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1 Introduction

This exercise shows how to compute trend surfaces using the R environ-
ment for statistical computing [8, 18].

A trend surface is a map of some continuous variable, computed as a
function of the coördinates. This corresponds to the concept of a geo-
graphic trend, where the variable changes its value along a geographic
gradient.

The trend can be modelled as a linear trend, i.e., the variable increases
or decreases a fixed amount for each unit change in the coördinates in
some direction. This is called a first-order trend surface (§5.1). It can
also be modelled as a polynomial trend, i.e., a linear model of some poly-
nomials of the coördinates, for example, a quadratic, which is called a
second-order trend surface (§5.2). It can also be modelled as an empirical
smooth function of the coördinates, for example a generalized additive
model (§7 ) or a minimum-curvature surface (thin-plate spline) (§8).

The residuals from any of the above approaches may have spatial struc-
ture (§9). This has two implications:

1. The OLS fit may not be optimal, and a Generalized Least Squares
(GLS) trend should be fit (§10).

2. The OLS or GLS trend surfaces can be modified by (1) interpolating
the residuals from the trend-surface fit (§11) and (2) adding these
to the trend.

3. The trend and local deviations can be modelled together with Uni-
versal Kriging (UK) (§13).

In this exercise we compare these approaches.

2 Preparing for the exercise

2.1 Computing environment

The code to complete this tutorial can be executed in any R environment.
A good choice is the RStudio1 integrated development environment (IDE)
for R.

2.2 Loading R packages

R has thousands of user-contributed packages beyond the core packages
automatically loaded with R2.

In this exercise we use several of these packages. Their use will be ex-
plained as they are encountered in the tutorial.

1 https://www.rstudio.org
2 stats, graphics, grDevices, utils, datasets, methods, base
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Task 1 : Load the sf “simple (spatial) features”, the gstat “geostatis-
tics”, the ggplot2 “grammar of graphics”, the gridExtra “arrange mul-
tiple ggplot graphics on one figure”, the units “units of measure”, the
terra “gridded (raster) data structures”, the mgcv “Generalized Additive
Models”, the fields “curve and function fitting”, and the nlme “Linear
and Nonlinear Mixed Effects Models” packages into your search path.
They will be explained at their first use in the tutorial. •

Note: You can also load these via checkboxes in the RStudio “Packages”
pane.

The require or library functions are used to load R packages.
require(sf) # 'simple features' representations of spatial objects

## Loading required package: sf

## Linking to GEOS 3.8.1, GDAL 3.2.1, PROJ 7.2.1; sf_use_s2() is TRUE

require(gstat) # geostatistics

## Loading required package: gstat

require(ggplot2) # Grammer of Graphics plots

## Loading required package: ggplot2

require(gridExtra) # arrange multiple ggplot graphics on one figure

## Loading required package: gridExtra

require(units) # units of measure

## Loading required package: units

## udunits database from /Library/Frameworks/R.framework/Versions/4.1/Resources/library/units/share/udunits/udunits2.xml

require(terra) # gridded data structures ("rasters")

## Loading required package: terra

## terra 1.5.17

##
## Attaching package: ’terra’

## The following object is masked from ’package:ggplot2’:
##
## arrow

## The following object is masked from ’package:knitr’:
##
## spin

require(mgcv) # for Generalized Additive Models

## Loading required package: mgcv

## Loading required package: nlme

## This is mgcv 1.8-38. For overview type ’help("mgcv-package")’.

require(fields) # NCAR etc. approach to surfaces

## Loading required package: fields

## Loading required package: spam

## Spam version 2.8-0 (2022-01-05) is loaded.
## Type ’help( Spam)’ or ’demo( spam)’ for a short introduction
## and overview of this package.
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## Help for individual functions is also obtained by adding the
## suffix ’.spam’ to the function name, e.g. ’help( chol.spam)’.

##
## Attaching package: ’spam’

## The following objects are masked from ’package:base’:
##
## backsolve, forwardsolve

## Loading required package: viridis

## Loading required package: viridisLite

##
## Try help(fields) to get started.

##
## Attaching package: ’fields’

## The following object is masked from ’package:terra’:
##
## describe

require(nlme) # Linear and Nonlinear Mixed Effects Models

2.3 Adjusting processing options

R has many options, which can be listed with the options function. Here
we use this function to change the default option of showing the so-
called “significance stars” in model summaries. These stars (*, ** , ***)
for various levels of the “significance level”3 α have been widely criti-
cized because they are a lazy way to assess the success of models and
the importance of predictors.4

options(show.signif.stars=FALSE)

3 Dataset

We use an example dataset that is well-suited to illustrate the concepts
of trend surface: a set of observations on the elevation above mean sea
level of the top of an aquifer in western Kansas, USA measured in 161
wells.

Note: This aquifer is in Miocene–Pliocene sedimentary rocks, the Ogalalla
formation, and is an important source of irrigation water, especially for
centre-pivot irrigation systems.

This dataset is used as an example in the well-known geology statistics
text of Davis [3, pp. 435-438]5. The practical task is to map the elevation
of the top of the aquifer over the study area.

Q1 : What is the purpose of producing a map of the the elevation of the

3 interpreted as the probability of incorrectly rejecting a true null hypothesis of no
effect

4 This is part of a major debate about how statistics should be used to draw conclu-
sions about the “real world”, see for example [6].

5 The datasets for this book are available at http://www.kgs.ku.edu/Mathgeo/
Books/Stat/index.html
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top of the aquifer over the study area? In other words, who would use
the map and for what purpose? Jump to A1 •

Note: More information on the aquifer monitoring network from which
this dataset is taken is available at the Kansas Geological Survey6, for
example Olea and Davis [14, 15]. The water-level logs are also available
on-line7.

Figure 1 is taken from the original report [14]. It shows the location of
wells, the boundary of the aquifer, and the well IDs. The example dataset
uses a small portion of this, in the SE corner of the study area8. Figure
2 is a Google Earth view of part of the study area, with the location of
several of the wells as placemarks.

Figure 1: Location of aquifer monitoring wells, SE Kansas (USA). Source: [14], plate 1

3.1 Loading and adjusting the dataset

The dataset is a plain-text file, AQUIFER.TXT.

6 http://www.kgs.ku.edu
7 http://www.kgs.ku.edu/Magellan/WaterLevels/
8 portions of Pratt, Kingman, Stafford and Reno counties
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Figure 2: Google Earth view of part of the study area, with the location of several of the
wells as placemarks

Task 2 : Obtain this dataset, either from the instructor or by download
from the KGS9. •

Task 3 : Change R’s working directory to where you have downloaded
the text file AQUIFER.TXT. •

You can do this with the RStudio menu command Tools | Change direc-
tory. . . , or with the setwd function.

Task 4 : Examine the contents of file AQUIFER.TXT. •

You can view this file from within RStudio, by opening it from the Files
pane.

The first few lines look like this:

UTM easting UTM northing Water Table, ft.
569464.5 4172114.75 1627.66
573151.25 4167192.75 1588.83

9 http://www.kgs.ku.edu/Mathgeo/Books/Stat/ASCII/AQUIFER.TXT
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559973.94 4169585 1675.72
553514.44 4174584.5 1689.52

The field names are self-explanatory.

The Coördinate Reference System (CRS) is not specified, although we can
guess from the field headers that the projection is Universal Transmer-
cator (UTM). The UTM zone is 14N (see Davis [3, Fig. 5-100 caption]) and
the coördinates are defined in the UTM system as meters North from the
equator and East from a false origin of 500 000 at the central meridian
of the UTM zone. For zone 14 this is 99° W.

However to fully know the CRS, we must know the datum on which the
projection is developed. This is not explained in the several Kansas Ge-
ological Survey reports; however a more comprehensive report covering
the entire High Plains [11], states that the datum is the North American
Datum of 1983 (NAD 83).

The aquifer elevation is in US feet10 above mean sea level according to
an unspecified vertical datum (probably NAVD 88).

Task 5 : Read text file AQUIFER.TXT into an R data frame, rename the
columns to shorter names, and examine its structure. •

The read.table function can read many kinds of tabular data. It has
many arguments, to adjust to different text formats. See the R Data
Import/Export Manual [17] for details.

By default the data fields in the text file are assumed to be separated by
white space (tabs, spaces), as is the case here. Another optional argument
is skip; we use it here because the header line of AQUIFER.TXT has more
spaces than the other lines, so if we try to use the header for the variable
names, R thinks the other lines are incomplete. One solution would be
to place quotes around the variable names, or rename the variables, in
the text file. What we do here is skip the first line and assign variable
names ourselves in R.

Name the R data frame aq, standing for “aquifer”:
aq <- read.table("AQUIFER.TXT", skip=1)

Give the fields meaningful names:
str(aq)

## 'data.frame': 161 obs. of 3 variables:
## $ V1: num 569464 573151 559974 553514 550350 ...
## $ V2: num 4172115 4167193 4169585 4174584 4171337 ...
## $ V3: num 1628 1589 1676 1690 1691 ...

names(aq) <- c("E", "N", "z")
str(aq)

## 'data.frame': 161 obs. of 3 variables:
## $ E: num 569464 573151 559974 553514 550350 ...

10 1 foot = 0.3048 m exactly
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## $ N: num 4172115 4167193 4169585 4174584 4171337 ...
## $ z: num 1628 1589 1676 1690 1691 ...

The elevation should be converted to meters, to conform to international
standards.

Task 6 : Convert the elevation in feet above sea level to elevation in me-
ters above sea level (m.a.s.l.), and add it as a new field in the dataframe.

•

This is conveniently done with the units package. This provides a class
for maintaining unit metadata associated with numerical values. It au-
tomatically converts units, and simplifies units of results when possible.
Here we just want to convert from feet to meters; this conversion is built
into the known units of the package.

We first specify the units of elevation, which we know from the dataset
description, using the set_units function of the units package. We
then create a new field using the converted units.
aq$z <- set_units(aq$z, feet)
aq$zm <- set_units(aq$z, m)
summary(aq)

## E N z zm
## Min. :500361 Min. :4150248 Min. :1560 Min. :475.5
## 1st Qu.:518465 1st Qu.:4176120 1st Qu.:1721 1st Qu.:524.6
## Median :533366 Median :4197238 Median :1814 Median :552.8
## Mean :535668 Mean :4198439 Mean :1808 Mean :551.0
## 3rd Qu.:553569 3rd Qu.:4220405 3rd Qu.:1901 3rd Qu.:579.4
## Max. :574430 Max. :4248312 Max. :2045 Max. :623.2

3.2 Making a spatial object

To do spatial analysis we need to make the dataset into an explicitly
spatial data structure. We create spatial objects using the sf “simple
(spatial) features” package11. Simple Features is an OGC and ISO set
of standards that specify how geographic features can be stored and
accessed by computer programs. The R implementation in sf places the
spatial information in a special field of a data.frame named geometry.

Note: This implementation uses open-source code GDAL for reading and
writing data, GEOS for geometrical operations, and PROJ for projection
conversions and datum transformations. In this simple application we
do not use any of these.

A spatial object is a set of entities, each with explicit coördinates. The
aq dataframe does have coördinates, but “hidden” as attributes. These
in fact have a special status. To continue the analysis, we identify these
explicitly as being spatial.

Task 7 : Make an explicitly-spatial version of the point dataset, using

11 https://r-spatial.github.io/sf/articles/sf1.html
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the UTM coördinates for the geometry. •

The st_as_sf method of the sf package converts a dataframe into a spa-
tial object, by specifying which fields (columns) in the dataframe contain
the coördinates. Here we use the columns E and N, in that order. Note
that the local coördinates e and n created just above are still in the data
frame as fields.

Note: All methods of this package begin with st_, an abbreviation of
“space-time”. The *_as_* methods convert between data types.

aq.sf <- st_as_sf(aq, coords=c("E","N"))
str(aq.sf)

## Classes 'sf' and 'data.frame': 161 obs. of 3 variables:
## $ z : Units: [feet] num 1628 1589 1676 1690 1691 ...
## $ zm : Units: [m] num 496 484 511 515 516 ...
## $ geometry:sfc_POINT of length 161; first list element: 'XY' num 569464 4172115
## - attr(*, "sf_column")= chr "geometry"
## - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA
## ..- attr(*, "names")= chr [1:2] "z" "zm"

This structure display is different from the previous (non-spatial) one:
The object now is of class sf, which is an extension of the data.frame
class. There is now a geometry field, which contains the spatial infor-
mation. The attribute sf_column gives this name. The real-world coör-
dinates have been removed from the dataframe into this field and now
have special status. The names we had given to the coördinates were not
preserved in the geometry; they were replaced

The information in the original dataframe is now clearly split into two
kinds:

Geographic space : Coordinates; location of the observation in some coördinate refer-
ence system, here UTM14N localized to the local centre;

Feature-space : Also called attribute space: properties of the observation. Here
there is only one, the aquifer elevation, in both feet and metres.
However, the local coördinates are still shown as feature-space at-
tributes, even though they are not. We will use these for models
that are not explicitly spatial.

We can see the coördinates with the st_coordinates function:
str(st_coordinates(aq.sf))

## num [1:161, 1:2] 569464 573151 559974 553514 550350 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:161] "1" "2" "3" "4" ...
## ..$ : chr [1:2] "X" "Y"

#
summary(st_coordinates(aq.sf))

## X Y
## Min. :500361 Min. :4150248
## 1st Qu.:518465 1st Qu.:4176120
## Median :533366 Median :4197238
## Mean :535668 Mean :4198439
## 3rd Qu.:553569 3rd Qu.:4220405
## Max. :574430 Max. :4248312
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This is a 2D matrix, with the X (East) coördinate in the first column and
the Y (North) coördinate in the second column.

3.3 Specifying a Coördinate Reference System

Since the coördinates refer to the real world, we should specify their Co-
ördinate Reference System (CRS); this allows integration with any other
geographic data set.

The CRS is displayed and set with the st_crs function:
st_crs(aq.sf)

## Coordinate Reference System: NA

At this point it is NA, “not available”. This is because the CSV file from
which we obtained the coördinates only has these as numbers. This file
format has no place for metadata such as a CRS.

In the analysis of this tutorial we do not need to specify a CRS, since we
just work with the numbers as independent (predictor) variables. How-
ever, if we want to later use with other spatial data we should specify
the CRS. Above (§3.1) we determined the CRS is UTM14N on the NAD83
datum.

To specify this we find the EPSG code for this CRS in the EPSG database12

and discover this is code 26914. See Figure 3. Note that UTM14N has
been defined on several datums, we select the correct one for this dataset
based on the metadata.

Note: The EPSG database follows the ISO 19111:2019 international stan-
dard for referencing by coordinates, including its provision for dynamic
datums, geoid-based vertical datums, datum ensembles and derived pro-
jected coordinate reference systems. The “EPSG” name is a historical arte-
fact, from the original name “European Petroleum Survey Group”, which
is now expanded into the International Association of Oil & Gas Producers
(IOGP)13. The fossil fuel industry needed a harmonized method to resolve
competing claims for resources, specified using many CRS.

Specify the CRS of the spatial object by its EPSG code and show its long
form as Well-Known Text (WKT)14.
st_crs(aq.sf) <- 26914 # EPSG code
print(st_crs(aq.sf))

## Coordinate Reference System:
## User input: EPSG:26914
## wkt:
## PROJCRS["NAD83 / UTM zone 14N",
## BASEGEOGCRS["NAD83",
## DATUM["North American Datum 1983",
## ELLIPSOID["GRS 1980",6378137,298.257222101,
## LENGTHUNIT["metre",1]]],
## PRIMEM["Greenwich",0,
## ANGLEUNIT["degree",0.0174532925199433]],
## ID["EPSG",4269]],

12 https://epsg.org/
13 https://www.iogp.org/
14 http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
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Figure 3: Finding a code in the EPSG database

## CONVERSION["UTM zone 14N",
## METHOD["Transverse Mercator",
## ID["EPSG",9807]],
## PARAMETER["Latitude of natural origin",0,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8801]],
## PARAMETER["Longitude of natural origin",-99,
## ANGLEUNIT["degree",0.0174532925199433],
## ID["EPSG",8802]],
## PARAMETER["Scale factor at natural origin",0.9996,
## SCALEUNIT["unity",1],
## ID["EPSG",8805]],
## PARAMETER["False easting",500000,
## LENGTHUNIT["metre",1],
## ID["EPSG",8806]],
## PARAMETER["False northing",0,
## LENGTHUNIT["metre",1],
## ID["EPSG",8807]]],
## CS[Cartesian,2],
## AXIS["(E)",east,
## ORDER[1],
## LENGTHUNIT["metre",1]],
## AXIS["(N)",north,
## ORDER[2],
## LENGTHUNIT["metre",1]],
## USAGE[
## SCOPE["Engineering survey, topographic mapping."],
## AREA["North America - between 102<c2><b0>W and 96<c2><b0>W - onshore and offshore. Canada - Manitoba; Nunavut; Saskatchewan. United States (USA) - Iowa; Kansas; Minnesota; Nebraska; North Dakota; Oklahoma; South Dakota; Texas."],
## BBOX[25.83,-102,84,-96]],
## ID["EPSG",26914]]

Note: It is possible to define a custom CRS by a long list of parameters,
if there is no EPSG code.

We’ve done some work to get this data set into proper form for spatial
analysis; so we save it in this format, as well as the data frame (non-
spatial) format, using the save function.

Task 8 : Save the spatial object as an R Data file. •
save(aq, aq.sf, file="aquifer.rda")

This can be read into a later R session with the load method.
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4 Exploratory analysis

As with any unfamiliar dataset, the first step is to examine its contents.
In the case of spatially-explicit datasets, that includes visualizing its ge-
ography.

Task 9 : Summarize the dataset. •

The dim function gives the dimensions of the matrix (here, a data.frame;
the summary function summarizes it appropriately.
dim(aq.sf)

## [1] 161 3

summary(aq.sf)

## z zm geometry
## Min. :1560 Min. :475.5 POINT :161
## 1st Qu.:1721 1st Qu.:524.6 epsg:26914 : 0
## Median :1814 Median :552.8 +proj=utm ...: 0
## Mean :1808 Mean :551.0
## 3rd Qu.:1901 3rd Qu.:579.4
## Max. :2045 Max. :623.2

Q2 : How many observations are there? What was recorded at each
point? Jump to A2 •

Q3 : What are the geographic limits of the study area? What is its area,
in km2? Jump to A3 •

We can see the bounding box with the st_bbox function:
st_bbox(aq.sf)

## xmin ymin xmax ymax
## 500361.3 4150248.2 574429.6 4248312.5

The range function computes the range of numeric variable; the diff
function computes the difference between two numeric values. Here it’s
simpler to refer the coördinate fields in the non-spatial object. We dis-
play the ranges as km and rhe area as km2.
range(aq$E)/1000

## [1] 500.3613 574.4296

range(aq$N)/1000

## [1] 4150.248 4248.312

print(diff(range(aq$E)) *diff(range(aq$N))/1000^2)

## [1] 7263.444

Task 10 : Find the location of this sample area in the large study area,
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shown in Fig. 1. •

Q4 : What is the range of elevations (in metres) in the sample set? Jump
to A4 •
range(aq.sf$zm); diff(range(aq.sf$zm))

## Units: [m]
## [1] 475.5032 623.2428
## 147.7396 [m]

We now try three different visualizations of the distribution of the data
values (i.e. aquifer elevations); these are known as postplots. To keep
the geographic reference, we use the original UTM 14N coördinates.

Task 11 : Display a text postplot of the data values, showing the eleva-
tions, rounded to the nearest metre, as text labels centred at the obser-
vation point. •

We use the two coördinates as plot axes, so this looks like a map. Here
we use the plot methods of the R base graphics.
plot(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1],

pch=20, cex=0.2, col="blue", asp=1,
xlab="UTM 14N E", ylab="UTM 14N N")

grid()
text(st_coordinates(aq.sf)[,1], st_coordinates(aq.sf)[,2],

round(aq$zm), adj=c(0.5,0.5))
# text(aq$E, aq$N, round(aq$zm), adj=c(0.5,0.5))
title("Elevation of aquifer, m")
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The aquifer elevation is clearly higher in the west (towards the Rocky
Mountains about 650 km to the west, where it outcrops).
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Note: Parameter cex is an expansion factor; here we plot a very small
blue dot and then add the data value at each point with the text method.
The adj argument centres the text at the point. The asp=1 argument
makes the two axes have the same scale. This is necessary to get a true
map when the study area is not square.

Another visualization is with the symbol size proportional to the the
data value.

Task 12 : Display a graphical postplot of the data values, with size
proportional to the data value. •

Here we use the non-spatial dataset for convenience.
plot(aq$N ~ aq$E,

cex=1.8*aq$zm/max(aq$zm),
col="blue", bg="red", pch=21, asp=1,
xlab="UTM14N_E", ylab="UTM14N_N")

grid()
title("Elevation of aquifer, m.a.s.l.")
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Note: Print character (pch) 21 has both a symbol (col) and fill (bg) colour.

A final visualization combines both size and colour:

Task 13 : Display a graphical postplot of the data values, with size and
colour proportional to the data value •

Notice the use of the rank function to give the rank order of the eleva-
tions; these are then used as indices into a vector of colours, created with
the bpy.colors function, of the same length as the vector of elevation
values.
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The ~ formula operator show the functional relation between two vari-
ables; here it is the North coördinate for the y-axis, depending on the
East coördinate for the x-axis.

Note: The bpy.colors function of the sp package provides a colour
pallette that also show the colour ramp if printed in grey scale.

plot(aq$N ~ aq$E, pch=21,
xlab="UTM14N_E", ylab="UTM14N_N",
bg=sp::bpy.colors(length(aq$zm))[rank(aq$zm)],
cex=1.8*aq$zm/max(aq$zm), asp=1)

grid()
title("Elevation of aquifer, m.a.s.l.")
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Q5 : Describe the spatial pattern of the elevations. Do nearby points
have similar values? Is there a trend across the whole area? Are there
local exceptions to the trend? Jump to A5 •

Q6 : Discuss the relative advantages of the three types of postplot.
Jump to A6 •

5 Trend surface analysis by Ordinary Least Squares

The visualizations suggest a trend surface, i.e., the aquifer elevations is
some smooth function of the coördinates. This is a polynomial function
of the coördinates to any degree (1st, 2nd, 3rd etc.), which is called the
order of the surface.

The higher the degree, the more the surface can match the points, but
the degree should also be chosen to match a plausible process, in this
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case, the structure of the aquifer. Also, the higher the degree, the more
extreme are extrapolations, i.e., predictions outside the convex hull of
the calibration points.

5.1 First-order trend surface

We begin with a first-order trend: a plane defined by the two coördinates
and an intercept that sets the overall level, here the aquifer elevation.

Q7 : What is the geological interpretation of a first-order trend surface
of the aquifer? Jump to A7 •

A trend surface has the same form as a standard linear model, using
the coördinates as regression predictors. The first-order trend surface
model has the form:

z = β0 + β1E + β2N + ε (1)

where ε ∼ N (0, σ2), i.e., independently and normally distributed. This
assumption allows us to fit the trend surface with Ordinary Least Squares
(OLS).

In the linear model, with any number of predictors, there is a n × p
design matrix of predictor values usually written as X, with one row per
observation (data point), i.e., n rows, and one column per predictor, i.e.,
p columns. In the first-order trend surface case, it is a n× 3 matrix with
three columns: (1) a column of 1 representing the intercept, to center
the response, (2) a column of predictor values ei from the Easting, and
(3) a column of predictor values ni from the Northing.

The model.matrix function shows the model matrix for the right-hand
side of an R model formula; the head function limits the number of rows
to display. Because of limitations in the lm function (see below) we work
with the non-spatial version of the dataset, where the coördinates are
simply fields in the data frame.
head(model.matrix(~E + N, data=aq))

## (Intercept) E N
## 1 1 569464.5 4172115
## 2 1 573151.2 4167193
## 3 1 559973.9 4169585
## 4 1 553514.4 4174584
## 5 1 550349.6 4171337
## 6 1 556788.6 4170184

The predictand (response variable), here the aquifer elevation is a n× 1
column vector y, one row per observation. The coefficient vector β is a
p× 1 column vector, i.e., one row per predictor (here, 3). This multiplies
the design matrix to produce the response:15

y = Xβ+ ε (2)

15 The dimensions of the matrix multiplication are n× 1 = (n× p)(p × 1)
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where ε is a n× 1 column vector of residuals, also called errors, i.e., the
lack of fit. We know the values in the predictor matrix X and the response
vector y from our observations, so the task is to find the optimum values
of the coefficients vector β. This can be found directly; see the Appendix
A for the derivation. The OLS solution is:

β̂ols = (XTX)−1XT ·y (3)

where X is the design matrix.

The term “first-order” refers to the power to which each coördinate is
raised; here it is the first power, so it’s a first-order trend surface.

Note: This assumption of uncorrelated residuals is in fact not true in this
case; we prove this in §9 below. So the trend surface should in fact be fit
not by OLS but by Generalized Least Squares (GLS), taking into account
the spatial auto-correlation of the residuals. We pursue this further in
§10.

For this dataset with many observations well-spread in space, the result
will be similar to the OLS estimate.

Task 14 : Fit a first–order trend surface (i.e. linear in the E and N
coördinates) to the elevations. Summarize the model and evaluate its
goodness-of-fit. •

The lm “linear model” function fits linear models.

We can do this two ways (1) from the coördinates stored in the data.frame;
(2) from the coördinates stored in the geometry field of the sf object;
these are extracted with the st_coordinates method.

Note: Unfortunately, lm does not properly propagate the units defined
with the units package through its calculations. Therefore we have to
first remove them with the drop_units function.

model.ts1 <- lm(zm ~ E + N, data=drop_units(aq))
summary(model.ts1)

##
## Call:
## lm(formula = zm ~ E + N, data = drop_units(aq))
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.3550 -5.8267 0.2674 7.1062 16.7349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.557e+03 1.080e+02 14.41 <2e-16
## E -1.617e-03 3.201e-05 -50.51 <2e-16
## N -3.336e-05 2.528e-05 -1.32 0.189
##
## Residual standard error: 8.629 on 158 degrees of freedom
## Multiple R-squared: 0.9417,Adjusted R-squared: 0.941
## F-statistic: 1276 on 2 and 158 DF, p-value: < 2.2e-16

model.ts1.sf <- lm(zm ~ st_coordinates(aq.sf), data=drop_units(aq.sf))
summary(model.ts1.sf)
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##
## Call:
## lm(formula = zm ~ st_coordinates(aq.sf), data = drop_units(aq.sf))
##
## Residuals:
## Min 1Q Median 3Q Max
## -25.3550 -5.8267 0.2674 7.1062 16.7349
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.557e+03 1.080e+02 14.41 <2e-16
## st_coordinates(aq.sf)X -1.617e-03 3.201e-05 -50.51 <2e-16
## st_coordinates(aq.sf)Y -3.336e-05 2.528e-05 -1.32 0.189
##
## Residual standard error: 8.629 on 158 degrees of freedom
## Multiple R-squared: 0.9417,Adjusted R-squared: 0.941
## F-statistic: 1276 on 2 and 158 DF, p-value: < 2.2e-16

In this summary the proportion of variability explained is given by the
adjusted R2. This is (1− RSS/TSS), i.e., a perfect fit less the ratio of the
residual sum-of-squares RSS =

∑
i(zi − ẑi)2 to the total sum of squares

TSS =
∑
i(zi − z̄)2, adjusted for the degrees of freedom and number of

observations, where zi is the observed value and ẑi is the value predicted
by the fitted linear model.

Q8 : What is the equation of the trend surface? How does elevation vary
with the E and N coördinates? Is the relation statistically-significant?
How much of the total variability does it explain? Are all the coefficients
statistically-significant? Jump to A8 •

Challenge: Linear models can be unstable if the predictors are corre-
lated. Do you expect a problem with this for this model? Why or why
not? Can you prove your conjecture statistically?

Task 15 : Summarize the residuals (lack of fit) from the trend surface
both numerically and graphically, in feature space. Express this in terms
of the median elevation. •

The residuals function extracts the residuals from a linear model ob-
ject. The hist function displays a histogram of a numeric vector.
res.ts1 <- set_units(residuals(model.ts1), m); summary(res.ts1)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -25.3550 -5.8267 0.2674 0.0000 7.1062 16.7349

hist(res.ts1, breaks=16,
main="Residuals from 1st-order trend",
xlab="residual elevation (m)")

rug(res.ts1)
range(res.ts1)

## Units: [m]
## [1] -25.35498 16.73489

max(abs(res.ts1))/median(aq$zm)*100

## 4.586769 [1]
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Residuals from 1st−order trend
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Q9 : What is the range of residuals? How does this compare with
the target variable? How are the residuals distributed in feature space?

Jump to A9 •

Task 16 : Show the diagnostic plots of the linear model. •

The plot method applied to a linear model object produces some diag-
nostic plots. We will display the most important: (1) residuals vs. fitted
values; (2) quantile-quantile (“QQ”) plot of the standardized residuals16.

The Q-Q plot shows (1) on the y-axis, the standardized residuals, (2)
on the x-axis, the standardized residuals that would be expected if the
residuals were from a normal distribution with the mean and standard
deviation computed from the actual standardized residuals. These two
should match exactly on 1:1 line.

Note: The par “parameters” function here sets up a 1 row by 2 column
matrix of plots, because the plot.lm function here will display two plots
as requested by the which optional argument.

16 These are explained in §B
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par(mfrow=c(1,2))
plot(model.ts1, which=1:2)
par(mfrow=c(1,1))
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Q10 : Does this model meet the feature-space requirements for a valid
linear model?

1. No relation between the fitted values and the residuals;

2. Equal spread of residuals across the range of fitted values;

3. Normally-distributed standardized residuals.

Jump to A10 •

Task 17 : Display the residuals as a postplot. •

Note: In the following code, the expression for the cex “character ex-
pansion” optional argument sets the size of the circle as each residual’s
proportion of the maximum residual, so that the larger absolute values
of the residuals show larger circles. This way we can visualize where are
the largest over- and under-predictions. The ifelse statement applied to
the col “color” optional argument sets the color of the circle according
to whether the residual is positive (under-prediction) or negative (over-
prediction).

plot(aq$N ~ aq$E, cex=3*abs(res.ts1)/max(abs(res.ts1)),
col=ifelse(res.ts1 > set_units(0, m), "green", "red"),
xlab="E", ylab="N",
main="Residuals from 1st-order trend",
sub="Positive: green; negative: red", asp=1)

grid()

19



480000 500000 520000 540000 560000 580000

41
60

00
0

42
00

00
0

42
40

00
0

Residuals from 1st−order trend

Positive: green; negative: red
E

N

Q11 : Is there a spatial pattern to the residuals? Is there local spatial
correlation without an overall pattern? What does this imply about the
suitability of a first-order trend surface? Jump to A11 •

5.2 Second-order trend surface

We see from the pattern of residuals from the first-order surface that
there is still structure, in particular clear bands of positive and negative
residuals. These suggest that a higher-order trend surface might fit bet-
ter. A higher-order trend might also fix the problems with the regression
diagnostics.

A second-order trend includes linear and quadratic (squared) functions
of the coördinates. It allows the surface to be convex or concave, not
just a plane.

Q12 : What is the geological interpretation of a second-order trend
surface of the aquifer? Jump to A12 •

A full second-order surface uses the coördinates, their squares, and their
cross-products.

z = β0 + β1E + β2N + β3E2 + β4N2 + β5(E ∗N)+ ε (4)

This can also be expressed in matrix notation of Equation 2, where the
design matrix has six columns, one per predictor.
head(model.matrix(~ E + N + I(E^2) + I(N^2) + I(E*N),

data=aq))
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## (Intercept) E N I(E^2) I(N^2) I(E * N)
## 1 1 569464.5 4172115 324289816760 1.740654e+13 2.375871e+12
## 2 1 573151.2 4167193 328502355377 1.736550e+13 2.388432e+12
## 3 1 559973.9 4169585 313570813479 1.738544e+13 2.334859e+12
## 4 1 553514.4 4174584 306378235289 1.742716e+13 2.310693e+12
## 5 1 550349.6 4171337 302884638192 1.740005e+13 2.295693e+12
## 6 1 556788.6 4170184 310013500547 1.739043e+13 2.321911e+12

Task 18 : Fit a second-order trend surface to the aquifer elevations. •

We fit with a full second-order polynomial, for convenience using the
non-spatial object:
model.ts2 <- lm(zm ~ E + N + I(N^2) + I(E^2) + I(E*N),

data=drop_units(aq))
summary(model.ts2)

##
## Call:
## lm(formula = zm ~ E + N + I(N^2) + I(E^2) + I(E * N), data = drop_units(aq))
##
## Residuals:
## Min 1Q Median 3Q Max
## -19.847 -3.366 0.822 3.538 14.807
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.161e+05 1.156e+04 -10.043 < 2e-16
## E -2.798e-02 3.387e-03 -8.263 5.92e-14
## N 5.937e-02 5.439e-03 10.914 < 2e-16
## I(N^2) -7.500e-09 6.435e-10 -11.655 < 2e-16
## I(E^2) -1.648e-09 1.074e-09 -1.534 0.127
## I(E * N) 6.700e-09 7.781e-10 8.610 7.74e-15
##
## Residual standard error: 5.598 on 155 degrees of freedom
## Multiple R-squared: 0.9759,Adjusted R-squared: 0.9751
## F-statistic: 1256 on 5 and 155 DF, p-value: < 2.2e-16

Note: The I “identity” function must be used for the squares and cross-
product terms, because the ^ and * symbols represent the usual mathe-
matical operators.

If this function is not used, lm interprets the ^ and * symbols as formula
operators, rather than as their normal mathematical meanings.

Q13 : How much of the variance does the second-order surface explain?
Jump to A13 •

Task 19 : Compare the second-order model statistically with the first-
order model. •

The anova “analysis of variance” method compares the residual sums-
of-squares of two or more models and computes the probability that the
more complicated model17 is not better than the less complicated model.

We list the simpler model first, i.e., the one with fewer predictors and

17 with more predictors, and thus fewer degrees of freedom
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more degrees of freedom, and the more complex model second. We
expect the second model will have a lower values of the residual sum-of-
squares, since it will explain more of the variance. But, because we have
used more degrees of freedom, perhaps the F-ratio of the two variances
adjusted for their degrees of freedom will be low, showing that the more
complex model is not in fact an improvement.

Let’s see:
anova(model.ts1, model.ts2)

## Analysis of Variance Table
##
## Model 1: zm ~ E + N
## Model 2: zm ~ E + N + I(N^2) + I(E^2) + I(E * N)
## Res.Df RSS Df Sum of Sq F Pr(>F)
## 1 158 11763.5
## 2 155 4858.2 3 6905.3 73.438 < 2.2e-16

Q14 : Is the second-order surface statistically superior to the first-order
surface? Jump to A14 •

Task 20 : Summarize the residuals from the second-order trend surface
both numerically and graphically, in feature space. Express this in terms
of the median elevation. •
res.ts2 <- set_units(residuals(model.ts2), m)
summary(res.ts2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -19.847 -3.366 0.822 0.000 3.538 14.807

hist(res.ts2, breaks=16,
main="Residuals from 2nd-order trend",
xlab="residual elevation (m)")

rug(res.ts2)
max(abs(res.ts2))/median(aq$zm)

## 0.03590352 [1]
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Q15 : What is the range of residuals? How does this compare with the
target variable? How are they distributed in feature space? How do these
compare with the residuals from the first-order surface? Jump to A15 •

Task 21 : Show the diagnostic plots of the residuals, as for the first-
order trend surface residuals. •

par(mfrow=c(1,2))
plot(model.ts2, which=1:2)
par(mfrow=c(1,1))
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Q16 : Does this model meet the feature-space requirements for a valid
linear model? How do these diagnostics compare to those from the first-
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order surface?

1. No relation between the fitted values and the residuals;

2. Equal spread of residuals across the range of fitted values;

3. Normally-distributed standardized residuals.

Jump to A16 •

Task 22 : Identify the largest over-predictions that do not fit the normal
Q-Q plot. •

We look for the rows in the data frame with large negative residuals and
then show their entries. First we need to define what we mean by “large”;
here we’ll take it as two standard deviations of the normalized residuals.
These are the values shown in the normal Q-Q plot (right-hand panel of
the previous figure). The standardized residuals are extracted with the
rstandard function.
summary(sres.ts2 <- rstandard(model.ts2))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -3.586915 -0.630210 0.151225 0.000582 0.644235 2.745775

(ix <- which(sres.ts2 < -2))

## 9 34 35 41 72
## 9 34 35 41 72

(cbind(actual=aq[ix, "zm"], fitted=fitted(model.ts2)[ix],
residual=res.ts2[ix],
std.res <- sres.ts2[ix]))

## actual fitted residual
## 9 479.2096 494.4700 -15.26043 -2.799307
## 34 524.4876 544.3346 -19.84694 -3.586915
## 35 540.4074 558.1822 -17.77486 -3.212499
## 41 552.9255 567.1991 -14.27359 -2.584241
## 72 483.0989 496.0088 -12.90997 -2.369209

Task 23 : Display the residuals as a postplot; compare to the postplot
from the first-order trend surface. •

We also highlight the largest over-predictions and display their standard-
ized residuals.
plot(aq$N ~ aq$E, cex=3*abs(res.ts2)/max(abs(res.ts2)),

col=ifelse(res.ts2 > set_units(0, m), "green", "red"),
xlab="E", ylab="N", asp=1,
main="Residuals from 2nd-order trend",
sub="Positive: green; negative: red; black dots: severe over-predictions")

points(aq[ix, "N"] ~ aq[ix, "E"], pch=20)
text(aq[ix, "E"], aq[ix, "N"], round(sres.ts2[ix], 2), pos=4)
grid()
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Q17 : Is there an overall pattern to the residuals? Is there local spatial
correlation without an overall pattern? Are the largest model residuals
clustered? Does there seem to be any anisotropy (stronger spatial de-
pendence in one direction than the orthogonal direction)? Jump to A17
•

Since this second-order trend surface is much better than the first-order
trend surface, we will use it for subsequent modelling.

6 Trend surface prediction

We now use the trend surface model of the previous section to predict
over the study area, discretized as an interpolation grid at some resolu-
tion that we choose.

6.1 Creating a prediction grid

We first make a grid over which to predict.

Task 24 : Create a grid of equally-spaced (1 x 1 km) points across the
study area, beginning with UTM (500 000E, 4150 000N) in the lower-left
corner, as in Davis [3, Fig. 5-100, 5-101, 5-102]. •
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Note: The choice of grid resolution depends on (1) the support of the
observations used to model the trend surface, (2) the resolution needed
by the map user; (3) for larger areas, computer memory and processing
time.

Here the observations are essentially point support, so there is no mini-
mum grid size. The map user will use this to decide on whether to drill
a well into the aquifer, based on cost which depends on the depth from
the surface. In this area the surface elevation is quite uniform and does
not vary much. Also, the aquifer in this area does not have sharp changes
in structure, it is gently dipping to the E, with a slight dome. We know
from the 1st-order OLS model that for each km E (direction of maximum
dip) the aquifer elevation decreases by 1.5573268×106 m, which we sup-
pose is hardly significant to the well driller. Indeed, a coarser grid would
probably be sufficient.

The seq function creates a regular sequence of numbers; the expand.grid
function makes a grid from two sequences.

First, find the bounding box:
range(aq$E); range(aq$N)

## [1] 500361.3 574429.6
## [1] 4150248 4248312

range(st_coordinates(aq.sf)[,"X"]); range(st_coordinates(aq.sf)[,"Y"])

## [1] 500361.3 574429.6
## [1] 4150248 4248312

Then use these, rounded below and above to the nearest kilometer, as the
limits of the two axes. For this we use min and max to get the extremes,
and then floor and ceiling, respectively, to round them to the nearest
integer below and above. We could just examine the above output and
enter the required integers directly, but it is more elegant and reliable to
do this programmatically. We align the grid on even km.
(n.col <- length(seq.e <- seq(min.x <- floor(min(aq$E)/1000)*1000,

max.x <- ceiling(max(aq$E)/1000)*1000, by=1000)))

## [1] 76

(n.row <- length(seq.n <- seq(min.y <- floor(min(aq$N)/1000)*1000,
max.y <- ceiling(max(aq$N)/1000)*1000, by=1000)))

## [1] 100

The rast method of the terra package sets up a raster grid, of class
SpatRaster. Here we have no values, just a structure. We will add
values from the model results. For now, define the layer as real-valued
NA “not available”, i.e., undefined. The CRS is set to match the point
dataset.
grid1km <- rast(nrows = n.row, ncols = n.col,

xmin=min.x, xmax=max.x,
ymin=min.y, ymax=max.y, crs = st_crs(aq.sf)$proj4string,
resolution = 1000, names="z")

values(grid1km) <- NA_real_
class(grid1km)

## [1] "SpatRaster"
## attr(,"package")
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## [1] "terra"

dim(grid1km)

## [1] 99 75 1

summary(grid1km)

## z
## Min. : NA
## 1st Qu.: NA
## Median : NA
## Mean :NaN
## 3rd Qu.: NA
## Max. : NA
## NA's :7425

st_crs(grid1km)$proj4string

## [1] "+proj=utm +zone=14 +datum=NAD83 +units=m +no_defs"

st_bbox(grid1km) # replaces `raster` package `bbox()`

## xmin ymin xmax ymax
## 500000 4150000 575000 4249000

There are three dimensions: E, N, and z.
plot(grid1km); grid()
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Task 25 : Create a data.frame version of the grid, with the coördi-
nates as fields; use the optional xy=TRUE argument for this). Name these
fields to match coördinate names of the point dataset. Also use the op-
tional na.rm = FALSE argument to keep the cells with NA values – we
will replace these with the results of model predictions. •
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grid1km.df <- as.data.frame(grid1km, xy = TRUE, na.rm = FALSE)
names(grid1km.df)[1:2] <- c("E", "N") # match the names of the point dataset
summary(grid1km.df)

## E N z
## Min. :500500 Min. :4150500 Min. : NA
## 1st Qu.:518500 1st Qu.:4174500 1st Qu.: NA
## Median :537500 Median :4199500 Median : NA
## Mean :537500 Mean :4199500 Mean :NaN
## 3rd Qu.:556500 3rd Qu.:4224500 3rd Qu.: NA
## Max. :574500 Max. :4248500 Max. : NA
## NA's :7425

6.2 Mapping the trend surface

Task 26 : Map the values of the second-order trend surface onto this
grid. Compute both the best fit and a 95% prediction interval for each
point on the grid. •

The predict.lm function, applied to a linear model object, computes
the predicted values at new locations, in this case the regular grid. The
optional interval argument specifies that a prediction interval, as well
as the best fits, should also be computed. The optional level argu-
ment specifies the (1−α) probability, where α is the probability that, on
repeated calculation from a similar sample, the true value at the point
would not be included in the computed prediction interval.
pred.ts2 <- predict.lm(model.ts2,

newdata = grid1km.df,
interval = "prediction", level = 0.95)

summary(pred.ts2)

## fit lwr upr
## Min. :463.1 Min. :451.1 Min. :475.2
## 1st Qu.:517.5 1st Qu.:506.3 1st Qu.:528.8
## Median :547.9 Median :536.7 Median :559.2
## Mean :547.4 Mean :536.1 Mean :558.7
## 3rd Qu.:577.3 3rd Qu.:566.0 3rd Qu.:588.6
## Max. :614.4 Max. :603.0 Max. :625.8

class(pred.ts2)

## [1] "matrix" "array"

The predict.lm produces three fields in the resulting object: fit (the
best fit value), lwr (the value at the lowest 2.5% limit) and upr (the value
at the upper 2.5% limit). The prediction interval is a range in which future
observations are expected to fall, with a given probability specified by
the analyst. It is based on the known observations and the regression
model.

There are two sources of prediction error:

1. The uncertainty of fitting the best regression parameters from the
available data;

2. The uncertainty in the prediction, even with perfect regression pa-
rameters, because of uncertainty in the process which is revealed
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by the regression, i.e., the inherent noise in the process.

The prediction interval is computed from the prediction variance, which
is then assumed to represent the variance of a t-distribution.

The prediction variance s2
Y0

for predictand x0 depends on the variance of

the regression s2
Y .x but also on the distance of the predictor x0 from the

value of the predictor at the centroid of the regression, x. The further
from the centroid, the more any error in estimating the slope of the line
will affect the prediction:

s2
Y0
= s2

Y .x

[
1+ 1

n
+ (x0 − x)2∑n

i=1(xi − x)2

]
(5)

where x refers to both coördinates.

The variance of the regression s2
Y .x is computed from the squared devia-

tions of actual (yi) and estimated (ŷi values:

s2
Y .x =

1
n− 2

n∑
i=1

(yi − ŷi)2 (6)

Task 27 : Add the model predictions (fits) to the grid, using the values
method of the terra package. •
summary(values(grid1km))

## z
## Min. : NA
## 1st Qu.: NA
## Median : NA
## Mean :NaN
## 3rd Qu.: NA
## Max. : NA
## NA's :7425

summary(pred.ts2[,"fit"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 463.1 517.5 547.9 547.4 577.3 614.4

values(grid1km) <- pred.ts2[,"fit"]
summary(values(grid1km))

## z
## Min. :463.1
## 1st Qu.:517.5
## Median :547.9
## Mean :547.4
## 3rd Qu.:577.3
## Max. :614.4

Task 28 : Display the interpolated surface, with the residuals at each
observation point superimposed. •
plot(grid1km, main = "OLS 2nd order predicted surface")
points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,

col = ifelse(res.ts2 < set_units(0, m), "red", "green"),
cex=2*abs(res.ts2)/max(abs(res.ts2))
)
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OLS 2nd order predicted surface
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The generic plot method applied to an SpatRaster object gives a rea-
sonable plot.

We also show the residual from the model at each observation point is
shown (1) in colour: red = negative (actual < predicted), green = positive
(actual > predicted), (2) with the size proportional to the error. So points
with no prediction error will not be visible. Note the use of the ifelse
function to select between two alternatives, here the colours, based on a
logical expression.

Q18 : How well does the trend surface fit the points? Are there obvious
problems? Jump to A18 •

Task 29 : Add the three prediction fields (fit, lower, upper) to the data
frame version of the grid. •
summary(pred.ts2)

## fit lwr upr
## Min. :463.1 Min. :451.1 Min. :475.2
## 1st Qu.:517.5 1st Qu.:506.3 1st Qu.:528.8
## Median :547.9 Median :536.7 Median :559.2
## Mean :547.4 Mean :536.1 Mean :558.7
## 3rd Qu.:577.3 3rd Qu.:566.0 3rd Qu.:588.6
## Max. :614.4 Max. :603.0 Max. :625.8

summary(grid1km.df)

## E N z
## Min. :500500 Min. :4150500 Min. : NA
## 1st Qu.:518500 1st Qu.:4174500 1st Qu.: NA
## Median :537500 Median :4199500 Median : NA
## Mean :537500 Mean :4199500 Mean :NaN
## 3rd Qu.:556500 3rd Qu.:4224500 3rd Qu.: NA
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## Max. :574500 Max. :4248500 Max. : NA
## NA's :7425

grid1km.df[, 3:5] <- pred.ts2
names(grid1km.df)[3:5] <- c("ts2.fit", "ts2.lwr", "ts2.upr")
summary(grid1km.df)

## E N ts2.fit ts2.lwr
## Min. :500500 Min. :4150500 Min. :463.1 Min. :451.1
## 1st Qu.:518500 1st Qu.:4174500 1st Qu.:517.5 1st Qu.:506.3
## Median :537500 Median :4199500 Median :547.9 Median :536.7
## Mean :537500 Mean :4199500 Mean :547.4 Mean :536.1
## 3rd Qu.:556500 3rd Qu.:4224500 3rd Qu.:577.3 3rd Qu.:566.0
## Max. :574500 Max. :4248500 Max. :614.4 Max. :603.0
## ts2.upr
## Min. :475.2
## 1st Qu.:528.8
## Median :559.2
## Mean :558.7
## 3rd Qu.:588.6
## Max. :625.8

Task 30 : Summarize the uncertainty from the trend surface, as abso-
lute differences between the upper and lower prediction limits, and then
this as a percentage of the best fit value. •
summary(grid1km.df$ts2.diff.range <- grid1km.df$ts2.upr - grid1km.df$ts2.lwr)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 22.30 22.33 22.45 22.56 22.71 24.21

summary(100*grid1km.df$ts2.diff.range/grid1km.df$ts2.fit)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 3.706 3.897 4.093 4.141 4.345 5.204

The lwr “lower” and upr “upper” fields of the prediction object contain
the lower and upper limits of the 95% prediction interval for each point
on the grid. Their difference is the range of uncertainty; this divided by
the fit is an approximation to 2 standard deviations.

Task 31 : Display the prediction interval of the trend surface as a map,
showing also the location of the observation points. •

Note: We should use a different colour palette for different types of
information. Here we want to show the standard error of prediction,
which is a different concept than the prediction itself. So we choose a
different palette, with the col argument.

We make a new raster with this information.
grid1km.diff <- grid1km
values(grid1km.diff) <- grid1km.df$ts2.diff.range
plot(grid1km.diff, col=cm.colors(64),

main="Range of 95% prediction interval, 2nd-order trend, OLS fit")
grid()
points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,

col = "gray")
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Range of 95% prediction interval, 2nd−order trend, OLS fit
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Note: Here we only show the locations of the observations, because their
values do not affect the prediction variance, once the model is fit.

Q19 : What are the units of prediction interval? How large are they?
How does this compare to the variable we are trying to predict? Jump
to A19 •

Q20 : Describe the spatial pattern of the prediction interval. Jump to
A20 •

7 Generalized Additive Models

Generalized Additive Models (GAM) are similar to multiple linear regres-
sion, except that each term in the linear sum of predictors need not be
the predictor variable itself, but can be an empirical smooth function of
it. So instead of the linear model of k predictors:

yi = β0 +
∑
k
βkxk,i + εi (7)

we allow functions fk of these:

yi = β0 +
∑
k
fk(xk,i)+ εi (8)

The advantage is that non-linear relations in nature can be fit, without
any need to try transformations or to fit piecewise regressions. If this
is a better model fit, it should result in better predictions. The model is
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additive, so the marginal contribution of each predictor to the model fit
can be determined.

The disadvantage is that it is just an empirical fit and can not be extrap-
olated beyond the range of calibration. A further disadvantage is that
the choice of function is arbitrary; it is generally some smooth function
of the predictor, with the degree of smoothness determined by cross-
validation.

Note: The GAM should never be extrapolated (there is no data to support
it), whereas a polynomial can, with caution, be extrapolated, on the theory
that the data used to fit the model extends outside the range. This is of
course very dangerous for higher-order polynomials, which are a main
competitor to GAM.

Hastie et al. [5, §9.1] give a thorough explanation of GAM; a simplified
explanation of the same material is given in James et al. [9, §7.7]. In a
geostatistical setting, we can choose the coördinates as the predictors
(as in a trend surface) but fit these with smooth functions, rather than
polynomials. We can also fit any other predictor this way, e.g., in this
example, the elevation.

The smooth functions can be chosen in many ways; the most common
are cubic splines with knots at each value of the predictor. We first exam-
ine whether a smooth curve, rather than one line (as in linear regression)
better matches the dependence of the annual ground water level by the
two coördinates.

Task 32 : Display a scatterplot of the three predictors against the
annual GDD50, with an empirical smoother. •

We use the ggplot2 graphics package to produce the scatterplot and
show a smoother with standard error. A simple way to visualize the
trend is with a local polynomial regression, provided with the loess
function, and incorporated into the scatterplot with the geom_smooth
function.

Note: The loess function has an span argument, which controls the
degree of smoothing by setting the neighbourhood for the local fit as a
proportion of the number of points. The default span=0.75 thus uses
the 3/4 of the total points closest each point. These are then weighted so
that closer points have more weight; see ?loess for details. The default
works well in most situations, and here we only want a visual impression,
not a “best fit” in a statistical sense.

We use the gridExtra package, which includes a function grid.arrange
to arrange saved plots in a grid.

Note: The ggplot2 package does not understand units, so these have
to be removed from the data frame aq.
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g1 <- ggplot(drop_units(aq), aes(x=N, y=zm)) +
geom_point() +
geom_smooth(method="loess") +
labs(y = "elevation [m]")

g2 <- ggplot(drop_units(aq), aes(x=E, y=zm)) +
geom_point() +
geom_smooth(method="loess") +
labs(y = "elevation [m]")

grid.arrange(g1, g2, ncol = 2)

## ‘geom_smooth()‘ using formula ’y ~ x’
## ‘geom_smooth()‘ using formula ’y ~ x’
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Q21 : Do these marginal relations appear to be linear in the predictors?
Jump to A21 •

7.1 Fitting a Generalized Additive Model

GAM can be fit in R with the gam function of the mgcv “Mixed GAM Com-
putation Vehicle” package. This specifies the model with a formula, as
with lm, but terms can now be arbitrary functions of predictor variables,
not just the variables themselves or simple transformations that apply
to the whole range of the variable, e.g. sqrt or log. Smooth functions
of one or more variables are specified with the s function of the mgcv
package.

Common practice in GAM for models using coördinates is to smooth
them together, i.e., in 2D, with a bivariate smoother. By default this
smoother is a thin plate regression spline (see §8, below). These control
the degree of smoothness by penalizing increasingly complex models,
i.e., those with more curvature; see the help text ?s “defining smooths in
GAM formulae” for details. In practice the default parameters work well.
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Task 33 : Fit a GAM to the aquifer elevation at the observation sta-
tions, with the predictors being a two-dimensional thin-plate spline of
the coördinates. •
model.gam <- gam(zm ~ s(E, N), data=drop_units(aq))
summary(model.gam)

##
## Family: gaussian
## Link function: identity
##
## Formula:
## zm ~ s(E, N)
##
## Parametric coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 551.0134 0.2814 1958 <2e-16
##
## Approximate significance of smooth terms:
## edf Ref.df F p-value
## s(E,N) 27.35 28.83 543.2 <2e-16
##
## R-sq.(adj) = 0.99 Deviance explained = 99.2%
## GCV = 15.478 Scale est. = 12.752 n = 161

Q22 : How well does this model fit the calibration observations? Jump
to A22 •

Task 34 : Compare the residuals from the GAM with those from the
best linear trend surface, i.e., the quadratic. •
resid.gam <- residuals(model.gam)
summary(resid.gam)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -14.52803 -1.16470 0.08707 0.00000 1.51482 8.56012

summary(residuals(model.ts2))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -19.847 -3.366 0.822 0.000 3.538 14.807

par(mfrow=c(1,2))
hist(resid.gam, xlim=c(-20, 20),

breaks=seq(-20, 20,by=4), main="Residuals from GAM")
rug(residuals(model.gam))
hist(residuals(model.ts2), xlim=c(-20, 20),

breaks=seq(-20,20,by=4), main="Residuals from 2nd-order OLS trend")
rug(residuals(model.ts2))
par(mfrow=c(1,1))
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Residuals from GAM
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We can also do histograms with ggplot2.

Note: Base R has 657 named colours, which you can see with the colors
or colours functions. Their hexdecimal codes can then be found with
the col2rgb function.

g1 <- ggplot(data=as.data.frame(resid.gam), aes(resid.gam)) +
geom_histogram(breaks=seq(-20,20,by=2),

fill="lightblue", color="black", alpha=0.9) +
geom_rug() +
labs(title = "Residuals from GAM",

x = expression(paste(Delta, m)))
g2 <- ggplot(data=as.data.frame(residuals(model.ts2)), aes(residuals(model.ts2))) +

geom_histogram(breaks=seq(-20,20,by=2),
fill="lightgreen", color="darkblue", alpha=0.9) +

geom_rug() +
labs(title = "Residuals from 2nd order polynomial trend surface",

x = expression(paste(Delta, m)))
grid.arrange(g1, g2, nrow=1)
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Q23 : Which histogram shows the narrowest spread? Jump to A23 •

An important consideration with GAM, as well as with linear models (see
previous sections) is whether the residuals have any spatial structure.
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Task 35 : Plot the residuals as a bubble plot. This shows the size of the
residuals by the size of a point, and the polarity (positive vs. negative)
by colour. •
aq$resid.gam <- resid.gam
ggplot(data = drop_units(aq)) +

aes(x=E, y=N, size = abs(resid.gam),
col = ifelse((resid.gam < 0), "red", "green")) +

geom_point(alpha=0.7) +
scale_size_continuous(name = expression(paste(plain("residual ["),

reDelta, m, plain("]"))),
breaks=seq(0,12, by=2)) +

scale_color_manual(name = "polarity",
labels = c("negative","positive"),
values = c("red","green","blue"))
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Q24 : Does there appear to be any local spatial correlation of the resid-
uals? Jump to A24
•

Task 36 : Display the fit as a 3D surface. •

The plot.gam function of the mgcv package displays the marginal smooth
fit. For the 2D surface (model term s(E,N), this is shown as a wireframe
plot if the optional scheme argument is set to 1. The select argument
selects which model term to display. We orient it to see lowest elevation
towards viewer, using the theta argument:
plot.gam(model.gam, rug = TRUE, se = TRUE, select=1,

scheme=1, theta=30+130, phi=30)
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Q25 : How does the GAM trend differ from a polynomial trend surface?
Jump to A25 •

This surface can also be shown with the vis.gam function of the mgcv
package, also showing ± 1 standard error of fit:
vis.gam(model.gam, plot.type="persp", color="terrain",

theta=160, zlab="elevation", se=1.96)
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The fit is very good, the standard error is quite small. This is because
the GAM adjusts to local deviations from the overall trend.

Task 37 : Compute the RMSE of the GAM model, i.e., compared to fits
with the actual values. •
(rmse.gam <- sqrt(sum(residuals(model.gam)^2)/length(residuals(model.gam))))

## [1] 3.241328

The RMSE is 3.24; this is a very small error.

7.2 GAM prediction over the study area

Since we now have a model which uses the coördinates, which are known
across the prediction grid, we can use the model to predict over the grid.

Task 38 : Predict the aquifer elevation, and the standard error of pre-
diction, across the prediction grid, using the fitted GAM, and display the
predictions. •

The predict.gam function predicts from a fitted GAM. The se.fit op-
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tional argument specifies that the standard error of prediction should
also be computed. Here we use the data.frame form of the spatial grid.
We predict onto this grid into a temporary object, because it will have
two fields (columns): the prediction and its standard error.
tmp <- predict.gam(object=model.gam,

newdata=grid1km.df,
se.fit=TRUE)

summary(tmp$fit)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 480.0 517.4 547.2 547.4 576.4 621.4

summary(tmp$se.fit)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 1.181 1.321 1.404 1.521 1.611 3.607

str(tmp)

## List of 2
## $ fit : num [1:7425(1d)] 579 578 577 576 575 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ : chr [1:7425] "1" "2" "3" "4" ...
## $ se.fit: num [1:7425(1d)] 3.07 2.99 2.92 2.85 2.78 ...
## ..- attr(*, "dimnames")=List of 1
## .. ..$ : chr [1:7425] "1" "2" "3" "4" ...

We then add these to the data.frame version of the spatial grid.
grid1km.df$pred.gam <- as.numeric(tmp$fit)
grid1km.df$pred.gam.se <- as.numeric(tmp$se.fit)

Note: In the above code, the as.numeric function is needed to convert
the 1-d array returned by predict.gam to a vector, then stored as one
field (column) in the data frame.

Task 39 : Display the map of the predicted surface. •

We make a new raster with this information and display it. The default
palette for terra maps is the “terrain” palette, from white through yel-
low to green.
grid1km.gam <- grid1km
values(grid1km.gam) <- grid1km.df$pred.gam
plot(grid1km.gam, main="GAM prediction"); grid()
points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,

col=ifelse(aq$resid.gam < 0, "red", "green"),
cex=2*abs(aq$resid.gam)/max(abs(aq$resid.gam)))
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As with the OLS and GLS maps, in this plot the residual from the model
at each observation point is shown (1) in colour: red = negative (actual <
predicted), green = positive (actual > predicted). If a prediction is exactly
on the trend surface it will not appear. This gives a nice visualization of
the fit of the trend surface to the sample points.

Q26 : How well does the GAM trend surface fit the points? Are there
obvious problems? Jump to A26 •
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Task 40 : Display the map of the standard errors of prediction. •

As for the OLS trend surface we use the cyan-magenta palette to repre-
sent uncertainty.
grid1km.gam.se <- grid1km
values(grid1km.gam.se) <- grid1km.df$pred.gam.se
plot(grid1km.gam.se, main="GAM prediction standard error",

col=cm.colors(64))
grid()
points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,

col="grey")

GAM prediction standard error
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Consistent with the marginal plots, we see that the standard error is
highest at the edges, but there is some local pattern due to the local
adjustments of the GAM.

An obvious question is where this map differs from the parametric trend
surfaces.

Task 41 : Compute the differences between the trend surfaces pro-
duced by the GAM and the 2nd-order OLS trend surface predictions over
the grid, summarize numerically, and display as a difference map. •

We choose yet another palette to represent differences, the “topography”
palette from blue to yellow:
summary(grid1km.df$diff.gam.ols <-

grid1km.df$pred.gam - grid1km.df$ts2.fit)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -10.766013 -3.105651 -0.369673 0.004091 2.472404 19.735232
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grid1km.diff.gam.ols <- grid1km
values(grid1km.diff.gam.ols) <- grid1km.df$diff.gam.ols
plot(grid1km.diff.gam.ols,

main="Difference (GAM - 2nd order trend surface) predictions, [m]",
col=topo.colors(64))

grid()

Difference (GAM − 2nd order trend surface) predictions, [m]
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Here positive differences are where the GAM predicts higher values than
the trend surface.

Q27 : Where are the largest differences between the GAM and 2nd order
OLS trend surface predictions? Explain why, considering how the two
surfaces are computed. Jump to A27 •

8 Thin-plate spline interpolation

A quick way to see the distribution of a variable in space as a surface is
with an empirical method that adjusts locally to the data. A common em-
pirical method is thin-plate splines (TPS), also referred to as “minimum
curvature” surfaces, which are implemented in the fields package. The
theory of thin-plate splines is explained in the Appendix, §C.

TPS is the mathematical equivalent of a thin (so, flexible) plate that is
warped to fit the data. This can range from very “rigid”, i.e., just a sin-
gle surface (the usual least-squares plane of a first-order trend surface)
to very “flexible”, i.e., perfectly fitting every observation. In general we
want something in between: if we think there is an overall surface we
just fit it as one polynomial (first, second . . . order polynomials on the
coördinates), but if we want to fit more locally, we must expect local
noise which should be somehow locally averaged-out.
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This from ?Tps with some added emphasis; see that help text for much
more detail.

A thin plate spline is the result of minimizing the residual
sum of squares subject to a constraint that the function have
a certain level of smoothness (or roughness penalty). Rough-
ness is quantified by the integral of squaredm-th order deriva-
tives . . . For two dimensions the roughness penalty is the in-
tegral of:

(Dxx(f ))2 + 2(Dxy(f ))2 + (Dyy(f ))2

Task 42 : Set up for thin-plate splines and compute the minimum-
curvature spline, subject to roughness constraint determined by gener-
alized cross-validation. •

The Tps function of the fields package compute this; however the coör-
dinates must be formatted as a matrix field in the dataframe, using the
matrix function.
aq.tps <- aq[, c("E","N", "zm")]
aq.tps$coords <- matrix(c(aq.tps$E, aq.tps$N), byrow=F, ncol=2)
str(aq.tps$coords)

## num [1:161, 1:2] 569464 573151 559974 553514 550350 ...

Now this matrix can be used to compute the spline surface:
surf.1 <-Tps(aq.tps$coords, aq.tps$zm)

## Warning:
## Grid searches over lambda (nugget and sill variances) with minima at the endpoints:
## (GCV) Generalized Cross-Validation
## minimum at right endpoint lambda = 8.53564e-06 (eff. df=
## 152.95 )

summary(surf.1)

## CALL:
## Tps(x = aq.tps$coords, Y = aq.tps$zm)
##
## Number of Observations: 161
## Number of unique points: 161
## Number of parameters in the null space 3
## Parameters for fixed spatial drift 3
## Effective degrees of freedom: 152.9
## Residual degrees of freedom: 8.1
## MLE tau 0.6747
## GCV tau 0.7098
## MLE sigma 53330
## Scale passed for covariance (sigma) <NA>
## Scale passed for nugget (tau^2) <NA>
## Smoothing parameter lambda 8.536e-06
##
## Residual Summary:
## min 1st Q median 3rd Q max
## -0.6250000 -0.0701000 -0.0007448 0.0793500 0.5199000
##
## Covariance Model: Rad.cov
## Names of non-default covariance arguments:
## p
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##
## DETAILS ON SMOOTHING PARAMETER:
## Method used: GCV Cost: 1
## lambda trA GCV GCV.one GCV.model tauHat
## 8.536e-06 1.529e+02 1.008e+01 1.008e+01 NA 7.098e-01
##
## Summary of all estimates found for lambda
## lambda trA GCV tauHat -lnLike Prof converge
## GCV 8.536e-06 152.9 10.08 0.7098 462.5 NA
## GCV.model NA NA NA NA NA NA
## GCV.one 8.536e-06 152.9 10.08 0.7098 NA NA
## RMSE NA NA NA NA NA NA
## pure error NA NA NA NA NA NA
## REML 7.654e-05 117.7 11.24 1.7383 461.6 3

Task 43 : Predict over the study area grid using the fitted thin-plate
spline. •

The predict.Krig method of the fields package computes the predic-
tion. Again, the coördinates must be a matrix. We have these in the grid,
but we need to convert them to a matrix.
grid.coords.m <- as.matrix(grid1km.df[, c("E", "N")], ncol=2)
str(grid.coords.m)

## num [1:7425, 1:2] 500500 501500 502500 503500 504500 ...
## - attr(*, "dimnames")=List of 2
## ..$ : NULL
## ..$ : chr [1:2] "E" "N"

Predict, and add to thedata.frame version of grid where we have the
results from other methods.
surf.1.pred <- predict.Krig(surf.1, grid.coords.m)
summary(grid1km.df$pred.tps <- as.numeric(surf.1.pred))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 475.3 517.1 546.8 547.4 576.3 623.6

Note: As in the results from the GAM we needed to convert the 1-d
array returned by predict.gam to a vector before storing it as one field
(column) in the data frame.

Task 44 : Compute and summarize the residuals. •

The predict.Krig function does not compute residuals. We get the
predictions from the prediction grid, with the terra function, at the
locations of the known points. We then compute the difference of this
predicted value from the actual value at that point, and add this as a
field in the points spatial object.
grid1km.tps <- grid1km
values(grid1km.tps) <- surf.1.pred
tmp <- extract(grid1km.tps, st_coordinates(aq.sf))
names(tmp)

## [1] "z"

summary(aq.sf$resid.tps <- (drop_units(aq.sf$zm) - tmp$z))
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.52882 -0.34992 -0.05734 0.01306 0.41104 2.10552

Task 45 : Plot a histogram of these residuals: •
hist(aq.sf$resid.tps, main="Thin-plate spline residuals", breaks=16)
rug(aq.sf$resid.tps)
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Task 46 : Display the gridded prediction, with the residuals over-
printed. •
plot(grid1km.tps,

main = "2D Thin-plate spline surface")
points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,

col=ifelse(aq.sf$resid.tps < 0, "red", "green"),
cex=2*abs(aq.sf$resid.tps)/max(abs(aq.sf$resid.tps)))

2D Thin−plate spline surface
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This adjusts very closely to the data points. Notice how many points
hardly show at all, i.e., residual almost zero, and no residuals are very
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large.

Task 47 : Compute and display the difference between the thin-plate
spline and the GAM predictions. •

The differences are by direct subtraction of the gridded maps.
grid1km.diff.tps.gam <- grid1km
grid1km.diff.tps.gam <- grid1km.tps - grid1km.gam
values(grid1km.diff.tps.gam) <- (values(grid1km.tps) - values(grid1km.gam))
plot(grid1km.diff.tps.gam,

col = topo.colors(64),
main = "Thin-plate spline less GAM fits, [m]",
xlab = "East", ylab = "North")
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There are some differences, even though GAM allows some local devia-
tions from a trend.

9 Spatial correlation of trend surface residuals

In trend surface analysis of §5.1 (1st order) and §5.2 (2nd order) we
showed that the residuals from the OLS trend surface models are not
spatially independent – there are local clusters of similar values as re-
vealed by the bubble plot. This implies the trend surface should in fact
be fit not by OLS but by Generalized Least Squares (GLS), taking into
account the spatial auto-correlation of the residuals. We pursue this fur-
ther in §10. Here we investigate the spatial structure of the residuals

The spatial structure of the residuals can be modelled with a variogram;
this structure can then be used to adjust the trend surface with GLS
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(§10.1, below). In this section we examine the empirical variogram of the
residuals, and later use it to initialize the GLS estimate.

Task 48 : Add the second-order trend-surface predictions and residu-
als as fields to the aq data frame. •

The fitted method extracts fitted values from a linear model object; the
residuals method extracts the residuals.
aq$fit.ts2 <- fitted(model.ts2)
aq.sf$fit.ts2 <- fitted(model.ts2)
aq$res.ts2 <- residuals(model.ts2)
aq.sf$res.ts2 <- residuals(model.ts2)

9.1 The empirical variogram

To visualize the spatial autocorrelation of the trend surface residuals,
we compute an empirical variogram, which show the relation between
separation distance in geographic space between pairs of points and a
measure of their separation distance in attribute (feature) space. This
measure is called the semivariance: γ of one point-pair (si, sj):

γ(si, sj) ≡
1
2
[z(si)− z(sj)]2 (9)

Because there a large number ((n(n−1))/2) of point-pairs, the separation
distances are usually grouped into ranges, and the average semivariance
γ(h) is computed as:

γ(h) = 1
2m(h)

m(h)∑
i=1

[z(si)− z(si + h)]2 (10)

where:

• m(h) is the number of point-pairs separated by vector h, in practice
some range of separations (“bin”);

• these are indexed by i;

• the notation z(si+h)means the “tail” of point-pair i, i.e., separated
from the “head” si by the separation vector h.

Task 49 : Compute and plot the empirical variogram of the residuals
from the second-order surface, with a cutoff of 40 km. •

The variogram function of the gstat package computes the empirical
variogram We show both the variogram cloud and the summarized var-
iogram, which averages the points in the variogram cloud over some
separation ranges; these are called variogram bins.
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vr.c <- variogram(res.ts2 ~ 1, loc = aq.sf, cutoff = 40000, cloud = T)
vr <- variogram(res.ts2 ~ 1, loc = aq.sf, cutoff = 40000)
p1 <- plot(vr.c, col = "blue", pch = 20, cex = 0.5,

xlab = "separation [m]", ylab = "semivariance [m^2]")
p2 <- plot(vr, plot.numbers = T, col = "blue", pch = 20, cex = 1.5,

xlab = "separation [m]", ylab = "semivariance [m^2]")
print(p1, split = c(1,1,2,1), more = T)
print(p2, split = c(2,1,2,1), more = F)
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Note: The code to print two variograms side-by-side uses the split and
more optional arguments to the print method for Lattice graphics plots,
which are the default for gstat variogram objects.

Note: Notice the large difference in the semivariance scale for the two
kinds of variograms. This is because the summarized variogram aver-
ages within the bins, and the few very large indiviual semivariances are
averaged out.

The empirical variogram can be characterized by three parameters; here
they are just estimated by eye. These will be defined precisely as part of
variogram modelling, see below.

• c0 the nugget parameter: the semi-variance at zero separation; this
represents a combination of measurement error, sampling error,
and spatial variation at range shorter than the sample support;

• c is the sill parameter, i.e., the maximum variance in the attribute
when point-pairs are widely-separated;

• a is the range parameter, the separation at which there is no more
spatial autocorrelation, so that the semivariance reaches the sill.

Q28 : What are the estimated sill, range, and nugget of this variogram?
Jump to A28 •

In later sections (§11.2) we will see how to model the variogram and
use it in spatial prediction. For now, we continue with a method that
takes spatial correlation of the residuals into acount when computing

48



the trend; the eyeball estimates of the spatial correlation parameters
will be sufficient for this method.

10 Trend surface analysis by Generalized Least Squares

As explained in §5, the OLS solution is only valid for independent residu-
als. The previous § shows that in this case the residuals are not spatially
independent, and we were able to model that dependence with a vari-
ogram model. Thus, using OLS may result in an incorrect trend surface
equation, although the OLS estimate is unbiased. A large number of
close-by points with similar values will “pull” a trend surface towards
them. Furthermore, the OLS R2 (goodness-of-fit) may be over-optimistic.
This is discussed by Fox [4, §14.1].

The solution is to use Generalised Least Squares (GLS) to estimate the
trend surface. This allows a covariance structure between residuals
to be included directly in the least-squares solution of the regression
equation.

The GLS estimate of the regression coefficients is [2]:

β̂gls = (XTC−1X)−1XTC−1y (11)

where X is the design matrix, C the covariance matrix of the (spatially-
correlated) residuals, and y the vector of observations. If there is no
spatial dependence among the errors, C reduces to Iσ2 and the estimate
to OLS as in Equation 3.

The covariance matrix C gives the covariance between the residuals at
each pair of points used to determine the β̂gls. Clearly, there is no way to
know the covariance between all the point-pairs, since we only have one
realization of the random field. So we model the covariance as a function
of the separation (usually the distance) between point pairs, similar to
what we did in §9.1, to fit a variogram model. However, we instead fit
a spatial covariance model. This leads us to a further difficulty: the
covariance structure refers to the residuals, but we can’t compute these
until we fit the trend . . . but we need the covariance structure to fit the
trend . . . and so on. This is a classic “which came first: the chicken or the
egg?” problem.

One method to compute the GLS model is iterative:

1. make a first estimate of the trend surface with OLS;

2. compute the residuals;

3. model the covariance structure of the OLS residuals as a function
of their separation;

4. use this covariance structure to determine the weights to compute
the GLS trend surface;

5. repeat steps (2)–(4) until the covariance structure does not change
between iterations.
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In many cases only one iteration is necessary. However, theoretically this
is not optimal, because the estimates of the covariance parameters are
biased.

A more elegant solution is to fit the covariance structure at the same
time the trend surface coefficients are computed. The theory and math-
ematics of this are explained in §D.

10.1 Computing the GLS trend surface

GLS trend surfaces can be computed in several R packages. The trend
and the covariance must be computed at the same time. This is imple-
mented in the gls function of the nlme package, using Residual Maxi-
mum Likelihood (REML)18.

Task 50 : Compute the coefficients of a full second-order trend, using
GLS. •

The gls function fits two models at once: the linear model, specified
with the model argument, and the autocorrelation structure, specified
with the correlation argument.

The model argument is the same model formula we use for OLS.

The correlation argument specifies the form of the correlation, and
its initial parameters. Here we specify an exponential correlation with
the corExp function. The form form is two-dimensional in the coördi-
nates, and from examination of the empirical variogram we see there
is no nugget, so we specify nugget as FALSE. The value argument to
corExp specifies starting values for this correlation structure, here the
estimated range parameter. Recall that this is 1/3 of the separation at
which there is no longer any spatial autocorrelation. From the empirical
variogram (§9.1) we estimate this as 30 000/3 = 10 000 m.
model.ts2.gls <- gls(

model = drop_units(zm) ~ N + E + I(N^2) + I(E^2) + I(E * N),
data = aq,
method = "ML",
correlation = corExp(form = ~E + N,

nugget = FALSE,
value = 10000) # initial value of the range parameter

)
class(model.ts2.gls)

## [1] "gls"

summary(model.ts2.gls)

## Generalized least squares fit by maximum likelihood
## Model: drop_units(zm) ~ N + E + I(N^2) + I(E^2) + I(E * N)
## Data: aq
## AIC BIC logLik
## 939.389 964.0403 -461.6945
##
## Correlation Structure: Exponential spatial correlation
## Formula: ~E + N

18 See §D.3 for the theory and mathematics of REML.
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## Parameter estimate(s):
## range
## 14421.58
##
## Coefficients:
## Value Std.Error t-value p-value
## (Intercept) -84955.46 30058.379 -2.826349 0.0053
## N 0.04 0.014 3.059245 0.0026
## E -0.02 0.008 -2.282998 0.0238
## I(N^2) 0.00 0.000 -3.236521 0.0015
## I(E^2) 0.00 0.000 -0.511079 0.6100
## I(E * N) 0.00 0.000 2.325550 0.0213
##
## Correlation:
## (Intr) N E I(N^2) I(E^2)
## N -0.997
## E -0.149 0.075
## I(N^2) 0.989 -0.997 -0.005
## I(E^2) 0.111 -0.094 -0.248 0.099
## I(E * N) 0.118 -0.047 -0.950 -0.026 -0.066
##
## Standardized residuals:
## Min Q1 Med Q3 Max
## -3.4096923 -0.5485337 0.1276973 0.6513997 2.0752493
##
## Residual standard error: 6.385513
## Degrees of freedom: 161 total; 155 residual

Notice that the gls method also estimates the range of spatial correla-
tion.

Q29 : What is the range of spatial correlation of the exponential model,
as estimated by gls? Jump to A29 •

This gives different coefficients than the OLS fit.

Task 51 : Compare the coefficients from the GLS and OLS fits, as abso-
lute differences and as percentages of the OLS fit. •

The generic coef method extracts coefficients from model objects.
coef(model.ts2.gls) - coef(model.ts2)

## (Intercept) N E I(N^2) I(E^2)
## 3.113971e+04 7.142363e-02 -7.859060e-02 2.031070e-09 3.950790e-10
## I(E * N)
## -2.170533e-09

round(100*(coef(model.ts2.gls) - coef(model.ts2))
/coef(model.ts2),1)

## (Intercept) N E I(N^2) I(E^2)
## -26.8 -255.2 -132.4 -27.1 -24.0
## I(E * N)
## -32.4

Q30 : Why are the GLS coefficients different than the OLS coefficients?
Jump to A30 •
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Task 52 : Display the 90% confidence intervals for the GLS model pa-
rameters. •

The generic intervals method has a specific method for a fitted GLS
model; internally this is the intervals.gls function of the nlme pack-
age.
intervals(model.ts2.gls, level=0.90)

## Approximate 90% confidence intervals
##
## Coefficients:
## lower est. upper
## (Intercept) -1.346944e+05 -8.495546e+04 -3.521654e+04
## N 1.994295e-02 4.343916e-02 6.693538e-02
## E -3.315918e-02 -1.922481e-02 -5.290439e-03
## I(N^2) -8.264555e-09 -5.468607e-09 -2.672659e-09
## I(E^2) -5.307723e-09 -1.252487e-09 2.802750e-09
## I(E * N) 1.306509e-09 4.529404e-09 7.752298e-09
##
## Correlation structure:
## lower est. upper
## range 8129.732 14421.58 25582.87
##
## Residual standard error:
## lower est. upper
## 5.003777 6.385513 8.148799

Task 53 : Compute the residuals from this surface, and compare them
to those from the OLS surface. •
summary(res.ts2.gls <- residuals(model.ts2.gls))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -21.77263 -3.50267 0.81541 -0.05721 4.15952 13.25153

summary(res.ts2)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -19.847 -3.366 0.822 0.000 3.538 14.807

Q31 : What are the main differences between these sets of residuals?
Which surface, in this case, most closely fits the points? Why? Jump to
A31 •

10.2 Predicting from the GLS trend surface

Now that we have a trend surface model based on the known points, we
can apply this model to create a full surface.

Task 54 : Predict over the grid with the GLS trend. •

The predict generic method has a specific method for a fitted GLS
model; internally this is the predict.gls function of the nlme package.
pred.ts2.gls <- predict(model.ts2.gls, newdata=grid1km.df)
summary(pred.ts2.gls)
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## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 475.2 518.9 548.1 547.7 576.4 610.7

Task 55 : Make a SpatRast grid with the model predictions (fits) and
summarize them. •
grid1km.gls <- grid1km
values(grid1km.gls) <- pred.ts2.gls
summary(values(grid1km.gls))

## z
## Min. :475.2
## 1st Qu.:518.9
## Median :548.1
## Mean :547.7
## 3rd Qu.:576.4
## Max. :610.7

Task 56 : Display the interpolated surface, with the residuals at the
data points superimposed. •
plot(grid1km.gls, main = "GLS 2nd order predicted surface")

points(st_coordinates(aq.sf)[,2] ~ st_coordinates(aq.sf)[,1], pch=16,
col = ifelse((res.ts2.gls < 0), "red", "green"),
cex=2*abs(res.ts2.gls)/max(abs(res.ts2.gls))

)

GLS 2nd order predicted surface
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This looks quite similar to the OLS nd-order trend surface. In a dataset
like this one with a good spread of points there is likely to be little dif-
ference. An obvious question is how much these differ, and where.

Task 57 : Compute the difference between the OLS and GLS trend
surfaces, and map this difference. •
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grid1km.gls.ols.diff <- (grid1km.gls - grid1km)
plot(grid1km.gls.ols.diff, col = topo.colors(64),

main = "GLS - OLS 2nd order trend surfaces, m")

GLS − OLS 2nd order trend surfaces, m
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Q32 : Where are the largest differences between the OLS and GLS trend
surfaces? Explain why. Jump to A32 •

11 Local interpolation of the residuals

The trend surface fits an overall trend, but of course does not fit every
observation exactly. The GLS fit, while correcting the trend surface pa-
rameters for local spatial dependence of the residuals, does not remove
the local deviations from a surface expressed by one equation. This lack
of fit can be pure noise, but it can also have a spatially-correlated com-
ponent which can be modelled and used to improve the predictions.

11.1 Visualizing the residuals

Task 58 : Display the residuals from the GLS trend surface as a post-
plot. •
summary(res.ts2.gls)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -21.77263 -3.50267 0.81541 -0.05721 4.15952 13.25153

plot(aq$N ~ aq$E, cex=3*abs(res.ts2.gls)/max(abs(res.ts2.gls)),
col=ifelse(res.ts2.gls > 0, "green", "red"),
xlab="E", ylab="N",
main="Residuals from 2nd-order trend, GLS fit",
sub="Positive: green; negative: red", asp=1)
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grid()

480000 500000 520000 540000 560000 580000

41
60

00
0

42
00

00
0

42
40

00
0

Residuals from 2nd−order trend, GLS fit

Positive: green; negative: red
E

N

We can see from this post-plot of the residuals that there is local spatial
correlation. The GLS fit optimized the estimates of the trend surface co-
efficients, and correctly estimated the spatial correlation of the residuals,
but did not correct for this in mapping.

Task 59 : Compute the empirical variogram model residuals from the
GLS trend surface model. •

First extract the residuals into the point observations object, compute
the empirical variogram, and display it to estimate the variogram model
parameters.
aq.sf$res.ts2.gls <- residuals(model.ts2.gls)
vr.gls <- variogram(res.ts2.gls ~ 1, loc=aq.sf,

cutoff = 40000)
plot(vr.gls, plot.numbers=T,

main="Residuals from second-order GLS trend",
xlab = "separation [m]", ylab = "semivariance [m^2]")
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Residuals from second−order GLS trend
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Q33 : What are the approximate variogram parameters? Jump to A33 •

11.2 Variogram modelling

In the kriging formula (see below, §11.3), we need to compute the semi-
variance at any separation distance. Therefore, we need to fit a vari-
ogram function to the empirical variogram. This function represents
the structure of the spatial autocorrelation of the attribute, in this case
the trend surface residual.

There are many authorized variogram functions that will ensure that the
kriging system can be solved. One of the most common is the exponen-
tial function:

γ(h) = c
(

1− e
(
−ha

))
(12)

Where:

• h is the separation distance between a point-pair; this is the argu-
ment to the function which changes with each point-pair;

• c is the fitted sill parameter, i.e., the maximum variance in the at-
tribute when point-pairs are widely-separated’

• a is the fitted range parameter.

The effective range 3a is the separation distance at which γ = 0.95c.

In this case the shape of the empirical variogram suggests that an expo-
nential model would fit well.
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Task 60 : Fit an exponential variogram function and display the fitted
model on the empirical variogram. •

To fit a variogram function to an empirical variogram, one method is
to estimate the parameters by eye, and adjust them until they seem to
match the empirical variogram. A more objective way is to use the initial
estimates as a starting point for the fit.variogram function, which
adjusts the parameters by weighted least-squares.

Note: A commonly-used empirical weighting is proportional to the num-
ber of point-pairs in a bin (giving more weight to bins with more evidence)
and inversely proportional to the average separation in the bin (giving
more weight to the close-range portion of the variogram, where most of
the kriging weights are determined).

The vgm function specifies a variogram model and its parameters. We
then adjust it with fit.variogram. Recall, we estimated the parameters
by eye in the previous answer. We must divide our estimate of the range
(see previous question) by 3 to obtain the a parameter of the exponential
model.
vr.gls.m <- vgm(psill=40, model="Exp", range=22000/3, nugget=0)
(vr.gls.m.f <- fit.variogram(vr.gls, vr.gls.m))

## model psill range
## 1 Nug 0.00000 0.00
## 2 Exp 44.76969 14784.35

plot(vr.gls, model=vr.gls.m.f, plot.numbers=T,
xlab = "separation [m]", ylab = "semivariance [m^2]")
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Task 61 : Compare the range parameter of this fitted variogram with
the range parameter estimate from the GLS fit. •
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print(vr.gls.m.f)

## model psill range
## 1 Nug 0.00000 0.00
## 2 Exp 44.76969 14784.35

intervals(model.ts2.gls)$corStruct[2]

## [1] 14421.58

Q34 : Does the range parameter of this fitted model agree with the
estimate from the GLS fit? Jump to A34 •

11.3 The Ordinary Kriging system

Once we know the structure of the residuals, their values, and their loca-
tions, we can predict their values at all locations (e.g., over the grid), by
Ordinary Kriging interpolation.

To do this, we first need to understand OK.

Kriging is a form of linear prediction of the attribute value at an un-
known point ẑ(s0), as a weighted sum of the attribute values at the
known points z(si):

ẑ(s0) =
N∑
i=1

λiz(si)s (13)

The weights λi must sum to 1, and are determined by solving the kriging
system of equations. This system ensures that the prediction at each
point has the least possible prediction variance, i.e., uncertainty, among
all the predictions made with linear weights. Therefore OK is called the
Best Linear Unbiased Predictor (BLUP).

Here we do not derive the system, but present it. The weights are the
solution of the linear equation Aλ = b where:

A =


γ(s1, s1) γ(s1, s2) · · · γ(s1, sN) 1
γ(s2, s1) γ(s2, s2) · · · γ(s2, sN) 1

...
... · · ·

...
...

γ(sN , s1) γ(sN , s2) · · · γ(sN , sN) 1
1 1 · · · 1 0



λ =


λ1

λ2
...
λN
ψ

 b =


γ(s1, s0)
γ(s2, s0)

...
γ(sN , s0)

1
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All of the semivariances γ in these formulas are computed from the
fitted variogram model, by substituting the separation betwen the known
points (si, sjj) in the A matrix, and between the known points and the
prediction point (si, s0) in the b vector.

The kriging system is solved by matrix inversion and multiplication as:

λ = A−1b

These weights can then be used in the prediction formula Equation 13.
They also can be used to compute the prediction variance as σ̂2 = bYλ.

11.4 OK predictions

Task 62 : Predict over the grid by OK, using the fitted variogram model.
•

The krige function computes kriging predictions and their variances.
This uses the location (and implicitly the data) of the known points (ar-
gument loc), a set of locations to be predicted (argument newdata, and
of course the fitted variogram model (argument model.

The krige function does not understand spatial objects of class SpatRast.
These must be converted to sf before use. We already have the point
dataset in this format, but we now need to convert the prediction grid
before using it as the new data points. We do this with the st_as_sf
“convert to Simple Features” method of the sf package.
grid1km.sf <- st_as_sf(grid1km.df, coords = c("E", "N"))
st_crs(grid1km.sf) <- st_crs(grid1km)
kr <- krige(res.ts2.gls ~ 1,

loc = aq.sf,
newdata = grid1km.sf,
model=vr.gls.m.f)

## [using ordinary kriging]

summary(kr)

## var1.pred var1.var geometry
## Min. :-20.50210 Min. : 0.4129 POINT :7425
## 1st Qu.: -3.14297 1st Qu.: 7.7124 epsg:26914 : 0
## Median : -0.04301 Median : 9.9055 +proj=utm ...: 0
## Mean : -0.37462 Mean :10.4527
## 3rd Qu.: 2.86436 3rd Qu.:12.0501
## Max. : 12.78381 Max. :31.9149

class(kr)

## [1] "sf" "data.frame"

Kriging results in two fields: the predictions themselves, and their pre-
diction variances – this is a byproduct of the design of kriging to mini-
mize this variance, thus it must be computed as part of the process.

Note: Notice that the mean kriging prediction is not zero.
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Task 63 : Display the kriging predictions. •

Predictions:
plot(kr["var1.pred"], pch=15, nbreaks=24,

main="Residuals from GLS trend, m")
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Residuals from GLS trend, m

Q35 : Which areas were most changed by interpolating the residuals?
Why? Jump to A35 •

Task 64 : Display the kriging prediction standard deviations. •

Prediction standard deviations (i.e., the square root of the variances, so
they are on the same scale as the predictions):
kr$var1.sd <- sqrt(kr$var1.var)
summary(kr)

## var1.pred var1.var geometry
## Min. :-20.50210 Min. : 0.4129 POINT :7425
## 1st Qu.: -3.14297 1st Qu.: 7.7124 epsg:26914 : 0
## Median : -0.04301 Median : 9.9055 +proj=utm ...: 0
## Mean : -0.37462 Mean :10.4527
## 3rd Qu.: 2.86436 3rd Qu.:12.0501
## Max. : 12.78381 Max. :31.9149
## var1.sd
## Min. :0.6425
## 1st Qu.:2.7771
## Median :3.1473
## Mean :3.1609
## 3rd Qu.:3.4713
## Max. :5.6493

plot(kr["var1.sd"], pch=15, nbreaks=24, pal = heat.colors,
main="Standard errors of residuals from GLS trend, m")
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Q36 : Which areas have the most and least uncertainty? Why? Jump to
A36 •

12 GLS-Regression Kriging

Now we have both parts of a universal model: a global trend and local
deviations from it. We can combine these for a “best” prediction, taking
into account both causes of spatial variation.

To understand this, we introduce the so-called universal model of spa-
tial variation:

Z(s) = Z∗(s)+ ε(s)+ ε′(s) (14)

where:

• (s) is a location in space, designated by a vector of coördinates;

• Z(s) is the true (unknown) value of some property at the location;

• Z∗(s) is the deterministic component, due to some non-stochastic
process, i.e., the trend surface;

• ε(s) is the spatially-autocorrelated stochastic component of the
deviations from the trend;

• ε′(s)is the pure (“white”) noise with no structure; this can not be
modelled.

We have seen how to model Z∗(s)+ ε′(s) with an OLS polynomial trend
surface in §5. We have seen how to model the local spatial structure as
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ε(s)+ ε′(s) by Ordinary Kriging (OK) in §11. Both are modelled together
in GLS (§10), but that trend surface still leaves residuals ε(s) + ε′(s) to
be accounted for.

When these two are combined, the method is called Generalized Least
Squares Trend – Regression Kriging (GLS-RK).

Task 65 : Add the OK predictions of the GLS residuals to the data
frame version of prediction grid object, and then add this to the GLS
trend surface prediction to obtain a final prediction. Make a SpatRast
version for plotting. •

The kriging prediction object was built from the spatial grid, so it has
the same dimensions.
grid1km.df$kr <- kr$var1.pred
grid1km.df$pred.ts2.gls <- pred.ts2.gls
grid1km.df$rkgls <- grid1km.df$pred.ts2.gls + grid1km.df$kr
summary(grid1km.df)

## E N ts2.fit ts2.lwr
## Min. :500500 Min. :4150500 Min. :463.1 Min. :451.1
## 1st Qu.:518500 1st Qu.:4174500 1st Qu.:517.5 1st Qu.:506.3
## Median :537500 Median :4199500 Median :547.9 Median :536.7
## Mean :537500 Mean :4199500 Mean :547.4 Mean :536.1
## 3rd Qu.:556500 3rd Qu.:4224500 3rd Qu.:577.3 3rd Qu.:566.0
## Max. :574500 Max. :4248500 Max. :614.4 Max. :603.0
## ts2.upr ts2.diff.range pred.gam pred.gam.se
## Min. :475.2 Min. :22.30 Min. :480.0 Min. :1.181
## 1st Qu.:528.8 1st Qu.:22.33 1st Qu.:517.4 1st Qu.:1.321
## Median :559.2 Median :22.45 Median :547.2 Median :1.404
## Mean :558.7 Mean :22.56 Mean :547.4 Mean :1.521
## 3rd Qu.:588.6 3rd Qu.:22.71 3rd Qu.:576.4 3rd Qu.:1.611
## Max. :625.8 Max. :24.21 Max. :621.4 Max. :3.607
## diff.gam.ols pred.tps kr
## Min. :-10.766013 Min. :475.3 Min. :-20.50210
## 1st Qu.: -3.105651 1st Qu.:517.1 1st Qu.: -3.14297
## Median : -0.369673 Median :546.8 Median : -0.04301
## Mean : 0.004091 Mean :547.4 Mean : -0.37462
## 3rd Qu.: 2.472404 3rd Qu.:576.3 3rd Qu.: 2.86436
## Max. : 19.735232 Max. :623.6 Max. : 12.78381
## pred.ts2.gls rkgls
## Min. :475.2 Min. :476.9
## 1st Qu.:518.9 1st Qu.:516.9
## Median :548.1 Median :547.0
## Mean :547.7 Mean :547.3
## 3rd Qu.:576.4 3rd Qu.:576.3
## Max. :610.7 Max. :623.4

grid1km.rkgls <- grid1km
values(grid1km.rkgls) <- grid1km.df$rkgls

Task 66 : Plot the final prediction. •
plot(grid1km.rkgls,

main="GLS-RK prediction, aquifer elevation, m.a.s.l.")
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GLS−RK prediction, aquifer elevation, m.a.s.l.
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The GAM prediction (§7.2) also considered both global and local and
components of the spatial variation. An obvious question is how similar
they are.

Task 67 : Compare this predicted surface with the GAM prediction. •
summary(grid1km.rkgls.gam <- (grid1km.rkgls - grid1km.gam))

## z
## Min. :-13.426032
## 1st Qu.: -1.056207
## Median : -0.005607
## Mean : -0.074158
## 3rd Qu.: 1.112371
## Max. : 8.353024

plot(grid1km.rkgls.gam, main ="RK-GLS - GAM fits, difference, m",
col = topo.colors(64))
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RK−GLS − GAM fits, difference, m

500000 520000 540000 560000

41
60

00
0

41
80

00
0

42
00

00
0

42
20

00
0

42
40

00
0

−10

−5

0

5

Q37 : Where are the largest differences between these two trend sur-
face predictions? Explain why, considering how the two surfaces are
computed. Jump to A37 •

13 Universal Kriging (UK)

We showed in §9 that the residuals from the OLS fit are not spatially
independent. We used this fact in §10 to produce a correct trend surface
by GLS. We then modelled the spatial structure of the residuals from the
GLS (not OLS) surface and interpolated these, to make a final map of both
the trend and local variations with GLS-RK (§11).

There is another method of fitting the trend and the local deviations
from it in one step, called “Universal Kriging”, abbreviated as UK. This is
not completely correct theoretically, as we will explain, but if observation
points are well-distributed over the area (as is the case in this exercise)
so that the GLS and OLS trend surfaces are not too different, it provides
a very similar map to GLS-RK, and in one step.

Note: If spatially-complete covariates are used instead of coördinates
in the OLS model, this is sometimes called “Kriging with External Drift”,
abbreviated KED. The mathematics are exactly the same, the difference is
in functions added to the OK system to make the UK system, either the
coördinates (UK) or covariates (KED).

Recall the universal model of spatial variation:

Z(s) = Z∗(s)+ ε(s)+ ε′(s) (15)

where:
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• (s) is a location in space, designated by a vector of coördinates;

• Z(s) is the true (unknown) value of some property at the location;

• Z∗(s) is the deterministic component, due to some non-stochastic
process, i.e., the trend surface;

• ε(s) is the spatially-autocorrelated stochastic component of the
deviations from the trend;

• ε′(s)is the pure (“white”) noise with no structure; this can not be
modelled.

We have seen how to model Z∗(s)+ε′(s) with a polynomial trend surface
in §5. We have seen how to model the local spatial structure as ε(s) +
ε′(s) by Ordinary Kriging (OK) in §11. UK is an extension of OK that
models the entire Equation 15 in one step.

13.1 Residual variogram

The residual variogram is computed from the OLS surface as in §9, but
directly from the definition of the trend. Recall that here we do not have
a GLS surface.

Task 68 : Compute and display an empirical variogram of the residuals
from a 2nd order OLS trend surface. •

The variogram function requires an sf spatial object with the locations
as coördinates and the target variable.

We have to refer to the coördinates within the Simple Features object to
build the full 2nd order trend surface expression. In order to use these
in a variogram formula, these must be expicitly include as covariates in
the observations objects:
str(st_coordinates(aq.sf))

## num [1:161, 1:2] 569464 573151 559974 553514 550350 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:161] "1" "2" "3" "4" ...
## ..$ : chr [1:2] "X" "Y"

names(aq.sf)

## [1] "z" "zm" "geometry" "resid.tps"
## [5] "fit.ts2" "res.ts2" "res.ts2.gls"

aq.sf$E <- st_coordinates(aq.sf)[ , "X"]
aq.sf$N <- st_coordinates(aq.sf)[ , "Y"]
names(aq.sf)

## [1] "z" "zm" "geometry" "resid.tps"
## [5] "fit.ts2" "res.ts2" "res.ts2.gls" "E"
## [9] "N"

Now these names can be used in the variogram formula:
# summary(apply(st_coordinates(aq.sf), MARGIN = 1, FUN = prod))
vr <- variogram(zm ~ E + N + I(E^2) + I(N^2) + I(E*N),
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locations = aq.sf,
cutoff = 40000)

plot(vr, plot.numbers = TRUE,
main = "Residuals from 2nd-order OLS trend surface",
xlab = "separation (m)",
ylab = "semivariance (m^2)")
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This variogram of the OLS trend surface residuals is then modelled as
before (§11.2), using eyeball estimates of the exponential model param-
eters:
(vr.m.f <- fit.variogram(vr, vgm(35, "Exp", 22000/3, 0)))

## model psill range
## 1 Nug 0.0000 0.00
## 2 Exp 35.5515 10471.76

plot(vr, plot.numbers=TRUE,
xlab="separation (km)", ylab="semivariance (m^2)",
model=vr.m.f,
main="Fitted variogram model, residuals from 2nd-order OLS trend surface")
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Fitted variogram model, residuals from 2nd−order OLS trend surface
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Task 69 : Compare this fitted variogram from the OLS trend surface
residuals with the estimate from the GLS fit. •
print(vr.m.f) # OLS trend residuals

## model psill range
## 1 Nug 0.0000 0.00
## 2 Exp 35.5515 10471.76

print(vr.gls.m.f) # GLS trend residuals

## model psill range
## 1 Nug 0.00000 0.00
## 2 Exp 44.76969 14784.35

Q38 : How do these fitted variogram parameters compare to those from
the GLS trend surface residuals (§11.2)? Why are they different? Jump
to A38 •

13.2 The Universal Kriging system

Recall from §11.3 that Kriging is a form of linear prediction of the at-
tribute value at an unknown point s0, as a weighted sum of the attribute
values at the known points z(si):

ẑ(s0) =
N∑
i=1

λiz(si) (16)

where the weights λi must sum to 1, and are determined by solving
the kriging system of equations, which ensures that the prediction has
the least possible prediction variance, i.e., uncertainty, among all the
possible weights.
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In OK the weights only take into account local spatial autocorrelation. In
UK the weights λi take into account both the global trend and the local
spatial autocorrelation of the trend residuals.

Here we do not derive the system, but present it.

The weights are the solution of the linear equation AUλU = bU where:

AU =



γ(s1,s1) ··· γ(s1,sN) 1 f1(s1) ··· fk(s1)
... ···

...
...

... ···
...

γ(sN ,s1) ··· γ(sN ,sN) 1 f1(sN) ··· fk(sN)

1 ··· 1 0 0 ··· 0

f1(s1) ··· f1(sN) 0 0 ··· 0

...
...

...
...

...
...

...
fk(s1) ··· fk(sN) 0 0 ··· 0



λU =



λ1

···
λN
ψ0

ψ1

···
ψk


bU =



γ(s1,s0)
...

γ(sN ,s0)

1

f1(x0)
...

fk(x0)



All of the semivariances γ in these formulas are computed from the
fitted variogram model, by substituting the separation betwen the known
points (si, sj) in the AU matrix, and between the known points and the
prediction point (si, s0) in the bU vector.

Then the kriging system is solved by matrix inversion and multiplication
as:

λU = AU
−1bU

These weights can then be used in the prediction formula Equation 16.
They also can be used to compute the prediction variance as σ̂2 = bU

YλU.

13.3 Prediction

Now we have the model, the krige function can compute the UK pre-
diction at any location, for example at all the grid points. Note that the
formula given in krige must match that given in variogram.

Task 70 : Predict over the grid with the UK model. •

The predictor variables, i.e., the coördinates which were used in the
residual variogram estimation, are only implicitly in the sf version of
the prediction grid:
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names(grid1km.sf)

## [1] "ts2.fit" "ts2.lwr" "ts2.upr"
## [4] "ts2.diff.range" "pred.gam" "pred.gam.se"
## [7] "diff.gam.ols" "pred.tps" "geometry"

str(grid1km.sf$geometry)

## sfc_POINT of length 7425; first list element: 'XY' num [1:2] 500500 4248500

names(aq.sf)

## [1] "z" "zm" "geometry" "resid.tps"
## [5] "fit.ts2" "res.ts2" "res.ts2.gls" "E"
## [9] "N"

str(aq.sf$geometry)

## sfc_POINT of length 161; first list element: 'XY' num [1:2] 569464 4172115

In order to use a UK formula, these must be expicitly include as covari-
ates in both the observation and prediction grid objectsL
str(st_coordinates(grid1km.sf))

## num [1:7425, 1:2] 500500 501500 502500 503500 504500 ...
## - attr(*, "dimnames")=List of 2
## ..$ : chr [1:7425] "1" "2" "3" "4" ...
## ..$ : chr [1:2] "X" "Y"

grid1km.sf$E <- st_coordinates(grid1km.sf)[ , "X"]
grid1km.sf$N <- st_coordinates(grid1km.sf)[ , "Y"]
names(grid1km.sf)

## [1] "ts2.fit" "ts2.lwr" "ts2.upr"
## [4] "ts2.diff.range" "pred.gam" "pred.gam.se"
## [7] "diff.gam.ols" "pred.tps" "geometry"
## [10] "E" "N"

Now these names can be used in the UK formula.
k.uk <- krige(zm ~ E + N + I(E^2) + I(N^2) + I(E*N),

locations = aq.sf,
newdata = grid1km.sf,
model=vr.m.f)

## [using universal kriging]

summary(k.uk)

## var1.pred var1.var geometry
## Min. :475.1 Min. : 0.4626 POINT :7425
## 1st Qu.:516.9 1st Qu.: 8.5469 epsg:26914 : 0
## Median :546.9 Median :10.9385 +proj=utm ...: 0
## Mean :547.3 Mean :11.5170
## 3rd Qu.:576.3 3rd Qu.:13.2251
## Max. :623.3 Max. :41.6235

Task 71 : Display the UK predictions and their prediction standard
deviations •

Predictions:
plot(k.uk["var1.pred"], pch=15, nbreaks=24,

main="UK predictions, m")
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Prediction standard deviations (i.e., the square root of the variances, so
they are on the same scale as the predictions):
k.uk$var1.sd <- sqrt(k.uk$var1.var)
summary(k.uk)

## var1.pred var1.var geometry
## Min. :475.1 Min. : 0.4626 POINT :7425
## 1st Qu.:516.9 1st Qu.: 8.5469 epsg:26914 : 0
## Median :546.9 Median :10.9385 +proj=utm ...: 0
## Mean :547.3 Mean :11.5170
## 3rd Qu.:576.3 3rd Qu.:13.2251
## Max. :623.3 Max. :41.6235
## var1.sd
## Min. :0.6802
## 1st Qu.:2.9235
## Median :3.3073
## Mean :3.3189
## 3rd Qu.:3.6366
## Max. :6.4516

plot(k.uk["var1.sd"], pch=15, nbreaks=24, pal = heat.colors,
main="Standard errors of UK predictions, m")

70



1
2

3
4

5
6

Standard errors of UK predictions, m

Task 72 : Compare these prediction standard deviations to those from
the kriging of the GLS residuals. •
summary(k.uk$var1.sd)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6802 2.9235 3.3073 3.3189 3.6366 6.4516

summary(kr$var1.sd)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.6425 2.7771 3.1473 3.1609 3.4713 5.6493

The UK deviations are greater because they include the uncertainty of
the trend surface.

The obvious question is how close is this one-step procedure to the two-
step procedure of GLS-RK (§12). Both methods take both global and local
structure into account.

Task 73 : Compute the difference between the UK and GLS-RK predic-
tions, and display as a histogram and on a map. •
grid1km.uk <- grid1km
values(grid1km.uk) <- k.uk$var1.pred
summary(grid1km.diff.uk.rkgls <- (grid1km.uk - grid1km.rkgls))

## z
## Min. :-2.27833
## 1st Qu.:-0.04609
## Median : 0.00146
## Mean :-0.01812
## 3rd Qu.: 0.06089
## Max. : 0.63664
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hist(grid1km.diff.uk.rkgls, main = "UK - GLS-RK prediction differences",
freq = FALSE, xlab = "difference, UK - GLS-RK")

UK − GLS−RK prediction differences

difference, UK − GLS−RK

D
en

si
ty

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5

0.
0

0.
5

1.
0

1.
5

2.
0

plot(grid1km.diff.uk.rkgls, sub="UK - GLS-RK predictions",
main="difference, m", xlab="East", ylab="North",
col = topo.colors(64))
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Q39 : How large are differences between the UK and GLS-RK trend
surface predictions? Where are the largest differences? Explain why
there is a difference. Jump to A39 •

14 Discussion

In this exercise we have compared several methods of predicting an at-
tribute over space, from a set of geo-referenced observations.
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Discussion question: In this study area, which of the prediction meth-
ods would you recommend, and why?

Discussion question: For each method introduced, in what situations
would you prefer it to the other methods?
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15 Answers

A1 : The map of aquifer elevations, along with a map of the elevation of the
land surface, can be used by well-drillers, to estimate the cost of drilling a well
to reach the aquifer at any location. Return to Q1 •

A2 : There are 161 observations (wells); for each we know the coördinates (E
and N) and the elevation of aquifer (z); we also have the transformed elevation
in meters and the reduced coördinates. Return to Q2 •

A3 : UTM East from 5.003613×105 m . . . 5.744296×105 m (range 74.068 km);
UTM North from 4.1502482× 106 m . . . 4.2483125× 106 m (range 98.064 km);
total area 7263 km2. Return to Q3 •

A4 : Elevations are from 475.5 to 623.2 m.a.s.l., a range of 147.7 m. Return
to Q4 •

A5 : Nearby points tend to be similar; there appears to be trend from E to W,
but there are portions of the map that do not follow this strictly. Return to
Q5 •

A6 : (1) The text postplot has the advantage of showing the actual values,
but it is not very graphical and difficult to read; (2) the size postplot clearly
shows the relative data values; (3) the size and colour postplot gives two ways
to visualize; it seems especially good for seeing the E–W increasing first-order
trend. Return to Q6 •

A7 : The aquifer has a flat surface, tilted towards some direction, by some
regional uplift. In this case, the uplift of the Rocky Mountains about 650 km
to the west has tilted the aquifer. Return to Q7 •

A8 : The trend surface equation is: z = 1557 + -0.001617 E + −3.3 × 10−5 N.
The intercept term gives the estimated aquifer elevation at the centroid of the
area. Then the two coefficients give the change in elevation per unit change of
the target variable. That is, for each km E the elevation decreases by -1.62 m,
for each km N it decreases by -0.03 m. The relation is highly-significant; it
explains 94.1% of the variability in the observations; however the N coördinate
is not needed – it is not statistically different from zero. Return to Q8 •

A9 : Residuals range from -25.4 to 16.7 m; compare this to the median eleva-
tion 552.8 m; the maximum calibration error is 4.6%. Return to Q9
•

A10 :
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1. No relation between fitted values and residuals; but . . .

2. a slight relation between spread of residuals and the fitted values: a
“cone” shape with a wider spread of residuals at the higher fitted values;
but more seriously . . .

3. the residuals are not normally-distributed, especially in the high tail.
That is, the largest positive residuals (under-predictions) are not as ex-
treme as would be expected. The largest negative residuals (over-predict-
ions) are a bit too extreme.

Conclusion: this OLS fit does not satisfy the assumptions of independent resid-
uals. Return to Q10
•

A11 : There is a spatial pattern. Large residuals tend to be near each other,
and vice-versa. Positive residuals (above the trend surface) are found almost
exclusively in the middle third of the map. Dependence seems to be stronger
along a SW-NE axis (range about 50 to 70 km) than the NW-SE axis (range about
10 to 20 km). This implies a higher-order trend surface or a periodic surface
superimposed on the linear trend. Return to Q11 •

A12 : The tilted structure has local warping as either a dome or a basin.
Return to Q12 •

A13 : The model explains 97.5% of the variance in the observations, compared
to 94.1% for the first-order significance. Return to Q13 •

A14 : The probability that the higher-order surface is this much better just by
chance is almost zero, so the second-order surface is statistically superior to
the first-order surface. Return to Q14 •

A15 : Residuals range from -19.8 to 14.8 m; compare this to the median eleva-
tion 552.8 m; the maximum calibration error is 3.6%. This range is somewhat
narrower than for the first-order surface: -25.4 to 16.7 m. Return to Q15 •

A16 :

1. No relation between fitted values and residuals;

2. no slight relation between spread of residuals and the fitted values; but
. . .

3. The residuals are closer to normally-distributed. The largest negative
residuals (over-predictions) are still too extreme, by up to -20 m. How-
ever, the problem with the largest positive residuals (under-predictions)
from the first-order surface has been solved.
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Conclusion: this 2nd-order OLS fit is much closer to being a valid linear model
than the 1storder OLS fit. Return to Q16 •

A17 : These residuals form local clusters of positive, negative, and near-zero;
there does not appear to be any overall spatial pattern. So, a higher-order trend
surface is not indicated. Instead, some local interpolation of the residuals
would seem to improve the model. There is no evidence of anisotropy. All of
the largest over-predictions are in the SE portion of the map; three are near
neighbours. Return to Q17 •

A18 : The fit is generally good but some clusters of points stand out from the
background; their values are not that well matched. Return to Q18 •

A19 : The prediction errors are from 22.3 to 24.2 m; this is about 4.1% of
the predicted value. This much uncertainty in the prediction corresponds to
uncertainty in the expense of drilling a well at the location. Return to Q19 •

A20 : They are least at the centre of gravity of the regression in both E and N;
they increase away from this in both directions; the largest uncertainties are
in the corners of the grid. Return to Q20 •

A21 : The relation with East seems almost linear, and a very tight relation.
However, the relation with North is much more scattered, and seems to have
higher elevations towards the middle of the range. Return to Q21 •

A22 : Extremely well. Return to Q22 •

A23 : The GAM has a much smaller spread of residuals, much more concen-
trated towards zero. Return to Q23
•

A24 : There is short-range spatial autocorrelation, to about 10 km. This is
about 1/3 the range of the spatial autocorrelation of the OLS trend surface
residuals. Return to Q24 •

A25 : The GAM trend shows local warping. Return to Q25 •

A26 : The fit is very good, the residuals are smaller than for OLS or GLS.
A few large negative residuals (over-predictions) are in the south-central and
southeast. Return to Q26 •

A27 : The GAM predicts higher elevations of the aquifer in the NE and espe-
cially the SE, and some areas in the W. OLS predicts higher elevations in the NW
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and a band from SW to E. The predictions are the same at the map centroid.
The differences are because the GAM adjust locally, especially to the higher
values in the SE that do not fit the overall trend (see the map of trend surface
residuals). Return to Q27 •

A28 : The sill is estimated as 35 m2, there is no nugget, the sill is reached at
a range of about 20 km. Return to Q28 •

A29 : The range parameter of spatial correlation of the exponential model, as
estimated by gls, is 14.4 km. Return to Q29 •

A30 : The GLS coefficients take into account the spatial correlation of the
trend surface residuals, i.e., the fit uses a variance-covariance matrix of the
residuals to adjust the least-squares fit. Return to Q30 •

A31 : (1) The mean OLS residual is by definition zero, whereas the mean GLS
residual is slightly biased; (2) The IQR of the OLS residuals is narrower than
for the GLS residuals.

The OLS fit is on average closer, because the clustered high-leverage points
draw it closer to them. See the postplot of the residuals on the two trend
surfaces in the SE of the map. Return to Q31 •

A32 : The GLS surface is higher than the OLS surface in the NW and especially
SE, and lower in the NE and SW. This shows that some clustered observations
affected the OLS fit, especially the local warping of the aquifer in the SE. How-
ever the absolute differences are not much, given the fits on the order of 460–
600 m. Return to Q32
•

A33 : Sill about 38 m2, no nugget, range about 22 km. Return to Q33 •

A34 : Yes, this range parameter here is 14.8 km; the range estimated by gls,
is 14.4 km. These are very close, despite being fit in two different ways. Return
to Q34 •

A35 : The largest adjusments towards lower aquifer elevations are in a NE-
SW band towards the SE of the map. The largest adjusments towards higher
aquifer elevations are in a large spot at the SW-center side of the map. These
correspond to local warping of the overall aquifer structure at the scale re-
vealed by the variogram model. Return to Q35
•

A36 : The prediction uncertainty is least near observation points, especially
near clusters of them. It is most away from points. This is because the semi-
variance between observation points and prediction points increases with sep-
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aration. Return to Q36
•

A37 : The differences here are mainly because in GLS-RK the kriging of the
residuals finds local highs and lows that can not be fully accounted for by
the smooth function of the GAM. This is most clearly seen with the negative
residual “spots”, i.e., where the GAM over-predicts but the kriged residuals
adjust locally to these lower-than-expected values. Return to Q37 •

A38 : The range parameters are 1.47843× 104 (GLS) and 1.04718× 104 (OLS),
so that the GLS range is about 40% longer. The partial sills are 44.8 (GLS) and
35.6 (OLS), so that the GLS sill is about 25% higher. This implies that GLS has
removed less of the local variation in the residuals than OLS, or in other words,
OLS incorrectly removed this variation. Return to Q38 •

A39 : The differences ae quite small, almost all < ±2.5 m, with a range of ≈
-2.28 . . . 0.64 m. These are much smaller differences than between GAM and
GLS-RK. Differences are skewed to the positive differences, i.e., UK > GLS-RK.
This difference comes about because UK uses the fitted variogram from the
2nd-order OLS trend residuals, not from the 2nd-order OLS residuals. Because
the two trend surfaces are different, so are the residuals, and so are the fitted
models. The largest difference is in the SE and NE edges, where the GLS trend
surface most diverges from the OLS trend surface. Return to Q39 •
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A Derivation of the OLS solution to the linear model

Recall the equation for OLS from §5.1:

y = Xβ+ ε (17)

To solve Equation 17 we need an optimization criterion, i.e., what makes
a particular solution (values of β) better than any other. The obvious
criterion is to minimize the total error (lack of fit) as some function of
ε = y − Xβ; the goodness-of-fit is then measured by the size of this
error. A common way to measure the total error is by the sum of vector
norms; in the simplest case the Euclidean distance from the expected
value, which we take to be 0 in order to have an unbiased estimate. If we
decide that both positive and negative residuals are equally important,
and that larger errors are more serious than smaller, the vector norm is
expressed as the sum of squared errors, which in matrix algebra can be
written as:

S = (y− Xβ)T (y− Xβ) (18)

which expands to

S = yTy− βTXTy− yTXβ+ βTXTXβ
S = yTy− 2βTXTy+ βTXTXβ (19)

Note: yTXβ is a 1×1 matrix, i.e., a scalar19, so it is equivalent to its trans-
pose: yTXβ = [yTXβ]T = βTXTy. So we can collected the two identical
1× 1 matrices (scalars) into one term.

This is minimized by finding the partial derivative with respect the the
unknown coefficients β, setting this equal to 0, and solving:

∂
∂βT

S = −2XTy+ 2XTXβ

0 = −XTy+ XTXβ
(XTX)β = XTy

(XTX)−1(XTX)β = (XTX)−1XTy

β̂OLS = (XTX)−1XTy (20)

which is the OLS solution.

B Standardized residuals

Standardized residuals20 adjust the residuals from a linear regression
model to residuals which should be distributed as N (0,1) with equal
variance. These can then be compared to residuals drawn from that
theoretical distribution, for example in a quantile-quantile (“QQ”) plot of
the standardized residuals.
19 The dimensions of the matrix multiplication are (1×n)(n× p)(p × 1)
20 This is the term used by plot.lm; some authors call this the “studentized” residuals.
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The standardized residuals are computed as ri/(s ·
√

1− hii), where ri
are the unstandardized residuals, s is the sample standard deviation of
the residuals, and the hii are the diagonal entries of the so-called “hat”
matrix V = X(X′X)−1X′.

The sample standard deviation of the residuals s is computed as the
square root of the estimated variance of the random error:

s =
√

1
(n− p) ·

∑
r2
i

where n is the number of observations and p the number of predictors.
It is shown in the linear model summary as “Residual standard error”;
it can be extracted as summary(model_name)$sigma. This is an overall
measure of the variability of the residuals, and so can be used to stan-
dardize the residuals toN (0,1).

The “hat” matrix V is another way to look at linear regression. This
matrix multiplies the observed values to compute the fitted values. The
hat value for an observation gives the overall leverage (i.e., importance
when computing the fit) of that observation. So the term

√
1− hii in the

denominator shows that with low influence (small hii) the ratio ri/s (a
simple standardization) is not affected much, but with a high influence
(large hii) the denominator is smaller and so the standardized residual
is increased. Thus the standardized residuals are higher for points with
high influence on the regression coefficients.

C Theory of thin-plate splines

Hastie et al. [5, §5.7] explains the mathematics of multi-dimensional
smoothing splines. A more thorough mathematical treatment is given
by Wood [19] and Mitasova and Mitas [13]; these are developments from
the “minimum curvature” methods of Briggs [1]. Applications include
Hutchinson [7] and Mitasova and Hofierka [12].

Fitting a TPS depends on the k data points with known coördinates and
attribute values. They can be described by 2(k + 3) parameters, six of
which are overall affine transformation parameters (to center the func-
tion in 2D) and 2k of which link to the control points.

The general method is to minimize the residual sum of squares (RSS) of
the fitted function, subject to a constraint that the function be “smooth”
in some sense; this is expressed by a roughness penalty which balances
the fit to the observations with smoothness. This is a minimization prob-
lem. If xi is one point in 2D space (i.e., it has two coördinates) and yi is
the attribute value at the same points, the aim is to minimize:

min
f

N∑
i=1

{yi − f(xi)}2 + λJ[f] (21)

where J is the penalty function and λ controls how important it is; λ = 0
means there is no roughness penalty and the data will be fit exactly; as
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λ → ω the solution approximates the least-squares plane, i.e., the trend
surface averaged over all the points.

In 2D an appropriate penalty is:

J[f] =
∫
R

∫
R

(∂2f(x)
∂x2

1

)2

+ 2

(
∂2f(x)
∂x1∂x2

)2

+
(
∂2f(x)
∂x2

2

)2
dx1dx2 (22)

where (x1, x2) are the two coördinates of the vector x. In practice the
double integral is discretized over some grid known as knots; these
may be defined by the observations or may be a different set, maybe
an evenly-spaced grid.

This penalty can be interpreted as the “bending energy” of a thin plate
represented by the function f(x); by minimizing this energy the spline
function in over the 2D plane is a thin (flexible) plate which, according
to the first term of Equation 21 would be forced to pass through data
points, with minimum bending. However the second term of Equation
21 allows some smoothing: the plate does not have to bend so much,
since it is allowed to pass “close to” but not necessarily through the data
points. The higher the λ, the less exact is the fit.

This has two purposes: (1) it allows for measurement error; the data
points are not taken as exact; (2) it results in a smoother surface. So
cross-validation is used to determine the degree of smoothness.

The solution to Equation 22 is a linear function:

f(x) = β0 + βTx+
N∑
j=1

αjhj(x) (23)

where the β account for the overall trend and the α are the coefficients
of the warping.

The set of functions hj(x) is the basis kernel, also called a radial basis
function (RBF), for thin-plate splines:

hj(x) = ‖x− xj‖2 log‖x− xj‖ (24)

where the norm distance r = ‖x−xj‖ is also called the radius of the basis
function. The norm is usually the Euclidean (straight-line) distance.

D Theory of GLS and REML

Here we present the theory of Generalized Least Squares (GLS) estimation
of the parameters of the linear model (§D.1), the specific case of GLS
with spatially-correlated residuals (§D.2), as well as the estimation of the
covariance structure of the linear model residuals (§D.3).
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D.1 GLS

The difference between Generalized Least Squares (GLS) and Ordinary
Least Squares (OLS) solutions to the linear model is the that in the linear
model fit by OLS, the residuals ε are assumed to be independently and
identically distributed with the same variance σ2:

y = Xβ+ ε, ε ∼N (0, σ2I) (25)

Whereas, in GLS the residuals are themselves considered to be a random
variable η that has a covariance structure:

y = Xβ+ η, η ∼N (0,V) (26)

where V is a positive-definite variance-covariance matrix of the model
residuals.

In modelling terminology, the coefficients β are called fixed effects, be-
cause their effect on the response variable is fixed once the parameters
are known. By contrast the covariance parameters η are called random
effects, because their effect on the response variable is stochastic, de-
pending on a random variable with these parameters. Models with the
form of Equation 26 are called mixed models: some effects are fixed (in
the example of this tutorial, the relation between coördinates and the
aquifer elevation) and others are random (here, the error variances) but
follow a known structure. These models have many applications and are
extensively discussed in Pinheiro and Bates [16].

Lark and Cullis [10, Appendix] point out that the error vectors can now
not be assumed to be spherically distributed in feature space around the
0 expected value, but rather that error vectors in some directions are
longer than in others. So, the measure of distance (the vector norm) is
now a so-called “generalized” distance21, taking into account the covari-
ance between error vectors:

S = (y− Xβ)TV−1(y− Xβ) (27)

The OLS equivalent is simpler:

S = (y− Xβ)T (y− Xβ) (28)

Comparing these equations, we see that the GLS formulation of Equation
27 includes the variance-covariance matrix of the residuals V = σ2C ,
where σ2 is the variance of the residuals and C is the correlation ma-
trix. This reduces to the OLS formulation of Equation 28 if there is no
covariance, i.e., V = I.

The covariances can be based on any relation, for example, time depen-
dence (e.g., correlation between measurements that are close in time),

21 This is closely related to the Mahalanobis distance
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repeated measures of the same object, or spatial dependence (the case
here, see next sub-section for details).

Expanding Equation 27, taking the partial derivative with respect to the
parameters, setting equal to zero and solving we obtain:

∂
∂β
S = −2XTV−1y+ 2XTV−1Xβ

0 = −XTV−1y+ XTV−1Xβ
β̂GLS = (XTV−1X)−1XTV−1y (29)

This reduces to the OLS estimate β̂OLS if there is no covariance, i.e., V = I.

D.2 GLS with spatially-correlated residuals

In the case that the residuals are spatially-correlated, the covariances
(off-diagonals) in the V matrix are typically based on the distance be-
tween observations, using some model of spatial correlation. We en-
sure positive-definiteness (i.e., always a real-valued solution) by using
an authorized spatial covariance function C and assuming that the en-
tries are completely determined by the vector distance22 between points
xi − xj :

Ci,j = C(xi − xj) (30)

In this formulation C has a three-parameter vector θ, as does the corre-
sponding variogram model: the range a, the total sill σ2, and the pro-
portion of total sill due to pure error, not spatial correlation s23.

Here the random effect η represents both the spatial structure of the
residuals from the fixed-effects model, and the unexplainable (short-
range) noise. This latter corresponds to the noise σ2 of the linear model
of Equation 25.

To solve Equation 29 we first need to compute V, i.e., estimate the co-
variance parameters θ = [σ2, s, a], use these to compute C with equation
30 and from this V, after which we can use equation 29 to estimate the
fixed effects β. But θ is estimated from the residuals of the fixed-effects
regression, which has not yet been computed. How can this “chicken-
and-egg”24 computation be solved?

The answer is to use residual (sometimes called “restricted”) maximum
likelihood (REML) to maximize the likelihood of the random effects θ
independently of the fixed effects β.

Here we fit the fixed effects (regression coefficients) at the same time as
we estimate the spatial correlation.

22 so this distance measure can take into account angles, i.e., anisotropy
23 In variogram terms, this is the nugget variance c0 as a proportion of the total sill
(c0 + c1).

24 from the question “which came first, the chicken or the egg?”
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Lark and Cullis [10, Eq. 12] show that the likelihood of the parameters
in Equation 25 can be expanded to include the spatial dependence im-
plicit in the variance-covariance matrix V, rather than a single residual
variance σ2. The log-likelihood is then:

`(β, θ|y) = c − 1
2

log |V| − 1
2
(y− Xβ)TV−1(y− Xβ) (31)

where c is a constant (and so does not vary with the parameters) and V
is built from the variance parameters θ and the distances between the
observations. By assuming second-order stationarity25, the structure
can be summarized by the covariance parameters θ = [σ2, s, a], i.e., the
total sill, nugget proportion, and range.

However, maximizing this likelihood for the random-effects covariance
parameters θ also requires maximizing in terms of the fixed-effects re-
gression parameters β, which in this context are called nuisance parame-
ters since at this point we don’t care about their values; we will compute
them after determining the covariance structure.

D.3 REML estimation of the covariance parameters

Both the covariance and the nuisance parameters β must be estimated,
it seems at the same time (“chicken and egg” problem) but in fact the
technique of REML can be used to first estimate θ without having to
know the nuisance parameters. Then we can use these to compute C
with equation 30 and from this V, after which we can use equation 29 to
estimate the fixed effects β.

The maximum likelihood estimate of θ is thus called “restricted”, be-
cause it only estimates the covariance parameters (random effects). Con-
ceptually, REML estimation of the covariance parameters θ is ML estima-
tion of both these and the nuisance parameters β, with the later inte-
grated out:

`(θ|y) =
∫
`(β, θ|y) dβ (32)

Pinheiro and Bates [16, §2.2.5] show how this is achieved, given a likeli-
hood function, by a change of variable to a statistic sufficient for β.

25 that is, the covariance structure is the same over the entire field, and only depends
on the vector distance between pairs of points
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Index of R Concepts

^ formula operator, 21
~ formula operator, 14

* formula operator, 21

adj argument (text function), 13
anova, 21
array class, 40, 44
as.numeric, 40
asp=1 argument (plot function), 13

base package, 1
bpy.colors (sp package), 13, 14

ceiling, 26
cex argument (plot function), 13, 19
coef, 51
col argument (plot function), 19
col argument to terra::plot function,

31
col2rgb, 36
colors, 36
colours, 36
corExp argument (nlme function), 50
correlation argument (gls function), 50

data.frame class, 7, 8, 16, 27, 40, 44
data.frame dataset, 11
datasets package, 1
diff, 11
dim, 11
drop_units (units package), 16

expand.grid, 26

fields package, 2, 42–44
fit.variogram (gstat package), 57
fitted, 47
floor, 26
form argument (corExp function), 50

gam (mgcv package), 34
geom_smooth (ggplot2 package), 33
geometry field, 16
ggplot2 package, 2, 33, 36
gls (nlme package), 50, 51, 77
graphics package, 1
grDevices package, 1
grid.arrange (gridExtra package), 33
gridExtra package, 2, 33

gstat class, 48
gstat package, 2, 47

head, 15
hist, 17

I, 21
ifelse, 19, 30
interval argument (predict.lm function),

28
intervals, 52
intervals.gls (nlme package), 52

krige (gstat package), 59, 68

level argument (predict.lm function),
28

library, 2
lm, 15, 16, 21, 34
load, 10
loc argument (krige function), 59
loess, 33
log, 34

matrix, 43
max, 26
methods package, 1
mgcv package, 2, 34, 37, 38
min, 26
model argument () function), 59
model argument (gls function), 50
model.matrix, 15

newdata argument () function), 59
nlme package, 2, 50, 52
nugget argument (corExp function), 50

options, 3

par, 18
plot, 12, 18
plot (sf package), 30
plot.gam (mgcv package), 37
plot.lm, 18
predict, 52
predict.gam (mgcv package), 39, 40, 44
predict.gls (nlme package), 52
predict.Krig (fields package), 44
predict.lm, 28
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range, 11
rank, 13
rast (terra package), 26
read.table, 6
require, 2
residuals, 17, 47
rstandard, 24

s (mgcv package), 34
save, 10
scheme argument (plot.gam function), 37
se.fit argument (predict.gam function),

39
select argument (plot.gam function), 37
seq, 26
set_units (units package), 7
setwd, 5
sf class, 8, 16, 59, 65, 68
sf package, 2, 7, 8, 59
skip argument (read.table function), 6
sp package, 14
span argument (loess function), 33
SpatRast class, 53, 59, 62
SpatRaster class, 26, 30
sqrt, 34
st_as_sf (sf package), 8, 59
st_bbox (sf package), 11
st_coordinates (sf package), 8, 16
st_crs (sf package), 9
stats package, 1
summary, 11

terra (extract package), 44
terra package, 2, 26, 29, 40
text, 13
theta argument (plot.gam function), 37
Tps (fields package), 43

units class, 33
units package, 2, 7, 16
utils package, 1

value argument (corExp function), 50
values (terra package), 29
variogram (gstat package), 47, 65, 68
vgm (gstat package), 57
vis.gam (mgcv package), 38

which argument (plot.lm function), 18
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