
Tutorial: Spatial Point Pattern Analysis

D G Rossiter
Cornell University

March 27, 2024

Contents

1 Examining some point patterns 2

2 First-order properties: the 𝐺 function 5

3 Kernel density estimation 13

4 Second-order properties: the 𝐾 function 16
4.1 The 𝐿 function: a linearized 𝐾 function 18
4.2 * Modifying the window . 19

5 The 𝐹 function; non-rectangular windows 21

6 Marked point patterns 26
6.1 Categorical marks . 26
6.2 Interaction between point patterns: the cross-𝐾 function . . . 28
6.3 Combining point patterns . 30
6.4 Continuous marks . 32

7 Models of spatial processes 34
7.1 Null model . 36
7.2 Trend surface . 36
7.3 Strauss process . 39
7.4 Covariates . 41

8 Spatial prediction 45

Version 6.0 Copyright © 2012–7, 2020–4 Cornell University All rights re-
served. Reproduction and dissemination of the work as a whole (not parts)
freely permitted if this original copyright notice is included. Sale or place-
ment on a web site where payment must be made to access this docu-
ment is strictly prohibited. To adapt or translate please contact the author
(http://www.css.cornell.edu/faculty/dgr2/).

http://www.css.cornell.edu/faculty/dgr2/

9 Spatio-temporal analysis 49

10 Further reading 59

11 Answers 59

A Preparing data for point pattern analysis 64
A.1 Shapefiles and other common geospatial formats 64
A.2 Text files . 66

References 72

Index of R concepts 73

ii

冰冻三尺，非一日之寒
“One day of cold weather is not enough to freeze ice three feet

thick!” – Chinese proverb

This tutorial gives an overview of spatial point-pattern analysis, and some
practical experience with such analysis using the R Environment for Statis-
tical Computing.

Spatial point-pattern analysis considers the distribution of one or more sets
of points in some bounded region as possibly being the result of some
stochastic process which produces a finite number of “events” or “occur-
rences”. Examples are a forest plot with the locations of individual trees, a
microscope slide with the locations of individual cell centres, and a munic-
ipal boundary with point pollution sources. These may be viewed as pure
point-patterns (just the locations) but sometimes attributes are included in
the analysis; for example, the size or species of a tree in the forest plot.

After completing this tutorial you should be able to:

1. Display and examine spatial point patterns (§1);

2. Quantify deviations from Complete Spatial Randomness with the 𝐺
function (§2);

3. Analyze single spatial point patterns with the 𝐹, 𝐺,𝐾 and 𝐿 functions;

4. Compute a kernel density of an inhomogeneous point pattern (§3);

5. Analyze interactions between two point patterns with the 𝐾 and𝐿 func-
tions (§4);

6. Analyze marked point patterns (§6), i.e., where there is some attribute
recorded at each point;

7. Model spatial point patterns as realizations of a spatial data generating
process (sDGP) including both trend and interaction components, and
evaluate model success (§7);

8. Predict over an areas based on a fitted model (§8);

9. Do some simple spatio-temporal analysis of an evolving point pattern
(§9).

In addition there is an Appendix (§A) on how to prepare a dataset for point-
pattern analysis.

The theory behind point-pattern analysis is comprehensively presented in
the text of Diggle [6]. An accessible and less technical introduction is Boots
and Getis [3]. Bivand et al. [2, Ch. 7] present worked examples in the context
of R processing. Here we work through some of the main ideas only. Some
of the code here is adapted from that chapter. Illian et al. [7] present a
computational framework for fitting complex spatial point process models
using a recently-developed methodology known as INLA.

Point-pattern analysis is based on theories of point processes. A modern
review article is by Møller and Waagepetersen [8].

1

We will consider two kinds of properties of point patterns:

• First-order: considering points as individuals, no interaction, over the
whole region. An example is the spatial density, which is taken as the
indication of the intensity of the process that gave rise to the PPA;

• Second-order: considering interactions between marked sets of points,
e.g., their tendency to cluster or repel. An example is bird nests of
two different species in the same area.

In addition, we will attempt (§7) to model the presumed spatial data gen-
erating process.

Note: The code in these exercises was tested with Knitr [12] on R version
4.2.3 (2023-03-15), sf package 1.0.15, splancs package 2.1.44, stpp package
2.0.7, terra package 1.7.71, and spatstat package 3.0.7 running on Mac
OS X Sonoma 14.3.1. The text and graphical output you see here was
automatically generated and incorporated into LATEX by running the code
through R and its packages. Then the LATEX document was compiled into
the PDF version you are now reading. Your output may be slightly different
on different versions and on different platforms.

1 Examining some point patterns

Supplementary reading:

• Bivand et al. [2, §7.2]: R packages relevant for spatial point-pattern
analysis.

We use the same examples as Bivand et al. [2, Ch. 7]: location of cell centres
in a microscope slide (“Cells”); locations of Japanese black pine saplings
(“Japanese”); and locations of saplings of California redwood trees (“Red-
wood”).

Task 1 : Load the Japanese pines example dataset japanesepines and
summarize it. •

These are examples in the spatstat package and are provided in a suitable
format, namely as objects of R class ppp, a “planar point pattern”.
require(spatstat)
data(japanesepines)
class(japanesepines)

[1] "ppp"

str(japanesepines)

List of 5
$ window :List of 4
..$ type : chr "rectangle"
..$ xrange: num [1:2] 0 1
..$ yrange: num [1:2] 0 1
..$ units :List of 3
.. ..$ singular : chr "metre"
.. ..$ plural : chr "metres"
.. ..$ multiplier: num 5.7
.. ..- attr(*, "class")= chr "unitname"
..- attr(*, "class")= chr "owin"

2

$ n : int 65
$ x : num [1:65] 0.09 0.29 0.38 0.39 0.48 0.59 0.65 0.67 0.73 0.79 ...
$ y : num [1:65] 0.09 0.02 0.03 0.18 0.03 0.02 0.16 0.13 0.13 0.03 ...
$ markformat: chr "none"
- attr(*, "class")= chr "ppp"

summary(japanesepines)

Planar point pattern: 65 points
Average intensity 65 points per square unit (one unit = 5.7 metres)
##
Coordinates are given to 2 decimal places
i.e. rounded to the nearest multiple of 0.01 units
(one unit = 5.7 metres)
##
Window: rectangle = [0, 1] x [0, 1] units
Window area = 1 square unit
Unit of length: 5.7 metres

Note: Notice that the ppp class has a structure that, according to the
authors of the spatstat package, facilitates point-pattern analysis. Of course
it has the coordinates (fields x and y) and the number of points (field n),
but it also defines a window (field window) as a list of four characteristics:
the shape, the limiting coordinates, and the units of measure. This field is
of class owin.

Q1 : How many trees are represented by this point pattern? Jump to A1
•

Q2 : What is the area covered by this point pattern? Jump to A2 •

Task 2 : Plot the locations of the trees. •

The generic plot method specializes to plot.ppp for an object of class ppp:
plot.ppp(japanesepines, main = "Locations of Japanese pine trees", axes = T)
grid()

3

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

 Locations of Japanese pine trees

Q3 : Does this pattern look completely random, clustered, or regular?
Jump to A3 •

Task 3 : Load the other two example datasets redwoodfull and cells;
view the spatial distribution of all three on one graph. •
data(redwoodfull)
data(cells)

par(mfrow = c(2, 2))
plot.ppp(japanesepines, main = "Japanese Pines", axes = T)
plot.ppp(redwoodfull, main = "Redwoods", axes = T)
plot.ppp(cells, main = "Biological cells", axes = T)
par(mfrow = c(1, 1))

4

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

 Japanese Pines

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

 Redwoods

−0.2 0.2 0.6 1.0

0.
0

0.
4

0.
8

 Biological cells

Q4 : Are there differences in the point patterns? Which pattern(s) look
completely random, clustered, or regular? Jump to A4 •

2 First-order properties: the 𝐺 function

Supplementary reading:

• Bivand et al. [2, §7.3]: Preliminary Analysis of a Point Pattern

A suitable null hypothesis for the locations of a set of points is that there
is no pattern, i.e., the points are distributed at random. This is known as
Complete Spatial Randomness (abbreviation CSR). Assuming CSR we can
compute several expected distributions of the points:

• The G function: the distribution of the distances from an arbitrary
observed point to its nearest neighbour; expressed as the cumulative
distribution function 𝐺 (𝑟) of the proportion of points that have at
least one neighbour within a distance 𝑟. Formally:

𝑑𝑖 = min
𝑗
{𝑑𝑖 𝑗 ,∀ 𝑗 ≠ 𝑖 ∈ 𝑆}, 𝑖 = 1, . . . , 𝑛 (1)

𝐺 (𝑟) =
{#𝑑𝑖 : 𝑑𝑖 ≤ 𝑟,∀𝑖}

𝑛
(2)

5

• The F function: the distribution of the distances from an arbitrary lo-
cation in the plane to its nearest observation; this is sometimes called
the empty space function: it measures the average empty space be-
tween observed points. This is examined in §5, below.

A homogeneous Poisson process (HPP) is a process on the “landscape” by
which points (occurrences, events …) are produced at specific locations, and
in which the points are independently and uniformly distributed over a given
region.

hus the location of one point does not affect the location of other points;
another point can be anywhere. There are no clusters and no “empty” sub-
regions, except by chance.

A homogeneous Poisson process with known intensity (a first-order prop-
erty), conventionally called 𝜆, will produce a CSR pattern, with the statis-
tical properties:

𝐺 (𝑟) = 𝐹 (𝑟) = 1 − exp{−𝜆𝜋𝑟2} (3)

where 𝑟 is the distance, and 𝜆 is the mean number of points per unit area,
in the given distance units; it is also called the intensity of the process.

In this section we examine the 𝐺 function, also known as the nearest-
neighbour-distance distribution function. It is easily interpretable as the
distance one must travel from any observation, to find at least one other
observation. It is “short-sighted”, since it only considers the nearest neigh-
bour, and so gives no information about behaviour at long distances. It is
a point-related function, i.e., computed from each point in the pattern. As
such it gives no information about empty space; for that see the 𝐹 function
(§5), which is a location-related function

Task 4 : Compute and display the empirical vs. theoretical 𝐺 function for
the Japanese pines. •

The Gest function of the spatstat.explore package computes this function
on an object of class ppp, so we use the japanesepines object originally
loaded as the sample ppp object.
G <- Gest(japanesepines)
class(G)

[1] "fv" "data.frame"

summary(G)

r theo han rs
Min. :0.00000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:0.05936 1st Qu.:0.5130 1st Qu.:0.5187 1st Qu.:0.4583
Median :0.11872 Median :0.9438 Median :0.9704 Median :0.9697
Mean :0.11872 Mean :0.7383 Mean :0.7354 Mean :0.7218
3rd Qu.:0.17808 3rd Qu.:0.9985 3rd Qu.:1.0000 3rd Qu.:1.0000
Max. :0.23744 Max. :1.0000 Max. :1.0000 Max. :1.0000
km hazard theohaz
Min. :0.0000 Min. : 0.00 Min. : 0.00
1st Qu.:0.4785 1st Qu.: 0.00 1st Qu.:24.24
Median :0.9580 Median : 0.00 Median :48.49
Mean :0.7227 Mean : 13.33 Mean :48.49

6

3rd Qu.:1.0000 3rd Qu.: 0.00 3rd Qu.:72.73
Max. :1.0000 Max. :1494.63 Max. :96.97

The returned object has fields for the distance (r), the theoretical value of
𝐺 (𝑟) (theo), and four variants of an empirical estimate of G. These differ
in how edge effects are accounted for; see ?Gest for an explanation of the
options.

Note: The “edge effect” occurs because any points produced by the spatial
process but outside the window can not be observed. If not accounted for
there is bias, because points near the edge may well have a nearer neighbour
outside the window, but since that is not observed, we can not compute the
distance to it. So, we presume there are such unobserved points, and they are
“similarly” distributed as the ones we observe; statisticians have proposed
various ways to implement this “similarity”.

The plot method specializes to plot.fv, to handle the returned object of
class fv; this is just a convenient structure for this sort of plot.
plot(G, main = "G-function, Japanese pines")

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, Japanese pines

r (one unit = 5.7 metres)

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

This graph can be interpreted as follows:

• 𝑟-axis: the distance away from an arbitrary point;

• 𝐺 (𝑟)-axis: the 𝐺 function, namely, he proportion of points that have
at least one neighbour within a distance 𝑟.

The default graph does not quite show the whole empirical function, i.e.,
where 𝐺 (𝑟) = 1, so we re-draw and specify the radius limits explicitly:
plot(G, xlim = c(0, 0.16), main = "G-function, Japanese pines")

7

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G−function, Japanese pines

r (one unit = 5.7 metres)

G
(r

)
Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

Note that at 0.16 the expected value of 𝐺 (𝑟) is:
1 - exp(-japanesepines$n * pi * (0.16)^2)

[1] 0.9946337

This is of course an asymptotic function, so never reaches 1; the empirical
function does.

Q5 :

(a) What is the distance across the unit square at which at least 95% of the
points have at least one neighbour within that distance, according to the
“reduced sample” (rs), also called “border”, method of edge correction?

(b) What proportion of points have at least one neighbour within 0.05 units?
Jump to A5 •

To answer this questions, we can make a visual estimate from the graph,
or look inside the object; field r is the radius and rs is the reduced-sample
estimate of 𝐺 (𝑟). The selection function which picks out the entries meeting
the required condition, and the min “minimum” function finds the first one
in the list. For example, we can find the radius at which at least 95% of the
points have at least one point within that threshold
G$r[min(which(G$rs >= 0.95))]

[1] 0.116867

G$rs[min(which(G$r >= 0.05))]

[1] 0.3877551

Q6 : How closely do the four variants of the empirical 𝐺 function match the
theoretical 𝐺 function for this intensity? Note this last is marked 𝐺pois(𝑟)

8

on the graph; the estimates are marked (𝐺)method(𝑟). Jump to A6 •

Another way to look at this is as expected vs. actual, which should be a 1:1
relation.

Task 5 : Plot the actual reduced-sample estimate against the theoretical
value of 𝐺 (𝑟). •
1 : example of random pattern
plot(G, cbind(rs,theo) ~ theo,

main="G-function, Japanese pines")

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G−function, Japanese pines

Gpois(r)

G
(r

)

Ĝbord(r)
Gpois(r)

Here both axes are values of 𝐺 (𝑟); the radius 𝑟 is not shown.

Q7 : How closely does the empirical match the theoretical? Jump to A7 •

Task 6 : Compute the 𝐺 function and plot it for the other two datasets. •

First the Redwood trees:
2 : example of clustered pattern
G.clust <- Gest(redwoodfull)
par(mfrow=c(1,2))
plot(G.clust, cbind(rs,theo) ~ r,

main="G-function, Redwood trees")
plot(G.clust, cbind(rs,theo) ~ theo,

main="G-function, Redwood trees")
par(mfrow=c(1,1))

9

0.00 0.01 0.02 0.03 0.04 0.05 0.06

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, Redwood trees

r

G
(r

)

Ĝbord(r)
Gpois(r)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G−function, Redwood trees

Gpois(r)

G
(r

)

Ĝbord(r)
Gpois(r)

Q8 : Describe and interpret the differences between this 𝐺 function and
that for the Japanese pines. Jump to A8 •

Now the cells:
3 : example of dispersed / regular pattern
G.disp <- Gest(cells)
par(mfrow=c(1,2))
plot(G.disp, cbind(rs,theo) ~ r,

main="G-function, cells")
plot(G.disp, cbind(rs,theo) ~ theo,

main="G-function, cells")
par(mfrow=c(1,1))

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, cells

r

G
(r

)

Ĝbord(r)
Gpois(r)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G−function, cells

Gpois(r)

G
(r

)

Ĝbord(r)
Gpois(r)

Q9 : Describe and interpret the differences between this 𝐺 function and
that for the Japanese pines. Jump to A9 •

So far we have formed subjective opinions about which patterns are consis-
tent with CSR. There is no formal test; the way this is assessed is to form an
envelope of how the empirical 𝐺 function would look, under the null hypoth-
esis of CSR and with the observed homogeneous intensity. This envelope
is computed by a large number of simulations of the Poisson point process

10

that gives rise to CSR. Each realization will be a bit different, because it’s a
discrete simulation, not the theoretical curve. Then the envelope is plotted
along with the actual empirical 𝐺 function, and we can see if it is contained
inside, and if not, at what points it diverges.

Q10 : Would simulations be more or less variable as the intensity of the
process increases? Jump to A10 •

Task 7 : Compute an envelope for the 𝐺 function of the Japanese pines,
and plot it along with the observed empirical 𝐺 function. •

The envelope function of the spatstat.explore package computes this
for an object of class ppp. Arguments include the object, the function name
(here, Gest), the radii at which to compute point-wise envelopes, the rank
of the envelope value among the simulated values, and the number of simu-
lations.

Note: The nrank argument controls the width of the envelope. A low value,
such as the default nrank=1, uses the extreme values (minimum and maxi-
mum) of the simulated distributions as the envelope; this is the widest and
most conservative with respect to rejecting the null hypothesis of CSR. Using
a higher rank corresponds roughly to setting the one-sided 𝛼 for a t-test. In
this case we have 99 simulations; so using nrank=2 is excluding the single
maximum and minimum at each point, thereby narrowing the envelope. This
is roughly equivalent to one-sided 𝛼 = (1 − (2/99)) = 0.9798, i.e., two-sided
𝛼 ≈ 96% confidence level considering both minimum and maximum.

We try to simulate out to the radius where the empirical 𝐺 (𝑟) = 1. Also,
we use the set.seed function to initialize the random number generator, so
your results match ours – you would not do this in an actual analysis, you
would want the randomness. If we did not specify a large enough radius in
the previous step, the 𝐺 function may not reach 1, so we specify a somewhat
smaller ending radius.

Note: The argument to set.seed is arbitrary, it has no meaning.
set.seed(30)
rmax.jap <- G$r[min(which(G$rs > 0.98))]
r <- seq(0, rmax.jap, by = 0.005)
envjap <- envelope(japanesepines, fun=Gest,

r=r, nrank=2, nsim=99, verbose=F)
plot(envjap, xlim=c(0, rmax.jap),

main="Japanese pines, G-function envelope")

11

0.00 0.02 0.04 0.06 0.08 0.10 0.12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Japanese pines, G−function envelope

r (one unit = 5.7 metres)

G
(r

)

Ĝobs(r)
Gtheo(r)
Ĝhi(r)
Ĝlo(r)

Q11 : Is the empirical 𝐺 function within the envelope throughout? Can we
reject the null hypothesis of CSR? Jump to A11 •

Task 8 : Compute and plot the 𝐺 function envelopes for the other two
datasets. •

The maximum radius at which a point is encountered varies considerably;
here we show each one with its own maximum:
rmax.red <- G.clust$r[min(which(G.clust$rs > 0.98))]
r <- seq(0, rmax.red, by = 0.005)
envred <- envelope(redwoodfull, fun=Gest, r=r, nrank=2, nsim=99, verbose=F)
rmax.cell <- G.disp$r[min(which(G.disp$rs > 0.98))]
r <- seq(0, rmax.cell, by = 0.005)
envcells <- envelope(cells, fun=Gest, r=r, nrank=2, nsim=99, verbose=F)

par(mfrow=c(1,2))
plot(envred, xlim=c(0, rmax.red),

main="Redwood trees, G-function envelope")
plot(envcells, xlim=c(0, rmax.cell),

main="Cells, G-function envelope")
par(mfrow=c(1,1))

12

0.00 0.02 0.04 0.06 0.08

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Redwood trees, G−function envelope

r

G
(r

)

Ĝobs(r)
Gtheo(r)
Ĝhi(r)
Ĝlo(r)

0.00 0.05 0.10 0.15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Cells, G−function envelope

r

G
(r

)

Ĝobs(r)
Gtheo(r)
Ĝhi(r)
Ĝlo(r)

Q12 : Describe and interpret the differences between the envelopes for these
𝐺 functions and that for the Japanese pines. Jump to A12 •

3 Kernel density estimation

Supplementary reading:

• Bivand et al. [2, §7.4.1–3]: Statistical Analysis of Spatial Point Pro-
cesses

An important question is whether the stochastic point-process is homoge-
neous (the same across the whole area) or inhomogeneous. Equivalently, is
the intensity of the process the same everywhere? If not, we assume an in-
homogeneous Poisson process (IPP), so that a single intensity 𝜆 describing
the Poisson process is replaced by a spatial function 𝜆(x), where x is the
spatial position. The question then arises: what is the spatial function of
the density?

Note: The assumption of homogeneity is often not realistic, from what
we know about the process. For example, environmental factors favour some
sub-areas over others for occurrence of a given tree species1, so that the point-
process by which a species is located can not be assumed to be homogeneous.
However, the other assumption of the Poisson process still holds: given an
intensity, events are independent and uniformly distributed.

Naturally, this depends on the scale at which we examine it. At broad scales,
all points are taken together and the process is by definition homogeneous;
at fine scales, very small neighbourhoods are considered and random fluc-
tuations can lead to different intensity estimates. In other words, a small
bandwidth will lead to a “spiky” map, whereas a large bandwidth will lead
to a smooth map – which one best represents the (in)homogeneity of the
point process? This is the bandwidth problem.
1 E.g., the eastern hemlock (Tsuga canadensis) grows by preference in moist, shallow soils

on hillsides, whereas beech (Fagus spp.) prefers well-drained hilltop positions

13

The next question is the shape of the smoothing kernel. This is a function
of the two coordinates, providing a smooth 2D surface with highest proba-
bility of finding a point at the centre and smoothly decreasing probability
away from it. The default used by density.ppp is the Gaussian (normal
distribution) kernel, but many applications prefer the quartic kernel:

𝜅(𝑢) =
{

3
𝜋 (1 − ||𝑢 | |2)2 if 𝑢 ∈ (−1, 1)

0 otherwise
(4)

where | |𝑢 | |2 = 𝑢21 + 𝑢22, i.e., the squared norm, centred on the point to be
estimated. Thus there is an inverse-square decrease in density outward from
a point, to zero outside the unit circle; the “unit” is set by the bandwidth
ℎ, hence its importance:

𝑢 = | |𝑥 − 𝑥𝑖 | |/ℎ (5)

Although the kernel density is conceptually spatially continuous, in practice
it is computed at many points over a fine grid and displayed as a raster
“image”.

Task 9 : Plot the kernel density of the Redwoods dataset, at various band-
widths. •

The density.ppp function of the spatstat.explore package computes the
density surface directly from the point pattern. The sigma argument speci-
fies a function to compute an “optimum” bandwidth. We compare three of
these functions, and pick the “Diggle” for subsequent analysis:
print(bw.o <- bw.diggle(redwoodfull))

sigma
0.01981409

print(bw.CvL(redwoodfull))

sigma
0.09340959

print(bw.ppl(redwoodfull))

sigma
0.0392317

Quite some difference.

Now make plots with the “optimum” bandwidth and some multiples of it.
The density.ppp of the spatstat.explore package computes a density
surface, of class im. To plot im objects, the plot generic method specializes
to the plot.im function of the spatstat.geom package. Contour lines can
be added with the contour function.
d1 <- density.ppp(redwoodfull, sigma = bw.o, kernel = "quartic")
class(d1)

[1] "im"

d05 <- density.ppp(redwoodfull, sigma = bw.o, kernel = "quartic", adjust = 0.5)
d4 <- density.ppp(redwoodfull, sigma = bw.o, kernel = "quartic", adjust = 4)
d2 <- density.ppp(redwoodfull, sigma = bw.o, kernel = "quartic", adjust = 2)

14

par(mfrow = c(2, 2))
plot.im(d05, main = paste("Bandwidth=", round(bw.o * 0.4, 4), " (optimum*.5)",

sep = "", collapse = ""))
contour(d05, add = TRUE)
plot(d1, main = paste("Bandwidth=", round(bw.o, 4), " (optimum)", sep = "",

collapse = ""))
contour(d1, add = TRUE)
plot(d2, main = paste("Bandwidth=", round(bw.o * 1.5, 4), " (optimum*1.5)",

sep = "", collapse = ""))
contour(d2, add = TRUE)
plot(d4, main = paste("Bandwidth=", round(bw.o * 2, 4), " (optimum*2)",

sep = "", collapse = ""))
contour(d4, add = TRUE)
par(mfrow = c(1, 1))

 Bandwidth=0.0079 (optimum*.5)

0
10

00
30

00

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 500

 5
00

 5

00

 Bandwidth=0.0198 (optimum)

0
50

0
10

00

 0

 0

 0

 0

 0

 0

 0

 0

 0
 0

 0

 200

 2
00

 200

 2
00

 2

00

 20
0

 200
 200

 Bandwidth=0.0297 (optimum*1.5)

0
20

0
60

0

 0 100

 1
00

 100

 100

 100

 200

 200

 200

 20
0

 200

 200

 200

 2
00

 200

 200

 300

 300

 Bandwidth=0.0396 (optimum*2)

10
0

30
0

50
0

 50

 50

 100

 1
00

 1
00

 150

 1
50

 150

 150
 200

 200

 200

 200
 250

 250
 300

 300

 300

Q13 : What happens to the kernel density (intensity) statistics as the
bandwidth increases? (Note the numbers in the four scale legends.) Jump
to A13 •

Q14 : Describe the trend in kernel density as the bandwidth increases. Does
the “optimum” found by the Diggle algorithm seems to give the “best” view
of the varying intensity of the point process that is assumed to be causing the
Redwood point pattern ? (Hint: compare with the point pattern). Jump

15

to A14 •

4 Second-order properties: the 𝐾 function

Supplementary reading:

• Bivand et al. [2, §7.4.5]: Second-order properties

A second-order property of a point process refers to the interactions between
points2. Examples are clustering (attraction) or competition (repulsion),
with obvious ecological interest. Below (§6.2) we examine interactions be-
tween two types of points; here we consider one type of points, but at any
distances. The 𝐹 and 𝐺 functions are “short-sighted”, they only consider
nearest neighbours to an arbitrary point or location, respectively. Here we
consider any radius from an arbitrary point.

Ripley [9] proposed a 𝐾 function for quantifying second-order properties for
a HPP. It counts the number of points within a given distance of a point,
and is defined as:

𝐾 (𝑠) = 𝜆−1𝐸 [𝑁0(𝑠)] (6)

where 𝐸 [.] is the expectation and 𝑁0(𝑠) is the number of points found within
radius 𝑠 of point 𝑥0 (an arbitrary point of the point pattern). This expecta-
tion is computed as:

𝐾 (𝑠) = (𝑛(𝑛 − 1))−1 |𝐴|
𝑛∑
𝑖=𝑖

∑
𝑗≠𝑖

𝑤−1
𝑖 𝑗 · 𝑥 𝑗 : 𝑑 (𝑥𝑖 , 𝑥 𝑗) ≤ 𝑠 (7)

where the radius 𝑑 (𝑥𝑖 , 𝑥 𝑗) is the distance between two points, and the weights
𝑤𝑖 𝑗 are the proportion of the area inside region 𝐴, of size |𝐴|, of the circle
centred on the target point 𝑥𝑖. The term (𝑛(𝑛−1))−1 normalizes for the total
number of point-pairs.

For the HPP, we have 𝐾 (𝑠) = 𝜋𝑠2, i.e., the area of a circle with radius 𝑠.
If 𝐾 (𝑠) is greater, this indicates clustering, i.e., more points than expected
with the radius; the inverse indicates a regular (dispersed) process.

Task 10 : Compute and graph the 𝐾 function for the three example datasets.
•

We use the Kest function of the spatstat.explore package; this works
with point-patterns of class ppp.
Kjap <- Kest(japanesepines)
Kred <- Kest(redwoodfull)
Kcells <- Kest(cells)

2 Recall: the first-order property refers to properties at a single point, e.g., the intensity
of the process

16

par(mfrow=c(1,3))
plot(Kjap, main="Japanese pines")
plot(Kred, main="Redwoods")
plot(Kcells, main="Cells")
par(mfrow=c(1,1))

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Japanese pines

r (one unit = 5.7 metres)

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Redwoods

r

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Cells

r

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

As with the 𝐺 function, there are several border corrections; see help(Kest)
for details.

Q15 : Do these graphs provide evidence of second-order CSR, clustering,
or dispersion? Jump to A15 •

We can also compute a simulation envelope for the 𝐾 function, in the same
manner as for the 𝐺 function.

Task 11 : Compute and graph simulation envelopes for the 𝐾 function, for
the three example datasets. •

We choose to display these to a radius that is 1/3 across the diagonal of the
unit bounding box.
r <- seq(0, sqrt(2)/6, by = 0.005)
envjap <- envelope(japanesepines, fun=Kest, r=r, nrank=2, nsim=99, verbose=F)
envred <- envelope(redwoodfull, fun=Kest, r=r, nrank=2, nsim=99, verbose=F)
envcells <- envelope(cells, fun=Kest, r=r, nrank=2, nsim=99, verbose=F)

17

par(mfrow = c(1, 3))
plot(envjap, main = "Japanese pines, K-function envelope")
plot(envred, main = "Redwood trees, K-function envelope")
plot(envcells, main = "Cells, K-function envelope")
par(mfrow = c(1, 1))

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Japanese pines, K−function envelope

r (one unit = 5.7 metres)

K
(r

)

K̂obs(r)
Ktheo(r)
K̂hi(r)
K̂lo(r)

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

Redwood trees, K−function envelope

r

K
(r

)

K̂obs(r)
Ktheo(r)
K̂hi(r)
K̂lo(r)

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

Cells, K−function envelope

r

K
(r

)

K̂obs(r)
Ktheo(r)
K̂hi(r)
K̂lo(r)

These envelopes confirm the interpretations.

4.1 The 𝐿 function: a linearized 𝐾 function

A linear version of 𝐾 may be easier to interpret; therefore Besag proposed a
function 𝐿 (𝑟) =

√
𝐾 (𝑟)/𝜋. All this does is linearize the expected value, so it

appears on the plot as a straight line,

Task 12 : Compute and plot the 𝐿 function and their envelopes for the
three patterns. •
r <- seq(0, sqrt(2)/6, by = 0.005)
envjap <- envelope(japanesepines, fun = Lest, r = r, nrank = 2, nsim = 99,

verbose = F)
envred <- envelope(redwoodfull, fun = Lest, r = r, nrank = 2, nsim = 99,

verbose = F)
envcells <- envelope(cells, fun = Lest, r = r, nrank = 2, nsim = 99, verbose = F)

18

par(mfrow = c(1, 3))
plot(envjap, main = "Japanese pines, L-function envelope")
plot(envred, main = "Redwood trees, L-function envelope")
plot(envcells, main = "Cells, L-function envelope")
par(mfrow = c(1, 1))

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Japanese pines, L−function envelope

r (one unit = 5.7 metres)

L
(r

)

L̂obs(r)
Ltheo(r)
L̂h i(r)
L̂lo(r)

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Redwood trees, L−function envelope

r

L
(r

)

L̂obs(r)
Ltheo(r)
L̂h i(r)
L̂lo(r)

0.00 0.05 0.10 0.15 0.20

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

Cells, L−function envelope

r

L
(r

)

L̂obs(r)
Ltheo(r)
L̂h i(r)
L̂lo(r)

4.2 * Modifying the window

Recall that an object of class ppp includes a window of class owin, that
defines the window in which the point-pattern is evaluated. Suppose we
want to only evaluate the point-pattern in some smaller area. To do this, we
can create a new window with the owin function, and then use it to extract
just those points that fall in the window.

Task 13 : Create a window covering the upper left-hand (NW) quadrant of
the Japanese pines point-pattern. Extract just the Japanese pines points in
this window and plot them. •

We use the owin function to specify the new window, and then the inside.owin
logical function to determine which points are in the new window. We then
use the logical vector to select the points in the new window, and save these
as a new point pattern.
str(japanesepines, max.level = 1)

List of 5
$ window :List of 4
..- attr(*, "class")= chr "owin"
$ n : int 65
$ x : num [1:65] 0.09 0.29 0.38 0.39 0.48 0.59 0.65 0.67 0.73 0.79 ...
$ y : num [1:65] 0.09 0.02 0.03 0.18 0.03 0.02 0.16 0.13 0.13 0.03 ...
$ markformat: chr "none"
- attr(*, "class")= chr "ppp"

print(japanesepines$window)

window: rectangle = [0, 1] x [0, 1] units (one unit = 5.7 metres)

(window.nw <- owin(xrange = c(0, 0.5), yrange = c(0.5, 1)))

window: rectangle = [0, 0.5] x [0.5, 1] units

table(is.in <- inside.owin(japanesepines, w = window.nw))

19

##
FALSE TRUE
43 22

japanesepines.nw <- japanesepines[is.in]

We see only 22 of the 65 Japanese pines are in this window.

However, this selection does not change the window size. We can see this
with the Windowunction of the spatstat.geom package:
Window(japanesepines.nw)

window: rectangle = [0, 1] x [0, 1] units (one unit = 5.7 metres)

If we want to reduce the window size of the new point pattern, we again use
the Window function to set the window size:
Window(japanesepines.nw) <- window.nw
Window(japanesepines.nw)

window: rectangle = [0, 0.5] x [0.5, 1] units (one unit = 5.7 metres)

Now we can plot the reduced window and its points:
plot(japanesepines.nw, main = "Japanese pines, NW quadrant")

 Japanese pines, NW quadrant

Task 14 : Compute and plot the G and L functions for this subset; compare
with these functions for the full set. Limit the plot radius to 0.10, i.e., the
close-range part of the function •
par(mfrow = c(2, 2))
G <- Gest(japanesepines.nw)
plot(G, main = "G-function, Japanese pines, NW quadrant", xlim = c(0, 0.1))
G <- Gest(japanesepines)
plot(G, main = "G-function, Japanese pines, all", xlim = c(0, 0.1))
L <- Lest(japanesepines.nw)
plot(L, main = "L-function, Japanese pines, NW quadrant", xlim = c(0, 0.1))
L <- Lest(japanesepines)
plot(L, main = "L-function, Japanese pines, all", xlim = c(0, 0.1))

20

par(mfrow = c(1, 1))

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, Japanese pines, NW quadrant

r (one unit = 5.7 metres)

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0.00 0.02 0.04 0.06 0.08 0.10

0.
0

0.
2

0.
4

0.
6

0.
8

G−function, Japanese pines, all

r (one unit = 5.7 metres)

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

L−function, Japanese pines, NW quadrant

r (one unit = 5.7 metres)

L
(r

)

L̂iso(r)
L̂t rans(r)
L̂bord(r)
Lpois(r)

0.00 0.02 0.04 0.06 0.08 0.10

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

L−function, Japanese pines, all

r (one unit = 5.7 metres)

L
(r

)

L̂iso(r)
L̂t rans(r)
L̂bord(r)
Lpois(r)

It’s clear that the smaller window, with fewer points, results in a more
irregular function. The G-function is considerably different: for the quadrant
we see some clustering around 𝑟 = 0.05; this is not seen in the full point-
pattern.

5 The 𝐹 function; non-rectangular windows

The 𝐺 function explored in §2 is a point-related function, i.e., computed
from each point in the pattern. Another way to examine point distribution
is with a location-related function, i.e., computed from any location, whether
or not it is a point. This provides information about empty space. Such a
function developed from the theory of Poisson processes is the 𝐹 “empty
space” function, which we examine in this section.

However, there is a complication. The above examples used rectangular
windows “filled” with the point pattern. The implicit assumption (which
we now make explicit) is that the data-generating process (i.e., process by
which the points were placed) operates over the whole window, and in some
border area outside the window. The process may not be homogeneous, as
we saw in the kernel density estimation (§3), but it does “fill” the window

21

– there is a probability that any location in the window could have a point.
However, if the rectangular window includes areas that were not observed
or not part of the study, there will be “white space” which appears as part
of the pattern, but is not. In that case some statistics will be misleading, in
particular, the “empty space” 𝐹 function, and any plots will include areas
that are not interesting.

Another issue is that we may be given a point-pattern that is clearly only
filling part of a map, and we want to extract that area. An example is the
point-pattern of trees from which we want to derive the boundary of a forest.
The spatstat.geom package has several useful functions for that purpose.

We illustrate the process of specifying a window with the meuse example
dataset provided with the sp package. This is a set of observation points
in the river Maas (Meuse) floodplain near the village of Stein, Limburg
province, Netherlands.

Task 15 : Load the meuse example dataset, restrict it to just the Pb content
and flooding frequency attributes, convert to a spatial object of class sf,
make an equivalent point-pattern object of class ppp, and plot as a marked
point-pattern, marked by the flooding frequency (field ffreq). •

Here we use the as.ppp method to convert from sf to ppp. The meuse data
set is first converted to an sf object with the st_as_sf method, specifying
also the coördinate fields. The flood frequency is specified as the marks of
the point pattern with the marks function.
data(meuse, package = "sp")
meuse <- meuse[,c("x","y","ffreq")]
require(sf)
meuse.sf <- st_as_sf(meuse, coords = 1:2)
meuse.ppp <- as.ppp(meuse.sf)
str(meuse.ppp)

List of 6
$ window :List of 4
..$ type : chr "rectangle"
..$ xrange: num [1:2] 178605 181390
..$ yrange: num [1:2] 329714 333611
..$ units :List of 3
.. ..$ singular : chr "unit"
.. ..$ plural : chr "units"
.. ..$ multiplier: num 1
.. ..- attr(*, "class")= chr "unitname"
..- attr(*, "class")= chr "owin"
$ n : int 155
$ x : num [1:155] 181072 181025 181165 181298 181307 ...
$ y : num [1:155] 333611 333558 333537 333484 333330 ...
$ markformat: chr "vector"
$ marks : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "class")= chr "ppp"

marks(meuse.ppp) <- meuse$ffreq
tmp <- plot(meuse.ppp, use.marks=TRUE,

cols=c("red","orange","green"),
chars=16, which.marks="marks",
main="Meuse floodplain flood frequency class",
axes=T)

grid()
legend("left", pch=16,

22

col=c("red","orange","green"),
legend=c("Annually","2-5 Years", "> 5 Years"))

178000 179000 180000 181000

33
00

00
33

10
00

33
20

00
33

30
00

 Meuse floodplain flood frequency class

3

2

1
Annually
2−5 Years
> 5 Years

We can see that the point-pattern only partially fills the bounding rectangle.
By default, the type conversion to class ppp defines the window as the rect-
angular bounding box of the point-pattern; we can see this as the window
field of the ppp object:
meuse.ppp$window

window: rectangle = [178605, 181390] x [329714, 333611] units

Task 16 : Compute a bounding window and replace the rectangular bound-
ary with it. •

We compute the window as the Ripley and Rasson [10] estimate of the spatial
domain. This is a clever way of expanding the convex hull (which contains
the outermost points) consistent with the intensity of the pattern.

We use the ripras “Ripley–Rasson forest edge” function to compute the win-
dow; we plot this along with the convex hull computed by the convexhull
function.

Note: Both ripras and convexhull return an object of class owin; this
includes the boundary in field bdry as a list of coördinate vectors.

To plot a point pattern we use the plot.ppp function, which is automatically
called by the generic plot method for an object of class ppp.

23

meuse.ppp.r <- meuse.ppp
(meuse.ppp.r$window <- ripras(meuse.ppp))

window: polygonal boundary
enclosing rectangle: [178543.73, 181443.23] x [329644.9, 333702.2]
units

tmp <- plot(meuse.ppp.r, use.marks=TRUE,
cols=c("red","orange","green"),
chars=16, which.marks="ffreq",
main="Meuse floodplain flood frequency class",
boundary=2, axes=T)

grid()
legend("left", pch=16,

col=c("red","orange","green"),
legend=c("Annually","2-5 Years", "> 5 Years"))

ch <- convexhull(meuse.ppp)
lines(ch$bdry[[1]]$x, ch$bdry[[1]]$y, lty=2)
legend("bottomright", lty=1:2,

legend=c("Ripley-Rasson", "convex hull"))

178000 179000 180000 181000 182000

33
00

00
33

10
00

33
20

00
33

30
00

 Meuse floodplain flood frequency class

3

2

1
Annually
2−5 Years
> 5 Years

Ripley−Rasson
convex hull

Q16 : Describe the polygonal window. Jump to A16 •

Q17 : How did changing the boundary affect the mean intensity of the
point process? Jump to A17 •

The intensity function of the spatstat.geom package computes the in-
tensity from the number of points and the window area:
str(meuse.ppp)

List of 6

24

$ window :List of 4
..$ type : chr "rectangle"
..$ xrange: num [1:2] 178605 181390
..$ yrange: num [1:2] 329714 333611
..$ units :List of 3
.. ..$ singular : chr "unit"
.. ..$ plural : chr "units"
.. ..$ multiplier: num 1
.. ..- attr(*, "class")= chr "unitname"
..- attr(*, "class")= chr "owin"
$ n : int 155
$ x : num [1:155] 181072 181025 181165 181298 181307 ...
$ y : num [1:155] 333611 333558 333537 333484 333330 ...
$ markformat: chr "vector"
$ marks : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "class")= chr "ppp"

intensity(meuse.ppp)

1 2 3
7.739692e-06 4.422681e-06 2.119201e-06

intensity(meuse.ppp.r)

1 2 3
1.428895e-05 8.165116e-06 3.912452e-06

round(intensity(meuse.ppp.r)/intensity(meuse.ppp), 2)

1 2 3
1.85 1.85 1.85

Clearly, this is not a perfect boundary of the area from which the points
were taken; we know from the documentation that it is bounded by a large
meander of the river Maas (Meuse), and is limited on the east side by a
canal (the Julianakanaal) and steep cliff, so ideally we’d have a bounding
polygon of the actual study area. Absent this, the Ripley-Rasson method at
least restricts the area.

Note: See §A.2 for how to import a polygonal boundary in ESRI shapefile
format, and use it for the window.

A major effect of reducing the window to the actual area sampled is to
properly estimate the “empty space” function, i.e., average distance from an
arbitrary location in the window to the nearest point (event).

Task 17 : Compute and plot the “empty space” function 𝐹 for the Meuse
point-pattern in the rectangular and polygonal windows. •

The Fest function of the spatstat.explore package computes this function
on an object of class ppp. We specify the same x-axes to compare the
functions side-by-side:
par(mfrow = c(1, 2))
plot(Fest(meuse.ppp), main = "rectangular window", xlim = c(0, 550))
plot(Fest(meuse.ppp.r), main = "polygonal window", xlim = c(0, 550))
par(mfrow = c(1, 2))

25

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

rectangular window

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

0 100 200 300 400 500

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

polygonal window

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

As with the 𝐺 function, there are several cumulative functions; 𝐹pois(𝑟) is the
theoretical distribution in the case of CSR; 𝐹bord(𝑟) is the same corrected for
border effects; the estimates are marked 𝐹method(𝑟) for Kaplan-Meier (“km”),
Chiu-Stoyan (“cs”). Note the different x-axis scales of the two plots.

Q18 : What proportion of space is expected to have at least one point
within 100 m for the rectangular and polygonal windows? Jump to A18 •

Q19 : Describe the agreement (or lack thereof) of the observed 𝐹km(𝑟) with
the theoretical for CSR 𝐹pois(𝑟). Jump to A19 •

6 Marked point patterns

A marked point pattern is one where each point has some attribute; this can
be a continuous value (e.g., tree size) (§6.4) or a categorical attribute (e.g.,
tree species, tree size class) (§6.1).

6.1 Categorical marks

We first examine a point-pattern marked with a categorical attribute: the
“forest fires” dataset clmfires, supplied as an example in the spatstat
package. This is a record of forest fires (1998-2007) in the Castilla-La Man-
cha region (E). For each fire there are four types of marks, i.e., attributes:
cause, date, day of year, and size.

Task 18 : Load the clmfires dataset and display the locations of the fires,
along with their cause. •
data(clmfires)
plot(clmfires, which.marks = "cause", bg = 2:5, chars = 21:24, cex = 0.5,

axes = T, main = "Castilla-La Mancha forest fires")
grid()
legend("topleft", pch = 21:24, legend = levels(clmfires$marks$cause), pt.bg = 2:5)

26

−100 0 100 200 300 400

0
10

0
20

0
30

0
40

0

 Castilla−La Mancha forest fires

other

intentional

accident

lightning

lightning
accident
intentional
other

Q20 : What do the marks represent? How many classes are there? Jump
to A20 •

Task 19 : Split the marked point-pattern and show the pattern for each
mark separately. •

The split.ppp method of the spatstat.geom package specializes the generic
split method. Similarly, the plot.splitppp method of the spatstat.geom
package specializes the generic plot method

Here we don’t need to plot any mark types, since we’ve already split on the
cause. So the use.marks argument to plot.splitppp is set to FALSE.
clmfires.split <- split(clmfires)
str(clmfires.split, max.level=1)

List of 4
$ lightning :List of 6
..- attr(*, "class")= chr "ppp"
$ accident :List of 6
..- attr(*, "class")= chr "ppp"
$ intentional:List of 6
..- attr(*, "class")= chr "ppp"
$ other :List of 6

27

..- attr(*, "class")= chr "ppp"
- attr(*, "class")= chr [1:4] "splitppp" "ppplist" "solist" "list"
- attr(*, "fsplit")= Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...
- attr(*, "fgroup")= Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...

plot(clmfires.split, use.marks=FALSE,
main="Castilla-La Mancha forest fires",
pch=21, bg=2)

Castilla−La Mancha forest fires

lightning

accident

intentional

other

Q21 : Do the fires with different causes appear to have different point
patterns? Jump to A21 •

We could compare the separate patterns with the usual 𝐺, 𝐹, 𝐽, 𝐾 or 𝐿
functions and compare the function plots visually.

6.2 Interaction between point patterns: the cross-𝐾 function

Another question can be raised when there are several patterns covering the
same area: what is the interaction between them? That is, do occurrences
of one mark “attract” or “repel” those of other marks?

Note: The quotes for “attract” and “repel” remind us that we need meta-
statistical information to propose the causes of observed interactions.

28

We call such a process a multi-type process, that is, we assume that there
may be some interaction between the types. In the current example, we may
expect that an area burned with one kind of fire would not be susceptible
to another kind of fire, because the necessary fuel would have been removed
by the first fire. We assume that the multi-type process is stationary across
the area.

The appropriate statistic to investigate this is a so-called “cross” point-
pattern function, from mark type 𝑖 to mark type 𝑗 or vice-versa. For ex-
ample, a crossed 𝐾 function of a stationary multi-type point process with
intensity 𝜆 𝑗 of point type 𝑗 is defined so that 𝜆 𝑗𝐾𝑖 𝑗 (𝑟) is the expected num-
ber of additional random points of type 𝑗 within a distance 𝑟 of a typical
point of type 𝑖.

The 𝐾𝑖 𝑗 (𝑟) function plotted over a range of distances is used to form hy-
potheses about the multi-type point pattern. If the two point-processes are
independent, the expected value 𝐾𝑖 𝑗 (𝑟) = 𝜋𝑟2, that is, the number of ad-
ditional points just depends on the area of the circle centred on a source
point. If the empirical 𝐾𝑖 𝑗 function is above the theoretical function 𝜋𝑟2

(i.e., a parabola), there are more points of type 𝑗 near to the source points
of type 𝑖 than expected; this suggest dependence between the processes. If
the empirical function is below the theoretical, this suggests repulsion or
avoidance.

Task 20 : Compute and plot the cross-K function for the relation between
intentional and lightning-induced fires. •

The Kcross function computes Ripley’s 𝐾, as for the univariate case (func-
tion Kest), but the measure is the number of neighbours of another pattern
within a radius of a given point3. However, this function works on an “multi-
type point-pattern” object, which is a point-pattern with a single mark. The
clmfires object has four kinds of marks:
str(clmfires$marks)

'data.frame': 8488 obs. of 4 variables:
$ cause : Factor w/ 4 levels "lightning","accident",..: 3 1 1 1 4 4 2 4 2 2 ...
$ burnt.area : num 0.4 0 0.4 0 1.05 3 0.1 0.02 0.4 2.85 ...
$ date : Date, format: "1998-01-07" ...
$ julian.date: num 6 6 6 6 6 7 7 7 8 8 ...

So, we make an object with just a single mark, i.e., the causes:
clmfires.cause <- clmfires
is.multitype(clmfires.cause)

[1] FALSE

clmfires.cause$marks <- clmfires$marks$cause
is.multitype(clmfires.cause)

[1] TRUE

Now we can compute the cross-K function, using Kcross. We specify the
3 There are similar analogues of the 𝐿, 𝐺, and 𝐽 functions, but not the 𝐹 “empty space”

function.

29

‘translation’ edge correction, suitable for complex geometries such as the
province boundaries:
Kcross.il <- Kcross(clmfires.cause, "intentional", "lightning", correction = "translate")
plot(Kcross.il)
grid()

0 20 40 60 80

0
50

00
10

00
0

15
00

0
20

00
0

25
00

0

Kcross.il

r (kilometres)

K
in

te
nt

io
na

l,
lig

ht
ni

ng
(r

)

K̂intent ional, l ightning

trans
(r)

Kintent ional, l ightning
pois (r)

Q22 : Is there evidence for interaction between the processes that produce
the intentional and accidental fires? Jump to A22 •

6.3 Combining point patterns

We may have two or more unmarked point patterns which represent different
types of points, which we want to combine into a marked point pattern. For
example, the redwoodfull and japanesepines point patterns represent two
kinds of trees as unmarked point patterns. If we suppose these two patterns
are from the same area4 we may ask what is the relation between them. We
can discover this with the cross-K function, if we can combine them into a
single multi-type marked point pattern.

Task 21 : Combine the redwoodfull and japanesepines point patterns
into a single multi-type marked point pattern. •

The superimpose function of the spatstat.geom package superimpose sev-
eral point patterns. These can optionally be supplied with marks applied to
all points in each pattern.
two.trees <- superimpose(rw = redwoodfull, jp = japanesepines)
str(two.trees)

List of 6
$ window :List of 4

4 which is not true, but allows us to illustrate the techniques

30

..$ type : chr "rectangle"
..$ xrange: num [1:2] 1e-09 1e+00
..$ yrange: num [1:2] 1e-09 1e+00
..$ units :List of 3
.. ..$ singular : chr "metre"
.. ..$ plural : chr "metres"
.. ..$ multiplier: num 5.7
.. ..- attr(*, "class")= chr "unitname"
..- attr(*, "class")= chr "owin"
$ n : int 260
$ x : num [1:260] 0.931 0.939 0.935 0.98 0.787 ...
$ y : num [1:260] 0.818 0.764 0.722 0.665 0.661 ...
$ markformat: chr "vector"
$ marks : Factor w/ 2 levels "rw","jp": 1 1 1 1 1 1 1 1 1 1 ...
- attr(*, "class")= chr "ppp"

plot(two.trees, main = "Superimposed point patterns", cols = c("green",
"blue"))

 Superimposed point patterns

jp

rw

In this case the windows had the same extent; by default a union of the win-
dows of the superimposed point patterns is used. The optional W “Window”
argument provides several additional ways to specify a window.

Task 22 : Compute the crossed K-function for these two tree species. •
Kcross.jp.rw <- Kcross(two.trees)
plot(Kcross.jp.rw)
grid()

31

0.00 0.05 0.10 0.15 0.20 0.25

0.
00

0.
05

0.
10

0.
15

0.
20

Kcross.jp.rw

r (one unit = 5.7 metres)

K
rw

, j
p
(r

)

K̂rw, jp

iso
(r)

K̂rw, jp

t rans
(r)

K̂rw, jp

bord
(r)

Krw, jp
pois (r)

Q23 : Does there appear to be any interaction between the point processes
that produced these two tree species? Is this surprising? Jump to A23 •

6.4 Continuous marks

The marks on a point-pattern may be continuous variables rather than cat-
egories. An example is the longleaf dataset, which shows the locations and
diameters at breast height (DBH) of 584 longleaf pines (Pinus palustris) in
a 200 x 200 metre region in southern Georgia (USA)

Task 23 : Load and display this point pattern. Show the mature trees with
a red symbol, and saplings with a green symbol. •

The summary function summarizes the dataset. To just see the window size,
use the Window function (note the capital “W”).
data(longleaf)
summary(longleaf)

Marked planar point pattern: 584 points
Average intensity 0.0146 points per square metre
##
Coordinates are given to 1 decimal place
i.e. rounded to the nearest multiple of 0.1 metres
##
marks are numeric, of type 'double'
Summary:
Min. 1st Qu. Median Mean 3rd Qu. Max.
2.00 9.10 26.15 26.84 42.12 75.90
##
Window: rectangle = [0, 200] x [0, 200] metres
Window area = 40000 square metres
Unit of length: 1 metre

Window(longleaf)

32

window: rectangle = [0, 200] x [0, 200] metres

plot(longleaf, main = "Longleaf pines, location and DBH", cols = function(x) ifelse(x <
30, "green", "red"))

grid()

 Longleaf pines, location and DBH

20

40

60

Q24 : Do the trees appear to be clustered, regularly-spaced, or randomly
placed? Do trees of similar size appear to be clustered? What appears to
be the relation between mature trees and saplings? Jump to A24 •

Task 24 : Compute and plot the K function for the longleaf pines. •

Again the estimated K function is computed with Kest.
K.long <- Kest(longleaf)
plot(K.long, main = "K function, longleaf pines")

33

0 10 20 30 40 50

0
20

00
40

00
60

00
80

00
10

00
0

K function, longleaf pines

r (metres)

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

The trees clearly show some clustering at all distances to 50 m.

7 Models of spatial processes

Supplementary reading:

• Bivand et al. [2, §7.4.4]: Likelihood of an inhomogeneous Poisson pro-
cess

The observed point pattern is presumably the realization of some point pro-
cess, i.e., a spatial data generating process (sDGP) by which points, also
called “events”, are placed on the landscape. These could be completely ran-
dom with some intensity (a homogeneous Poisson process), random but with
varying intensity across the region (an inhomogeneous Poisson process), a
process depending on inter-point interactions, depending on a regional trend,
depending on environmental covariables, or any combination. If we can fit
a model to the observed process we can (1) infer the sDGP which generated
it; (2) map the results of the process.

The result of such models is a conditional intensity 𝜆(𝑢, x), a function of the
location 𝑢 and the observed point pattern x. The units are the number of
points per unit area. In practice we compute this over some “small” cell.

Baddeley and Turner [1] explain how to fit stochastic models to observed
point patterns with the versatile ppm function of the spatstat.model pack-
age. The issue of modelling is quite deep and you are encouraged to read this
paper before building your own models; here we only show some possibilities.

The general formula for models that can be fit with ppm is [1, Eqn. (4)]:

𝜆(𝑢, x) = exp
(
𝜓𝑇𝐵(𝑢) + 𝜙𝑇𝐶 (𝑢, x)

)
(8)

where the two components are:

34

1. the spatial trend 𝐵(𝑢) which depends only on location; this could also
include covariates at these locations;

2. the stochastic interactions 𝐶 (𝑢, x), i.e., the dependence between the
points of the point process.

The analyst specifies the forms of 𝐵 and 𝐶 and ppm estimates the coefficients
(𝜓, 𝜙).

We continue with the Castilla-La Mancha forest fires example of §6. In this
modelling exercise we subset the whole dataset to just one kind of fire; it
should be easier to interpret the model results.

Task 25 : Restrict the dataset to intentional fires. •

Again use the split.ppp function, and then select one of the subsets.
clmfires.i <- split(clmfires, "cause")$intentional
plot(clmfires.i, chars = 21, cex = 0.5, bg = 2, axes = T, main = "Castilla-La Mancha intentional forest fires",

use.marks = FALSE)
grid()

0 100 200 300 400

10
0

20
0

30
0

 Castilla−La Mancha intentional forest fires

Task 26 : Remove the marks from the point pattern. •

This is necessary because ppm is not yet implemented for marked patterns.
Here we remove the marks for the entire pattern; it would also be possible to
split the pattern according to a mark using the split.ppp function, remove
the marks from each of the sub-patterns and analyze each one.

35

marks(clmfires.i) <- NULL

7.1 Null model

Task 27 : Model the forest fire incidence as a Poisson process, i.e., complete
spatial randomness (CSR). This is a “null” model because it is the simplest
hypothesis about how points are placed. •

This is the simplest conditional intensity: 𝜆(𝑢, x) = 𝛽, where 𝛽 is a single
intensity of a (presumed) homogeneous Poisson process. In the terminology
of Eqn. (8), both 𝐵 (trend) and 𝐶 (interaction) are absent.

We specify this to ppm by setting the trend argument to ~1, i.e., the process
only has a mean intensity. We also specify the type of interaction between
points by setting the interaction argument to NULL5.
print(m.pois <- ppm(clmfires.i, trend = ~1, interaction = NULL))

Stationary Poisson process
Fitted to point pattern dataset 'clmfires.i'
Intensity: 0.02250655
Estimate S.E. CI95.lo CI95.hi Ztest Zval
log(lambda) -3.793949 0.02366243 -3.840326 -3.747571 *** -160.3364

class(m.pois)

[1] "ppm"

exp(coef(m.pois))

log(lambda)
0.02250655

intensity(clmfires.i)

[1] 0.02250655

(clmfires.i$n/summary(clmfires.i)$window$areas)

[1] 0.02250655

A model fitted by ppm is of class ppm.

This is not a very interesting model, since we could get the same result
simply from the average intensity, using the intensity function or even
direct computation from the number of points and the window area. The
only complication is that ppm works with the logarithm of the parameters,
in this case just the Poisson intensity 𝛽. Notice however the standard error
and confidence intervals that are provided with the model summary.

7.2 Trend surface

A more complex model is 𝜆(𝑢, x) = 𝛽(𝑢), where 𝛽(𝑢) is a variable intensity,
dependent on the location 𝑢, of a (presumed) inhomogeneous Poisson pro-
cess. This is termed a trend, which may be a function of the coördinates or
5 These are both defaults and so don’t have to be explicitly specified.

36

of covariables. In the terminology of Eqn. (8), 𝐵 (trend) is defined but 𝐶
(interaction) are absent. The form of 𝐵 is a trend surface, i.e., a polynomial
function of the coördinates.

Q25 : Does there seem to be a regional trend in intentional forest fire
intensity? Jump to A25 •

Task 28 : Model the intentional forest fire incidence as first- and second-
order regional trend plus a Poisson process, i.e., complete spatial randomness
(CSR) after accounting for a trend. •

We specify the trend to ppm by setting the trend argument to a formula;
for example ~x+y for a first-order trend: the intensity changes linearly along
some plane to be computed. Here we use the polynom function to specify
both first- and second-order trend surface:
(m.ts1 <- ppm(clmfires.i, trend = ~polynom(x, y, 1), interaction = NULL))

Nonstationary Poisson process
Fitted to point pattern dataset 'clmfires.i'
##
Log intensity: ~x + y
##
Fitted trend coefficients:
(Intercept) x y
-3.287880898 -0.005732725 0.002884705
##
Estimate S.E. CI95.lo CI95.hi Ztest
(Intercept) -3.287880898 0.0731704116 -3.431292270 -3.144469527 ***
x -0.005732725 0.0002707268 -0.006263340 -0.005202111 ***
y 0.002884705 0.0003026018 0.002291616 0.003477793 ***
Zval
(Intercept) -44.934569
x -21.175316
y 9.533004

(m.ts2 <- ppm(clmfires.i, trend = ~polynom(x, y, 2), interaction = NULL))

Nonstationary Poisson process
Fitted to point pattern dataset 'clmfires.i'
##
Log intensity: ~x + y + I(x^2) + I(x * y) + I(y^2)
##
Fitted trend coefficients:
(Intercept) x y I(x^2) I(x * y)
-5.268868e+00 1.202084e-02 9.535875e-03 -3.409373e-05 -2.969984e-05
I(y^2)
-2.229839e-06
##
Estimate S.E. CI95.lo CI95.hi
(Intercept) -5.268868e+00 2.541951e-01 -5.767081e+00 -4.770655e+00
x 1.202084e-02 1.686762e-03 8.714846e-03 1.532683e-02
y 9.535875e-03 1.615694e-03 6.369173e-03 1.270258e-02
I(x^2) -3.409373e-05 3.582964e-06 -4.111621e-05 -2.707125e-05
I(x * y) -2.969984e-05 4.670127e-06 -3.885312e-05 -2.054656e-05
I(y^2) -2.229839e-06 3.526177e-06 -9.141018e-06 4.681341e-06
Ztest Zval
(Intercept) *** -20.7276522
x *** 7.1265770
y *** 5.9020307
I(x^2) *** -9.5155088
I(x * y) *** -6.3595372

37

I(y^2) -0.6323672

Now we see the fitted coefficients 𝛽; the intercept is the overall log-intensity
at (0, 0) (the lower-left corner of the pattern) and the coefficients show the
change intensity in the 𝑥 and 𝑦 directions, along with their standard errors
and confidence intervals; recall these are logarithms, so we convert to original
units to interpret them. Here we see an increase in intensity towards the
WNW, almost equal in both axes. This accords with our visual estimate.

Task 29 : Plot the trend surfaces. •

The plot.ppm function calls predict.ppm (see below, §8) to compute the
spatial trend and conditional intensity of the fitted point process model on
a grid, and then displays the result; by default the grid is 40 by 40 pixels
filling the bounding box.

We first visualize these by a colour ramp 2.5D plot; the how argument spec-
ifies the type of plot:

par(mfrow = c(1, 2))
plot.ppm(m.ts1, ngrid = c(80, 80), how = "image", superimpose = F, trend = T,

se = F, pause = F, main = "1st-order trend")
plot.ppm(m.ts2, ngrid = c(80, 80), how = "image", superimpose = F, trend = T,

se = F, pause = F, main = "2nd-order trend")
par(mfrow = c(1, 1))

 1st−order trend

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

 2nd−order trend

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

We can also see the trends as perspective plots:

38

par(mfrow = c(1, 2))
plot.ppm(m.ts1, ngrid = c(80, 80), how = "persp", theta = -30, phi = 30,

trend = T, se = F, pause = F, main = "1st-order trend")
plot.ppm(m.ts2, ngrid = c(80, 80), how = "persp", theta = -30, phi = 30,

trend = T, se = F, pause = F, main = "2nd-order trend")
par(mfrow = c(1, 1))

x

y

trend

1st−order trend

x

y

trend

2nd−order trend

Task 30 : Compare the goodness-of-fit of the Poisson process and the trend
models. •

The anova.ppm function performs analysis of deviance for two or more fitted
models with Poisson interaction terms, i.e., independence:
anova.ppm(m.ts2, m.ts1, m.pois)

Analysis of Deviance Table
##
Model 1: ~x + y + I(x^2) + I(x * y) + I(y^2) Poisson
Model 2: ~x + y Poisson
Model 3: ~1 Poisson
Npar Df Deviance
1 6
2 3 -3 -126.47
3 1 -2 -504.87

Here we see that the trend surfaces uses more degrees of freedom but both
reduce the residual deviance slightly as the model becomes increasingly com-
plex.

7.3 Strauss process

So far we’ve treated the observations as independent (a Poisson process),
possibly influenced by a regional trend in overall intensity. Another possi-
bility is that fires are not independent. In the terminology of Eqn. (8), 𝐵
(trend) is absent but 𝐶 (interaction) is present; the analyst must define the
form of 𝐶. One way to model that is as a Strauss process: 𝜆(𝑢, x) = 𝛽𝛾𝑡 (𝑢,x) ,

39

where 𝛽 is the overall homogeneous intensity and 𝛾 is an interaction param-
eter 0 ≤ 𝛾 ≤ 1 and 𝑡 (𝑢, x) is the number of points of the pattern x closer than
the interaction radius 𝑟 of the location 𝑢. This has an interesting interpreta-
tion: 𝛾 = 0 =⇒ 𝜆 = 0, that is, within the radius there is no chance of finding
another point, perhaps because of the intrinsic size of a “point”. With 𝛾 < 1
the chance of a second point is reduced, at 𝛾 = 1 this is equivalent to a
Poisson process (no effect one way or the other).

Note: A Strauss process is an example of a so-called Gibbs process, derived
from physics to model repulsion; they include an intensity and an interaction
function.

Task 31 : Fit a homogeneous Strauss process model to the forest fire
incidence and plot the resulting surface. •

Here we add an interaction argument to the ppm function. See ?ppm for
the choices. We choose StraussHard. Then we must choose an interaction
radius; the parameter 0 ≤ 𝛾 ≤ 1 is estimated by ppm.

We investigate this with the 𝐾 function. Above (§4) we saw that this mea-
sures the number of points within a given radius of a given point, as a
function of radius.
plot(Kest(clmfires.i, r = seq(0, 10, by = 0.2)))

0 2 4 6 8 10

0
20

0
40

0
60

0
80

0

Kest(clmfires.i, r = seq(0, 10, by = 0.2))

r (kilometres)

K
(r

)

K̂iso(r)
K̂trans(r)
K̂bord(r)
Kpois(r)

There seems to be an inflection point around 4 km, so we pick this as an
interaction radius.
(m.strauss.4 <- ppm(clmfires.i, trend=~1,

interaction=StraussHard(r=4)))

Stationary Strauss - hard core process
Fitted to point pattern dataset 'clmfires.i'
##
First order term: beta = 0.01768717
##

40

Interaction distance: 4
Hard core distance: 0.003995263
Fitted interaction parameter gamma: 1.0781255
##
Relevant coefficients:
Interaction
0.07522386
##
For standard errors, type coef(summary(x))

exp(coef(m.strauss.4))

(Intercept) Interaction
0.01768717 1.07812547

There are two fitted parameters: the overall log intensity 𝛽 and the strength-
of-interaction parameter 𝛾. This latter was fit as 1.0781, i.e., 𝛾 > 1, so there
is on average clustering.

Task 32 : Compare the likelihood of the several fitted models. •

The logLik function shows the log-likelihood of the fitted parameters:
data.frame(

model=c("Poisson","1st order trend", "2nd order trend", "Strauss/hard core"),
likelihood=c(logLik(m.pois, warn=F),

logLik(m.ts1, warn=F),
logLik(m.ts2, warn=F),
logLik(m.strauss.4, warn=F)))

model likelihood
1 Poisson -8561.993
2 1st order trend -8306.779
3 2nd order trend -8243.545
4 Strauss/hard core -6776.067

Clearly the Strauss model is superior: there is local clustering, not CSR,
and this is a better fit to the observations than either trend surface.

7.4 Covariates

The observed point pattern may well depend on environmental factors. For
example, density of trees in a forest may depend on soil type, elevation,
temperature or rainfall. Baddeley and Turner [1, §7] explain how how to in-
clude covariates, such as environmental factors, in the model. The clmfires
dataset is accompanied by a raster dataset clmfires.extra, a list of two
objects of class im, also defined by spatstat, which is a matrix of images
(i.e., a layer stack). One of the objects in the list is clmcov200, a 200 x 200
pixels grid in the same coördinate system as clmfires, showing four possible
covariates that might affect fire incidence: elevation, orientation (aspect),
slope and landuse. The anova.ppm function uses this image to extract the
value of the covariable(s) at the locations of observed events (points).

Loading clmfires also loaded the covariate images as object clmfires.extra:
names(clmfires.extra)

[1] "clmcov100" "clmcov200"

names(clmfires.extra$clmcov200)

41

[1] "elevation" "orientation" "slope" "landuse"

names(clmfires.extra$clmcov200$landuse)

[1] "v" "dim" "xrange" "yrange" "xstep" "ystep" "xcol"
[8] "yrow" "type" "units"

names(clmfires.extra$clmcov200$landuse)

[1] "v" "dim" "xrange" "yrange" "xstep" "ystep" "xcol"
[8] "yrow" "type" "units"

levels(clmfires.extra$clmcov200$landuse$v)

[1] "urban" "farm" "meadow" "denseforest"
[5] "conifer" "mixedforest" "grassland" "bush"
[9] "scrub" "artifgreen"

Task 33 : Display the covariate images. •

The generic plot method specializes to plot.im for objects of class im.
plot(clmfires.extra$clmcov200, main = "200 m grid covariates")

200 m grid covariates

 elevation

50
0

10
00

20
00

 orientation

50
15

0
25

0
35

0

 slope

10
20

30
40

 landuse

ur
ba

n
co

ni
fe

r
bu

sh

We can get a better view of the landuse classes by considering them as an
SpatRaster object as defined by the terra package:

42

require(terra)
clmfires.lu.grid <- rast(clmfires.extra$clmcov200$landuse)
class(clmfires.lu.grid)

[1] "SpatRaster"
attr(,"package")
[1] "terra"

plot(clmfires.lu.grid, col = hcl.colors(11, palette = "viridis"))

0 100 200 300

0
10

0
20

0
30

0

artifgreen
bush
conifer
denseforest
farm
grassland
meadow
mixedforest
scrub
urban

An interesting question is whether different land uses have different forest
fire incidences.

Task 34 : Model the incidence of intentional forest fire as a function of the
“landuse” covariate, without any interaction process. Compare the model fit
with the null model. •

In the terminology of Eqn. (8), 𝐵 (trend) depends on the covariates (not
the coördinates as in the trend surface), and 𝐶 (interaction) is absent. The
analyst must define the form of 𝐵, here, a linear model of the covariate.
levels(clmfires.extra$clmcov200$landuse)

[1] "urban" "farm" "meadow" "denseforest"
[5] "conifer" "mixedforest" "grassland" "bush"
[9] "scrub" "artifgreen"

(m.lu <- ppm(clmfires.i, ~ landuse - 1,
covariates=clmfires.extra$clmcov200,
interaction=NULL))

Nonstationary Poisson process
Fitted to point pattern dataset 'clmfires.i'
##
Log intensity: ~landuse - 1
##
Fitted trend coefficients:
landuseurban landusefarm landusemeadow
-4.266410 -3.711950 -4.172085

43

landusedenseforest landuseconifer landusemixedforest
-4.000644 -3.716348 -4.211720
landusegrassland landusebush landusescrub
-4.003044 -3.967172 -3.626773
landuseartifgreen
-15.302585
##
Estimate S.E. CI95.lo CI95.hi
landuseurban -4.266410 0.16439899 -4.588626 -3.944194
landusefarm -3.711950 0.03251280 -3.775674 -3.648226
landusemeadow -4.172085 0.13736056 -4.441307 -3.902863
landusedenseforest -4.000644 0.12700013 -4.249560 -3.751729
landuseconifer -3.716348 0.07669650 -3.866671 -3.566026
landusemixedforest -4.211720 0.19611614 -4.596100 -3.827339
landusegrassland -4.003044 0.11704115 -4.232440 -3.773647
landusebush -3.967172 0.07832604 -4.120688 -3.813656
landusescrub -3.626773 0.06250000 -3.749270 -3.504275
landuseartifgreen -15.302585 251.20102020 -507.647538 477.042367
Ztest Zval
landuseurban *** -25.95155663
landusefarm *** -114.16887274
landusemeadow *** -30.37323862
landusedenseforest *** -31.50110610
landuseconifer *** -48.45525351
landusemixedforest *** -21.47564168
landusegrassland *** -34.20202124
landusebush *** -50.64945926
landusescrub *** -58.02836198
landuseartifgreen -0.06091769

data.frame(model=c("Poisson", "Landuse"),
likelihood=c(logLik(m.pois),

logLik(m.lu, warn=F)))

model likelihood
1 Poisson -8561.993
2 Landuse -8533.131

Q26 : Does the landuse explain some of the intentional fire pattern? Which
land use classes are more prone to fire? Jump to A26 •

Task 35 : Model the incidence of intentional forest fire as a function of the
“landuse” covariate, also taking into account a presumed Strauss interaction
process. Compare the model fit with the null, landuse-only and interaction-
only models. •

In the terminology of Eqn. (8), 𝐵 (trend) depends on the covariates (not
the coördinates as in the trend surface), and 𝐶 (interaction) is present. The
analyst must define the forms of both 𝐵 (here, a linear model of the covariate)
and 𝐶 (here the Strauss process).
(m.lu.strauss.4 <- ppm(clmfires.i, ~ landuse,

covariates=clmfires.extra$clmcov200,
interaction=StraussHard(r = 4)))

Nonstationary Strauss - hard core process
Fitted to point pattern dataset 'clmfires.i'
##
Log trend: ~landuse
##
Fitted trend coefficients:
(Intercept) landusefarm landusemeadow

44

-4.4280748 0.3394140 0.2921413
landusedenseforest landuseconifer landusemixedforest
0.4687907 0.3072505 0.2188922
landusegrassland landusebush landusescrub
0.3457191 0.4270869 0.7187600
landuseartifgreen
-10.8745103
##
Interaction distance: 4
Hard core distance: 0.003995263
Fitted interaction parameter gamma: 1.0789022
##
Relevant coefficients:
Interaction
0.07594402
##
For standard errors, type coef(summary(x))

data.frame(
model=c("Poisson", "Landuse", "Strauss", "Landuse + Strauss"),
likelihood=c(logLik(m.pois),

logLik(m.lu, warn=F),
logLik(m.strauss.4, warn=F),
logLik(m.lu.strauss.4, warn=F)))

model likelihood
1 Poisson -8561.993
2 Landuse -8533.131
3 Strauss -6776.067
4 Landuse + Strauss -6757.784

Q27 : Which model is most likely, given the observations? What do you
conclude about the origin of intentionally-set fires? Jump to A27 •

8 Spatial prediction

The models fit with ppm can be used to predict the point-pattern intensity
over a study area. Obviously, they can not predict individual events (e.g.,
new forest fires) but they can predict the conditional intensity 𝜆(𝑢, x) of an
occurrence at each location over a grid. The predict.ppm function (called
just as predict on an object of class ppm, i.e., a “point pattern model”)
evaluates the intensity at each grid location.

Task 36 : Predict the conditional intensity of intentional fires using the
landuse as predictor and plot it. •
pred.lu <- predict(m.lu, covariates = clmfires.extra$clmcov200)
summary(pred.lu)

real-valued pixel image
128 x 128 pixel array (ny, nx)
enclosing rectangle: [4.131124, 391.3795] x [18.565, 385.189]
kilometres
dimensions of each pixel: 3.03 x 2.86425 kilometres
Image is defined on a subset of the rectangular grid
Subset area = 79462.0730449286 square kilometres
Subset area fraction = 0.56
Pixel values (inside window):
range = [2.260329e-07, 0.0266019]
integral = 1787.036

45

mean = 0.02248917

image(pred.lu, main = "Fire intensity based on land use")

 Fire intensity based on land use

0.
00

5
0.

01
0.

01
5

0.
02

0.
02

5

Notice the default grid 128 x 128 pixels, and the automatic calculation of
the size of each grid cell. This can be changed with the optional ngrid ar-
gument. Intensity at any set of locations can be requested with the optional
locations argument. See ?predict.ppm for details.

Q28 : What is the pattern of conditional intensities? How is this derived
from the model? Jump to A28 •

Another model was the trend surface; we already saw that prediction in the
previous section.

The best model of the previous section was landuse + Strauss (interaction
process).

Task 37 : Predict the conditional intensity of intentional fires using the
landuse + Strauss process as predictors. Compare the range and mean with
the land use-only model. •
pred.lu.strauss <- predict(m.lu.strauss.4,

covariates=clmfires.extra$clmcov200)
summary(pred.lu.strauss)

real-valued pixel image
128 x 128 pixel array (ny, nx)
enclosing rectangle: [4.131124, 391.3795] x [18.565, 385.189]

46

kilometres
dimensions of each pixel: 3.03 x 2.86425 kilometres
Image is defined on a subset of the rectangular grid
Subset area = 79462.0730449286 square kilometres
Subset area fraction = 0.56
Pixel values (inside window):
range = [2.260329e-07, 0.0244943]
integral = 1402.767
mean = 0.01765328

range(pred.lu.strauss)

[1] 2.260329e-07 2.449430e-02

range(pred.lu)

[1] 2.260329e-07 2.660190e-02

mean(pred.lu.strauss)

[1] 0.01765328

mean(pred.lu)

[1] 0.02248917

Q29 : Which model has the higher predicted mean intensity and wider
range? Jump to A29 •

Task 38 : Plot the two predicted maps with the same stretch. •

47

par(mfrow=c(1,2))
zlim=c(min(pred.lu, pred.lu.strauss),

max(pred.lu, pred.lu.strauss))
image(pred.lu, zlim=zlim,

main="land use")
image(pred.lu.strauss, zlim=zlim,

main="land use + Strauss process")
par(mfrow=c(1,2))

 land use

0.
00

5
0.

01
0.

01
5

0.
02

0.
02

5

 land use + Strauss process

0.
00

5
0.

01
0.

01
5

0.
02

0.
02

5

48

9 Spatio-temporal analysis

Point patterns can evolve over time. In this short section we introduce one
way to analyze these: by comparing time slices of a point pattern where
each point is associated with a time stamp, i.e., time of observation.

The objective is to analyze point-patterns which may change over time, for
example:

• locations of live trees in a forest plot (some die, some new ones grow);

• locations of crime or disease incidences; these occur at known times.

There is a rich literature on spatio-temporal point process models, see Diggle
[5] and Taylor et al. [11]. Here we only show some visualizations and simple
analysis, without any attempt to build models.

We ask several questions about the point pattern:

1. Does the structure of the point-pattern change over time?

• Evaluate with intensity, kernel density, G, F, K, L functions.

2. Does the point-pattern at one time affect the pattern at a later time?

• Evaluate with the crossed K function.

And of course the aim is to interpret the answers in terms of the process
that produced the spatio-temporal point pattern.

We use an example of occurrences of foot-and-mouth disease of cattle from
North Cumbria (England), fmd, in the stpp “Spatio-temporal Point Pat-
terns” package.

Task 39 : Load the foot-and-mouth disease temporal point-pattern dataset,
and the study area boundary northcumbria. Summarize the dataset. •
library("stpp")
data("fmd")
data("northcumbria")
summary(fmd)

X Y ReportedDay
Min. :295580 Min. :494470 Min. : 28.00
1st Qu.:327742 1st Qu.:534362 1st Qu.: 51.00
Median :340625 Median :544235 Median : 60.50
Mean :340190 Mean :542980 Mean : 71.83
3rd Qu.:352670 3rd Qu.:553052 3rd Qu.: 76.00
Max. :384530 Max. :575320 Max. :198.00

dim(fmd)

[1] 648 3

Task 40 : Examine the dataset description. •
help(fmd)

49

Q30 : What are the three fields? How many cases of foot-and-mouth disease
were reported? Jump to A30 •

Task 41 : Display a histogram of the occurrences over time. •
hist(fmd[,"ReportedDay"], xlab="reported day",

main="Cases of Foot-and-mouth disease", breaks=16)
rug(fmd[,"ReportedDay"])

Cases of Foot−and−mouth disease

reported day

F
re

qu
en

cy

50 100 150 200

0
50

10
0

15
0

Q31 : Describe the temporal pattern of the epidemic. Jump to A31 •

Task 42 : Convert the point-pattern to an object of R class stpp “spatio-
temporal point pattern”. •

The function as.3dpoints performs this conversion:
class(fmd)

[1] "matrix" "array"

fmd <- as.3dpoints(fmd)
class(fmd)

[1] "stpp"

Task 43 : Plot the occurrence locations, with an indication of the data of
occurrence. •

We show the occurrence by the size of the symbol, stretched from mark.cexmin
to mark.cexmin:

50

plot(fmd, s.region = northcumbria, pch = 21, mark = TRUE, mark.col = 0,
mark.cexmin = 0.2, mark.cexmax = 1.2, col = "blue", bg = "red")

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

For reference, here is the study area from Google Maps. Northern Cumbria
county does not include Windermere and further south.

51

Q32 : Describe the overall spatial point pattern, not considering time of
occurrence. Jump to A32 •

Q33 : Describe the evolution of the spatial point pattern over time. Jump
to A33 •

Now for some analysis. We will compare the G and F functions for time-
slices of the point-pattern, and examine their interaction with the crossed
K function. The time slices discretize the continuous evolution of the epi-
demic. In practice these would be set by the epidemiologist according to the
presumed process; for convenience we chose 50-day time slices.

Note: You can experiment with different time slices.

Task 44 : Slice the data set into 50-day intervals; report the number of
cases in each slice. •

Slicing is with the [] selection operator and various logical operators, in-
cluding < and <=, to form logical conditions.
dim(fmd)[1]

[1] 648

fmd.1 <- as.3dpoints(fmd[fmd[, 3] <= 50,])
fmd.2 <- as.3dpoints(fmd[(fmd[, 3] > 50) & (fmd[, 3] <= 100),])
fmd.3 <- as.3dpoints(fmd[(fmd[, 3] > 100) & (fmd[, 3] <= 150),])
fmd.4 <- as.3dpoints(fmd[fmd[, 3] > 150,])
dim(fmd.1)[1]

[1] 156

52

dim(fmd.2)[1]

[1] 404

dim(fmd.3)[1]

[1] 40

dim(fmd.4)[1]

[1] 48

Q34 : How many cases are in each slice? Jump to A34 •

Task 45 : Plot each slice’s point pattern. •
plot(fmd.1, s.region = northcumbria, pch = 21, col = "blue", bg = "red",

mark = T, mark.col = 0, mark.cexmin = 1, mark.cexmax = 1)
title("Days 0-50")
grid()

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

Days 0−50

plot(fmd.2, s.region = northcumbria, pch = 21, col = "blue", bg = "red",
mark = T, mark.col = 0, mark.cexmin = 1, mark.cexmax = 1)

title("Days 51-100")
grid()

53

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

Days 51−100

plot(fmd.3, s.region = northcumbria, pch = 21, col = "blue", bg = "red",
mark = T, mark.col = 0, mark.cexmin = 1, mark.cexmax = 1)

title("Days 101-150")
grid()

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

Days 101−150

plot(fmd.4, s.region = northcumbria, pch = 21, col = "blue", bg = "red",
mark = T, mark.col = 0, mark.cexmin = 1, mark.cexmax = 1)

54

title("Days 151-200")
grid()

300000 340000 380000

48
00

00
52

00
00

56
00

00

x

y

Days 151−200

We see an obvious difference in location and clustering.

Task 46 : Compute an owin “point-pattern window” object, in order to
compute intensity, G, F and K functions. •
w <- owin(poly = list(x = northcumbria[, 1], y = northcumbria[, 2]))

Task 47 : Compute the point-pattern intensity within the window, ex-
pressed as cases per km2. At the same time, make a class ppp object from
the point-pattern. •
1/(intensity(fmd.1.ppp <- ppp(fmd.1[, 1], fmd.1[, 2], window = w)) * 10^6)

[1] 35.61729

1/(intensity(fmd.2.ppp <- ppp(fmd.2[, 1], fmd.2[, 2], window = w)) * 10^6)

[1] 13.75321

1/(intensity(fmd.3.ppp <- ppp(fmd.3[, 1], fmd.3[, 2], window = w)) * 10^6)

[1] 138.9074

1/(intensity(fmd.4.ppp <- ppp(fmd.4[, 1], fmd.4[, 2], window = w)) * 10^6)

[1] 115.7562

As shown by the histogram, there is a big difference in intensity between the
time slices.

55

Task 48 : Compare the F “empty space” functions for the four time slices.
•

par(mfrow = c(2, 2))
plot(Fest(fmd.1.ppp), main = "Days 0-50")
plot(Fest(fmd.2.ppp), main = "Days 51-100")
plot(Fest(fmd.3.ppp), main = "Days 101-150")
plot(Fest(fmd.4.ppp), main = "Days 151-200")
par(mfrow = c(1, 1))

0 2000 4000 6000 8000 10000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days 0−50

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

0 1000 2000 3000 4000 5000 6000 7000
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Days 51−100

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

0 5000 10000 15000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days 101−150

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

0 5000 10000 15000 20000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days 151−200

r

F
(r

)

F̂km(r)
F̂bord(r)
F̂cs(r)
Fpois(r)

Q35 : Describe the evolution of the F function over time. Jump to A35 •

Task 49 : Compare the G “closest point” functions for the four time slices.
•

par(mfrow = c(2, 2))
plot(Gest(fmd.1.ppp), main = "Days 0-50")
plot(Gest(fmd.2.ppp), main = "Days 51-100")
plot(Gest(fmd.3.ppp), main = "Days 101-150")
plot(Gest(fmd.4.ppp), main = "Days 151-200")
par(mfrow = c(1, 1))

56

0 500 1000 1500 2000 2500

0.
0

0.
2

0.
4

0.
6

0.
8

Days 0−50

r

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

Days 51−100

r

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0 2000 4000 6000 8000

0.
0

0.
2

0.
4

0.
6

0.
8

Days 101−150

r

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

0 500 1000 1500 2000

0.
0

0.
2

0.
4

0.
6

0.
8

Days 151−200

r

G
(r

)

Ĝkm(r)
Ĝbord(r)
Ĝhan(r)
Gpois(r)

Q36 : Describe the evolution of the G function over time. Jump to A36 •

Now we want to evaluate the relation between time slices with the crossed
K function. This will reveal if there is any interaction (attraction, disper-
sion, independence) between patterns. This can then be interpreted by the
epidemiologist.

To compute the crossed K function the pattern must be marked.

Task 50 : Combine the four time slices into one marked point pattern. Plot
the marked point pattern. •

We do this with the superimpose function, and name the four slices.
fmd.all.ppp <- superimpose(Q1 = fmd.1.ppp, Q2 = fmd.2.ppp, Q3 = fmd.3.ppp,

Q4 = fmd.4.ppp)
plot(fmd.all.ppp, main = "2001 Foot-and-mouth disease, 50-day intervals",

cex = 0.9, pch = 21, col = 1, bg = 2:5)

57

 2001 Foot−and−mouth disease, 50−day intervals

Q4

Q3

Q2

Q1

Task 51 : Compute and display the crossed K function for each time step.
•

There are three of these.
Kcross.1.2 <- Kcross(fmd.all.ppp, "Q1", "Q2")
Kcross.2.3 <- Kcross(fmd.all.ppp, "Q2", "Q3")
Kcross.3.4 <- Kcross(fmd.all.ppp, "Q3", "Q4")

58

par(mfrow = c(1, 3))
plot(Kcross.1.2, main = "0-50 vs. 51-100")
plot(Kcross.2.3, main = "51-100 vs. 101-150")
plot(Kcross.3.4, main = "101-150 vs. 151-200")
par(mfrow = c(1, 1))

0 5000 10000 15000 20000

0e
+

00
1e

+
09

2e
+

09
3e

+
09

4e
+

09

0−50 vs. 51−100

r

K
Q

1,
 Q

2
(r

)

K̂Q1, Q2

iso
(r)

K̂Q1, Q2

t rans
(r)

K̂Q1, Q2

bord
(r)

KQ1, Q2
pois (r)

0 5000 10000 15000 20000

0.
0e

+
00

5.
0e

+
08

1.
0e

+
09

1.
5e

+
09

51−100 vs. 101−150

r

K
Q

2,
 Q

3
(r

)

K̂Q2, Q3

iso
(r)

K̂Q2, Q3

t rans
(r)

K̂Q2, Q3

bord
(r)

KQ2, Q3
pois (r)

0 5000 10000 15000 20000

0e
+

00
1e

+
09

2e
+

09
3e

+
09

4e
+

09
5e

+
09

101−150 vs. 151−200

r

K
Q

3,
 Q

4
(r

)

K̂Q3, Q4

iso
(r)

K̂Q3, Q4

t rans
(r)

K̂Q3, Q4

bord
(r)

KQ3, Q4
pois (r)

Q37 : What is the relation between the point-patterns in successive time
slices? Jump to A37 •

10 Further reading

Point-pattern analysis is based on theories of point processes. A modern
review article is by Møller and Waagepetersen [8]. The text of Diggle [4]
presents a detailed explanation and many worked examples of the con-
cepts presented here, and many more. Bivand et al. [2, Ch. 7] presents
worked examples of some of these questions; in particular §7.5 presents
some applications in spatial epidemiology. Illian et al. [7] present a com-
putational framework for fitting complex spatial point process models using
a recently-developed methodology known as INLA. Spatio-temporal point
pattern modelling is covered by Diggle [5] and Taylor et al. [11].

11 Answers

A1 : 65 trees. Return to Q1 •

A2 : A square of 5.7 m x 5.7 m; the units have been normalized to [0 . . . 1]. Return
to Q2 •

A3 : The pattern looks completely random; we will investigate this statistically
later. Return to Q3 •

A4 : Yes, they are quite different. The Japanese pines appear to be completely

59

randomly distributed; the Redwoods clustered, the cells more or less regular (any-
way, dispersed). Return to Q4
•

A5 :

(a) The distance at which at least 95% of the points have a neighbour is 0.117 units.

(b) the proportion of points with a neighbour within 0.05 units is 0.388. Return
to Q5 •

A6 : They all match well, with very little difference between them. Only at the
furthest distance is the empirical function somewhat lower (fewer neighbours than
expected) than expected by CSR. Return to Q6 •

A7 : They match fairly well, again the discrepancy around 𝐺 (𝑟) = 0.8 where there
are fewer points with first nearest neighbour in that range than expected. Return
to Q7 •

A8 : For the Redwoods dataset the empirical 𝐺 function is well above (greater
than) the theoretical after a radius of about 0.01 to about 0.05. This indicates strong
clustering: nearest neighbours are found at closer distances than expected by CSR.
An interesting feature is that there are no neighbours until 0.01 – a very short-range
repulsion probably due to the size of an individual tree, making it impossible for
two trees to be closer than the size of one tree. Return to Q8 •

A9 : For the Cells dataset the empirical 𝐺 function is well below (less than)
the theoretical throughout the range. This indicates strong dispersion: nearest
neighbours are found at further distances than expected by CSR. There are no
neighbours until about 0.08, after which the function rises very steeply. This is
approaching a pure regular grid, in which the empirical 𝐺 function is a backwards
”L” shape. Return to Q9 •

A10 : Low intensities lead to more sampling error, so high intensities would have
narrower envelopes. Return to Q10 •

A11 : With this simulation the empirical 𝐺 function is almost completely within
the envelope throughout, so we can not reject the null hypothesis of CSR. The
anomaly near 𝑟 = 0.1 is clear, indeed at one point of this simulation the empirical
value is below the lower limit of the 96% confidence envelope. Return to Q11 •

A12 : The empirical 𝐺 function for both are well outside the simulation envelope
for much of the radius range. The Redwood trees are almost surely clustered and
the cells almost surely dispersed. Return to Q12 •

A13 : As the bandwidth increases, the maximum intensity decreases: the “hot

60

spots” are not as “hot” (dense). The minimum intensity in all cases is zero, meaning
there are some regions with effectively no probability of a point occurrence. The
mean intensity is almost the same; theoretically it should be the same but there are
variable edge effects depending on bandwidth. The quartiles show a clear trend:
first quartile and median increasing with bandwidth, third quartile decreasing. The
intensities are concentrated below the mean at wider bandwidths. This is especially
clear with the maximum intensity, which decreases as the counts are averaged across
increasingly larger areas. Return to Q13 •

A14 : As the bandwidth increases, the density becomes more uniform . By four
times the optimum the density is almost homogeneous, at 50% of the optimum the
density there are spurious patches. The optimum seems to give a good representa-
tion. Return to Q14
•

A15 : The 𝐾-function for the Japanese pines is quite close to the theoretical for
CSR, although slightly below (dispersed) for radiuses around 0.15. The 𝐾 function
for the Redwood trees is consistently above (clustered) at all radii but especially
near zero-separation, except for the very close range. The 𝐾 function for the cells
is well below the theoretical for separations to about 0.15; after this is conforms to
CSR, meaning that after the initial dispersion to that radius, the number of points
within the radius is as expected by CSR. This shows that the dispersion is not on
a regular grid. Return to Q15 •

A16 : The convex hull has expanded slightly outward, consistent with average inter-
point spacing. The point at the extreme SE controls the SSE and E boundaries,
adding a large amount of unsampled area to the polygon. Return to Q16 •

A17 : The removal of extraneous “white space” increases the intensity by 185, 185,
185 %. Return to Q17 •

A18 : For the rectangular window about 0.4; for the polygonal ≈ 0.55. This is
because of the smaller area of the rectangle with the same number of points, i.e.,
higher average intensity. Return to Q18 •

A19 : In the rectangular window the observed proportion matches the theoretical
under CSR up to about 80 m, after which the observed is much lower than the
theoretical, i.e., much of the area is further from a point than expected under CSR.
This is because of the large areas without any points in the rectangle. In the
polygonal window the theoretical (under CSR) and actual match well till about
120 m, after which the observed is slightly lower than the theoretical, by about 0.1.
Thus there is less area far from the nearest point; this indicates some larger areas
of empty space compared to CSR; in this case these are the areas in the SSE and E
controlled by the south-easternmost point and not part of the study area. Return
to Q19 •

A20 : The marks are the cause of each forest fire; there are four classes (causes):

61

lightning, accidental, intentional, and other. Return to Q20 •

A21 : Yes; for example, the fires caused by lightning are heavily clustered in
the east, with a large space in the centre with almost no fires; by contrast, the
intentional fires are more prevalent in the NW. Return to Q21 •

A22 : Up to about 15 km distances the expected and observed numbers of ad-
ditional fires from the second process are almost the same; however, beyond that,
they are consistently fewer than would be expected by chance, indicating dispersion
of one process “caused by” the other. In this case the apparent dispersion may be
an artefact of non-stationary intensities of both processes. Return to Q22 •

A23 : The actual cross-K function is very close to the theoretical cross-K function
from two unrelated processes. This makes sense because these are two independent
patterns that we superimposed just to show that operation. Return to Q23 •

A24 : The trees appear to be clustered; there are some areas with no trees. In
some sections trees of similar size cluster together but there are also very small trees
near very large (see centre E). Return to Q24 •

A25 : Yes, it appears that there is trend from higher intensity in the NNW to
lower in the SSE. Return to Q25 •

A26 : The landuse is a somewhat more likely explanation for the observed pattern
of fires than the null model. Scrubland, coniferous forests, and farmland have higher
intensities of the Poisson process. Urban land has less. Return to Q26 •

A27 : The model with both land use and Strauss process (interaction) is the
most likely; the model with just land use is quite poor. The combined model is a
bit better than the interaction-only model. There is definitely interaction between
points, i.e., clustering within the 4 km radius. Fires are more likely on scrubland,
conifer forest, and dense forest, Return to Q27 •

A28 : The intensities follow the land use classes (compare with the figure of §7.4).
The lowest intensities are in the “urban” and “artificial green” areas (the “cold
spot” in the lower-right), the highest in mixed forests. Return to Q28 •

A29 : The landuse-only model has both a higher mean and wider range. It is not
adjusted to account for inter-point interaction, which reduces the intensity. The
Strauss interaction coefficient was 0.76 > 0, indicating local clustering, accounting
for some of the intensity within the most susceptible land uses. Return to Q29 •

A30 : The three fields are x, y, and x. These are the east and north coördinates
in an unspecified CRS, and the reported time of occurrence of a case of foot-and-

62

mouth disease, in days from an unspecified 0 (maybe day of year 2001). Return
to Q30 •

A31 : There was a gradual start to the epidemic, then a very strong peak, and a
long tail with a few additional cases. Return to Q31 •

A32 : The cases form clear clusters, with a few scattered cases outside of these
(e.g., in the SW and NE). The pattern within the clusters seems random. Note
that the blank areas with no cases are probably because no cattle is raised there –
the large central area is the Lake District national park, and the eastern edge are
the North Pennine mountains. Return to Q32 •

A33 : The earliest cases (smallest symbols) are in the centre and NW, then there
are cases more towards the NW and W, and finally the most recent cases (largest
symbols) are concentrated in the SE. Return to Q33 •

A34 : 0-50 days: 156 cases; 51-100 days: 404 cases; 101-150 days: 40 cases; 151-200
days: 48 cases. Return to Q34 •

A35 :

These all show a longer distance from an arbitrary location in the study area to the
nearest case than would be expected by chance. The pattern changes: increasingly
strong in the last time-slice, since most of the cases are found only in the SE of the
study area. Return to Q35 •

A36 : These all show strong clustering: the observed distance to nearest neighbour
is well above the theoretical line. Notice the different distance (r) scales. The
clustering is strongest for the 151-200 day slice: almost all points have a neighbour
within 2.2 km, whereas for the 101-150 time slice this is not reached until about
8 km. Return to Q36 •

A37 : There is a clear repulsion influence of the first slice (0-50 days) on the
second (51-100), and the third (101-150) on the fourth (151-200). That is, the
nearest point in one pattern is further than expected by chance from the point in
the other pattern. The second and third time-slice patterns are almost independent.

Return to Q37 •

63

A Preparing data for point pattern analysis

As shown in §5, objects of class ppp can be converted from “Simple Features”
objects of class sf, either with or without attributes which can be used as
marks. This uses the as.ppp function.

So, all that is required is to import point data (possibly with attributes) into
an sf object. There are two common methods:

1. Directly from ESRI shapefiles of points, other common geospatial for-
mats such as GPKG (“Geopackage”) or GeoJSON, using the st_read
function of the sf package (§A.1). See st_drivers for a list of drivers
available on your system.

2. From data frames imported with the read.table function or its vari-
ants such as read.csv for comma-separated values (CSV) files (§A.2).

For records stored in Excel spreadsheets, see the R data import/export
FAQ6. The easiest way to import Excel spreadsheets is to first export the
sheet from Excel as a CSV file, and follow option (2) below (§A.2).

A.1 Shapefiles and other common geospatial formats

A shapefile is a specification for geospatial data interchange among ESRI and
other information systems, and is one of the native formats used by ArcGIS.
It consists of three files with the same name and different file extensions:
(1) shp for the geometry; (2) shx for the spatial index; (3) dbf for the
attribute table. We illustrate how to read a shapefile for of the sample
datasets provided with the maptools package, using st_read function to
read it.
baltim <- sf::st_read(system.file("shapes/baltim.shp", package = "maptools"))

Reading layer `baltim' from data source
`/Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library/maptools/shapes/baltim.shp'
using driver `ESRI Shapefile'
Simple feature collection with 211 features and 17 fields
Geometry type: POINT
Dimension: XY
Bounding box: xmin: 860 ymin: 505.5 xmax: 987.5 ymax: 581
CRS: NA

str(baltim)

Classes 'sf' and 'data.frame': 211 obs. of 18 variables:
$ STATION : int 1 2 3 4 5 6 7 8 9 10 ...
$ PRICE : num 47 113 165 104.3 62.5 ...
$ NROOM : num 4 7 7 7 7 6 6 8 6 7 ...
$ DWELL : num 0 1 1 1 1 1 1 1 1 1 ...
$ NBATH : num 1 2.5 2.5 2.5 1.5 2.5 2.5 1.5 1 2.5 ...
$ PATIO : num 0 1 1 1 1 1 1 1 1 1 ...
$ FIREPL : num 0 1 1 1 1 1 1 0 1 1 ...
$ AC : num 0 1 0 1 0 0 1 0 1 1 ...
$ BMENT : num 2 2 3 2 2 3 3 0 3 3 ...
$ NSTOR : num 3 2 2 2 2 3 1 3 2 2 ...
$ GAR : num 0 2 2 2 0 1 2 0 0 2 ...
$ AGE : num 148 9 23 5 19 20 20 22 22 4 ...
$ CITCOU : num 0 1 1 1 1 1 1 1 1 1 ...
$ LOTSZ : num 5.7 279.5 70.6 174.6 107.8 ...

6 http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-spreadsheets

64

http://cran.r-project.org/doc/manuals/R-data.html#Reading-Excel-spreadsheets

$ SQFT : num 11.2 28.9 30.6 26.1 22 ...
$ X : num 907 922 920 923 918 900 918 907 918 897 ...
$ Y : num 534 574 581 578 574 577 576 576 562 576 ...
$ geometry:sfc_POINT of length 211; first list element: 'XY' num 907 534
- attr(*, "sf_column")= chr "geometry"
- attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA ...
..- attr(*, "names")= chr [1:17] "STATION" "PRICE" "NROOM" "DWELL" ...

st_crs(baltim) # no coordinate system is defined for this shapefile

Coordinate Reference System: NA

Note: Packages are stored in the directory found with the .libPaths func-
tion. The system.file function expands its argument with this, to give a
full path and file name.

This is a data.frame as well as an sf obhjec, since it has attributes; these
appear to be information on house sales in Baltimore (USA). It does not
have a defined coördinate reference system; if the source shapefile has one,
it is imported. This is then easily converted to a ppp object with as.ppp.
The data frame of attributes is then added as marks with the marks function.
require(spatstat)
baltim.ppp <- as.ppp(baltim)
str(baltim.ppp)

List of 6
$ window :List of 4
..$ type : chr "rectangle"
..$ xrange: num [1:2] 860 988
..$ yrange: num [1:2] 506 581
..$ units :List of 3
.. ..$ singular : chr "unit"
.. ..$ plural : chr "units"
.. ..$ multiplier: num 1
.. ..- attr(*, "class")= chr "unitname"
..- attr(*, "class")= chr "owin"
$ n : int 211
$ x : num [1:211] 907 922 920 923 918 900 918 907 918 897 ...
$ y : num [1:211] 534 574 581 578 574 577 576 576 562 576 ...
$ markformat: chr "vector"
$ marks : int [1:211] 1 2 3 4 5 6 7 8 9 10 ...
- attr(*, "class")= chr "ppp"

window(baltim.ppp)

Marked planar point pattern: 6 points
marks are numeric, of storage type 'integer'
window: rectangle = [860, 987.5] x [505.5, 581] units

marks(baltim.ppp) <- st_drop_geometry(baltim)
summary(marks(baltim.ppp))

STATION PRICE NROOM DWELL
Min. : 1.0 Min. : 3.50 Min. : 3.000 Min. :0.0000
1st Qu.: 53.5 1st Qu.: 30.95 1st Qu.: 5.000 1st Qu.:0.0000
Median :106.0 Median : 40.00 Median : 5.000 Median :1.0000
Mean :106.0 Mean : 44.31 Mean : 5.199 Mean :0.5355
3rd Qu.:158.5 3rd Qu.: 53.75 3rd Qu.: 6.000 3rd Qu.:1.0000
Max. :211.0 Max. :165.00 Max. :10.000 Max. :1.0000
NBATH PATIO FIREPL AC
Min. :1.000 Min. :0.0000 Min. :0.0000 Min. :0.0000
1st Qu.:1.000 1st Qu.:0.0000 1st Qu.:0.0000 1st Qu.:0.0000
Median :1.500 Median :0.0000 Median :0.0000 Median :0.0000
Mean :1.573 Mean :0.1469 Mean :0.2417 Mean :0.2417
3rd Qu.:2.000 3rd Qu.:0.0000 3rd Qu.:0.0000 3rd Qu.:0.0000

65

Max. :5.000 Max. :1.0000 Max. :1.0000 Max. :1.0000
BMENT NSTOR GAR AGE
Min. :0.000 Min. :1.000 Min. :0.0000 Min. : 0.0
1st Qu.:2.000 1st Qu.:2.000 1st Qu.:0.0000 1st Qu.: 20.0
Median :2.000 Median :2.000 Median :0.0000 Median : 25.0
Mean :1.981 Mean :1.905 Mean :0.2512 Mean : 30.1
3rd Qu.:3.000 3rd Qu.:2.000 3rd Qu.:0.0000 3rd Qu.: 40.0
Max. :3.000 Max. :3.000 Max. :3.0000 Max. :148.0
CITCOU LOTSZ SQFT X
Min. :0.0000 Min. : 5.70 Min. : 5.76 Min. :860.0
1st Qu.:0.0000 1st Qu.: 20.76 1st Qu.:11.02 1st Qu.:889.0
Median :1.0000 Median : 56.25 Median :13.44 Median :910.0
Mean :0.6066 Mean : 72.28 Mean :16.43 Mean :911.6
3rd Qu.:1.0000 3rd Qu.: 84.32 3rd Qu.:19.94 3rd Qu.:933.5
Max. :1.0000 Max. :400.37 Max. :47.61 Max. :987.5
Y
Min. :505.5
1st Qu.:528.8
Median :544.5
Mean :544.2
3rd Qu.:559.0
Max. :581.0

#
op <- par(no.readonly = TRUE)
par(mar=rep(0.5, 4))
plot(baltim.ppp, which.marks = "PRICE", axes=T,

main="Baltimore house sale prices, k$")
par(op)

850 900 950

50
0

55
0

60
0

 Baltimore house sale prices, k$

50

100

150

The bounding box is set to the exact limits of the point data set.

Note: The par function retrieves and sets base graphics parameters. Here
we reduce the default margins, which are specified with the mar argument to
par.

A.2 Text files

A text file to be converted to a point pattern typically has one header line
giving the variable names, usually with the two coördinates as the first two

66

columns. The following lines are one record per point, with a number of
fields. For a point pattern, at least two fields are needed, i.e., the coörd-
inates. Others (the attributes) are optional. In a CSV file, fields within
each record are separated by commas, and text is quoted. But this is only
one possible format; the many arguments to read.table (see its help) allow
almost any text file format to be read into a data frame.

We use as an example the Meuse dataset meuse of the sp package. We write
it to a text file using write.csv, examine its structure, and show how to
import it using read.csv.

First the export:
data(meuse, package = "sp")
class(meuse)

[1] "data.frame"

write.csv(meuse, file = "tmp.csv", row.names = FALSE)

We examine its structure with file.show, but you can also view in any
plain-text editor.
file.show("tmp.csv")

"x","y","cadmium","copper","lead","zinc","elev","dist","om","ffreq","soil","lime","landuse","dist.m"
181072,333611,11.7,85,299,1022,7.909,0.00135803,13.6,"1","1","1","Ah",50
181025,333558,8.6,81,277,1141,6.983,0.0122243,14,"1","1","1","Ah",30
181165,333537,6.5,68,199,640,7.8,0.103029,13,"1","1","1","Ah",150
181298,333484,2.6,81,116,257,7.655,0.190094,8,"1","2","0","Ga",270
...
180627,330190,2.7,27,124,375,8.261,0.0122243,5.5,"3","3","0","W",40

Then the import; although here we just duplicate what we already had in
the example data frame, for your own data this would be the point at which
you bring your data into R.

Notice that the CSV file has no information on data types; read.table
guesses but is not always right. Here it can not determine that ffreq, soil
and lime are classes, because they are coded as integer labels. So they must
be converted explicitly with as.factor.
pp <- read.csv(file = "tmp.csv")
class(pp)

[1] "data.frame"

pp$ffreq <- as.factor(pp$ffreq)
pp$soil <- as.factor(pp$soil)
pp$lime <- as.factor(pp$lime)
str(pp)

'data.frame': 155 obs. of 14 variables:
$ x : int 181072 181025 181165 181298 181307 181390 181165 181027 181060 181232 ...
$ y : int 333611 333558 333537 333484 333330 333260 333370 333363 333231 333168 ...
$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : int 85 81 68 81 48 61 31 29 37 24 ...
$ lead : int 299 277 199 116 117 137 132 150 133 80 ...

67

$ zinc : int 1022 1141 640 257 269 281 346 406 347 183 ...
$ elev : num 7.91 6.98 7.8 7.66 7.48 ...
$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
$ landuse: chr "Ah" "Ah" "Ah" "Ga" ...
$ dist.m : int 50 30 150 270 380 470 240 120 240 420 ...

Convert to a sf object using the st_as_sfethod, specifying the coordinate
columns and the CRS (see ?meuse):
require(sf)
pp.sf <- st_as_sf(pp, coords = c("x", "y"), crs = 28992)
class(pp.sf)

[1] "sf" "data.frame"

summary(pp.sf)

cadmium copper lead zinc
Min. : 0.200 Min. : 14.00 Min. : 37.0 Min. : 113.0
1st Qu.: 0.800 1st Qu.: 23.00 1st Qu.: 72.5 1st Qu.: 198.0
Median : 2.100 Median : 31.00 Median :123.0 Median : 326.0
Mean : 3.246 Mean : 40.32 Mean :153.4 Mean : 469.7
3rd Qu.: 3.850 3rd Qu.: 49.50 3rd Qu.:207.0 3rd Qu.: 674.5
Max. :18.100 Max. :128.00 Max. :654.0 Max. :1839.0
##
elev dist om ffreq soil
Min. : 5.180 Min. :0.00000 Min. : 1.000 1:84 1:97
1st Qu.: 7.546 1st Qu.:0.07569 1st Qu.: 5.300 2:48 2:46
Median : 8.180 Median :0.21184 Median : 6.900 3:23 3:12
Mean : 8.165 Mean :0.24002 Mean : 7.478
3rd Qu.: 8.955 3rd Qu.:0.36407 3rd Qu.: 9.000
Max. :10.520 Max. :0.88039 Max. :17.000
NA's :2
lime landuse dist.m geometry
0:111 Length:155 Min. : 10.0 POINT :155
1: 44 Class :character 1st Qu.: 80.0 epsg:28992 : 0
Mode :character Median : 270.0 +proj=ster...: 0
Mean : 290.3
3rd Qu.: 450.0
Max. :1000.0
##

Finally, this can be converted to a point pattern with the as.ppp function:
pp.m <- as.ppp(pp.sf)
class(pp.m)

[1] "ppp"

summary(pp.m)

Marked planar point pattern: 155 points
Average intensity 1.428157e-05 points per square unit
##
Coordinates are integers
i.e. rounded to the nearest unit
##
marks are numeric, of type 'double'
Summary:
Min. 1st Qu. Median Mean 3rd Qu. Max.
0.200 0.800 2.100 3.246 3.850 18.100
##
Window: rectangle = [178605, 181390] x [329714, 333611] units
(2785 x 3897 units)
Window area = 10853100 square units

68

window(pp.m)

Marked planar point pattern: 6 points
marks are numeric, of storage type 'double'
window: rectangle = [178605, 181390] x [329714, 333611] units

This automatically has marks from the first column in the dataframe. To
change the marks to some other factor:
summary(marks(pp.m))

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.200 0.800 2.100 3.246 3.850 18.100

marks(pp.m) <- pp.sf$soil
table(marks(pp.m))

##
1 2 3
97 46 12

op <- par(no.readonly = TRUE)
par(mar=rep(0.5, 4))
plot(pp.m, cols=c("red","blue","green"),

pch=20, main="Meuse soil types", axes=T)
par(op)

178000 179000 180000 181000

33
00

00
33

10
00

33
20

00
33

30
00

 Meuse soil types

3

2

1

The window boundary can be limited as explained in §5. If a bounding
polygon is available, it can be imported and used as the window. I have
prepared a crude boundary for this area, by polygonizing the interpolation
grid meuse.grid supplied in the sp package, taking the union of the grid cell
polygons, and writing the result as a shapefile meuseBoundary. This should
have been supplied with this exercise, as a compressed folder with the four
files which together make up the ESRI shapefile format.

The st_read function of the sf package can read ESRI shapefiles in to an
sf object. The dsn “data source name” argument to st_read for a shapefile
is the folder name in which the shapefile is located; in the code below it is

69

given as ".", i.e., the current working directory7; you can change this as
you wish. The layer “layer name” argument is the name of the shapefile,
without extension.
meuseBoundary <- sf::st_read(dsn = ".", layer = "meuseBoundary")
class(meuseBoundary)

Reading layer `meuseBoundary' from data source
`/Users/rossiter/Library/Mobile Documents/com~apple~CloudDocs/Documents/data/edu/PointPatternAnalysis/ex/ds/meuse'
using driver `ESRI Shapefile'
Simple feature collection with 1 feature and 1 field
Geometry type: POLYGON
Dimension: XY
Bounding box: xmin: 178440 ymin: 329600 xmax: 181560 ymax: 333760
Projected CRS: Stereographic
[1] "sf" "data.frame"

The polygon shapefile import creates a sf object. This can then be converted
to an owin “observation window” object with the as.owin function of the
spatstat.geom package:
class(meuseBoundary)

[1] "sf" "data.frame"

(meuseBoundary.win <- as.owin(meuseBoundary))

window: polygonal boundary
enclosing rectangle: [178440, 181560] x [329600, 333760] units

Finally, this window can be substituted for the original rectangular window
by direct assignment to the window field of the ppp object:
pp.m$window <- meuseBoundary.win

When this is plotted we see the study area window:
op <- par(no.readonly = TRUE)
par(mar=rep(0.5, 4))
plot(pp.m, cols=c("red","blue","green"),

pch=20, main="Meuse soil types", axes=T)
par(op)

7 You can see what this is with the getwd function.

70

178000 179000 180000 181000

33
00

00
33

10
00

33
20

00
33

30
00

 Meuse soil types

3

2

1

Challenge: Repeat the analysis of §5 (the 𝐹 function) with this polygonal
window, and compare the results with those from the rectangular bounding
box and the window found by the Ripley-Rasson method.

Clean up from this section; this includes removing the temporary file with
the unlink function8:
unlink("tmp.csv")
rm(meuse, pp, pp.sf, pp.m, meuseBoundary, meuseBoundary.win, op)

8 This name for file deletion is inherited from the Unix operating system.

71

References
[1] A. Baddeley and R. Turner. Modelling spatial point patterns in R. In

A. Baddeley, P. Gregori, J. Mateu, R. Stoica, D. Stoyan, J. Berger,
S. Fienberg, J. Gani, K. Krickeberg, I. Olkin, and B. Singer, editors,
Case Studies in Spatial Point Process Modeling, volume 185 of Lecture
Notes in Statistics, pages 23–74. Springer New York, 2006. ISBN 978-
0-387-31144-9. 34, 41

[2] R. S. Bivand, E. J. Pebesma, and V. Gómez-Rubio. Applied Spatial Data
Analysis with R. UseR! Springer, 2008. http://www.asdar-book.org/.
1, 2, 5, 13, 16, 34, 59

[3] B. N. Boots and A. Getis. Point pattern analysis. Number v. 8 in
Scientific geography series. Sage Publications, Newbury Park, Calif,
1988. ISBN 0803922450. 1

[4] P. Diggle. Statistical analysis of spatial point patterns. Arnold, London,
2nd edition, 2003. ISBN 0122158504. 59

[5] P. J. Diggle. Statistical analysis of spatial and spatio-temporal point
patterns. CRC Press, Boca Raton, 3rd edition, 2013. ISBN 978-1-4665-
6023-9. 49, 59

[6] Peter Diggle. Statistical Analysis of Spatial and Spatio-Temporal Point
Patterns. CRC Press, Boca Raton, third edition. edition, 2014. ISBN
978-1-4665-6024-6. doi: 10.1201/b15326. 1

[7] Janine B. Illian, Sigrunn H. Sorbye, and Havard Rue. A toolbox for
fitting complex spatial point process models using integrated nested
laplace approximation (inla). Annals of Applied Statistics, 6(4):1499–
1530, Dec 2012. doi: 10.1214/11-AOAS530. 1, 59

[8] Jesper Møller and Rasmus P. Waagepetersen. Modern statistics for
spatial point processes. Scandinavian Journal of Statistics, 34(4):643–
684, Dec 2007. doi: 10.1111/j.1467-9469.2007.00569.x. 1, 59

[9] B. D. Ripley. Modelling spatial patterns. Journal of the Royal Statistical
Society. Series B (Methodological), 39(2):172–212, January 1977. 16

[10] B. D. Ripley and J. P. Rasson. Finding the edge of a Poisson forest.
Journal of Applied Probability, 14(3):483–491, September 1977. doi:
10.2307/3213451. 23

[11] Benjamin M. Taylor, Tilman M. Davies, Barry S. Rowlingson, and
Peter J. Diggle. lgcp: an R package for inference with spatial and
spatio-temporal log-Gaussian Cox processes. Journal of Statistical Soft-
ware, 52(4), 2013. ISSN 1548-7660. doi: 10.18637/jss.v052.i04. URL
http://www.jstatsoft.org/v52/i04/. 49, 59

[12] Yihui Xie. knitr: Elegant, flexible and fast dynamic report generation
with R, 2011. URL http://yihui.name/knitr/. Accessed 21-Mar-
2024. 2

72

http://www.asdar-book.org/
http://www.jstatsoft.org/v52/i04/
http://yihui.name/knitr/

Index of Commands
.libPaths, 65
< operator, 52
<= operator, 52
[] operator, 52

anova.ppm (spatstat.model package), 39,
41

as.3dpoints (stpp package), 50
as.factor, 67
as.owin (spatstat.geom package), 70
as.ppp (spatstat.geom package), 22, 64,

65, 68

cells dataset, 4
clmfires dataset, 26, 41
clmfires.extra dataset, 41
contour, 14
convexhull (spatstat.geom package), 23

data.frame class, 65
density.ppp (spatstat.explore package),

14
dsn argument (st_read function), 69

envelope (spatstat.explore package), 11

Fest (spatstat.explore package), 25
file.show, 67
fmd dataset (stpp package), 49
fv class, 7

Gest (spatstat.explore package), 6
getwd, 70

how argument (plot.ppp function), 38

im class, 14, 41, 42
inside.owin (spatstat.geom package), 19
intensity (spatstat.geom package), 24, 36
interaction argument (ppm function), 36,

40

japanesepines dataset, 2, 30

Kcross (spatstat.explore package), 29
Kest (spatstat.explore package), 16, 29,

33

layer argument (st_read function), 70
locations argument (predict.ppm function),

46

logLik (stats package), 41
longleaf dataset, 32

maptools package, 64
mar argument (par function), 66
mark.cexmin argument (plot.stpp function),

50
marks (spatstat.geom package), 22, 65
meuse dataset, 22, 67
meuse.grid dataset, 69
min, 8

ngrid argument (predict.ppm function), 46
northcumbria dataset (stpp package), 49
nrank argument (envelope function), 11

owin (spatstat.geom package), 19
owin class, 3, 19, 23, 55, 70

par, 66
plot, 3, 7, 14, 23, 27, 42
plot.fv (spatstat.explore package), 7
plot.im (spatstat.geom package), 14, 42
plot.ppm (spatstat.model package), 38
plot.ppp (spatstat.geom package), 3, 23
plot.splitppp (spatstat.geom package),

27
polynom (spatstat.model package), 37
ppm (spatstat.model package), 34–37, 40,

45
ppm class, 36, 45
ppp class, 2, 3, 6, 11, 16, 19, 22, 23, 25, 55,

64, 65, 70
predict.ppm (spatstat.model package), 38,

45

read.csv, 64, 67
read.table, 64, 67
redwoodfull dataset, 4, 30
ripras (spatstat.geom package), 23

set.seed, 11
sf class, 22, 64, 65, 68–70
sf package, 2, 64, 69
sigma function argument, 14
sp package, 22, 67, 69
SpatRaster class, 42
spatstat package, 2, 3, 26, 41

73

spatstat.explore package, 6, 11, 14, 16,
25

spatstat.geom package, 14, 20, 22, 24, 27,
30, 70

spatstat.model package, 34
splancs package, 2
split, 27
split.ppp (spatstat.geom package), 27, 35
st_as_sf (m package), 68
st_as_sf (sf package), 22
st_drivers (sf package), 64
st_read (sf package), 64, 69
stpp class, 50
stpp package, 2, 49
summary (spatstat.geom package), 32
superimpose (spatstat.geom package), 30,

57
system.file, 65

terra package, 2, 42
trend argument (ppm function), 36, 37

unlink, 71
use.marks argument (plot.ppp function),

27

W argument (superimpose function), 31
which, 8
Window (f package), 20
Window (spatstat.geom package), 20, 32
write.csv, 67

74

	1 Examining some point patterns
	2 First-order properties: the G function
	3 Kernel density estimation
	4 Second-order properties: the K function
	4.1 The L function: a linearized K function
	4.2 * Modifying the window

	5 The F function; non-rectangular windows
	6 Marked point patterns
	6.1 Categorical marks
	6.2 Interaction between point patterns: the cross-K function
	6.3 Combining point patterns
	6.4 Continuous marks

	7 Models of spatial processes
	7.1 Null model
	7.2 Trend surface
	7.3 Strauss process
	7.4 Covariates

	8 Spatial prediction
	9 Spatio-temporal analysis
	10 Further reading
	11 Answers
	A Preparing data for point pattern analysis
	A.1 Shapefiles and other common geospatial formats
	A.2 Text files

	References
	Index of R concepts

