can be compared to those for the 1/500 acre plots in §15.1.

Q158 : Does the field appear more homogeneous with 250 vs. 500 plots?
What about the pattern of spatial dependence? Jump to A158 •

Task 162 : Repeat this process for the other combinations. •
First, for 1/125 acre. We introduce the very useful apply function, which
applies any other function (here, the sum) across an array margin; here
the 1 as second argument specifies that the sum is across rows of the
matrix. Since the results of unstack are organized into a set of rows,
this will add the four plots.
tmp <- unstack(mhw, grain ~ r%%4); str(tmp)

## 'data.frame': 125 obs. of 4 variables:
## $ X0: num 3.9 3.42 4.43 5.13 3.61 4.64 3.35 3.7 3.89 4.22 ...
## $ X1: num 3.63 3.63 3.97 4.52 4.23 4.15 4.27 3.61 3.79 3.87 ...
## $ X2: num 4.07 3.16 3.4 4.46 4.38 4.21 3.55 3.71 4.09 4.12 ...
## $ X3: num 4.51 3.18 3.39 3.46 3.85 4.29 3.5 3.64 4.42 4.28 ...

grain.125 <- apply(tmp, 1, sum)
rm(tmp)
str(grain.125)

## num [1:125] 16.1 13.4 15.2 17.6 16.1 ...

cv(grain.125)

## [1] 8.9

plots.125 <- data.frame(r = seq(2, 18, by=4),
c=rep(1:25, each=10),
grain = grain.125)

str(plots.125)
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## 'data.frame': 250 obs. of 3 variables:
## $ r : num 2 6 10 14 18 2 6 10 14 18 ...
## $ c : int 1 1 1 1 1 1 1 1 1 1 ...
## $ grain: num 16.1 13.4 15.2 17.6 16.1 ...

For the 1/100 acre plots the combination is by column:
tmp <- unstack(mhw, grain ~ c %% 5)
grain.100 <- apply(tmp, 1, sum)
rm(tmp)
cv(grain.100)

## [1] 7

plots.100 <- data.frame(r = rep(1:20, each=5),
c=seq(3, 23, by=5),
grain = grain.100)

str(plots.100)

## 'data.frame': 100 obs. of 3 variables:
## $ r : int 1 1 1 1 1 2 2 2 2 2 ...
## $ c : num 3 8 13 18 23 3 8 13 18 23 ...
## $ grain: num 20 21.1 21.7 20.1 21.2 ...

The 1/50 acre plots are the first where both rows and columns are com-
bined. So we have to repeat the unstacking process twice. However, we
can start from the 1/100 acre frame which already has combined the
columns.
tmp <- unstack(plots.100, grain ~ r %% 2)
grain.50 <- apply(tmp, 1, sum)
rm(tmp)
cv(grain.50)

## [1] 5.9

plots.50 <- data.frame(r = rep(seq(1.5, 19.5, by=2), each=5),
c=seq(3, 23, by=5),
grain = grain.50)

str(plots.50)

## 'data.frame': 50 obs. of 3 variables:
## $ r : num 1.5 1.5 1.5 1.5 1.5 3.5 3.5 3.5 3.5 3.5 ...
## $ c : num 3 8 13 18 23 3 8 13 18 23 ...
## $ grain: num 39.1 39.7 40.9 40.6 41.1 ...

The 1/25 acre plots are constructed similarly, but combining four in-
stead of two rows:
tmp <- unstack(plots.100, grain ~ r %% 4)
grain.25 <- apply(tmp, 1, sum)
rm(tmp)
cv(grain.25)

## [1] 4.8

plots.25 <- data.frame(r = rep(seq(2.5, 18.5, by=4), each=5),
c=seq(3, 23, by=5),
grain = grain.25)

str(plots.25)

## 'data.frame': 25 obs. of 3 variables:
## $ r : num 2.5 2.5 2.5 2.5 2.5 6.5 6.5 6.5 6.5 6.5 ...
## $ c : num 3 8 13 18 23 3 8 13 18 23 ...
## $ grain: num 79.9 79.8 83.8 84.6 82.4 ...
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The 1/10 acre plots are constructed similarly, but combining ten rows:
tmp <- unstack(plots.100, grain ~ r %% 10)
grain.10 <- apply(tmp, 1, sum)
rm(tmp)
cv(grain.10)

## [1] 3.9

plots.10 <- data.frame(r = rep(seq(5.5, 15.5, by=10), each=5),
c=seq(3, 23, by=5),
grain = grain.10)

str(plots.10)

## 'data.frame': 10 obs. of 3 variables:
## $ r : num 5.5 5.5 5.5 5.5 5.5 15.5 15.5 15.5 15.5 15.5
## $ c : num 3 8 13 18 23 3 8 13 18 23
## $ grain: num 203 204 205 207 202 ...

Now we attempt to answer Mercer & Hall’s research question.

Q159 : What is the trend of the summary statistics (extremes, mean,
median, IQR) as the plot size increases, normalized to a 1/500 acre basis?

Jump to A159 •

Note: To compare these we have to divide the summary by the number
of 1/500 acre plots making up the larger plots:

summary(mhw$grain)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.73 3.64 3.94 3.95 4.27 5.16

summary(plots.250$grain)/2

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 2.89 3.69 3.94 3.95 4.21 5.12

summary(plots.125$grain)/4

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.03 3.68 3.92 3.95 4.16 4.80

summary(plots.100$grain)/5

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.23 3.78 3.99 3.95 4.14 4.50

summary(plots.50$grain)/10

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.40 3.82 3.95 3.95 4.11 4.40

summary(plots.25$grain)/20

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.67 3.78 3.90 3.95 4.13 4.25

summary(plots.10$grain)/50

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.73 3.83 3.98 3.95 4.07 4.14
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Q160 : What is the trend in the CV as the plot size increases? Jump to
A160 •
print(size.cv <- data.frame(area = plots$area, cv = c(

cv(mhw$grain), cv(plots.250$grain), cv(plots.125$grain),
cv(plots.100$grain), cv(plots.50$grain), cv(plots.25$grain),
cv(plots.10$grain))))

## area cv
## 1 8.0937 11.6
## 2 16.1874 10.1
## 3 32.3748 8.9
## 4 40.4686 7.0
## 5 80.9371 5.9
## 6 161.8742 4.8
## 7 404.6856 3.9

plot(size.cv$area, size.cv$cv, xlab="Plot size, m^2",
ylab="Coefficient of variation, %",
main="Plot size vs. CV, Mercer-Hall grain", type="b",
xlim=c(0,600))

grid()
text(size.cv$area, size.cv$cv, pos=4,

paste(
plots$adj.rows,
" row",
ifelse(plots$adj.rows==1,"","s"),
", ",
plots$adj.col,
" column",
ifelse(plots$adj.col==1,"","s"),
sep=""))
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Q161 : What plot size do you recommend? Jump to A161 •

We now clean up from this section:
rm(cv,

plot.len, plot.wid, plot.area,plots,
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plots.250, plots.125, plots.100, plots.50,
plots.25, plots.10,
grain.250, grain.125, grain.100, grain.50,
grain.25, grain.10, size.cv)

21.1 Answers

A154 : The range of local spatial dependence was about 8 m; plot size is
(3.30 m long x 2.45 m wide) (§A); grouping six plots into one plot of (6.60 m
long x 7.35 m wide) would remove most of this structure; grouping 12 plots
into one plot (9.90 m long x 9.70 m wide) would remove all of it. Return to
Q154 •

A155 : 11.6%. Return to Q155 •

A156 : The dimensions are:
plots[,c("len", "wid", "area")]

## len wid area
## 1/500 3.1807 2.5446 8.0937
## 1/250 6.3615 2.5446 16.1874
## 1/125 12.7230 2.5446 32.3748
## 1/100 3.1807 12.7230 40.4686
## 1/50 6.3615 12.7230 80.9371
## 1/25 12.7230 12.7230 161.8742
## 1/10 31.8075 12.7230 404.6856

Return to Q156 •

A157 : Yes, it is reduced somewhat, from 11.6%. to 10.1%. . Return to Q157 •

A158 : There are half the plots so the detailed spatial structure is lost. How-
ever there are still clear patches of higher and lower yields. Return to Q158
•

A159 : The means are almost identical (3.95 to 3.95), and the medians close
(3.94 to 3.98); however the extremes (and hence the range) are reduced as plot
size increases (from 2.73 . . .5.16 in the full set to 3.72 . . .4.14 in the largest
plot) and the IQR is somewhat narrower (from 3.64 . . .4.27 in the full set to
3.82 . . .4.08 in the largest plot). Return to Q159 •

A160 : The CV decreases rapidly at first, from 11.6% (500 plots) to 10.1%
(250 plots) to 8.9% (125 plots) to 7% (100 plots), and then less dramatically, to
5.9% (50 plots), 4.8% (25 plots), and 3.9% (10 plots). The graph has a hyperbolic
shape and shows a clear inflection point around 80 m2 plot size (50 plots per
acre). Return to Q160 •

A161 : This depends on the precision required, which depends on the purpose
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of the experiment. However, the apparent inflection point of the CV vs. plot
size curve is at two rows, five columns, i.e., plots of 1/50 acres, or about 80 m2:
6.36 m long by 12.72 m wide. Put another way, one acre could be used for a
trial of ten treatments (e.g., crop varieties or fertilizer combinations) with five
replications, with a CV due to random error (not treatment effects) of 5.9%.

Return to Q161 •
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Index of Commands

* formula operator, 101

* operator, 3
+ formula operator, 98
+ operator, 3, 149
- formula operator, 128, 131
- operator, 3, 9
/ formula operator, 108
/ operator, 3, 27
: operator, 9, 137
< operator, 11
<- operator, 2, 7, 58
<= operator, 11
= operator, 7
== operator, 11
> operator, 11
>= operator, 11
[[]] operator, 161
[] operator, 8, 137
%% operator, 217
ˆ operator, 3
~ formula operator, 36, 45

abline, 20, 29, 36, 46, 54, 56, 92, 102
abs, 48
adj graphics argument, 21
AIC, 182
anova, 100
apply, 218
as.character, 137
aspect argument (wireframe function),

144, 201

bg graphics argument, 20, 238
biplot, 113
biplot.prcomp, 113
boot (package:boot), 77, 78, 80–82
boot, 77
boot package, 77, 78
boot.ci (package:boot), 80
border graphics argument, 15
boxplot, 70
boxplot (ggplot2 package), 154
bpy.colors, 149
bpy.colors (sp package), 144
breaks graphics argument, 15
by, 71

c, 9, 24, 61, 106, 216

cbind, 28, 105, 216
cex graphics argument, 20
class, 7
coef, 121, 126
coefficients, 44, 99, 121
col function argument, 126
col graphics argument, 15, 20, 48, 102
colMeans, 38
colnames, 7, 137
colors, 236
colours, 236
conf argument (boot.ci function), 80
coords argument (st_as_sf function), 148
coords slot (Spatial class), 186
cor, 40, 90, 129
cor.test, 40, 90
corExp (nlme package), 180
corSpher (nlme package), 180
curve, 32, 172
cut, 143

data argument (lm function), 45
data argument (plot function), 46
data.frame, 53, 180, 216, 217
data.frame class, 148, 152
decreasing argument (sort function), 10
density, 16, 17, 23, 29
detach, 25
diff, 25
digits argument (summary function), 140
dim, 8, 120
display.brewer.all (RColorBrewer pack-

age), 196
dnorm, 172

e1071 package, 24, 25
ecdf, 29
expand.grid, 147, 176

fg graphics argument, 238
file.show, 6
fit.variogram (gstat package), 157
fix, 27
for flow control structure, 137, 176, 205,

210
function, 58, 59, 77, 81, 137, 175, 208,

215

228



geom_points (ggplot2 package), 149
geom_sf (ggplot2 package), 149
geometry field, 149, 180
getwd, 6
ggplot (ggplot2 package), 149
ggplot2 package, 1, 149, 154, 192, 197
gls (nlme package), 179, 180, 184
grain field, 150, 187
gray, 238
grid, 20, 54
grid.arrange (gridExtra package), 149,

150
gridExtra package, 149
gstat package, 1, 147, 148, 155, 200
gwr.e field, 188
gwr.sel (spgwr package), 186
gwr.sg (spgwr package), 187

head, 9, 10, 119, 158
heat.colors, 149, 238
help, 4
help.search, 5
hist, 14, 15, 17, 18
horizontal argument (boxplot function),

70
hsv, 238

I, 128
id.n graphics argument, 51, 104
identify, 21, 22, 236
ifelse, 48, 106
in.north field, 161
index argument (plot.boot function), 82
IQR, 24, 87
is.na, 201

kmeans, 193
knitr package, 1
kurtosis (e1071 package), 24, 25

labs (ggplot2 package), 154
lattice package, 1, 144, 148, 177
legend, 92, 126
length, 158
library, 148
lines, 17, 54, 190
list, 137
lm, 44, 45, 49, 60, 62, 73, 98, 101, 102,

121, 126, 129, 131, 176, 180
lm class, 52

load, 12
logLik, 182
lowess, 49
lqs, 92
ls, 4
lty argument (plot function), 126
lty graphics argument, 20, 102

main graphics argument, 15
map argument (variogram function), 200
MASS package, 1, 37, 38, 92, 93
matrix, 201
max, 10, 24
mean, 3, 20, 24, 31, 87, 214
median, 24, 25, 87
method argument (cor function), 90
mfrow argument (par function), 70
min, 10
mvrnorm (MASS package), 37, 38

n argument (head function), 119
names, 7, 129
names argument (boxplot function), 70
newdata argument (predict.lm function),

121
nlme package, 179, 180
nstart argument (kmeans function), 193

order, 9, 10, 13, 48, 105

palette, 236, 237
par, 70
paste, 137
pc.biplot argument (biplot.pc function),

113
pch graphics argument, 20, 238
plot, 18, 19, 21, 29, 46, 48, 49, 53, 63,

70, 78, 91, 92, 104, 126, 131, 141,
190

points, 20, 54, 190
pos graphics argument, 21
prcomp, 113
prcomp class, 113, 115
predict, 52, 121
predict.lm, 52, 53, 121
print, 2, 3
probs argument (quantile function), 24

q, 5
qqline, 30
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qqnorm, 30
qt, 34
quantile, 24, 26, 77, 143

R argument (boot function), 78
rainbow, 238
rank, 88
RColorBrewer package, 196, 197
read.csv, 7
replace argument (sample function), 119
require, 25, 38, 78, 148
residuals, 125
return, 58, 78, 137, 175, 206
rev, 10
rgb, 238
rm, 4
rnorm, 37
round, 2
row.names, 119, 216
rownames, 142
rstandard, 104
rug, 15, 17
runif, 2, 4, 37

sample, 119, 120, 158
save, 12
scale argument (prcomp function), 113
scale_colour_brewer (ggplot2 package),

197
scale_colour_distiller (ggplot2 pack-

age), 166
scale_y_discrete (ggplot2 package), 154
screen argument (wireframe function),

144, 201
sd, 24, 31, 87, 214
SDF field, 187, 188
search, 148
seq, 16, 26, 53, 137, 147
set.seed, 5, 120, 158
setdiff, 120
setequal, 120
setwd, 6
sf class, 148, 149, 152, 161, 180, 186
sf package, 147–149
sfc_POINT class, 180
shapiro.test, 33
sim argument (boot function), 77
size argument (sample function), 119
skewness (e1071 package), 24

sort, 2, 9, 10, 13, 48, 152, 158
sp, 144
sp package, 1, 185, 186
SpatialPointsDataFrame class, 186
spgwr package, 1, 185, 186
spline, 209
split, 161
st_as_sf (sf package), 148
st_bbox (sf package), 148
st_coordinates (f package), 180
stem, 13
str, 7
subset, 26
subset argument (lm function), 102
sum, 218
summary, 23, 44, 126, 140
system.time, 180

tail, 9, 10
terrain.colors, 143, 149
text, 18, 21, 46, 126, 142
title, 20, 46, 54
type argument (boot.ci function), 80
type argument (display.brewer.all func-

tion), 196
type graphics argument, 142

union, 120
unstack, 217, 218

var, 3, 24, 38, 200
variogram (gstat package), 155, 189, 200,

205
variogramLine (gstat package), 190
vgm (gstat package), 156

which, 48, 105, 201
which argument (plot.lm function), 49
which graphics argument, 104
which.max, 11, 115, 176
which.min, 11, 25, 115
wireframe (lattice package), 144, 177,

201, 206
with, 63, 92

xlab graphics argument, 20, 142
xlim graphics argument, 131, 153

ylab graphics argument, 20, 142
ylim graphics argument, 70, 131, 141
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A Example Data Set

In the early days of scientific agriculture, Mercer and Hall [34] were trying
to determine the optimum plot size for agricultural yield trials:

• Plots that are too small will be too variable;

• Plots that are too large waste resources (land, labour, seed); if the
land area is limited, the number of treatments will be unnecessarily
small.

So, they performed a very simple experiment: an apparently homoge-
neous field was selected, prepared as uniformly as possible and planted
to the same variety of wheat. They attempted to treat all parts of the
field field exactly the same in all respects during subsequent farm op-
erations. When the wheat had matured, the field was divided into 500
equally-size plots. Each plot was harvested separately. Both grain and
straw were air-dried, then hand-threshed and weighed to a precision of
0.01 lb (= 4.54 g). The reported values are thus air-dry weight, lb plot-1.

The field was a square of 1 acre29, which is 0.40469 ha or 4,046.9 m2,
which was divided into a 20 rows by 25 columns, giving 500 plots, each
of 1/500 acre, which is about 8.09 m2 (3.30 m long x 2.45 m wide). We
do not have records of the original orientation of the field, so we assume
that the rows ran W to E, with 25 plots in each row, beginning at 1 on the
W and running to 25 at the E, so that columns run N to S with 20 plots
in each, running from 1 at the N to 20 at the S. Thus the NW corner (1,1)
is plot 1, the NE corner (1, 25) is plot 481, the SE corner (25, 20) is plot
500, and the SW corner (1, 20) is plot 20.

Research questions This experiment was one of a series of so-called
uniformity trials which were conducted early in the 20th century [7, 14],
mainly to determine optimum plot sizes [52], field layouts and numbers
of replications30.

This data set has attracted many statisticians since 1911 [14, 28, 33,
35, 41, 46, 51] because of a simple fact: although the yields should be
identical, they are not; in fact they vary considerably. How is this to be
explained?

Mercer and Hall distinguished two possible causes:

“If we consider the causes of variation in the yield of a crop
it seems that broadly speaking they are divisible into two
kinds. The first are random, occurring at haphazard all over
the field. Such would be attacks by birds, the incidence of
weeds or the presence of lumps of manure. The second occur
with more regularity, increasing from point to point or hav-
ing centres from which they spread outwards; we may take

29 2.471054 acres = 1 ha = 10 000 m2
30 The intimate relation between the development of applied statistics and scientific

agriculture is given in fascinating detail by Gower [21]
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as instances of this kind changes of soil, moist patches over
springs or the presence of rabbit holes along a hedge.”

The first we recognize as multiple small random errors, with no spatial
pattern, which should be normally-distributed (Gaussian) errors.

The second, however, may be evidence of local spatial autocorrelation,
which can be investigated by geo-statistical analysis.

Others [33, 41, 46] have suggested that the field was not as uniform as
assumed, so that there are both random effect as mentioned by Mercer
and Hall but also systematic effects from previous management. These
effects could include a regional trend, management blocks, or periodic
effects due to, e.g., ridge-and-furrow or previous use as an orchard.

The CSV file The data has been prepared as the comma-separated val-
ues (“CSV”) file mhw.csv in a plain-text editor. The first line gives the
four field names:

"r","c","grain","straw"

These represent:

r : Row number in the field

c : Column number in the field

grain : Grain yield, lbs plot-1

straw : Straw yield, lbs plot-1

The following 500 lines each represent a plot; the four fields are sepa-
rated by commas. For example, the first line is:

1,1,3.63,6.37

If you can not find the CSV file in digital form, here it is to copy-and-paste
into a text file, which you should name mhw.csv. Note this is presented
here in three columns to save space; the file should be one long column
of four fields.

"r","c","grain","straw"
1,1,3.63,6.37
2,1,4.07,6.24
3,1,4.51,7.05
4,1,3.9,6.91
5,1,3.63,5.93
6,1,3.16,5.59
7,1,3.18,5.32
8,1,3.42,5.52
9,1,3.97,6.03
10,1,3.4,5.66
11,1,3.39,5.61
12,1,4.43,7.07
13,1,4.52,7.1
14,1,4.46,7.16

15,1,3.46,8.85
16,1,5.13,8.37
17,1,4.23,6.89
18,1,4.38,6.72
19,1,3.85,6.59
20,1,3.61,6.2
1,2,4.15,6.85
2,2,4.21,7.29
3,2,4.29,7.71
4,2,4.64,8.23
5,2,4.27,7.73
6,2,3.55,6.45
7,2,3.5,5.87
8,2,3.35,5.71
9,2,3.61,6.01

10,2,3.71,6.29
11,2,3.64,6.3
12,2,3.7,6.17
13,2,3.79,6.33
14,2,4.09,7.22
15,2,4.42,5.2
16,2,3.89,7.05
17,2,3.87,6.82
18,2,4.12,7.38
19,2,4.28,7.03
20,2,4.22,7.65
1,3,4.06,7.19
2,3,4.15,7.41
3,3,4.4,7.35
4,3,4.05,7.89
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5,3,4.92,8.58
6,3,4.08,7.04
7,3,4.23,7.02
8,3,4.07,7.05
9,3,4.67,7.64
10,3,4.27,7.17
11,3,3.84,6.6
12,3,3.82,6.87
13,3,4.41,7.03
14,3,4.39,7.73
15,3,4.29,7.52
16,3,4.26,6.99
17,3,4.23,7.14
18,3,4.39,7.55
19,3,4.69,8.06
20,3,4.42,8.45
1,4,5.13,7.99
2,4,4.64,7.8
3,4,4.69,7.5
4,4,4.04,6.66
5,4,4.64,7.86
6,4,4.73,7.98
7,4,4.39,6.98
8,4,4.66,7.28
9,4,4.49,6.95
10,4,4.42,6.95
11,4,4.51,7.86
12,4,4.45,7.17
13,4,4.57,7.93
14,4,4.31,7.31
15,4,4.08,6.67
16,4,4.32,6.93
17,4,4.58,7.73
18,4,3.92,6.7
19,4,5.16,8.78
20,4,5.09,8.72
1,5,3.04,4.71
2,5,4.03,6.34
3,5,3.77,6.17
4,5,3.49,5.7
5,5,3.76,6.05
6,5,3.61,5.89
7,5,3.28,4.97
8,5,3.72,5.78
9,5,3.75,5.94
10,5,4.13,7.31
11,5,4.01,7.18
12,5,3.59,6.53
13,5,3.94,7.06
14,5,4.29,7.08
15,5,3.96,6.54
16,5,3.78,6.72
17,5,3.19,6.06
18,5,4.84,8.85
19,5,4.46,7.54
20,5,3.66,7.09
1,6,4.48,6.08
2,6,3.74,6.63
3,6,4.46,6.98
4,6,3.91,6.46

5,6,4.1,6.77
6,6,3.66,6.15
7,6,3.56,6.06
8,6,3.84,6.1
9,6,4.11,6.83
10,6,4.2,6.86
11,6,4.21,8.23
12,6,4.37,8.75
13,6,4.47,8.53
14,6,4.47,8.15
15,6,3.96,7.1
16,6,3.54,6.46
17,6,3.49,6.63
18,6,3.94,6.75
19,6,4.41,8.15
20,6,4.22,7.72
1,7,4.75,7.31
2,7,4.56,7.88
3,7,4.76,8.18
4,7,4.52,7.6
5,7,4.4,7.91
6,7,4.39,7.36
7,7,4.94,8.06
8,7,4.44,7.5
9,7,4.64,7.92
10,7,4.66,7.59
11,7,4.77,8.23
12,7,4.45,8.74
13,7,4.42,8.02
14,7,4.37,7.69
15,7,3.89,6.86
16,7,4.27,7.79
17,7,3.91,7.34
18,7,4.38,7.43
19,7,4.68,7.51
20,7,4.06,7.06
1,8,4.04,6.08
2,8,4.27,6.35
3,8,3.76,5.93
4,8,4.52,7.29
5,8,4.17,7.33
6,8,3.84,6.28
7,8,4.06,6.81
8,8,3.4,5.97
9,8,2.99,5.07
10,8,3.61,6.33
11,8,3.95,7.11
12,8,4.08,7.17
13,8,3.92,6.7
14,8,3.44,6.62
15,8,4.11,7.58
16,8,4.12,7.32
17,8,4.41,7.53
18,8,4.24,7.32
19,8,4.37,7.19
20,8,3.97,7.53
1,9,4.14,6.98
2,9,4.03,6.91
3,9,3.3,5.95
4,9,3.05,5.82

5,9,3.67,7.33
6,9,4.26,7.61
7,9,4.32,7.37
8,9,4.07,6.99
9,9,4.37,7.25
10,9,3.99,7.26
11,9,4.17,7.52
12,9,3.72,7.28
13,9,3.86,7.2
14,9,3.82,7.05
15,9,3.73,6.89
16,9,4.13,7.24
17,9,4.21,7.41
18,9,3.96,7.04
19,9,4.15,7.47
20,9,3.89,7.36
1,10,4,5.87
2,10,4.5,6.5
3,10,3.67,6.2
4,10,4.59,5.41
5,10,5.07,8.05
6,10,4.36,5.58
7,10,4.86,7.51
8,10,4.93,7.57
9,10,5.02,8.23
10,10,4.44,7.75
11,10,4.39,7.73
12,10,4.56,7.73
13,10,4.77,7.67
14,10,4.63,7.87
15,10,4.03,7.16
16,10,4.47,7.84
17,10,4.61,7.51
18,10,4.29,6.96
19,10,4.91,7.96
20,10,4.46,6.91
1,11,4.37,6.75
2,11,3.97,6.09
3,11,3.94,6.18
4,11,4.01,5.99
5,11,3.83,6.36
6,11,3.79,5.46
7,11,3.96,6.23
8,11,3.93,6.13
9,11,3.56,5.75
10,11,3.86,6.14
11,11,4.17,7.2
12,11,4.1,6.9
13,11,4.99,7.82
14,11,4.36,7.39
15,11,4.09,7.03
16,11,3.41,5.96
17,11,4.27,7.17
18,11,4.52,7.73
19,11,4.68,8.07
20,11,4.44,6.87
1,12,4.02,6.1
2,12,4.19,6.43
3,12,4.07,6.37
4,12,3.34,5.6
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5,12,3.63,6.43
6,12,4.09,6.1
7,12,3.74,6.38
8,12,3.04,4.96
9,12,3.59,6.03
10,12,3.99,6.26
11,12,4.17,7.08
12,12,3.07,6.12
13,12,3.91,7.34
14,12,3.79,6.33
15,12,3.82,7.3
16,12,3.55,6.7
17,12,4.06,7
18,12,4.19,7.3
19,12,5.13,8.31
20,12,4.52,8.17
1,13,4.58,7.23
2,13,4.05,6.57
3,13,3.73,6.02
4,13,4.06,6.19
5,13,3.74,6.13
6,13,3.72,6.03
7,13,4.33,6.79
8,13,3.72,5.97
9,13,4.05,6.82
10,13,3.37,6.25
11,13,4.09,7.28
12,13,3.99,7.13
13,13,4.09,7.72
14,13,3.56,6.69
15,13,3.57,6.55
16,13,3.16,5.84
17,13,3.75,6.31
18,13,4.49,7.57
19,13,4.19,6.93
20,13,3.7,6.8
1,14,3.92,6.33
2,14,3.97,6.03
3,14,4.58,7.23
4,14,3.19,6.56
5,14,4.14,5.98
6,14,3.76,5.49
7,14,3.77,5.48
8,14,3.93,6.07
9,14,3.96,6.35
10,14,3.47,5.78
11,14,3.29,5.71
12,14,3.14,5.05
13,14,3.05,5.7
14,14,3.29,5.71
15,14,3.43,5.38
16,14,3.47,5.84
17,14,3.91,6.21
18,14,3.82,6.37
19,14,4.41,6.78
20,14,4.28,6.97
1,15,3.64,5.11
2,15,3.61,5.58
3,15,3.64,5.86
4,15,3.75,4.62

5,15,3.7,7.67
6,15,3.37,5
7,15,3.71,5.66
8,15,3.71,5.79
9,15,3.75,5.12
10,15,3.09,5.47
11,15,3.37,6.44
12,15,4.86,6.39
13,15,3.39,5.86
14,15,3.64,6.36
15,15,3.73,8.58
16,15,3.3,5.7
17,15,3.51,5.99
18,15,3.6,6.34
19,15,3.54,5.58
20,15,3.24,5.95
1,16,3.66,5.96
2,16,3.82,5.8
3,16,4.07,6.74
4,16,4.54,7.08
5,16,3.92,6.14
6,16,4.01,5.99
7,16,4.59,7.28
8,16,4.76,6.49
9,16,4.73,8.64
10,16,4.2,6.49
11,16,3.74,8.63
12,16,4.36,7.26
13,16,3.6,6.27
14,16,3.6,5.84
15,16,3.39,6.42
16,16,3.39,5.8
17,16,3.45,6.05
18,16,3.14,5.48
19,16,3.01,5.68
20,16,3.29,5.58
1,17,3.57,5.12
2,17,3.44,5
3,17,3.44,5.56
4,17,3.97,6.03
5,17,3.79,5.33
6,17,3.87,5.57
7,17,3.97,6.03
8,17,3.83,6.29
9,17,4.24,6.45
10,17,4.09,6.16
11,17,3.41,5.78
12,17,3.51,6.11
13,17,4.13,6.87
14,17,3.19,5.87
15,17,3.08,5.42
16,17,2.92,4.95
17,17,3.05,7.64
18,17,2.73,4.77
19,17,2.85,4.96
20,17,3.48,5.52
1,18,3.51,5.05
2,18,3.92,5.83
3,18,3.53,4.91
4,18,3.77,5.79

5,18,4.29,5.58
6,18,4.35,6.09
7,18,4.38,6.24
8,18,3.71,5.91
9,18,4.21,6.29
10,18,4.07,6.18
11,18,3.86,6.14
12,18,3.47,5.9
13,18,3.89,6.23
14,18,3.8,6.14
15,18,3.48,5.52
16,18,3.23,5.33
17,18,3.68,5.82
18,18,3.09,5.41
19,18,3.36,6.14
20,18,3.49,5.82
1,19,4.27,6.54
2,19,4.26,8.61
3,19,4.2,6.55
4,19,4.3,5.95
5,19,4.22,6.15
6,19,4.24,5.88
7,19,3.81,5.69
8,19,3.54,5.21
9,19,3.85,6.15
10,19,4.09,5.47
11,19,4.36,7.39
12,19,3.94,6.68
13,19,3.67,6.2
14,19,3.72,6.34
15,19,3.05,5.2
16,19,3.25,5.25
17,19,3.52,5.85
18,19,3.66,5.84
19,19,3.85,6.15
20,19,3.68,6.76
1,20,3.72,5.47
2,20,4.36,6.14
3,20,4.31,6.44
4,20,4.1,5.96
5,20,3.74,5.76
6,20,3.58,5.61
7,20,4.06,6.25
8,20,3.66,5.78
9,20,4.41,6.15
10,20,3.95,6.11
11,20,4.54,7.46
12,20,4.47,7.84
13,20,4.54,7.33
14,20,3.91,6.96
15,20,3.65,6.6
16,20,3.86,6.64
17,20,3.91,6.71
18,20,3.77,6.98
19,20,4.15,6.85
20,20,3.36,6.08
1,21,3.36,4.76
2,21,3.69,5.56
3,21,4.33,6.17
4,21,3.81,6.13
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5,21,3.55,5.89
6,21,4.2,5.92
7,21,3.42,5.45
8,21,3.95,5.92
9,21,4.21,6.04
10,21,4.08,7
11,21,4.24,7.2
12,21,4.11,6.95
13,21,4.11,6.64
14,21,3.35,6.27
15,21,3.71,6.29
16,21,3.22,5.4
17,21,3.87,6.13
18,21,3.48,6.14
19,21,3.93,6.57
20,21,3.71,6.35
1,22,3.17,4.95
2,22,3.53,5.09
3,22,3.66,6.15
4,22,3.89,5.92
5,22,3.67,5.45
6,22,3.94,5.87
7,22,3.05,4.57
8,22,3.84,5.66
9,22,3.63,5.81
10,22,4.03,5.72
11,22,4.08,6.54
12,22,3.97,6.47
13,22,4.58,6.79
14,22,4.11,6.64
15,22,3.25,6.37
16,22,3.69,5.93
17,22,3.87,7.5

18,22,3.76,6.11
19,22,3.91,6.09
20,22,3.54,6.21
1,23,2.97,4.53
2,23,3.14,5.11
3,23,3.59,5.41
4,23,3.32,4.62
5,23,3.57,5.24
6,23,4.24,5.82
7,23,3.44,4.56
8,23,3.76,5.24
9,23,4.17,5.58
10,23,3.97,5.65
11,23,3.89,5.98
12,23,4.07,5.8
13,23,4.02,6.35
14,23,4.39,6.11
15,23,3.69,5.18
16,23,3.8,5.7
17,23,4.21,5.48
18,23,3.69,5.43
19,23,4.33,6.04
20,23,3.59,4.66
1,24,4.23,6.08
2,24,4.09,5.91
3,24,3.97,6.28
4,24,3.46,5.41
5,24,3.96,5.6
6,24,3.75,5.5
7,24,2.78,4.28
8,24,3.47,5.59
9,24,3.44,4.81
10,24,2.84,4.1

11,24,3.47,5.84
12,24,3.56,6.38
13,24,3.93,5.69
14,24,3.47,5.78
15,24,3.43,5.82
16,24,3.79,6.21
17,24,3.68,6.01
18,24,3.84,6.35
19,24,4.21,6.98
20,24,3.76,6.36
1,25,4.53,6.78
2,25,3.94,5.68
3,25,4.38,7.49
4,25,3.64,6.55
5,25,4.31,6.56
6,25,4.29,6.15
7,25,3.44,5.68
8,25,4.24,7.26
9,25,4.55,6.32
10,25,3.91,5.96
11,25,3.29,5.65
12,25,3.83,6.29
13,25,4.33,7.11
14,25,3.93,6.07
15,25,3.38,5.68
16,25,3.63,5.99
17,25,4.06,6.88
18,25,3.67,6.33
19,25,4.19,6.93
20,25,3.36,6.33
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B Colours

Colours may be specified in several ways; the most intuitive is by predefined name;
these can be listed with the colours or colors methods.

head(colours(), 16)

## [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"
## [5] "antiquewhite2" "antiquewhite3" "antiquewhite4" "aquamarine"
## [9] "aquamarine1" "aquamarine2" "aquamarine3" "aquamarine4"
## [13] "azure" "azure1" "azure2" "azure3"

Note: These colours are shown various ways on this colour chart: https:
//rstudio-pubs-static.s3.amazonaws.com/3486_79191ad32cf74955b4502b8530aad627.
html.

Colours can be visualised as a bar graph:

plot(seq(1:length(colors())), rep(2, length(colours())), type="h",
lwd=2, col=colors(), ylim=c(0,1), xlab="Colour number",
ylab="", yaxt="n",
main="Colours available with the colour() function")

0 100 200 300 400 500 600

Colours available with the colour() function

Colour number

An individual colour number can be identified interactively with the identify func-
tion; left-click on the vertical colour bar at its midpoint; right-click anywhere in the
graph when done.

abline(h=0.5, lwd=3)
(selected <- identify(seq(1:length(colors())),

rep(0.5, length(colors()))))
colors()[selected]; rm(selected)

For example, clicking on the light blue bar near colour 430, and then right-clicking to
end the interaction, shows the colour number and name:

[1] 432

[1] "lightskyblue2"

Colours can also be referred by number; this is their position in the active palette.
These names are displayed or extracted with the palette function:

palette(); palette()[2]

## [1] "black" "#DF536B" "#61D04F" "#2297E6"
## [5] "#28E2E5" "#CD0BBC" "#F5C710" "gray62"
## [9] "transparent" "transparent" "transparent" "transparent"
## [13] "transparent" "transparent" "transparent" "transparent"
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## [17] "transparent" "transparent" "transparent" "transparent"
## [1] "#DF536B"

Numbered colours are often used when the graphical element matches a numbered
element in some data structure:

boxplot(mhw$straw ~ mhw$r, col=mhw$r, xlab="row",
ylab="Straw yield, lbs plot-1")
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Here the row number is directly used as the colour: row 1 black, row 2 red, row 3 green
etc. Note that the colours are recycled if there are more plot elements than colours in
the palette.

The palette function can also be used to set the palette. For example to make a
20-element grey-scale to match the 20 rows of wheat plots:

palette(gray(seq(0,.9,len=20))); palette()

## [1] "black" "#0C0C0C" "#181818" "gray14" "gray19" "#3C3C3C"
## [7] "#484848" "#555555" "gray38" "#6D6D6D" "#797979" "gray52"
## [13] "gray57" "#9D9D9D" "darkgray" "gray71" "#C1C1C1" "#CDCDCD"
## [19] "gray85" "#E6E6E6"

boxplot(mhw$straw ~ mhw$r, col=mhw$r,
xlab="row", ylab="Straw yield, lbs plot-1")

palette("default"); palette()

## [1] "black" "#DF536B" "#61D04F" "#2297E6" "#28E2E5" "#CD0BBC"
## [7] "#F5C710" "gray62"
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Note how some colours are given by their Red-Green-Blue saturations, as two hexidec-
imal digits per hue, e.g. #E6E6E6# is approximately 90% of white:

as.numeric("0xe6")/as.numeric("0xff")

## [1] 0.90196

This example also shows the gray function to set up a grey-scale colour ramp; other
colour ramp functions are rgb, hsv, rainbow, and heat.colors.

Plotting symbols There are 25 pre-defined plotting symbols which can be speci-
fied with the pch, fg and bg graphics arguments:

●1

2

3

4

5

6

7

8

9

●10

11

12

●13

14

15

●16

17

18

●19

●20

●21

22

23

24

25

In addition, ASCII characters can be used; e.g. pch=51 prints a ‘1’.
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