
Applied geostatistics
Exercise: Spatial simulated annealing

D G Rossiter
Cornell University, Section of Soil & Crop Sciences

Vandita Srivastava
Indian Institute of Remote Sensing, Dehradun

August 23, 2021

Contents

1 Introduction 1

2 SSA optimization for Ordinary Kriging: development 3
2.1 Define the study area . 4
2.2 Model of spatial dependence . 6
2.3 Fitness function . 7
2.4 Setup for SSA . 8
2.5 The main SSA loop: one time 13

2.5.1 Maximum distance to move a point 13
2.5.2 Moving one point . 16
2.5.3 Plotting a changed scheme 17
2.5.4 Accepting or rejecting the new scheme 18

2.6 The main SSA loop: iterations 18
2.7 Showing the evolution of the scheme 19
2.8 Answers . 23

3 SSA optimization for Ordinary Kriging: application 24
3.1 A function for SSA . 24

3.1.1 Saving the function to a file for later execution 28
3.2 Initial sampling scheme . 28
3.3 Objective function: minimize the mean kriging variance 30

Version 2.0 Copyright © 2009 ITC; 2010, 2013 University of Twente, Fac-
ulty ITC; 2021 D. G. Rossiter All rights reserved. Reproduction and dissem-
ination of the work as a whole (not parts) freely permitted if this original
copyright notice is included. Sale or placement on a web site where payment
must be made to access this document is strictly prohibited. To adapt or
translate please contact the author (d.g.rossiter@cornell.edu).

d.g.rossiter@cornell.edu

3.4 Objective function: minimize the maximum kriging variance . 33
3.5 Optimizing from another starting configuration 35
3.6 Answers . 39

4 Sampling an irregularly-shaped area 40
4.1 Answers . 49

5 SSA optimization for Kriging with External Drift 50

6 SSA optimizing by variogram matching 50
6.1 Indicator variogram, no bin numbers 55
6.2 Indicator variogram, bin numbers 60
6.3 Sampling optimization in a simulated field 63
6.4 Answers . 73

7 Challenges 74

References 76

Index of R concepts 77

ii

1 Introduction

A typical problem in sampling is how to optimally place a limited number of
observations in a study area in order to extract the maximum information
at minimum cost. We consider here the information to be a map over some
study area, made by kriging from the sample points.

The first question is what do we mean by “optimal”? There must be an
objective criterion that can be computed for a sampling scheme, which is to
be minimized or maximized.

One obvious criterion is to minimize costs:

� the fewest samples required to reach a given precision;

� the minimum travel and set-up cost.

These are outside the scope of the present discussion; here we assume the
sample size is fixed and logistics are not a problem. For example, if the task
is to sample a small polluted site where travel costs between observations
are not significant.

The first criterion we will examine here is the accuracy of the prediction of
the map to be made from the point samples, in particular the prediction
variance. Recall from the theory of kriging that the prediction variance at
a prediction location depends only on:

1. the configuration of the sample points relative to each other and to the
prediction location; and

2. the model of spatial dependence (e.g. variogram model)

not on the data values. Therefore, before any observations are made, we
can compute the prediction variance at any point in the study area – always
assuming we have a correct model of spatial dependence, perhaps from a
pilot study in the area or a previous study in a similar area.

From this we can decide on an optimality criterion, e.g.

1. minimize the mean prediction variance over the study area, so that it
is, on average, well-mapped; this is called MEAN_OK by van Groenigen
[10];

2. minimize the maximum prediction variance in the study; this was the
criterion used in the OSSFIM approach of McBratney and Webster
[6, 5]; it guarantees that no location will be poorly-mapped; this is
called MAX_OK by van Groenigen [10];

The first would be appropriate when estimating spatial averages to a given
precision. The second would be appropriate when the entire area must be
mapped to a given precision, e.g. to guarantee there is no health risk in a
polluted area.

In a few simple cases the optimum design can be computed analytically; in
particular McBratney et al. [6] showed that on an infinite plane a regular
triangular scheme gives minimum maximum prediction (MAX_OK) variance

1

and that a square grid is not much worse. But in reality we often have
constraints:

1. the study area is never infinite, so there are edge effects;

2. the study area is often irregularly-shaped;

3. there may be parts of the study area that can not be sampled (e.g. soil
samples under buildings);

4. we may have some existing observations in the study area.

An obvious option is to place samples completely randomly. However, if
there is any spatial dependence, a random scheme will not be optimal either
for estimating population parameters (e.g. means) or for mapping.

It is not possible, in general, to solve this problem analytically. One solution
to try large numbers of schemes and compare their optimality; but since the
number of possible sample locations is usually very large, this is impractical.
Just with ten sample points on a 100 × 100 grid there are approximately
2.7434 · 1033 possible sample schemes.

Another way is to start with a random or fixed scheme and repeatedly modify
it, each time checking if the modification makes the scheme better. This is
known as spatial simulated annealing (SSA) and was the subject of a thesis
[9] and series of papers [10, 11] by van Groenigen.

In this exercise we will implement SSA to optimize sampling design for in-
terpolation by Ordinary Kriging (OK), i.e. where only the target variable is
used for interpolation; in §5 we briefly discuss how covariables could be used
in the optimization.

Two-phase sampling In many environmental studies there are two sampling
phases:

1. to determine the spatial structure of the target variable (e.g. to esti-
mate the variogram model);

2. to map the target variable.

The first stage could be set up with a nested design [14, 13], transects with
variable spacing, or a similar design [8, 7, 2]. Once this is done and the
variogram estimated, additional observations are located to map the whole
area, using both sets. The second stage can be optimized, for example by
MAX_OK, to ensure the quality of mapping.

There are two questions:

1. How many more samples?

2. Where to place them?

In practice this is an iterative procedure:

1. Compute the fitness of the first-stage design, e.g. the maximum kriging
prediction variance in the study area, using just these known points;

2

2. Compare this fitness to the required standard; most likely there will
be under-sampled areas far from the first-stage;

3. Looking at the kriging prediction variance in more densely-sampled
areas, estimate how dense a network might be required;

4. Use SSA OK to optimize the placement of these new points;

5. Examine the fitness to see if it is good enough; if too precise some
points can be eliminated, if not precise enough more points must be
added.

6. Repeat steps 3–5 as necessary.

The techniques of SSA, developed below, can be applied for the second phase.

2 SSA optimization for Ordinary Kriging: development

In this section we develop SSA for OK, first in a square study area and then
in an arbitrary polygon (§4). We use R spatial classes [1] because this is a
spatial problem.

We will approach the SSA problem with the following steps:

1. Define the study area as a (set of) polygon(s);

2. Discretize the study area into a large number of prediction points;

3. Define an optimality criterion, for example minimizing the mean krig-
ing prediction variance; the computed value is called the fitness of the
scheme;

4. Define the model of spatial variability (i.e. variogram);

5. Define a starting sampling scheme: number of points and their pro-
posed location;

6. (optionally) define previous sampling points that can contribute to the
final map;

7. Compute the fitness of the starting scheme;

8. Annealing: repeat a “large” number of times, each time reducing the
“temperature”:

(a) Randomly select a point to move;

(b) Randomly compute a proposed shift, the maximum distance de-
pending on the “temperature”;

(c) Ensure the proposed shifted point is still in the study area (oth-
erwise, repeat previous step);

(d) Tentatively move the point; compute the fitness of the modified
scheme;

(e) If the modified scheme:

3

� has better fitness, accept it;

� has worse fitness, accept it with a certain probability, de-
pending on the so-called “temperature”;

9. Stop after a set number of iterations, or with some other stopping
criterion (e.g. small changes in fitness for many steps).

The reason to accept a poorer scheme with a certain probability is to keep the
SSA from being stuck in a local optimum. This is known as the Metropolis
criterion [10, eqn. 5]; the probability P(S0 → S1) of accepting the new scheme
is:

P(S0 → S1) = 1, ifφ(S1) ≤ φ(S0) (1)

P(S0 → S1) = exp

(
φ(S0)−φ(S1)

c

)
, ifφ(S1) > φ(S0)

where S0 is the fitness of the current scheme, S1 is the fitness of the proposed
new scheme, and c is the so-called temperature. This word is used by
analogy with physical annealing, i.e. the cooling of a metal into a crystalline
structure with minimum internal energy (strain). During this, molecules
jump around the structure, with the maximum distance controlled by the
physical temperature.

There are some tricky aspects of this procedure. Fortunately, with cheap
computer power and the R environment, it costs little to experiment.

Task 1 : Load the necessary libraries. •

require(sp)

require(gstat)

require(lattice)

2.1 Define the study area

We illustrate the simplest case with a unit square study area. The same
technique can be used for any polygon or set of polygons; see §4, below.

We will use spatial overlay (the over method) to determine whether a shifted
point is in the polygon, so we must set this up as a spatial object of class Spa-
tialPolygons. As explained by Bivand et al. [1, §2.6], a SpatialPolygons

object is made up of identified list of Polygons1, which in turn are a list

of individual Polygon objects; this is a two-column matrix of coördinates
with the first and last identical.

Note: The matrix function has optional arguments and ncol nrow to specify
the number of rows and columns, and byrow (default FALSE) to indicate
whether the matrix should be filled from the list by row rather than by
columns.

1 e.g. a legend category of a thematic map

4

Task 2 : Define a SpatialPolygons object composed of one Polygons

object, covering a 1 by 1 square. •

p <- SpatialPolygons(list(Polygons(list(Polygon(matrix(c(0,

0, 0, 1, 1, 1, 1, 0, 0, 0), byrow = T, nrow = 5,

ncol = 2))), ID = 1)))

summary(p)

Object of class SpatialPolygons

Coordinates:

min max

x 0 1

y 0 1

Is projected: NA

proj4string : [NA]

To plot this polygon with spplot it must have at least one attribute.

Task 3 : Using the polygon ID as the attribute, promote the object to a
SpatialPolygonsDataFrame object. •

This is accomplished with the SpatialPolygonsDataFrame method:

p <- SpatialPolygonsDataFrame(p, data = data.frame(id = 1))

str(p)

Formal class 'SpatialPolygonsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 1 obs. of 1 variable:

.. ..$ id: num 1

..@ polygons :List of 1

.. ..$:Formal class 'Polygons' [package "sp"] with 5 slots

..@ Polygons :List of 1

..$:Formal class 'Polygon' [package "sp"] with 5 slots

..@ labpt : num [1:2] 0.5 0.5

..@ area : num 1

..@ hole : logi FALSE

..@ ringDir: int 1

..@ coords : num [1:5, 1:2] 0 0 1 1 0 0 1 1 0 0

..@ plotOrder: int 1

..@ labpt : num [1:2] 0.5 0.5

..@ ID : chr "1"

..@ area : num 1

..@ plotOrder : int 1

..@ bbox : num [1:2, 1:2] 0 0 1 1

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

..@ projargs: chr NA

To normalize the maximum shift we need to know the distance across the
study area.

Task 4 : Computed the distance across the study area as the diagonal of

5

the bounding box. •

This can be extracted with the bbox method:

(max.dist <- sqrt(((bbox(p)[1, "max"] - bbox(p)[1, "min"])^2) +

((bbox(p)[2, "max"] - bbox(p)[2, "min"])^2)))

[1] 1.4142

The study area must be discretized into a SpatialPixels object, because
kriging interpolation is at points (or centres of small blocks).

Task 5 : Discretize the area into a 100 by 100 regular grid of spatial pixels.
•

The spsample method creates a SpatialPoints object; here we ask for a 100
by 100 regular grid. The gridded method converts this to a SpatialPixels

object, and the fullgrid method converts this to a SpatialGrid object,
which is the most efficient representation of a full grid.

resolution <- 100

grid <- spsample(p, n = resolution^2, type = "regular")

class(grid)

[1] "SpatialPoints"

attr(,"package")

[1] "sp"

gridded(grid) = T

class(grid)

[1] "SpatialPixels"

attr(,"package")

[1] "sp"

fullgrid(grid) = T

class(grid)

[1] "SpatialGrid"

attr(,"package")

[1] "sp"

Note that the resolution of this grid controls the precision of the optimality
calculation, but does not affect the placement of the sample points. In
practice these could be moved to their closest grid point, if more precise
location in the field is not possible.

2.2 Model of spatial dependence

We have decided to use some characteristic of the kriging prediction variance
over the study area as the fitness criterion. Therefore, we need a model of
spatial dependence. In an actual application this would be determined by
variogram analysis of a previous study in the same or a similar area; here we

6

just assume a model. You can change this and see its effect on the resulting
sampling plan.

Since the study area is 1 by 1, we use a variogram model with a shorter
range, here 1/3 of the maximum distance. We choose an exponential model,
for which the effective range is thrice the model’s range parameter, so the
maximum distance is divided by 3 · 3 = 9 to obtain the range parameter:

Task 6 : Specify an exponential variogram model with unit partial sill and
an effective range of 1/3 of the maximum distance. •

(vm <- vgm(psill = 1, model = "Exp", range = max.dist/(3 *

3), 0))

model psill range

1 Nug 0 0.00000

2 Exp 1 0.15713

Q1 : Why haven’t we discussed the partial sill and nugget? What effect will
these have on the kriging prediction variance of different schemes? Jump
to A1 •

2.3 Fitness function

For each sampling scheme we want to compute a fitness. We do this with a
function which takes as its argument a sampling scheme, as a SpatialPoints

object, and returns the fitness, some characteristic of the kriging prediction
variance over the discretized study area grid, using the model of spatial
dependence vm from the previous section.

There are several possible characteristics of the kriging prediction variance
that are be reasonable measures of fitness. The metrics that have been most
used are the mean (MEAN OK) and the maximum (MAX OK); one could
also use a quantile. To allow flexibility, a second argument to the fitness
function is the name of a function to be applied to the results of kriging.

Task 7 : Create an appropriate fitness function. •

obj.k <- function(scheme, f = "mean") {

k <- krige(z ~ 1, loc = scheme, model = vm, newdata = grid)

return(f(k$var1.var))

}

class(obj.k)

[1] "function"

Reasonable choices for f are built-in R functions mean (for MEAN OK),
which we use as default here, and max (for MAX OK); however any built-
in function can be named, or a function can be defined and passed as the
argument.

7

2.4 Setup for SSA

The first decision we must make is the numeric precision of coördinates for
the scheme. This depends on the precision of geo-location in the field and
size of support.

Task 8 : Set the precision to 0.001, which is 1/1000 of the bounding box
linear dimension. •

prec <- 3

To begin, we need a starting sampling scheme, as a SpatialPointsDataFrame
object.

Task 9 : Create a random discretization of the study area, using the sp-

sample method, and then add a dummy attribute value created with the
data.frame method.

To ensure that your results will be the same as the ones here, set the random
number seed with the set.seed function to the arbitrary number 621. •

Note: Clearly, a random scheme will not be close to optimal. In practice
we would generally start with a regular grid and then optimize it (let the
new points move) with regard to the fixed (known) points. We will see that
approach in §3.2; for now we use a random initial scheme to illustrate how
SSA works, since the final configuration will be very different from the initial
one.

n.pts <- 10

set.seed(621)

scheme <- SpatialPointsDataFrame(spsample(p, n = n.pts,

type = "random"), data.frame(z = rep(0, n.pts)))

scheme@coords <- round(scheme@coords, prec)

print(scheme)

coordinates z

1 (0.753, 0.311) 0

2 (0.126, 0.402) 0

3 (0.192, 0.008) 0

4 (0.286, 0.64) 0

5 (0.932, 0.6) 0

6 (0.379, 0.624) 0

7 (0.377, 0.666) 0

8 (0.006, 0.006) 0

9 (0.155, 0.35) 0

10 (0.996, 0.377) 0

The attribute, here named z, is just a repetition of 0’s. An attribute must
be defined in order to interpolate with the krige method, used in the fitness
function.

Q2 : Why are the actual data values at these locations not necessary for

8

SSA? Jump to A2 •

Simulated annealing is often used to refine a previous sampling scheme; these
are included as known and fixed points.

Task 10 : Specify a list of two fixed points as a SpatialPointsDataFrame

object. •

fix.pts <- data.frame(x = c(0.2, 0.6), y = c(0.6, 0.2),

z = 0)

coordinates(fix.pts) <- ~x + y

Task 11 : Display this initial scheme, along with the fixed points. •

print(spplot(p, xlab="E", ylab="N", col.regions="slategray3",

main="Initial sampling scheme",

sub="Fixed: yellow; Moveable: white",

scales=list(draw=T),

sp.layout = list(list("sp.points", scheme,

col="white", pch=20, cex=1.6),

list("sp.points", fix.pts, col="yellow",

pch=20, cex=1.6))

))

Initial sampling scheme

Fixed: yellow; Moveable: white

E

N

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

1.4

Since we’ve defined a fitness function (§2.3), we can compute the fitness of
this initial sampling scheme.

9

Task 12 : Compute the fitness, using the mean kriging variance (MEAN OK)
as the criterion: •

(fitness <- obj.k(rbind(fix.pts, scheme), mean))

[using ordinary kriging]

[1] 0.81827

Q3 : What are the units of this number? What does it measure? Jump
to A3 •

Task 13 : Display the initial scheme with the optimality criterion (kriging
variance) as background; this can be compared to the “optimal” schemes
developed later. •

k <- krige(z ~ 1, loc=rbind(fix.pts,scheme), model=vm,

newdata=grid)

gridded(k) <- T; fullgrid(k) <- T

pts.s <- list("sp.points", scheme, col="white",

pch=20, cex=1.6)

pts.f <- list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Initial sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s, pts.f)

))

rm(k, pts.s, pts.f)

10

Initial sampling scheme

Mean, max kriging variance: 0.8183 ; 1.1364

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Note: The gridded and fullgrid methods cast the kriging interpolation
results into SpatialGridDataFrame; this gives an image-like plot, rather than
a set of (regular-spaced) points.

The next item is the “temperature”, which also is reduced in each step:

Tk+1 = α · Tk (2)

where k is the step number and α < 1 is an empirical factor that reduces
the temperature; we must also specify an initial temperature T0. If α is
too close to 1, the process is inefficient, with too many jumps away from
optimality; if α is too small, the solution may get stuck in local minima. So
we need to specify the initial temperature and the decay factor.

Note: Another possibility is to keep the same temperature for a fixed number
of iterations before lowering it. This makes a longer “cooling” process.

The probability of accepting a poorer (temporary) solution at step k is given
by the Metropolis criterion, here re-written from Equation 1 in a slightly
simpler form [3, Eqn. 6]:

p = e−∆f/Tk (3)

where Tk is the current “temperature” and ∆f is the change in fitness due
to the proposed new scheme. Note that this will be positive for a poorer
solution, so its complement is used for the exponent.

One way to choose the initial temperature is so the initial probability of
accepting a poorer solution equals some constant, conventionally 0.8 [4].

11

The initial temperature can be calculated from this probability, normalized
by the logarithm of the average increase in fitness when all increases (i.e.,
poorer configurations) are accepted [3, Eqn. 7]; this inverts Equation 3:

T0 = −∆f+
log(p0)

(4)

with a default probability p0 at 0.8, an empirical value. Note that log(0.8) is
equal to -0.2231; a higher probability will lead to a smaller logarithm (closer
to zero); since the log-probability is the denominator this will increase the
initial temperature. A “hotter” system is more likely to accept worse moves.

Task 14 : Compute this average by shifting points and evaluate the fitness
200 times, and averaging the increases over the starting fitness, i.e., only the
poorer solutions. Set the maximum shift in both coördinates at

√
2/6 of the

diagonal distance across the bounding box; this is 1/3 of each dimension. •

Note: Two hundred (200) steps is a small sample of possible positive changes
in fitness, but it should give a reasonable estimate of the changein fitness of
initial changes.

max.shift <- round(max.dist * sqrt(2)/6, prec)

n <- 200

sum.delta.fit <- 0

i <- 0

while (i < n) {

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(scheme)[pt,]

repeat {

xnew <- pt.old[1] + runif(1, min = -max.shift,

max = max.shift)

ynew <- pt.old[2] + runif(1, min = -max.shift,

max = max.shift)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- c(1, 2)

if (!is.na(over(pt.new, p)))

break

}

scheme.try <- scheme

scheme.try@coords[pt,] <- c(xnew, ynew)

fitness.new <- obj.k(rbind(fix.pts, scheme.try),

mean)

if (fitness.new > fitness) {

sum.delta.fit <- sum.delta.fit + (fitness.new -

fitness)

i <- i + 1

}

}

mean.delta.fit <- sum.delta.fit/n

rm(max.shift, n, i, pt, pt.old, xnew, ynew, scheme.try,

fitness.new)

Task 15 : Display the average change in fitness after one random move from

12

the random starting scheme, for the new schemes that have poorer fitness.
•

print(paste("Average positive change in fitness:", round(mean.delta.fit,

4)))

[1] "Average positive change in fitness: 0.008"

The average change is negative, i.e. the new schemes have on average a lower
mean kriging prediction variance, and so are better.

Task 16 : Specify the starting temperature as the average change to worse
fitness, normalized by the logarithm of the desired probability of accepting
a poorer scheme (here, 0.8). •

(metr.temp <- metr.temp.init <- -mean.delta.fit/log(0.8))

[1] 0.035704

rm(mean.delta.fit)

alpha <- 0.99

At this temperature the probability of accepting a poorer scheme is 0.8 to
begin with; this will be reduced by 0.99 in each iteration.

2.5 The main SSA loop: one time

In this section we’ll break down the SSA algorithm for one pass, to see how
it works. In the next section we’ll run the loop multiple times to optimize
the sampling scheme.

Task 17 : Initialize the step number to 1. •

step <- 1

2.5.1 Maximum distance to move a point

The first step in the loop is to compute a maximum distance to move a
point. This should be reduced as the simulation proceeds, otherwise there
will be many long jumps that almost certainly will not be accepted, since
the temperature of the system is cooling and the distribution of points is
getting closer to optimal.

We use the empirical formula:

smax = dmax · e−(s−1)/h (5)

where:

� smax is the maximum shift for this step;

13

� dmax is the maximum shift for the first step, some proportion of the
distance across the bounding box computed above (§2.1) as max.dist;

� s is the step number;

� h is an empirical factor that controls the decay.

Note that at the first step e−(s−1)/h = e−(0/h) = 1.

The empirical decay factor h is set to 256; a lower decay factor would lead
to a larger negative exponent, a larger e−(s−1)/h and thus a faster decay. For
example, at the second step the decay would be:

exp(-1/256)

[1] 0.9961

exp(-1/512)

[1] 0.99805

exp(-1/128)

[1] 0.99222

for constants 256, 512, and 128 respectively.

Note: There seems to be no way except trial-and-error to set the decay
factor. If it is too fast, points can not move far enough after a few steps; if
too slow, there is a lot of wasted motion and many steps with no improvement
in fitness, because many of the proposed shifts are too far and end up too
close to other points, rather than adjusting a point that is more-or-less in
the right place.

Task 18 : Visualize this decay function for several decay factors. •

plot(1:1200, exp(-(0:1199)/192), type="l",

xlab="step", ylab="proportion",

main="Proportion of maximum distance to shift at each step",

sub="Decay factor shown by colour")

grid()

lines(1:1200, exp(-(0:1199)/64), col="green")

lines(1:1200, exp(-(0:1199)/128), col="blue")

lines(1:1200, exp(-(0:1199)/256), col="red")

lines(1:1200, exp(-(0:1199)/512), col="purple")

lines(1:1200, exp(-(0:1199)/1024), col="brown")

text(800, .7, "64", col="green")

text(800, .75, "128", col="blue")

text(800, .8, "192")

text(800, .85, "256", col="red")

text(800, .9, "512", col="purple")

text(800, .95, "1024", col="brown")

abline(h=0.01, lty=2)

14

0 200 400 600 800 1000 1200

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Proportion of maximum distance to shift at each step

Decay factor shown by colour
step

pr
op

or
tio

n

64
128
192
256
512
1024

Task 19 : Compute the step at which the movement is only 1% of the initial
maximum for several decay factors: •

for (i in c(64, 128, 192, 256, 512, 1024)) print(floor(-i *

log(1/100) + 1))

[1] 295

[1] 590

[1] 885

[1] 1179

[1] 2358

[1] 4716

To ensure that points can move far enough even if the random scheme, by
chance, placed all the points in a small portion of the study area, we set the
beginning maximum shift in both x and y to ±

√
2/6 of the diagonal distance

across the bounding box. For a square bounding box, this is just another
way to write one-third of the linear dimension (side) of the box. This is also
an empirical factor, which could be reduced if there were many points. With
a smaller value points can still move across the box, but in several steps, as
long as the cooling is not too fast.

(max.shift <- round((max.dist * sqrt(2)/6), prec))

[1] 0.333

This is the maximum shift for the first step; in later steps it will be a shorter
distance.

15

Note: Another way to set the maximum shift is as some function of the
point density.

2.5.2 Moving one point

Task 20 : Select a point to move and save its coördinates. •

This is a random selection from the list of points, using the sample “random
sample” function. Again we start the random number generator at a known
position, so your results will match:

set.seed(621)

(pt <- sample(1:n.pts, 1))

[1] 8

pt.old <- coordinates(scheme)[pt,]

Task 21 : Compute the proposed shift in x and y, using the runif function to
select a uniform random number on the interval from the maximum negative
to the maximum positive shift for this step, and checking that the proposed
shift is within the study area. •

To ensure that the shifted point is within the study area we use the over

“overlay” method, which returns the polygon number containing a point, or
NA if it is outside any polygon. We check for this with the is.na function.
We put the shift and test in a repeat loop and break out of the loop when
the shift is within the study area.

set.seed(621)

repeat {

xnew <- round(pt.old[1] + runif(1, min = -max.shift,

max = max.shift), prec)

ynew <- round(pt.old[2] + runif(1, min = -max.shift,

max = max.shift), prec)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- ~x + y

if (!is.na(over(pt.new, p)))

break

}

Task 22 : Construct a proposed new scheme, by replacing the selected point
with the proposed shift, and compute its fitness. •

scheme.try <- scheme

scheme.try@coords[pt,] <- c(xnew, ynew)

(fitness.new <- obj.k(rbind(scheme.try, fix.pts), mean))

[using ordinary kriging]

[1] 0.81288

16

Q4 : Does this proposed shift give a better or worse sampling scheme?
Jump to A4 •

2.5.3 Plotting a changed scheme

It’s instructive to see how the scheme evolves.

Task 23 : Plot the current scheme, the proposed changed point, with an
arrow from the point to be shifted. •

plot(coordinates(scheme), xlim = c(bbox(p)[1, "min"],

bbox(p)[1, "max"]), ylim = c(bbox(p)[2, "min"], bbox(p)[2,

"max"]), xaxs = "i", yaxs = "i", xlab = "E", ylab = "N",

main = paste("Spatial simulated annealing, step",

step), asp = 1, sub = paste("Current fitness:",

round(fitness, 4), "; new fitness", round(fitness.new,

4)))

grid()

points(coordinates(fix.pts), col = "blue", pch = 20)

points(xnew, ynew, col = "red", cex = 2)

arrows(pt.old[1], pt.old[2], xnew, ynew, length = 0.05)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Spatial simulated annealing, step 1

Current fitness: 0.8183 ; new fitness 0.8129
E

N

Q5 : Looking at the geometry of the original and proposed point configu-
rations, explain the change in fitness, i.e., mean kriging prediction variance.

Jump to A5 •

17

2.5.4 Accepting or rejecting the new scheme

With the current and new fitnesses, we accept the new scheme:

1. if it is better;

2. if it is worse, if a uniform random number is less than the probability
to accept a worse scheme, i.e. the Metropolis criterion:

Task 24 : Decide whether to accept or reject this proposed scheme. •

if (fitness.new < fitness) {

scheme <- scheme.try

fitness <- fitness.new

print("Better scheme, accepted")

} else if (runif(1) < (metr.temp * exp(fitness - fitness.new))) {

scheme <- scheme.try

fitness <- fitness.new

print("Worse scheme, accepted")

} else print("Worse scheme, rejected")

[1] "Better scheme, accepted"

This process should be repeated “many” times to converge on a solution.

2.6 The main SSA loop: iterations

Here we put the pieces from the previous section together in a loop, and
accumulate the results. To illustrate the concept in a reasonable time we
will only do 300 steps, although we will not have reached an optimum. We
use the system.time function to see how much.

n.steps <- 300

fits <- matrix(nrow = n.steps, ncol = 4)

colnames(fits) <- c("actual", "proposed", "max.shift",

"temperature")

Now the main loop:

(time <- system.time(for (step in 1:n.steps) {

max.shift <- max.dist * 0.5 * round(exp(-(step -

1)/256), prec)

metr.temp <- metr.temp * alpha

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(scheme)[pt,]

repeat {

xnew <- round(pt.old[1] + runif(1, min = -max.shift,

max = max.shift), prec)

ynew <- round(pt.old[2] + runif(1, min = -max.shift,

max = max.shift), prec)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- ~x + y

if (!is.na(over(pt.new, p)))

break

}

scheme.try <- scheme

18

scheme.try@coords[pt,] <- c(xnew, ynew)

fitness.new <- obj.k(rbind(fix.pts, scheme.try),

mean)

if (fitness.new < fitness) {

scheme <- scheme.try

fitness <- fitness.new

}

else if (runif(1) < (metr.temp * exp(fitness - fitness.new))) {

scheme <- scheme.try

fitness <- fitness.new

}

fits[step, "actual"] <- fitness

fits[step, "proposed"] <- fitness.new

fits[step, "max.shift"] <- max.shift

fits[step, "temperature"] <- metr.temp

}))

print(time)

user system elapsed

12.162 0.884 13.053

2.7 Showing the evolution of the scheme

Recall that we saved the actual and proposed fitness for each step during
the main SSA loop; so we can show how fitness evolved.

Task 25 : Display a graph of the fitness vs. step number. •

plot(1:n.steps, fits[,"actual"], xlab="Step",

ylab="Fitness function", type="l",

main="Fitness function vs. step",

sub="Black: actual; red: proposed",

ylim=c(min(fits[,1]), max(fits[,2])))

lines(1:n.steps, fits[,"proposed"], type="l",

col="red", lty=2, pch=3)

19

0 50 100 150 200 250 300

0.
70

0.
72

0.
74

0.
76

0.
78

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

Q6 : Describe the evolution of the fitness. Jump to A6 •

Task 26 : Plot the evolution of the temperature. •

plot(1:n.steps, fits[,"temperature"],

xlab="Step", ylab="Temperature",

type="l", main="Temperature vs. step")

grid()

0 50 100 150 200 250 300

0.
00

5
0.

01
0

0.
01

5
0.

02
0

0.
02

5
0.

03
0

0.
03

5

Temperature vs. step

Step

Te
m

pe
ra

tu
re

20

The lowering temperature affects the maximum shift.

Task 27 : Plot the evolution of the maximum shift. •

plot(1:n.steps, fits[, "max.shift"], xlab = "Step", ylab = "Shift",

type = "l", main = "Maximum shift vs. step")

grid()

print(paste("Maximum shift after", n.steps, ":", round(fits[n.steps,

"max.shift"], 4)))

[1] "Maximum shift after 300 : 0.2199"

0 50 100 150 200 250 300

0.
3

0.
4

0.
5

0.
6

0.
7

Maximum shift vs. step

Step

S
hi

ft

Q7 : Comparing the maximum shift now allowed with the sample point
configuration after 200 steps, is this shift too large (wasted motion), too
small (won’t reach an optimum), or about right? Jump to A7 •

Task 28 : Display the final scheme, with the optimality criterion (kriging
variance) as background: •

print(scheme)

coordinates z

1 (0.769, 0.122) 0

2 (0.188, 0.117) 0

3 (0.402, 0.164) 0

4 (0.082, 0.853) 0

5 (0.863, 0.499) 0

6 (0.449, 0.735) 0

7 (0.504, 0.953) 0

8 (0.821, 0.757) 0

9 (0.212, 0.342) 0

10 (0.558, 0.511) 0

21

k <- krige(z ~ 1, loc=rbind(fix.pts,scheme),

model=vm, newdata=grid)

[using ordinary kriging]

gridded(k) <- T; fullgrid(k) <- T

pts.s <- list("sp.points", scheme, col="white",

pch=20, cex=1.6)

pts.f <- list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Final sampling scheme (MEAN_OK)"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s, pts.f)

))

Final sampling scheme (MEAN_OK)

Mean, max kriging variance: 0.703 ; 1.0735

0.0

0.2

0.4

0.6

0.8

1.0

Q8 : How much has this configuration changed from the original random
configuration? Does it appear optimal? Why or why not? Jump to A8 •

Task 29 : Clean up from this section. •

rm(list = ls())

22

2.8 Answers

A1 : The nugget affects the kriging prediction variance uniformly for the whole
area, for any scheme. The partial sill affects the kriging prediction variance non-
uniformly over the area, but the ranking of different schemes will not change. Hence
only the model form and range are important in comparing schemes.

However, [10] showed that the structural sill / nugget ratio does affect the
scheme: as the nugget becomes an increasing proportion of the total sill the scheme
remains more-or-less random, so that any initial configuration would not be changed.

So we use a zero nugget, to force the scheme away from randomness. Return to
Q1 •

A2 : The fitness function only depends on the kriging prediction variance, and
this does not depends on the data values. Return to Q2 •

A3 : This is the mean kriging prediction variance of the sampling scheme (including
the fixed points) over the discretized study area; the units of measure are squares
of some undefined unit, since the variable z is synthetic. Return to Q3 •

A4 : If the new value of the mean kriging variance is lower than the original, the
scheme is better; and vice-versa. Return to Q4 •

A5 : If the shifted point is close to one or more other points, it had some spatial
dependence with these. If in the changed scheme, it moves to a more “unoccupied”
area, the kriging variance in the area now “covered” by the shifted point will be
lower; the variance near the original point will be higher but not too much, because
of the other nearby points. So the overall average should be lower (better).

If, by contrast, the shifted point “covered” an area more or less by itself and is
then shifted into a more “occupied” area, the reverse will occur: the mean kriging
variance of the overall scheme will increase. Return to Q5 •

A6 : The scheme in general improves, with local jumps to poorer fitness to avoid
a local optimum. Return to Q6 •

A7 : The maximum shift now allowed is 0.2199 which is still almost 1/3 of the
bounding box dimensions (1 by 1). Looking at the final configuration, it seems some
points should be shifted by 0.1 to 0.2, so this is a reasonable value. It indicates that
the decay constant α = 0.99 is about right. Return to Q7 •

A8 : The scheme has changed considerably. The twelve points (two fixed, ten
moveable) are spread more evenly. But they do not yet seem to yield a uniform
map. Return to Q8 •

23

3 SSA optimization for Ordinary Kriging: application

Now that we see how this works, we can run the SSA for a realistic number
of steps. You can experiment to determine how many iterations; here we
use a stopping criterion, which is that the fitness does not improve for a set
number of iterations.

3.1 A function for SSA

Task 30 : Write a function to optimize a sampling scheme by SSA. •

The main loop developed in the previous section is re-written as a function
(using the function method) with some required arguments and some op-
tions; this allows us to call it for different scenarios without changing the
code.

Several of the arguments are inputs:

s.init : the initial sampling scheme, as a SpatialPointsDataFrame including
a (dummy) variable named z;

s.area : the (set of) polygons comprising the study area, as a SpatialPoly-

gonsDataFrame;

s.model : the variogram model, as produced by the vgm function;

s.fix.pts : any fixed points, also as a SpatialPointsDataFrame including a (dummy)
variable named z, otherwise undefined.

Others are options that control model behaviour:

s.f : the fitness criterion function, default mean;

s.res : resolution of the discretization of s.area for computing the fitness by
kriging; this is the number of divisions of the bounding box in each
dimension; distance units as the variogram;

s.decay : the distance decay factor, default 256;

s.max.shift : initial maximum shift, default
√

2/4

s.alpha : the cooling parameter, default 0.99;

s.prob : the initial probability of accepting a worse scheme, default 0.8;

eq.steps : stopping criterion: how many steps of unchanged fitness, default 200;

max.steps : stopping criterion: how many steps total, default undefined; this could
be used to call the function and interrupt it before it reaches an opti-
mum;

s.prec : precision of numeric comparisons of fitness; this prevents many steps
with almost identical fitness at the end of the run. No default; if not
specified it is computed as 1/1000 of the initial fitness.

The function returns a list containing:

24

scheme : the final scheme, as a SpatialPointsDataFrame;

metr.temp : the initial Metropolis temperature;

s.prec : the fitness matching precision.

As a side effect, it plots the evolution of the fitness.

ssa.ok <- function(s.init, s.area, s.res,

s.model, s.fix.pts=NA, s.f=mean, s.decay=256,

s.max.shift = sqrt(2)/4,

s.alpha=0.99, s.prob=0.8,

eq.steps=200,

max.steps=NA, s.prec=NA) {

helper function: compute fitness by kriging variance

interpolation `grid' and variogram model `s.model'

are in callers environment

data field must be named `z'

obj.k <- function(pts, f) {

k <- krige(z ~ 1, loc=pts, model=s.model,

newdata=grid, debug.level=0)

return(f(k$var1.var))

}

helper function: compute initial temperature

metr.temp.init <- function(n.steps) {

s <- s.init # initial `fitness' in environ

max.shift <- max.dist*sqrt(2)/4

sum.fit <- 0; i <- 0

while (i < n.steps) {

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(scheme)[pt,]

s.try <- NA

while (is.logical(s.try)) {

xnew <- pt.old[1] + runif(1, min=-max.shift/2,

max=max.shift/2)

ynew <- pt.old[2] + runif(1, min=-max.shift/2,

max=max.shift/2)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- c(1,2)

over() requires identical CRS, note order

proj4string(pt.new) <- proj4string(s.area)

if (!is.na(over(pt.new, s.area))) s.try <- s

}

s.try@coords[pt,] <- c(xnew, ynew)

fitness function in environ

if (is.logical(s.fix.pts)) pts <- s.try

else pts <- rbind(s.fix.pts, s.try)

check new fitness, only use if worse

fit.new <- obj.k(pts, s.f)

if (fit.new > fitness) {

sum.fit <- sum.fit + fit.new

i <- i+1 }

} # note change of sign to ensure negative sum

return((fitness-(sum.fit/n.steps))/log(s.prob))

}

main body

25

1 - setup

1.1 - set up maximum distance

max.dist <- sqrt(((bbox(s.area)[1,"max"]

- bbox(s.area)[1,"min"])^2)

+ ((bbox(s.area)[2,"max"]

- bbox(s.area)[2,"min"])^2))

n.pts <- length(s.init$z)

1.2 - set up interpolation grid -- may not be full

so leave as SpatialPoints, do not promote to SpatialGrid

grid <- spsample(s.area, n=s.res^2, type="regular")

if (is.logical(s.fix.pts)) pts <- s.init

else pts <- rbind(s.fix.pts, s.init)

fitness <- obj.k(pts, s.f) # initial fitness

1.3 - if precision was not specified, set as 3rd significant

figure of initial fitness

i <- 0

while (is.na(s.prec)) {

if (fitness%/%(10^-i) != 0) s.prec=i+4 else i <- i + 1

}

1.4 - initialize temperature

metr.temp <-

ret.metr.temp.init <-

metr.temp.init(128); # this is enough for a rough guess

1.5 - set up to record evolution of fits

fits <- matrix(nrow = 0, ncol=4)

colnames(fits) <- c("actual","proposed","max.shift","temperature")

this.step <- 0; equal.steps <- 0;

s <- s.init;

2 - main loop

2.1 get a proposed new point in the study area

repeat {

max.shift <- (max.dist*s.max.shift)*

exp(-this.step/s.decay)

metr.temp <- metr.temp * s.alpha

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(s)[pt,]

repeat {

xnew <- round(pt.old[1] + runif(1, min=-max.shift,

max=max.shift),prec)

ynew <- round(pt.old[2] + runif(1, min=-max.shift,

max=max.shift),prec)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- ~ x + y

proj4string(pt.new) <- proj4string(p)

if (!is.na(over(pt.new, p))) break

}

2.2 increment step when we have a proposed point

this.step <- this.step + 1;

s.try <- s;

update the selected point's coordinates

s.try@coords[pt,] <- c(xnew, ynew);

2.3 new fitness, to the desired precision

if (is.logical(s.fix.pts)) pts <- s.try

26

else pts <- rbind(s.fix.pts, s.try)

fitness.new <- round(obj.k(pts, s.f), s.prec);

2.4 acceptance criteria; maybe update scheme

if (fitness.new < fitness) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else if (runif(1) < (metr.temp

* exp(fitness - fitness.new))) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else { equal.steps <- (equal.steps + 1) }

2.5 save record of fits

fits <- rbind(fits, c(fitness, fitness.new,

max.shift, metr.temp))

2.6 check stopping criteria

if (equal.steps >= eq.steps) break;

if (!is.na(max.steps) & (this.step >= max.steps)) break;

}

3 - plot the fitness vs. step

plot(1:length(fits[,1]), fits[,"actual"],

xlab="Step", ylab="Fitness function", type="l",

main="Fitness function vs. step",

sub="Black: actual; red: proposed",

ylim=c(min(fits[,1]), max(fits[,2])))

lines(1:length(fits[,1]), fits[,"proposed"],

type="l", col="red", lty=2)

4 - return the final sampling scheme

and the computed annealing parameters

return(list(scheme=s, metr.temp=ret.metr.temp.init, s.prec=s.prec))

}

Note: Some programming notes for R aficionados:

� The argument s.fix.pts may be undefined, with default value NA,
or a set of points as a SpatialPointsDataFrame. If defined, the fixed
points must be appended to the moveable points in order to re-compute
the kriging variance after each proposed move. But it is only possible
to append objects of like type with rbind, so the data type must be
tested. The NA value is of type logical, which can be tested for with
the is.logical function.

� The debug.level argument when set to 0 suppresses all printed in-
formation during kriging; this avoids many pages of repeated [using

ordinary kriging].

3.1.1 Saving the function to a file for later execution

The ssa_ok function can be saved either as text or as an R object, for later
use.

27

Task 31 : Save the ssa_ok function as both a text R script and as an R
object file. •

To save as a text file, we need to also include the command to load into a
workspace, i.e., as an R script which defines the function when run. We use
the file function to establish a file handle and open a connection to the file.
We then send output to this file.

We first write a text string "ssa_ok.R <- " with the cat “catenate” func-
tion; this is the assignment operator and the name of the object. We then
write the function definition with the print function, but to place it in the
file as it would be displayed on the console we first need to redirect output
with capture.output, specifying the file handle of the open file. A call to
close with the file handle closes the file.

tmp <- file("ssa_ok.R", open = "wt")

cat("ssa.ok <- ", file = tmp)

capture.output(print(ssa.ok), file = tmp)

close(tmp)

To get this function into your workspace, you would use the source function:

source("ssa_ok.R")

To save the function in compiled form as an R object, we use the save

function:

save(ssa.ok, file = "ssa_ok.RData")

To get this compiled function into your workspace, you would use the load

function:

load("ssa_ok.RData")

3.2 Initial sampling scheme

Task 32 : Set up an initial sampling scheme to be optimized. •

We set up so your results look the same as the ones here; you are welcome
to try other starting schemes and fixed points.

First, the study area:

p <- SpatialPolygonsDataFrame(

SpatialPolygons(

list(Polygons(

list(Polygon(

matrix(c(0,0, 0,1, 1,1, 1,0, 0,0),

byrow=T, nrow=5, ncol=2) # matrix

) # Polygon

) # list of Polygon

, ID=1) # Polygons, with identifier

) # list of Polygons

28

) # Spatial Polygons

, data=data.frame(id=1)) # SpatialPolygonsDataFrame

Then, the fixed points; as before we specify two of these.

fix.pts <- data.frame(x = c(0.2, 0.6), y = c(0.6, 0.2),

z = 0)

coordinates(fix.pts) <- ~x + y

Then, the initial sampling scheme of the new points. As before, we assume
there is budget to make ten new observations.

We start from a regular grid, since we know from the OSSFIM approach of
McBratney and Webster [6, 5] that a regular triangular grid gives the lowest
mean kriging variance; a regular square grid is not much worse. Here we
have constraints (the fixed points) so the grid will be modified during SSA.

The spsample method’s type argument specifies the sampling scheme; we
specify "hexagonal" to get a hexagonal lattice (i.e., a triangular grid). Note
that in this case, and also with type as "regular" (square grid), the re-
quested number of points (n argument) is only approximate, because the
regular pattern has to fit evenly within the bounding polygon, and the start-
ing point (random seed) may place some points outside the polygon. So we
have to experiment to make sure we have ten new points. The “experiment”
is with an repeat loop that stops (using the break statement) when the
required number of points have been placed.

prec <- 4

n.pts <- 10

set.seed(619)

repeat {

try <- spsample(p, n = n.pts, type = "hexagonal")

if (length(coordinates(try)[, 1]) == n.pts)

break

}

scheme <- SpatialPointsDataFrame(try, data.frame(z = rep(0,

n.pts)))

scheme@coords <- round(scheme@coords, prec)

rm(try)

Task 33 : Plot the starting scheme. •

print(spplot(p, xlab="E", ylab="N",

col.regions="slategray3",

main="Initial sampling scheme",

sub="Fixed: yellow; Moveable: white",

scales=list(draw=T),

sp.layout = list(list("sp.points",

scheme, col="white", pch=20, cex=1.6),

list("sp.points", fix.pts, col="yellow",

pch=20, cex=1.6))

))

29

Initial sampling scheme

Fixed: yellow; Moveable: white

E

N

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

1.4

Q9 : Describe the initial scheme. Which points do you think will move
during optimization, and to where? Jump to A9 •

3.3 Objective function: minimize the mean kriging variance

Task 34 : Optimize this starting scheme, minimizing the mean kriging
variance as the optimization criterion. •

We choose to stop after 200 steps without improvement, cooling more slowly,
accept a higher probability of accepting a worse scheme, and with a slower
distance decay, than the default. All of these must be set by trial-and-error.

Note: The variogram model is specified as an argument to ssa.ok; only the
model form and distance influence the scheme. Here we use an exponential
model and 1/3 of the maximum distance across the bounding box; in an
actual application the variogram would be estimated from previous studies.

Recall that the distance parameter of an exponential variogram model is 1/3
of the effective range.

This may take quite some time; we check this with system.time.

max.dist <- sqrt(((bbox(p)[1, "max"] - bbox(p)[1, "min"])^2) +

((bbox(p)[2, "max"] - bbox(p)[2, "min"])^2))

vm <- vgm(psill = 1, model = "Exp", range = max.dist/(3 *

3), 0)

time <- system.time(tmp <- ssa.ok(s.init = scheme, s.fix.pts = fix.pts,

30

s.area = p, s.res = 100, s.model = vm, s.f = mean,

s.prob = 0.9, s.alpha = 0.999, s.decay = 1024, eq.steps = 200))

0 1000 2000 3000

0.
70

0.
72

0.
74

0.
76

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

116.114 5.502 121.664

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 5 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 0.0753"

s.final <- tmp[["scheme"]]

On the test system, this took about 2 minutes.

Task 35 : Show and print the final configuration. •

print(s.final)

coordinates z

1 (0.3928, 0.4006) 0

2 (0.5968, 0.5917) 0

3 (0.8674, 0.1426) 0

4 (0.3066, 0.1111) 0

5 (0.1053, 0.2789) 0

6 (0.8973, 0.7691) 0

7 (0.4037, 0.8487) 0

8 (0.1234, 0.8715) 0

9 (0.6818, 0.8894) 0

10 (0.8594, 0.4482) 0

31

grid <- spsample(p, n=100^2, type="regular")

gridded(grid) = T; fullgrid(grid) = T

k <- krige(z ~ 1, loc=rbind(fix.pts, s.final),

model=vm, newdata=grid, debug.level=0)

gridded(k) = T; fullgrid(k) = T

pts.s <- list("sp.points", s.final, col="white",

pch=20, cex=1.6)

pts.f <- list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Final sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s, pts.f)

))

rm(grid, k, pts.s, pts.f)

Final sampling scheme

Mean, max kriging variance: 0.6882 ; 1.0434

0.0

0.2

0.4

0.6

0.8

1.0

In §3.5 we will compare this result to that obtained from another starting
configuration, so now we save the result.

s.final.mean.1 <- s.final

3.4 Objective function: minimize the maximum kriging variance

Now we see the effect of using the maximum kriging variance (MAX OK),
instead of the mean (MEAN OK), as the fitness criterion. The setup does

32

not need to be repeated, just the optimization. We start from the same
initial configuration, and again use system.time to see how long this takes.

Task 36 : Optimize the sampling scheme, minimizing the maximum kriging
variance as the optimization criterion. •

time <- system.time(tmp <- ssa.ok(s.init = scheme, s.fix.pts = fix.pts,

s.area = p, s.res = 100, s.model = vm, s.f = max,

s.prob = 0.9, s.alpha = 0.999, s.decay = 1024, eq.steps = 200))

0 500 1000 1500 2000 2500 3000

0.
95

1.
00

1.
05

1.
10

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

98.310 4.641 103.015

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 4 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 0.0595"

s.final <- tmp[["scheme"]]

On the test system, this took about 2 minutes.

Task 37 : Show and print the final configuration. •

print(s.final)

coordinates z

1 (0.9437, 0.5049) 0

33

2 (0.8894, 0.0987) 0

3 (0.3899, 0.0674) 0

4 (0.0328, 0.416) 0

5 (0.025, 0.9304) 0

6 (0.0385, 0.0379) 0

7 (0.5019, 0.4649) 0

8 (0.9985, 0.9602) 0

9 (0.4345, 0.9819) 0

10 (0.7233, 0.8099) 0

grid <- spsample(p, n=100^2, type="regular")

gridded(grid) = T; fullgrid(grid) = T

k <- krige(z ~ 1, loc=rbind(fix.pts, s.final),

model=vm, newdata=grid, debug.level=0)

gridded(k) = T; fullgrid(k) = T

pts.s <- list("sp.points", s.final, col="white",

pch=20, cex=1.6)

pts.f <- list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Final sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s, pts.f)

))

rm(grid, k, pts.s, pts.f)

Final sampling scheme

Mean, max kriging variance: 0.733 ; 0.9138

0.0

0.2

0.4

0.6

0.8

Q10 : How does this final scheme (criterion MAX OK) differ from the

34

previous final scheme (criterion MEAN OK)? Explain the reasons for the
difference. Jump to A10 •

3.5 Optimizing from another starting configuration

If this procedure really achieves an optimum, it should be the same from any
starting configuration. We try again with the mean (MEAN OK) kriging
variance, but from another initial scheme; again we use set.seed so your
results will be the same. This time we experiment with a rectangular grid
starting scheme; this must have 9 points (3x3) which we assign randomly;
we then add a single random point (using spsample with type argument
"random", and then the rbind “row bind” function to add it to the list of
coördinates) to reach 10.

Note: In this square polygon we could of course assign the nine points to
be as central as possible; but in the general case of irregular polygon(s) that
would not be possible. So we let spsample randomly place the regular grid,
and rely on SSA to adjust it.

Task 38 : Initialize and display another random configuration. •

Again we use set.seed so your results are the same as shown here; you are
free to omit this and take another random scheme.

set.seed(318)

repeat {

try <- spsample(p, n = 9, type = "regular")

if (length(coordinates(try)[, 1]) == 9)

break

}

try <- rbind(try, spsample(p, n = 1, type = "random"))

scheme <- SpatialPointsDataFrame(try, data.frame(z = rep(0,

10)))

scheme@coords <- round(scheme@coords, prec)

rm(try)

Here is the new starting scheme:

print(spplot(p, xlab="E", ylab="N", col.regions="slategray3",

main="Initial sampling scheme (2)",

sub="Fixed: yellow; Moveable: white", scales=list(draw=T),

sp.layout = list(list("sp.points", scheme, col="white",

pch=20, cex=1.6),

list("sp.points", fix.pts, col="yellow",

pch=20, cex=1.6))

))

35

Initial sampling scheme (2)

Fixed: yellow; Moveable: white

E

N

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

1.4

Task 39 : Optimize this scheme and display the results. •

time <- system.time(tmp <- ssa.ok(s.init = scheme, s.fix.pts = fix.pts,

s.area = p, s.res = 100, s.model = vm, s.f = mean,

s.prob = 0.9, s.alpha = 0.999, s.decay = 1024, eq.steps = 200))

0 500 1000 1500 2000 2500 3000

0.
70

0.
72

0.
74

0.
76

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

96.543 4.308 100.859

36

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 5 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 0.0646"

s.final <- tmp[["scheme"]]

On the test system, this took about 2 minutes.

print(s.final)

coordinates z

1 (0.3696, 0.15) 0

2 (0.1417, 0.3737) 0

3 (0.1244, 0.859) 0

4 (0.881, 0.8447) 0

5 (0.3938, 0.8722) 0

6 (0.8688, 0.1638) 0

7 (0.5007, 0.4951) 0

8 (0.1188, 0.1194) 0

9 (0.6369, 0.7832) 0

10 (0.8437, 0.4961) 0

grid <- spsample(p, n=100^2, type="regular")

gridded(grid) = T; fullgrid(grid) = T

k <- krige(z ~ 1, loc=rbind(fix.pts, s.final),

model=vm, newdata=grid, debug.level=0)

gridded(k) = T; fullgrid(k) = T

pts.s <- list("sp.points", s.final, col="white",

pch=20, cex=1.6)

pts.f <- list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Final sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s, pts.f)

))

rm(grid, k, pts.s, pts.f)

37

Final sampling scheme

Mean, max kriging variance: 0.6889 ; 0.9966

0.0

0.2

0.4

0.6

0.8

1.0

Q11 : Is there a difference between the two final configurations? If so, what
does that imply about our procedures? Jump to A11 •

Task 40 : Visualize the difference between the final schemes as two point-
sets on the same graph. •

print(spplot(p, xlab="E", ylab="N", col.regions="white",

main="Comparing final sampling schemes",

sub="Fixed: blue; Moveable: green (scheme 1), red (scheme 2)",

scales=list(draw=T),

sp.layout = list(

list("sp.points", s.final, col="red",

pch=20, cex=1.6),

list("sp.points", s.final.mean.1, col="green",

pch=20, cex=1.6),

list("sp.points", fix.pts, col="blue",

pch=20, cex=1.6))

))

38

Comparing final sampling schemes

Fixed: blue; Moveable: green (scheme 1), red (scheme 2)

E

N

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.6

0.8

1.0

1.2

1.4

Task 41 : Clean up from this section. •

rm(max.dist, n.pts, p, prec, s.final, scheme, vm, ssa.ok,

s.final.mean.1, time)

3.6 Answers

A9 : The new points are in a regular hexagonal grid, displaced to the right and
upwards; the points at the top are right on the boundary. The new point near
(0.18, 0.68) is quite close to the fixed point at (0.2, 0.6) and should move
upwards and to the left. If the optimization criterion is for mean kriging variance,
the points at the top should move down, away from the top boundary. Return to
Q9 •

A10 : In the MAX OK scheme eight of the points are near the edges; this ensures
that no location is poorly-mapped. In the MEAN OK scheme the points are more
evenly spread out over map. Note the difference in maximum kriging prediction
variance: it is much lower for the MAX OK scheme than for the MEAN OK scheme;
the reverse is the case for the previous scheme, where the mean variance is much
lower. Return to Q10 •

A11 : Yes, they are different. Ideally, the optimum should be the same. Some
parameters of the SSA should be adjusted. Return to Q11 •

39

4 Sampling an irregularly-shaped area

This section shows another practical application of simulated annealing:
when a study area is irregularly-shaped, a regular hexagonal grid will not be
optimal. Annealing will adjust the scheme to account for the irregularities.

Task 42 : Import a polygon map of Spain from the low-resolution world
polygon map database of the mapdata package. •

The import function is map.

Note: There is also a high-resolution map; specify "worldHires" as the first
argument to map; here we use the low-resolution for speed and because the
details of the coastline will have almost no effect on the sampling scheme,
since we optimize based on a 10 km grid, see below.

require(mapdata)

tmp <- map("world", "Spain", fill = TRUE, plot = T, col = "lightblue")

Task 43 : Convert this map to an sp object, i.e., SpatialPolygons, at the
same time specifying the initial Coördinate Reference System (CRS) •

Conversion is by the map2SpatialPolygons function of the maptools pack-
age.

From the documentation of the world maps, we know the CRS is geographic
coördinates on the WGS84 datum; we build a proper proj4string argument

40

with the CRS function defined by the rgdal package and also as a stub in
the sp package.

require(maptools)

Spain.polys <- map2SpatialPolygons(tmp, IDs=tmp$names,

proj4string=

CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))

Task 44 : Specify a metric system appropriate for Spain; convert the im-
ported map to the metric system. •

We use the ETRS89-LAEA / TM30 (European Terrestrial Reference System
– Lambert Azimuthal Equal-Area / UTM zone 30 coördinates) conformal
projection2, designed for statistical applications in Europe; the coördinates
match UTM zone 30N, centred on -3° longitude, although the origin of the
projection is at 52° N, 10° E3.

Note: An equal-area projection is used so that areal-based statistics, such
as crop areas, are uniform across Europe.

Conversion is done by the spTransform method of the rgdal “R interface
to the Geospatial Data Abstraction Library4” package.

2 http://georepository.com/crs_3042/ETRS89-TM30.html
3 near the tiny village of Evensen, south of Hannover in Lower Saxony (D)
4 http://www.gdal.org/

41

http://georepository.com/crs_3042/ETRS89-TM30.html
http://www.gdal.org/

require(rgdal)

bbox(Spain.polys)

min max

x -9.2356 4.3221

y 36.0259 43.7645

laea_crs <-

"+proj=laea +lat_0=52 +lon_0=10 +x_0=4321000 +y_0=3210000 +ellps=GRS80 +units=m +no_defs"

Spain.polys <- spTransform(Spain.polys, CRS(laea_crs))

(bb <- bbox(Spain.polys))

min max

x 2766833 3833320

y 1584304 2463100

(max.dist <- sqrt(((bb[1,"max"] - bb[1,"min"])^2)

+ ((bb[2,"max"] - bb[2,"min"])^2)

))

[1] 1381910

print(paste("Diagonal of bounding box:",

round(max.dist/1000), "km"))

[1] "Diagonal of bounding box: 1382 km"

Task 45 : Load the simulated annealing function saved in §3.1.1. •

We choose to load the compiled form, with load:

load("ssa_ok.RData")

Task 46 : Place 80 points randomly across the study area. •

prec <- 4

n.pts <- 80

set.seed(316)

repeat {

sample.try <- spsample(Spain.polys, n = n.pts, type = "random")

if (length(coordinates(sample.try)[, 1]) == n.pts)

break

}

scheme <- SpatialPointsDataFrame(sample.try, data.frame(z = rep(0,

n.pts)))

scheme@coords <- round(scheme@coords, prec)

rm(sample.try)

Task 47 : Plot the starting scheme. •

42

plot(Spain.polys, col = "slategray2")

points(coordinates(scheme), col = "black", bg = "red",

pch = 21)

grid(lty = 1)

Q12 : Describe the random starting scheme. Does it cover Spain evenly?
Jump to A12 •

We suppose a previous study has established that the target variable has
an exponential spatial auto-correlation, with a range of 120 km; an example
might be some weather variable such as 10-day precipitation total.

Task 48 : Specify the variogram model as required by gstat. •

vm <- vgm(psill = 1, model = "Exp", range = 120000/3,

0)

Task 49 : Plot the kriging prediction variance of the starting scheme, on a
10 km interpolation grid. •

res <- round(max.dist/sqrt(2)/10000)

43

grid <- spsample(Spain.polys, n=res^2, type="regular")

k <- krige(z ~ 1, loc=scheme,

model=vm, newdata=grid, debug.level=0)

gridded(k) = T

pts.s <- list("sp.points", scheme, col="white",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s)

))

rm(grid, k, pts.s)

Sampling scheme

Mean, max kriging variance: 0.7615 ; 1.017

0.0

0.2

0.4

0.6

0.8

1.0

Q13 : Does this scheme appear to minimize the average or maximum kriging
variance? Jump to A13 •

Task 50 : Call the simulated annealing function, specifying a 10 km inter-
polation grid for kriging. •

Here we limit the total number of steps to complete in a reasonable time;
you could raise or remove the limit.

p <- Spain.polys

(res <- round(max.dist/sqrt(2)/10000))

time <- system.time(tmp <- ssa.ok(s.init = scheme, s.area = p,

44

s.res = res, s.model = vm, s.f = mean, s.prob = 0.9,

s.alpha = 0.999, s.decay = 1024, eq.steps = 200,

max.steps = 1600))

0 500 1000 1500

0.
71

0.
72

0.
73

0.
74

0.
75

0.
76

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

215.888 4.259 220.419

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 5 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 0.0115"

s.final <- tmp[["scheme"]]

On the test system, this took about 4 minutes.

Task 51 : Plot the ending scheme. •

plot(Spain.polys, col = "slategray2")

points(coordinates(s.final), col = "black", bg = "red",

pch = 21)

grid(lty = 1)

45

Task 52 : Plot the kriging prediction variance of the final scheme. •

scheme <- s.final

res <- round(max.dist/sqrt(2)/10000)

grid <- spsample(Spain.polys, n=res^2, type="regular")

k <- krige(z ~ 1, loc=scheme,

model=vm, newdata=grid, debug.level=0)

gridded(k) = T

pts.s <- list("sp.points", scheme, col="white",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s)

))

rm(grid, k, pts.s)

46

Sampling scheme

Mean, max kriging variance: 0.7067 ; 1.0234

0.0

0.2

0.4

0.6

0.8

1.0

Q14 : How does this scheme compare to the original random scheme? Can
it be improved? Jump to A14 •

Task 53 : Repeat the optimization, but minimizing the maximum kriging
variance, as the optimization criterion. •

time <- system.time(tmp <- ssa.ok(s.init = scheme, s.area = p,

s.res = res, s.model = vm, s.f = max, s.prob = 0.9,

s.alpha = 0.999, s.decay = 1024, eq.steps = 200,

max.steps = 1600))

0 200 400 600 800 1000

1.
01

6
1.

01
8

1.
02

0
1.

02
2

1.
02

4

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

47

print(time)

user system elapsed

143.666 2.908 146.767

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 4 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 9e-04"

s.final <- tmp[["scheme"]]

Task 54 : Plot the kriging prediction variance of the final scheme. •

scheme <- s.final

res <- round(max.dist/sqrt(2)/10000)

grid <- spsample(Spain.polys, n=res^2, type="regular")

k <- krige(z ~ 1, loc=scheme,

model=vm, newdata=grid, debug.level=0)

gridded(k) = T

pts.s <- list("sp.points", scheme, col="white",

pch=20, cex=1.6)

print(spplot(k, zcol="var1.var",

col.regions=heat.colors(64),

main=paste("Sampling scheme"),

sub=paste("Mean, max kriging variance:",

round(mean(k$var1.var),4),";",

round(max(k$var1.var),4)),

sp.layout = list(pts.s)

))

rm(grid, k, pts.s)

48

Sampling scheme

Mean, max kriging variance: 0.7248 ; 1.0156

0.0

0.2

0.4

0.6

0.8

1.0

Q15 : How does this scheme compare to the scheme where the mean kriging
variance is minimized? Jump to A15 •

4.1 Answers

A12 : The scheme is quite uneven and does not cover the area evenly. For example
S Galicia has almost no points whereas three points are clustered together in N
Galicia near Vilalba. Note no points were assigned to the Balearic isles. Return
to Q12 •

A13 : The scheme has “holes” with high kriging variance, far from sample points;
these have some inefficient clusters. Definitely the maximum kriging variance is not
minimized, especially at the borders in Galicia. The mean kriging variance is likely
to be sub-optimal. Return to Q13 •

A14 : This scheme is a big improvement – points have moved out of clusters and
are spread more evenly. Return to Q14 •

A15 : This scheme moves points closer to the borders. One large jump has placed
a point in Mallorca, which had the largest kriging variance in the original scheme,
since it had no points and was very far from any point in peninsular Spain. Return
to Q15 •

49

5 SSA optimization for Kriging with External Drift

In the previous sections we implemented SSA to optimize sampling design for
interpolation by Ordinary Kriging (OK), i.e. where only the target variable
is used for interpolation. Brus and Heuvelink [3] extended SSA for the
situation when there are secondary predictors, known over the study area,
that can be used to help predict a primary variable. A typical example is the
concentration of some constituent of the soil (e.g. organic matter or heavy
metal) with the help of some environmental co-variables such as terrain
parameters, a vegetation index, or land use. This optimizes sampling design
for Kriging with External Drift (KED). We have not developed that here;
however adapting our code to this situation would be fairly easy:

1. The variogram model and kriging formulas would have to be of the
residuals from the linear model developed to describe the external
drift; for OK the formula only depends on the “intercept”, i.e., the tar-
get variable described by its spatial autocorrelation: z ~ 1. In KED
this has the form z ~ ... where ... can be any linear model. For
example, if the external drift is an additive model on covariables ele-
vation, named elev, and a vegetation index, named ndvi, the formula
would be z ~ elev + ndvi.

2. The variogram model must be fit against the residuals from the linear
model specified by the KED formula, using the known (fixed) points,
e.g.:

v <- variogram(z ~ elev + ndvi, data=fix.pts)

vm <- fit.variogram(v, model=vgm(...))

where ... here represents an initial variogram model.

If there are no fixed points, the model must be estimated from other
studies, but in any case using the residuals.

3. The data frames of sample points and prediction grid (to evaluate
fitness) must contain fields with values for all the variables in the KED
formula, as well as a field for the target variable. These fields must be
populated; that is, they must have the actual values of the covariable.
This is because the KED variance depends on the prediction variance
of the linear model, as well as the spatial configuration of the residuals,
and the linear model, implicit in the KED kriging system of equations,
is fit with the values of the covariable against the target variable.

6 SSA optimizing by variogram matching

The optimization of the previous sections was for mapping given a known
variogram. Another reason to sample is to determine the spatial dependence
structure, e.g., by estimating the variogram model. Here we develop an
optimization that can be applied to design a sampling scheme to estimate
the actual variogram, assuming that it is not too different from the variogram
model against which we are optimizing. That is:

50

1. assume a variogram model from previous studies and expert knowledge;

2. place points so as to estimate this variogram from the sample;

3. sample and estimate the actual variogram; this will not be identical
to the assumed variogram but if it is not too different the sampling
scheme should be a good design to determine a better model.

There are two criteria that can be applied:

1. Match the empirical variogram of the proposed sample to the assumed
variogram;

2. Match a desired distribution of point-pairs in the empirical variogram.

The second criterion is important because a sampling plan to estimate a
variogram must place point-pairs at different separations, especially with
enough pairs at close range to reliable estimate the short-range structure.

The first criterion is the match between known and empirical variogram.
There are two ways to match:

1. fit a variogram model to the empirical variogram and check the dis-
crepency in parameters;

2. convert the variogram model to variogram bins matching the empirical
model and check the (possibly weighted) discrepency between the bins.

We choose the latter approach, because automated variogram fitting may be
unreliable. The first criterion is thus:

SSvgm =
c∑
i=1

wi(γ∗i − γi)2 (6)

where c is the number of variogram bins, wi are the weights assigned to
each bin, γ∗i are the semivariance of each bin from the assumed model, and
γi are the semivariance of each bin from the actual point distribution.

For the second criterion we use the idea of Warrick and Myers [12], who op-
timized according to the number of point-pairs at each separation, according
to a pre-specified distribution:

SSnp =
c∑
i=1

(f∗i − fi)2 (7)

where f∗i is the desired number of point-pairs, and fi is the actual number
of point-pairs, in each bin.

Task 55 : Modify function ssa_ok to optimize on the basis of Equations 6
and 7. •

The main optimization function must be adapted to change the objective
function. New arguments are:

51

s.vm : a variogram model to match, of class variogramModel, generally as
created with the vgm function;

s.vm.nc : number of bins with which to discretize the variogram; default is 15;

s.sep.pow : power with which to weight SSvgm, default inverse distance, i.e., 1;
e.g., specify 2 for inverse-distance squared or 0 for no weighting; default
is 2;

s.sep.np : a vector with length equal to or less than the number of variogram
bins (discretization, in argument s.vm.nc) with the desired number of
point-pairs for SSnp, starting from the closest separation; if not defined
this part of the optimization is not used; this will be normalized to sum
to 1 if necessary;

s.ss.wt : proportion of optimization function allocated to SSvgm; default is equal
weighting with SSnp, both normalized by their approximate maxima.

All references to a kriging grid can be removed, because here the optimization
is directly from the point set.

ssa.matchv <- function(s.init, s.area,

s.vm, s.vm.nc=15, s.sep.pow=2,

s.ss.wt=0.5, s.sep.np=NA,

s.fix.pts=NA, s.decay=256,

s.alpha=0.99, s.prob=0.8,

eq.steps=200,

max.steps=NA, s.prec=NA) {

fitness function

argument: current point configuration

implicit: discretized model 'vm.l', cutoff 'cut', bin width 'bin.w'

cutoff is fixed because automatic cutoff will vary as points move

opt.wt is the proportional weight for ss.vgm

#

weights vgm difference by number of point-pairs

and inverse distance squared

v.diff <- function(pts) {

v <- variogram(z ~ 1, loc=pts, cutoff=cut, width=bin.w)

compare the semivariances

ss.vgm <- sum((((v$gamma - vm.l$gamma)^2 * v$np) /

v$dist^s.sep.pow))/sum(v$np)

compare the point-pair distribution, only for requested bins

ss.np <- ifelse(is.logical(s.sep.np), 0,

sum(((s.sep.np - v$np)[1:length(s.sep.np)])^2))

value <- opt.wt*ss.vgm + (1-opt.wt)*ss.np

return(value)

}

helper function: compute initial temperature

metr.temp.init <- function(n.steps) {

s <- s.init # initial `fitness' in environ

sum.fit <- 0; i <- 0

while (i < n.steps) {

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(scheme)[pt,]

s.try <- NA

while (is.logical(s.try)) {

52

xnew <- pt.old[1] + runif(1, min=-s.max.shift/2,

max=s.max.shift/2)

ynew <- pt.old[2] + runif(1, min=-s.max.shift/2,

max=s.max.shift/2)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- c(1,2)

over() requires identical CRS, note order

proj4string(pt.new) <- proj4string(s.area)

if (!is.na(over(pt.new, s.area))) s.try <- s

}

s.try@coords[pt,] <- c(xnew, ynew)

fitness function in environ

if (is.logical(s.fix.pts)) pts <- s.try

else pts <- rbind(s.fix.pts, s.try)

check new fitness, only use if worse

fit.new <- v.diff(pts)

if (fit.new > fitness) {

sum.fit <- sum.fit + fit.new

i <- i+1 }

} # note change of sign to ensure negative sum

return((fitness-(sum.fit/n.steps))/log(s.prob))

}

main body

0 - check and adjust arguments if necessary

1 - setup

1.1 - compute maximum distance across bbox

max.dist <- sqrt(diff(bbox(s.area)[1,])^2

+ diff(bbox(s.area)[2,])^2)

n.pts <- length(s.init$z)

1.2 - initialize variogram matching, fixed cutoff

cut <- max.dist/3

bin.w <- cut/s.vm.nc

v <- variogram(z ~ 1, loc=scheme, cutoff=cut, width=bin.w)

vm.l <- variogramLine(object=s.vm, dist_vector=v$dist)

1.2a - normalize the two parts of the objective function

use the initial values as rough guides to the relative magnitude

m.1 <- s.ss.wt*sum((((v$gamma - vm.l$gamma)^2 * v$np) /

v$dist^s.sep.pow))/sum(v$np)

m.2 <- (1-s.ss.wt)*

ifelse(is.logical(s.sep.np), 0,

sum((s.sep.np - v$np)[1:length(s.sep.np)])^2)

opt.wt is the proportional weight for ss.vgm

opt.wt <- ifelse(m.2==0, 1, m.2/(m.1+m.2))

rm(m.1, m.2)

1.3 - initialize point set

if (is.logical(s.fix.pts)) pts <- s.init

else pts <- rbind(s.fix.pts, s.init)

fitness <- v.diff(pts) # initial fitness

1.4 - if precision was not specified, set as 3rd significant

figure of initial fitness

i <- 0

while (is.na(s.prec)) {

if (fitness%/%(10^-i) != 0) s.prec=i+4 else i <- i + 1

}

53

1.5 - maximum shift depends on point density

this is an empirical value

s.max.shift <- 2*max.dist/sqrt(n.pts)

1.6 - initialize temperature

metr.temp <-

ret.metr.temp.init <-

metr.temp.init(128); # this is enough for a rough guess

1.7 - set up to record evolution of fits

fits <- matrix(nrow = 0, ncol=4)

colnames(fits) <- c("actual","proposed","max.shift","temperature")

this.step <- 0; equal.steps <- 0;

s <- s.init;

2 - main loop

2.1 get a proposed new point in the study area

repeat {

max.shift <- s.max.shift * exp(-this.step/s.decay)

metr.temp <- metr.temp * s.alpha

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(s)[pt,]

repeat {

xnew <- round(pt.old[1] + runif(1, min=-max.shift,

max=max.shift),prec)

ynew <- round(pt.old[2] + runif(1, min=-max.shift,

max=max.shift),prec)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- ~ x + y

proj4string(pt.new) <- proj4string(p)

if (!is.na(over(pt.new, p))) break

} # end repeat get a point

2.2 increment step when we have a proposed point

this.step <- this.step + 1;

s.try <- s;

update the selected point's coordinates

s.try@coords[pt,] <- c(xnew, ynew);

2.3 new fitness, to the desired precision

if (is.logical(s.fix.pts)) pts <- s.try

else pts <- rbind(s.fix.pts, s.try)

fitness.new <- round(v.diff(pts), s.prec);

2.4 acceptance criteria; maybe update scheme

if (fitness.new < fitness) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else if (runif(1) < (metr.temp

* exp(fitness - fitness.new))) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else { equal.steps <- (equal.steps + 1) }

2.5 save record of fits

fits <- rbind(fits, c(fitness

54

, fitness.new,

max.shift, metr.temp))

2.6 check stopping criteria

if (equal.steps >= eq.steps) break;

if (!is.na(max.steps) & (this.step >= max.steps)) break;

} # end repeat main loop

3 - plot the fitness vs. step

plot(1:length(fits[,1]), fits[,"actual"],

xlab="Step", ylab="Fitness function", type="l",

main="Fitness function vs. step",

sub="Black: actual; red: proposed",

ylim=c(min(fits[,1]), max(fits[,2])))

lines(1:length(fits[,1]), fits[,"proposed"],

type="l", col="red", lty=2)

4 - return the final sampling scheme

and the computed annealing parameters

return(list(scheme=s,

metr.temp=ret.metr.temp.init,

s.prec=s.prec))

}

We begin with a unit square area,

Task 56 : Set up the bounding polygon and location precision. •

p <- SpatialPolygons(list(Polygons(list(Polygon(matrix(c(0,

0, 0, 1, 1, 1, 1, 0, 0, 0), byrow = T, nrow = 5,

ncol = 2))), ID = 1)))

p <- SpatialPolygonsDataFrame(p, data = data.frame(id = 1))

max.dist <- sqrt(2)

prec <- 3

6.1 Indicator variogram, no bin numbers

We begin with points with binary values (indicators), i.e., either 0 or 1, in a
random pattern. The rbinom function simulates binomial trials; with each
trial being one “coin flip” the outcome is either 0 or 1.

n.pts <- 80

prob = 0.5

set.seed(25)

scheme <- SpatialPointsDataFrame(spsample(p, n = n.pts,

type = "random"), data.frame(z = rep(rbinom(n = n.pts,

size = 1, prob = prob))))

scheme@coords <- round(scheme@coords, prec)

Plot the initial scheme:

spplot(scheme, col.regions = c("red", "green"), key.space = "",

scales = list(draw = T))

55

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Q16 : Is there any pattern to the spatial distribution of the red (0) and
green (1) points? Jump to A16 •

Task 57 : Set up a variogram to match. •

For an indicator variogram the structural sill is the expected variance of the
random sample of the given size. We choose a zero nugget (to maximize the
effect of point distribution) and a range that will cause points with the same
value to cluster:

(sill <- (prob) * (1 - prob))

[1] 0.25

vm <- vgm(psill = sill, model = "Exp", range = 0.075,

0)

Task 58 : Plot the empirical variogram from the initial scheme vs. the
model, also with the number of point-pairs in each bin. •

v <- variogram(z ~ 1, loc = scheme)

plot(v, model = vm, plot.numbers = T, pch = 20, type = "b")

56

distance

se
m

iv
ar

ia
nc

e

0.05

0.10

0.15

0.20

0.25

0.30

0.1 0.2 0.3 0.4

10

30

40

58

74
94

98

98 86

114 121

128
114 134

163

Q17 : Does the empirical variogram match the model? Jump to A17 •

Task 59 : Convert the variogram model to a set of bins and plot the two
variograms together, also with the number of point-pairs in each bin. •

This can be done with the variogramLine function:

vl <- variogramLine(object = vm, dist_vector = v$dist)

plot(v$gamma ~ v$dist, type = "b", xlab = "separation",

ylab = "semivariance", col = "red", ylim = c(min(v$gamma,

vl$gamma), max(v$gamma, vl$gamma)))

lines(vl$gamma ~ v$dist, type = "b", col = "darkgreen")

for (i in 1:length(v$dist)) {

lines(x = c(v$dist[i], v$dist[i]), y = c(v$gamma[i],

vl$gamma[i]), lty = 2, col = "darkgray")

text(v$dist[i], v$gamma[i], v$np[i], pos = 4)

}

legend("bottomright", c("empirical", "model", "difference"),

lty = c(1, 1, 2), col = c("red", "darkgreen", "darkgray"))

57

0.1 0.2 0.3 0.4

0.
10

0.
15

0.
20

0.
25

0.
30

separation

se
m

iv
ar

ia
nc

e
10

30

40

58

74
94

98

98 86

114 121

128
114 134

163

empirical
model
difference

Task 60 : Optimize the sampling scheme with simulated annealing, accept-
ing the defaults. •

time <- system.time(tmp <- ssa.matchv(s.init = scheme,

s.area = p, s.vm = vm, s.prob = 0.95, s.alpha = 0.99,

s.decay = 1024, eq.steps = 200))

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

14.140 0.054 14.195

58

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 5 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 1.3743"

s.final <- tmp[["scheme"]]

Task 61 : Show the final scheme (point pattern), compared to the initial
(random scheme). •

p1 <- spplot(scheme, col.regions = c("red", "green"),

key.space = "", scales = list(draw = T), main = "Initial")

p2 <- spplot(s.final, col.regions = c("red", "green"),

key.space = "", scales = list(draw = T), main = "Final")

print(p1, split = c(1, 1, 2, 1), more = T)

print(p2, split = c(2, 1, 2, 1), more = F)

Initial

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Final

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Q18 : What has changed in the spatial arrangement of the red (0) and
green (1) points, after the optimization? Jump to A18 •

Task 62 : Show the final variogram, compared to the model. •

v <- variogram(z ~ 1, s.final)

vl <- variogramLine(object = vm, dist_vector = v[, "dist"])

plot(v$gamma ~ v$dist, type = "b", xlab = "separation",

ylab = "semivariance", col = "red", ylim = c(min(v$gamma,

vl$gamma), max(v$gamma, vl$gamma)))

59

lines(vl$gamma ~ v$dist, type = "b", col = "darkgreen")

for (i in 1:length(v$dist)) {

lines(x = c(v$dist[i], v$dist[i]), y = c(v$gamma[i],

vl$gamma[i]), lty = 2, col = "darkgray")

text(v$dist[i], v$gamma[i], v$np[i], pos = 4)

}

legend("bottomright", c("empirical", "model", "difference"),

lty = c(1, 1, 2), col = c("red", "darkgreen", "darkgray"))

0.1 0.2 0.3 0.4

0.
10

0.
15

0.
20

0.
25

separation

se
m

iv
ar

ia
nc

e

15

18

46

56
77

95

108

99

119

118

155

153

140

141

144

empirical
model
difference

Q19 : How well do the empirical and model variograms match, after the
optimization? Jump to A19 •

6.2 Indicator variogram, bin numbers

Task 63 : Optimize the same starting scheme, against the same variogram
model, but also specifying a point-pair distribution as part of the optimiza-
tion. •

Some distributions of bin numbers will not be possible. We want to ensure
there are enough point-pairs in the close-range bins to accurately estimate
the variogram, so we specify the first four bin’s preferred number of point-
pairs:

vl.np <- c(60, 80, 120)

time <- system.time(tmp <- ssa.matchv(s.init = scheme,

s.area = p, s.vm = vm, s.sep.np = vl.np, s.ss.wt = 0.8,

60

s.prob = 0.95, s.alpha = 0.995, s.decay = 1024, eq.steps = 200))

0 1000 2000 3000

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

print(time)

user system elapsed

17.954 0.089 18.044

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 4 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 1.507"

s.final <- tmp[["scheme"]]

Task 64 : Display the optimized point pattern, along with the original
random pattern. •

p1 <- spplot(scheme, col.regions = c("red", "green"),

key.space = "", scales = list(draw = T), main = "Initial")

p2 <- spplot(s.final, col.regions = c("red", "green"),

key.space = "", scales = list(draw = T), main = "Final")

print(p1, split = c(1, 1, 2, 1), more = T)

print(p2, split = c(2, 1, 2, 1), more = F)

61

Initial

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Final

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Q20 : What has changed in the spatial arrangement of the red (0) and
green (1) points, after the optimization? Jump to A20 •

Task 65 : Display the empirical variogram of the optimized scheme, against
the empirical variogram of the assumed model. •

v <- variogram(z ~ 1, s.final)

vl <- variogramLine(object = vm, dist_vector = v[, "dist"])

plot(v$gamma ~ v$dist, type = "b", xlab = "separation",

ylab = "semivariance", col = "red", ylim = c(min(v$gamma,

vl$gamma), max(v$gamma, vl$gamma)))

lines(vl$gamma ~ v$dist, type = "b", col = "darkgreen")

for (i in 1:length(v$dist)) {

lines(x = c(v$dist[i], v$dist[i]), y = c(v$gamma[i],

vl$gamma[i]), lty = 2, col = "darkgray")

text(v$dist[i], v$gamma[i], v$np[i], pos = 4)

}

legend("bottomright", c("empirical", "model", "difference"),

lty = c(1, 1, 2), col = c("red", "darkgreen", "darkgray"))

62

0.1 0.2 0.3 0.4

0.
05

0.
10

0.
15

0.
20

0.
25

separation

se
m

iv
ar

ia
nc

e

51
69

110

63

36

64

80

126 130

136
127

129
104

118

112

empirical
model
difference

Q21 : How well do the empirical and model variograms match (both the
form and the number of point-pairs per bin), after the optimization? Jump
to A21 •

Task 66 : Determine how closely the actual distribution of point-pairs over
the variogram bins matches the requested distribution. •

tmp <- rbind(t1 <- v$np[1:length(vl.np)], vl.np, t1 -

vl.np)

rownames(tmp) <- c("actual", "expected", "difference")

colnames(tmp) <- round(vl$dist[1:length(vl.np)], 2)

print(tmp)

0.02 0.04 0.07

actual 51 69 110

expected 60 80 120

difference -9 -11 -10

rm(tmp, t1)

6.3 Sampling optimization in a simulated field

The idea here is to place sampling points to determine the variogram struc-
ture, for a continuous-valued variable. The outline of the procedure is:

1. Assume a variogram model from previous study;

63

2. unconditionally simulate a field that reproduces that variogram model;

3. take a random sample of points from that field; by definition this more
or less reproduces the assumed variogram, but is not optimal for sam-
pling;

4. anneal with an objective function to match a required distribution of
point-pairs, especially to have enough pairs at close separations.

Note that it is not necessary to match the variogram, since the simulated
field is built from the assumed variogram, and so any sampling plan by
definition matches it.

Once the scheme is designed, the sample is taken and then the actual var-
iogram can be estimated from it. If this does not vary too much from the
assumed variogram, the sampling scheme was satisfactory, if not optimal.

Task 67 : Modify the simulated annealing program to (1) optimize by
matching a required number of point-pairs per variogram bin; and (2) use a
grid instead of polygon to determine if the proposed sampling points are in
the study area. •

Arguments are as above, but removing the variogram model s.vm, the rela-
tive weighting of model vs. point-pairs s.ss.wt, and replacing the polygon
s.area with a grid s.grid.

Recall the initial sampling scheme s.init must be passed as a Spatial-

PointsDataFrame including a (dummy) variable named z.

ssa.matchnp <- function(s.init, s.grid,

s.vm.nc=15,

s.sep.np=NA,

s.fix.pts=NA, s.decay=256,

s.alpha=0.99, s.prob=0.8,

eq.steps=200,

max.steps=NA, s.prec=NA) {

fitness function

argument: current point configuration

implicit: cutoff 'cut', bin width 'bin.w'

cutoff is fixed because automatic cutoff will vary as points move

opt.wt is the proportional weight for ss.vgm

v.np.diff <- function(pts) {

v <- variogram(z ~ 1, loc=pts, cutoff=cut, width=bin.w)

compare the point-pair distribution, only for requested bins

return(sum(((s.sep.np - v$np)[1:length(s.sep.np)])^2))

}

helper function: compute initial temperature

metr.temp.init <- function(n.steps) {

s <- s.init # initial `fitness' in environ

sum.fit <- 0; i <- 0

while (i < n.steps) {

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(scheme)[pt,]

s.try <- NA

64

while (is.logical(s.try)) {

xnew <- pt.old[1] + runif(1, min=-s.max.shift/2,

max=s.max.shift/2)

ynew <- pt.old[2] + runif(1, min=-s.max.shift/2,

max=s.max.shift/2)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- c(1,2)

over() requires identical CRS, note order

proj4string(pt.new) <- proj4string(s.grid)

if (!is.na(over(pt.new, s.grid))) s.try <- s

}

s.try@coords[pt,] <- c(xnew, ynew)

fitness function in environ

if (is.logical(s.fix.pts)) pts <- s.try

else pts <- rbind(s.fix.pts, s.try)

check new fitness, only use if worse

fit.new <- v.np.diff(pts)

if (fit.new > fitness) {

sum.fit <- sum.fit + fit.new

i <- i+1 }

} # note change of sign to ensure negative sum

return((fitness-(sum.fit/n.steps))/log(s.prob))

}

main body

1 - setup

1.1 - compute maximum distance across bbox

max.dist <- sqrt(diff(bbox(s.grid)[1,])^2

+ diff(bbox(s.grid)[2,])^2)

n.pts <- length(s.init$z)

1.2 - initialize point set

if (is.logical(s.fix.pts)) pts <- s.init

else pts <- rbind(s.fix.pts, s.init)

1.3 - initialize variogram matching, fixed cutoff

cut <- max.dist/3

bin.w <- cut/s.vm.nc

v <- variogram(z ~ 1, loc=pts, cutoff=cut, width=bin.w)

initial fitness

fitness <- v.np.diff(pts)

1.4 - if precision was not specified, set as 3rd significant

figure of initial fitness

i <- 0

while (is.na(s.prec)) {

if (fitness%/%(10^-i) != 0) s.prec=i+4 else i <- i + 1

}

1.5 - maximum shift depends on point density

this is an empirical value

s.max.shift <- 2*max.dist/sqrt(n.pts)

1.6 - initialize temperature

metr.temp <-

ret.metr.temp.init <-

metr.temp.init(128); # this is enough for a rough guess

1.7 - set up to record evolution of fits

65

fits <- matrix(nrow = 0, ncol=4)

colnames(fits) <- c("actual","proposed","max.shift","temperature")

this.step <- 0; equal.steps <- 0;

s <- s.init;

2 - main loop

repeat {

max.shift <- s.max.shift * exp(-this.step/s.decay)

metr.temp <- metr.temp * s.alpha

pt <- sample(1:n.pts, 1)

pt.old <- coordinates(s)[pt,]

2.1 get a proposed new point in the study area

i <- 1

repeat {

xnew <- round(pt.old[1] + runif(1, min=-max.shift/2,

max=max.shift/2),prec)

ynew <- round(pt.old[2] + runif(1, min=-max.shift/2,

max=max.shift/2),prec)

pt.new <- data.frame(x = xnew, y = ynew)

coordinates(pt.new) <- ~ x + y

proj4string(pt.new) <- proj4string(p)

if (!is.na(over(pt.new, s.grid))) break

else { i <- i + 1

if (i > max.steps) {

stop(paste("Can't find a new point in", max.steps,"steps"))

}

}

} # end repeat get a point

2.2 increment step when we have a proposed point

this.step <- this.step + 1;

s.try <- s;

update the selected point's coordinates

s.try@coords[pt,] <- c(xnew, ynew);

2.3 new fitness, to the desired precision

if (is.logical(s.fix.pts)) pts <- s.try

else pts <- rbind(s.fix.pts, s.try)

fitness.new <- round(v.np.diff(pts), s.prec);

2.4 acceptance criteria; maybe update scheme

if (fitness.new < fitness) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else if (runif(1) < (metr.temp

* exp(fitness - fitness.new))) {

s <- s.try;

fitness <- fitness.new;

equal.steps <- 0

} else { equal.steps <- (equal.steps + 1) }

2.5 save record of fits

fits <- rbind(fits, c(fitness

, fitness.new,

max.shift, metr.temp))

2.6 check stopping criteria

if (equal.steps >= eq.steps) break;

if (!is.na(max.steps) & (this.step >= max.steps)) break;

66

} # end repeat main loop

3 - plot the fitness vs. step

plot(1:length(fits[,1]), fits[,"actual"],

xlab="Step", ylab="Fitness function", type="l",

main="Fitness function vs. step",

sub="Black: actual; red: proposed",

ylim=c(min(fits[,1]), max(fits[,2])))

lines(1:length(fits[,1]), fits[,"proposed"],

type="l", col="red", lty=2)

4 - return the final sampling scheme

and the computed annealing parameters

return(list(scheme=s,

metr.temp=ret.metr.temp.init,

s.prec=s.prec))

}

Task 68 : Determine a variogram model for the logarithm of the zinc content
of the Meuse topsoils. •

data(meuse)

coordinates(meuse) <- ~x + y

meuse$lzn <- log(meuse$zinc)

summary(meuse$lzn)

Min. 1st Qu. Median Mean 3rd Qu. Max.

4.73 5.29 5.79 5.89 6.51 7.52

v <- variogram(lzn ~ 1, loc = meuse)

(vm <- fit.variogram(v, vgm(0.4, "Sph", 1000, 0.2)))

model psill range

1 Nug 0.050659 0

2 Sph 0.590605 897

plot(v, model = vm, pl = T)

distance

se
m

iv
ar

ia
nc

e

0.2

0.4

0.6

500 1000 1500

57

299

419

457

547

533 574

564
589

543 500

477

452

457 415

67

Task 69 : Simulate a field for the logarithm of the zinc content of the Meuse
topsoils. •

data(meuse.grid)

coordinates(meuse.grid) <- ~x + y

gridded(meuse.grid) <- T

set.seed(99)

k.sim <- krige(lzn ~ 1, loc = meuse, newdata = meuse.grid,

model = vm, beta = 0, dummy = T, nsim = 1, nmax = 120)

[using unconditional Gaussian simulation]

spplot(k.sim, col.regions = bpy.colors(64))

−3

−2

−1

0

1

2

This is almost surely not a true represenation of the Zn contents; however it is
plausible given the assumed variogram. Now we place samples to determine
the actual variogram.

Task 70 : Make a starting scheme. •

set.seed(7523)

scheme <- spsample(meuse.grid, 100, type="random")

tmp <- over(scheme, k.sim)

summary(tmp)

sim1

Min. :-1.822

1st Qu.:-0.679

Median :-0.225

Mean :-0.104

3rd Qu.: 0.573

Max. : 1.836

68

variable must be named 'z'

scheme.df <- SpatialPointsDataFrame(scheme,

data=data.frame(z=tmp$sim1))

spplot(scheme.df, zcol="z", col.regions=bpy.colors(64),

key.space="right")

[−1.822,−1.09]
(−1.09,−0.3588]
(−0.3588,0.3727]
(0.3727,1.104]
(1.104,1.836]

Note this by definition reproduces the variogram:

Task 71 : Display the variogram from the initial scheme, from the simulated
field, and the fitted variogram model, on the same graph. •

v.scheme <- variogram(z ~ 1, scheme.df)

plot(v.scheme$gamma ~ v.scheme$dist, type = "b", col = "red",

xlab = "Separation", ylab = "semivariance", main = "Variograms, log(Zn)")

text(v.scheme$dist, v.scheme$gamma, v.scheme$np, pos = 2,

col = "red")

lines(v$gamma ~ v$dist, type = "b", col = "darkgreen")

text(v$dist, v$gamma, v$np, pos = 3, col = "darkgreen")

lines(variogramLine(vm, maxdist = max(v$dist)), col = "blue")

grid()

legend("bottomright", c("initial scheme", "simulated field",

"model"), lty = 1, col = c("red", "darkgreen", "blue"))

69

500 1000 1500

0.
2

0.
4

0.
6

0.
8

1.
0

Variograms, log(Zn)

Separation

se
m

iv
ar

ia
nc

e

45

107

178

216

207
259

303
307

292 333

322

259 245

271
239

57

299

419

457
547

533 574
564

589
543 500

477
452

457 415

initial scheme
simulated field
model

Q22 : How well does the initial placement reproduce the model? Jump to
A22 •

Task 72 : Use simulated annealing to place sampling locations, matching
the a specified distribution of point-pairs at closer separations. •

Again we choose to specify a number of point-pairs only for the first three
bins.

vl.np <- c(60, 80, 120, 240, 280)

time <- system.time(tmp <- ssa.matchnp(s.init = scheme.df,

s.grid = meuse.grid, s.sep.np = vl.np, s.prob = 0.95,

s.alpha = 0.995, s.decay = 1024, eq.steps = 200,

max.steps = 2000))

0 500 1000 1500 2000

0
20

00
40

00
60

00
80

00
10

00
0

Fitness function vs. step

Black: actual; red: proposed
Step

F
itn

es
s

fu
nc

tio
n

70

print(time)

user system elapsed

11.957 0.032 11.990

print(paste("Precision of fitness matching:", tmp[["s.prec"]],

"decimal places"))

[1] "Precision of fitness matching: 4 decimal places"

print(paste("Initial Metropolis temperature:", round(tmp[["metr.temp"]],

4)))

[1] "Initial Metropolis temperature: 8189.271"

s.final <- tmp[["scheme"]]

The points were moved with their original data values; we need to recover
the values at the positions they were moved to:

summary(s.final$z)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.822 -0.679 -0.225 -0.104 0.573 1.836

s.final$z <- over(s.final, k.sim)$sim1

summary(s.final$z)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.8887 -0.6239 -0.0229 -0.0385 0.5191 1.7141

Here is the proposed sampling scheme:

str(s.final)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 110 obs. of 1 variable:

.. ..$ z: num [1:110] -0.522 1.446 1.593 -0.849 0.99 ...

..@ coords.nrs : num(0)

..@ coords : num [1:110, 1:2] 181094 180858 179230 180766 180246 ...

.. ..- attr(*, "dimnames")=List of 2

..$: NULL

..$: chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 178503 329647 181510 333625

.. ..- attr(*, "dimnames")=List of 2

..$: chr [1:2] "x" "y"

..$: chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slot

..@ projargs: chr NA

spplot(s.final, col.regions = bpy.colors(64), key.space = "right")

71

[−2.889,−1.968]
(−1.968,−1.048]
(−1.048,−0.1271]
(−0.1271,0.7935]
(0.7935,1.714]

And how closely the empirical variogram using this scheme matches the
assumed theoretical variogram:

v <- variogram(z ~ 1, s.final)

vl <- variogramLine(object = vm, dist_vector = v[, "dist"])

plot(v$gamma ~ v$dist, type = "b", xlab = "separation",

ylab = "semivariance", col = "red", ylim = c(min(v$gamma,

vl$gamma), max(v$gamma, vl$gamma)))

lines(vl$gamma ~ v$dist, type = "b", col = "darkgreen")

for (i in 1:length(v$dist)) {

lines(x = c(v$dist[i], v$dist[i]), y = c(v$gamma[i],

vl$gamma[i]), lty = 2, col = "darkgray")

text(v$dist[i], v$gamma[i], v$np[i], pos = 4)

}

legend("bottomright", c("empirical", "model", "difference"),

lty = c(1, 1, 2), col = c("red", "darkgreen", "darkgray"))

72

500 1000 1500

0.
2

0.
4

0.
6

0.
8

separation

se
m

iv
ar

ia
nc

e

56

77

108 217

245

301

272

285

302

302

297

294 280

281

225

empirical
model
difference

Q23 : How well does the new sampling scheme reproduce the variogram
model? Jump to A23 •

The new sampling scheme places points at proper separations to estimate
the true variogram (which may be somewhat different from the assumed
field).

Task 73 : Determine how closely the actual distribution of point-pairs over
the variogram bins matches the requested distribution. •

tmp <- rbind(t1 <- v$np[1:length(vl.np)], vl.np, t1 -

vl.np)

rownames(tmp) <- c("actual", "expected", "difference")

colnames(tmp) <- round(vl$dist[1:length(vl.np)], 2)

print(tmp)

67.77 170.33 275.9 390.8 501.32

actual 56 77 108 217 245

expected 60 80 120 240 280

difference -4 -3 -12 -23 -35

rm(tmp, t1)

6.4 Answers

A16 : They are randomly distributed (as planned) with no pattern to the red and
green points. Return to Q16 •

A17 : Clearly the empirical variogram does not match the model – indeed, it

73

appears to be pure nugget, as expected by theory, since we assigned values to
points at random. Return to Q17 •

A18 : Points with the same colour are now clustered; there are almost no points
of the opposite colour inside a cluster. Return to Q18 •

A19 : The empirical variograms match almost perfectly. Return to Q19 •

A20 : Points with the same colour are now clustered; and there is much empty
space (areas with no points). This is because of the requirement to have a sufficient
number of point-pairs at close spacing, in order to estimate the actual variogram
model. Return to Q20 •

A21 : The empirical variograms match somewhat, but there is quite a bit of
deviation from the model. Return to Q21 •

A22 : The initial placement reproduces the model well up to about 700 m, but
then has much higher variability (total sill). Return to Q22 •

A23 : It matches well at the closer lags (the ones where we specified the number
of point-pairs), less well at further lags, which are less important for variogram
estimation. Return to Q23 •

7 Challenges

There is no self-test for this exercise; rather a set of challenges. Experiment
with the optimization in one of more of the following ways:

� Change the variogram model form and/or range: what happens with a
very short- and long-range variogram, relative to the study area size?

� Change the stopping criterion: increase or decrease the number of steps
with unchanged fitness before stopping, or use a different stopping
criterion.

� Change the number of sampling points and then the starting scheme;
does the solution converge earlier or later with more points?

� Change the fixed points; obviously they will affect the solution; does a
regular grid of fixed points lead to a regular grid of additional points?

� Change the resolution of the discretization grid; how coarse can it be
without affecting the solution?

� Change some simulation parameters:

1. the proportional decay in the temperature s.alpha (must be < 1,
default in §3.1 was set to 0.99);

74

2. the decay factor for maximum distance, s.decay (default 192; a
lower factor implies faster decay);

3. the initial probability of accepting a worse scheme, s.prob (de-
fault 0.8);

4. the proportion of the bounding box to use for the initial maximum
shift distance (default ±

√
2/4)).

These will all affect the speed and “noise” of the solution. How do
these changes affect the solution?

� Repeat the optimization of §4 for your own country, province or state.
Experiment with different numbers of points and assumed models of
spatial dependence.

And of course you can apply simulated annealing to your own sampling plan.

Finally, you can implement simulated annealing optimization for KED (§5).

75

References

[1] R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio. Applied Spatial Data
Analysis with R. UseR! Springer, 2008. http://www.asdar-book.org/.
3, 4

[2] P. Bogaert and D. Russo. Optimal spatial sampling design for the
estimation of the variogram based on a least squares approach. Water
Resources Research, 35(4):1275–1289, 1999. 2

[3] D. J. Brus and G. B. M. Heuvelink. Optimization of sample patterns
for universal kriging of environmental variables. Geoderma, 138(1-2):
86–95, 2007. 11, 12, 50

[4] S. Kirpatrick. Optimization by simulated annealing: quantitative stud-
ies. Journal of Statistical Physics, 34:975–986, 1984. 11

[5] A. B. McBratney and R. Webster. The design of optimal sampling
schemes for local estimation and mapping of regionalized variables - II.
Computers & Geosciences, 7(4):335–365, 1981. 1, 29

[6] A. B. McBratney, R. Webster, and T. M. Burgess. The design of opti-
mal sampling schemes for local estimation and mapping of regionalized
variables - I. Computers & Geosciences, 7(4):331–334, 1981. 1, 29

[7] W. G. Müller and D. L. Zimmerman. Optimal designs for variogram
estimation. Environmetrics, 10(1):23–37, 1999. 2

[8] J. W. van Groenigen. Sampling strategies for effective variogram estima-
tion. In Constrained optimisation of spatial sampling, ITC Publication
65, pages 105–124. ITC, Enschede, NL, 1999. 2

[9] J. W. van Groenigen. Constrained optimisation of spatial sampling.
ITC, Enschede, NL, 1999. 2

[10] J. W. van Groenigen. The influence of variogram parameters on optimal
sampling schemes for mapping by kriging. Geoderma, 97(3-4):223–236,
2000. 1, 2, 4, 23

[11] J. W. van Groenigen, A. Stein, and R. Zuurbier. Optimization of envi-
ronmental sampling using interactive gis. Soil Technology, 10(2):83–97,
1997. 2

[12] A W Warrick and D E Myers. Optimization of sampling locations for
variogram calculations. Water Resources Research, 23(3):496–500, 1987.
51

[13] R. Webster and M. A. Oliver. Geostatistics for environmental scientists.
Wiley & Sons, Chichester, 2001. 2

[14] R. Webster, S. J. Welham, J. M. Potts, and M. A. Oliver. Estimating the
spatial scales of regionalized variables by nested sampling, hierarchical
analysis of variance and residual maximum likelihood. Computers &
Geosciences, 32(9):1320–1333, 2006. 2

76

http://www.asdar-book.org/

Index of R Concepts

bbox (sp package), 5
break, 29
break operator, 16
byrow argument (matrix function), 4

capture.output, 28
cat, 28
close, 28
CRS (rgdal package), 41

data.frame, 8
debug.level argument (krige function), 27

file, 28
fullgrid (sp package), 6, 11
function, 23

gridded (sp package), 6, 11
gstat package, 43

is.logical, 27
is.na, 16

krige (gstat package), 8

list, 4
load, 28, 42

map (mapdata package), 40
map2SpatialPolygons (maptools package),

40
mapdata package, 40
maptools package, 40
matrix, 4
max, 7
mean, 7, 24

n argument (spsample function), 29
ncol argument (matrix function), 4
nrow argument (matrix function), 4

over (sp package), 4, 15

Polygon (sp class), 4
Polygons (sp class), 4
print, 28
proj4string argument (map2SpatialPolygons

function), 40

rbind, 27, 35

rbinom, 55
rep, 8
repeat, 29
repeat operator, 16
returns, 24
rgdal package, 41
runif, 15

sample, 15
save, 28
set.seed, 8, 35
source, 28
sp package, 40, 41
SpatialGrid (sp class), 6
SpatialGridDataFrame (sp class), 11
SpatialPixels (sp class), 6
SpatialPoints (sp class), 6, 7
SpatialPointsDataFrame (sp class), 8, 9,

24, 27, 64
SpatialPolygons (sp class), 4, 40
SpatialPolygonsDataFrame (sp class), 5,

24
SpatialPolygonsDataFrame (sp package),

5
spplot (sp package), 5
spsample (sp package), 6, 8, 29, 35
spTransform (rgdal package), 41
system.time, 18, 30, 32

type sp argument, 35
type argument (spsample function), 29

variogramLine (gstat package), 57
variogramModel class, 52
vgm (gstat package), 24, 52

77

	1 Introduction
	2 SSA optimization for Ordinary Kriging: development
	2.1 Define the study area
	2.2 Model of spatial dependence
	2.3 Fitness function
	2.4 Setup for SSA
	2.5 The main SSA loop: one time
	2.5.1 Maximum distance to move a point
	2.5.2 Moving one point
	2.5.3 Plotting a changed scheme
	2.5.4 Accepting or rejecting the new scheme

	2.6 The main SSA loop: iterations
	2.7 Showing the evolution of the scheme
	2.8 Answers

	3 SSA optimization for Ordinary Kriging: application
	3.1 A function for SSA
	3.1.1 Saving the function to a file for later execution

	3.2 Initial sampling scheme
	3.3 Objective function: minimize the mean kriging variance
	3.4 Objective function: minimize the maximum kriging variance
	3.5 Optimizing from another starting configuration
	3.6 Answers

	4 Sampling an irregularly-shaped area
	4.1 Answers

	5 SSA optimization for Kriging with External Drift
	6 SSA optimizing by variogram matching
	6.1 Indicator variogram, no bin numbers
	6.2 Indicator variogram, bin numbers
	6.3 Sampling optimization in a simulated field
	6.4 Answers

	7 Challenges
	References
	Index of R concepts

