
Tutorial: Areal Data and Spatial Autocorrelation

D G Rossiter
Cornell University, Section of Soil & Crop Sciences

March 7, 2024

Contents

1 Introduction 1

2 Setup 2

3 Example dataset 2
3.1 Check for validity . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Plot . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

4 Spatial neighbours 6
4.1 Neighbours based on contiguity . . . . . . . . . . . . . . . . . 7
4.2 Neighbours based on distance between centroids . . . . . . . 13
4.3 Nearest neighbours based on distance . . . . . . . . . . . . . 15

5 Subsetting the dataset 17
5.1 * Geographic setting . . . . . . . . . . . . . . . . . . . . . . . 19

6 Spatial weights 21
6.1 Weights style W . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.2 Other weights styles . . . . . . . . . . . . . . . . . . . . . . . 24

7 Spatial autocorrelation 29
7.1 Global tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

7.1.1 Effect of weights . . . . . . . . . . . . . . . . . . . . . 34
7.2 Local tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

7.2.1 Local Moran’s I . . . . . . . . . . . . . . . . . . . . . . 35
7.2.2 Effect of weights . . . . . . . . . . . . . . . . . . . . . 38

Version 3.0 Copyright © 2012–9, 2021, 2024 D. G. Rossiter All rights re-
served. Reproduction and dissemination of the work as a whole (not parts)
freely permitted if this original copyright notice is included. Sale or place-
ment on a web site where payment must be made to access this docu-
ment is strictly prohibited. To adapt or translate please contact the author
(http://www.css.cornell.edu/faculty/dgr2/).

http://www.css.cornell.edu/faculty/dgr2/


7.2.3 Getis-Ord local 𝐺 statistics . . . . . . . . . . . . . . . 40

8 Spatial models 44

9 Autoregressive Models 50
9.1 Spatial Error SAR model . . . . . . . . . . . . . . . . . . . . 51
9.2 Spatial Lag SAR model . . . . . . . . . . . . . . . . . . . . . 56
9.3 Spatial Durbin SAR model . . . . . . . . . . . . . . . . . . . 58
9.4 * Comparison with point-based modelling . . . . . . . . . . . 60

10 Answers 64

References 71

Index of R concepts 72

ii



世上无难事，只怕有心人
“There are no difficult tasks, only fearful people” – Chinese

proverb

1 Introduction

This tutorial gives an overview of spatial analysis of areal data, that is,
attributes of polygonal entities on a map. Typical examples are political di-
visions, census tracts, and ownership or management parcels. The attribute
relates to the whole area of the polygon, and can not be further localized.
Often the data are aggregate measures, e.g., population count; these may
already be normalized to the area of the polygon, e.g., population density.

After completing this exercise you should be able to:

1. Find nearest-neighbours in a polygon map according to various criteria
(§4);

2. Compute spatial weights reflecting the strength of association accord-
ing to various criteria (§6);

3. Compute global and local Moran’s I as measures of spatial autocorre-
lation (§7);

4. Identify “hot” and “cold” spots (§7.2.3);

5. Build spatial autotregressive models that combines feature-space mod-
elling (“regression”) with spatial autocorrelation (§8);

6. Relate these to hypotheses about spatial processes.

A major complication for data analysis is that the tesselation (division of the
study area) may have been done for a purpose not directly relevant to the
analysis. For example, crop yield statistics may be aggregated by political
division, but the crop yield may be better modelled by agro-ecological zone,
a different tesselation. A further problem is that the analysis depends on the
tesselation, and a different spatial scale, even of the same criterion, may show
different behaviour. This is the modifiable areal unit problem. For example,
crop statistics by county may show strong spatial autocorrelation, which
becomes much weaker at district or state level, although the underlying
process is the same.

This tutorial is based on Bivand et al. [1, Ch. 9], which has a more extensive
treatment, especially in the details of the R processing of this kind of data.
Some of the code here is adapted from that chapter; the sample dataset from
the Syracuse region is their adaptation of the dataset of Waller and Gotway
[5].

We eventually want to examine spatial dependence among polygonal areas;
but to do that we first need to create spatial weights, i.e., the degree of
“neighbourliness” between areas; but to do that we first need to define spatial
neighbours. These are treated then in reverse order.
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Note: The code in these exercises was tested with knitr package [8] sp
package , spdep package , spatialreg package , gstat package on R version
4.2.3 (2023-03-15), running on Mac OS X 14.3.1. So, the text and graphi-
cal output you see here was automatically generated and incorporated into
LATEX by running the code through R and its packages. Then the LATEX doc-
ument was compiled into the PDF version you are now reading. Your output
may be slightly different on different versions and on different platforms.

2 Setup

Most of the analysis in this tutorial is carried out by functions in the spdep
“Spatial dependence” and spatialreg “Spatial regression” packages from
Roger Bivand. These depend on the sp “spatial classes” package, but also
work with the newer sf package spatial representation.

Most of the graphics use the ggplot2 package for “Grammar of Graphics”
[7] figures, as implemented in the R package ggplot2 [6].

Task 1 : Load the required packages. •

We use the library function; this loads the package if it is not already in
the workspace:
library(sf) # the "Simple Features' representation of spatial objects
library(sp) # an older representation of spatial objects
library(spdep) # spatial dependency of areal data
library(spatialreg) # spatial regression on areal data
library(RColorBrewer) # colour palettes
library(gstat) # classical geostatistics
library(ggplot2) # Grammar of Graphics
library(gridExtra) # arrange plots on a page

3 Example dataset

The sample data is 281 USA census tracts for eight central New York State
counties1 developed by Waller and Gotway [5] and adapted by Bivand et al.
[1]; the area is about 160 km N-S and 120 km E-W.

The dataset is provided in the compressed file lat_bundle.zip at the AS-
DAR book website2 under the “Data sets and scripts” heading, as the data
set bundle for Chapter 9. It may be provided with this Tutorial as com-
pressed file NY_data.zip.

Note: In the USA census tracts have 1 500–8 000 people (optimum size
4 000). They are designed to be socio-economically and demographically
fairly homogeneous. Each tract has several block groups; these are made
up of 20–40 individual blocks. The tract is usually large enough to compile
reliable statistics.

Task 2 : Locate this file, unpack it in a working directory, start R and
connect to that directory. List the shapefiles in the directory. •
1 Broome, Cayuga, Chenango, Cortland, Madison, Onondaga, Tioga, Tompkins
2 http://www.asdar-book.org/
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For this, use the list.files function:
list.files(path = ".", pattern="*.shp")

## [1] "NY8_utm18_centroids.shp" "NY8_utm18.shp"
## [3] "NY8cities.shp" "TCE.shp"

Task 3 : Import the polygon data from the shapefile NY8_utm18.shp into
R, along with point files NY8cities.shp showing cities, and examine their
structures and data summaries. •

Polygon shapefiles can be imported to R with the st_read function of the
sf package. It recognizes many file formats, including ESRI Shapefiles, as
in this sample data. We then examine the class of the imported object with
the class function, and see its slots with the str “structure” function.
NY8 <- st_read(dsn = ".", layer = "NY8_utm18")
class(NY8)
str(NY8, max.level=2)
summary(NY8)
NY8$AREANAME <- as.factor(NY8$AREANAME)
#
cities <- st_read(dsn = ".", layer = "NY8cities")
class(cities)
print(cities)

## Reading layer `NY8_utm18' from data source
## `/Users/rossiter/Library/Mobile Documents/com~apple~CloudDocs/Documents/data/edu/AreaData/ds/ASDAR/NY_data'
## using driver `ESRI Shapefile'
## Simple feature collection with 281 features and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 358241.9 ymin: 4649755 xmax: 480393.1 ymax: 4808545
## Projected CRS: WGS 84 / UTM zone 18N
## Classes 'sf' and 'data.frame': 281 obs. of 18 variables:
## $ AREANAME : chr "Binghamton city" "Binghamton city" "Binghamton city" "Binghamton city" ...
## $ AREAKEY : chr "36007000100" "36007000200" "36007000300" "36007000400" ...
## $ X : num 4.07 4.64 5.71 7.61 7.32 ...
## $ Y : num -67.4 -66.9 -67 -66 -67.3 ...
## $ POP8 : num 3540 3560 3739 2784 2571 ...
## $ TRACTCAS : num 3.08 4.08 1.09 1.07 3.06 1.06 2.09 0.02 2.04 0.02 ...
## $ PROPCAS : num 0.00087 0.001146 0.000292 0.000384 0.00119 ...
## $ PCTOWNHOME: num 0.328 0.427 0.338 0.462 0.192 ...
## $ PCTAGE65P : num 0.147 0.235 0.138 0.119 0.142 ...
## $ Z : num 0.142 0.356 -0.582 -0.296 0.457 ...
## $ AVGIDIST : num 0.237 0.209 0.171 0.141 0.158 ...
## $ PEXPOSURE : num 3.17 3.04 2.84 2.64 2.76 ...
## $ Cases : num 3.08 4.08 1.09 1.07 3.06 ...
## $ Xm : num 4069 4639 5709 7614 7316 ...
## $ Ym : num -67353 -66862 -66978 -65996 -67318 ...
## $ Xshift : num 423391 423961 425031 426935 426638 ...
## $ Yshift : num 4661502 4661993 4661878 4662859 4661537 ...
## $ geometry :sfc_POLYGON of length 281; first list element: List of 1
## ..$ : num [1:48, 1:2] 421840 422095 422308 422456 422464 ...
## ..- attr(*, "class")= chr [1:3] "XY" "POLYGON" "sfg"
## - attr(*, "sf_column")= chr "geometry"
## - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA ...
## ..- attr(*, "names")= chr [1:17] "AREANAME" "AREAKEY" "X" "Y" ...
## AREANAME AREAKEY X
## Length:281 Length:281 Min. :-55.482
## Class :character Class :character 1st Qu.:-19.460
## Mode :character Mode :character Median :-12.469
## Mean :-11.309
## 3rd Qu.: -1.213
## Max. : 53.509
## Y POP8 TRACTCAS PROPCAS
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## Min. :-75.29 Min. : 9 Min. :0.000 Min. :0.0000000
## 1st Qu.:-30.60 1st Qu.: 2510 1st Qu.:0.310 1st Qu.:0.0000930
## Median : 31.97 Median : 3433 Median :1.890 Median :0.0004130
## Mean : 4.98 Mean : 3764 Mean :2.107 Mean :0.0005947
## 3rd Qu.: 39.12 3rd Qu.: 4889 3rd Qu.:3.080 3rd Qu.:0.0009170
## Max. : 56.41 Max. :13015 Max. :9.290 Max. :0.0069930
## PCTOWNHOME PCTAGE65P Z
## Min. :0.0008224 Min. :0.004044 Min. :-1.9206
## 1st Qu.:0.4588745 1st Qu.:0.099926 1st Qu.:-0.7168
## Median :0.6508585 Median :0.126415 Median :-0.2876
## Mean :0.5872621 Mean :0.137262 Mean :-0.2157
## 3rd Qu.:0.7560976 3rd Qu.:0.160963 3rd Qu.: 0.2498
## Max. :1.0000000 Max. :0.505050 Max. : 4.7105
## AVGIDIST PEXPOSURE Cases
## Min. :0.01847 Min. :0.6134 Min. :0.00014
## 1st Qu.:0.02703 1st Qu.:0.9942 1st Qu.:0.30928
## Median :0.03238 Median :1.1749 Median :1.88876
## Mean :0.14919 Mean :1.8042 Mean :2.10676
## 3rd Qu.:0.13008 3rd Qu.:2.5656 3rd Qu.:3.08284
## Max. :3.52637 Max. :5.8654 Max. :9.28601
## Xm Ym Xshift Yshift
## Min. :-55482 Min. :-75291 Min. :363839 Min. :4653564
## 1st Qu.:-19460 1st Qu.:-30601 1st Qu.:399862 1st Qu.:4698254
## Median :-12469 Median : 31970 Median :406852 Median :4760825
## Mean :-11309 Mean : 4980 Mean :408013 Mean :4733835
## 3rd Qu.: -1213 3rd Qu.: 39123 3rd Qu.:418108 3rd Qu.:4767978
## Max. : 53509 Max. : 56410 Max. :472830 Max. :4785265
## geometry
## POLYGON :281
## epsg:NA : 0
## +proj=utm ...: 0
##
##
##
## Reading layer `NY8cities' from data source
## `/Users/rossiter/Library/Mobile Documents/com~apple~CloudDocs/Documents/data/edu/AreaData/ds/ASDAR/NY_data'
## using driver `ESRI Shapefile'
## Simple feature collection with 6 features and 1 field
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 372236.8 ymin: 4662141 xmax: 445727.9 ymax: 4771698
## Projected CRS: WGS 84 / UTM zone 18N
## names geometry
## Length:6 POINT :6
## Class :character epsg:NA :0
## Mode :character +proj=utm ...:0
## Simple feature collection with 6 features and 1 field
## Geometry type: POINT
## Dimension: XY
## Bounding box: xmin: 372236.8 ymin: 4662141 xmax: 445727.9 ymax: 4771698
## Projected CRS: WGS 84 / UTM zone 18N
## names geometry
## 1 Binghampton POINT (424373.9 4662141)
## 2 Ithaca POINT (377506 4702477)
## 3 Cortland POINT (403019.9 4717570)
## 4 Auburn POINT (372236.8 4754523)
## 5 Syracuse POINT (406070.4 4767274)
## 6 Oneida POINT (445727.9 4771698)

As you can see, st_read reports the feature type of the source file, and
converts these to sf objects. There are 281 census blocks in this dataset. @

Note: Whoever compiled the data is obviously not a Central New Yorker;
only Long Islanders write “Binghampton”, by analogy with Easthampton
etc., rather than “Binghamton”, i.e., Bingham’s Town3. Although, the

3 named for William Bingham, a Philadelphia politician and land speculator who bought
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“ham” in Bingham has the same meaning as the “hamp” in the various
Hamptons, deriving from Germanic root that is now German ‘heim’ and
English ‘home’.

Correct it:
ix <- which(cities$names == "Binghampton")
cities$names[ix] <- "Binghamton"

3.1 Check for validity

Check that the geometry of the polygon shapefile is valid. The shapefile
format is not strict, we need a valid geometry for some geometric operations
on the polygons. The st_is_valid function of the sf package performs this
check, and the st_make_valid function is able to correct some problems.
# find errors
tmp <- st_is_valid(NY8, reason = TRUE)
ix <- which(tmp != "Valid Geometry")
print(data.frame(polygonID = ix, reason = tmp[ix]))

## polygonID reason
## 1 24 Self-intersection[430016.188394857 4675077.19105705]
## 2 28 Self-intersection[430016.188394857 4675077.19105705]
## 3 173 Ring Self-intersection[418270.385382628 4781224.46209681]
## 4 210 Ring Self-intersection[402604.228645007 4766868.58988568]
## 5 224 Ring Self-intersection[411825.337970521 4767465.38843592]

Yes, there are some errors, probably due to sloppy digitalization of source
maps. Fix these:
# fix it
NY8 <- st_make_valid(NY8)
all(st_is_valid(NY8))

## [1] TRUE

3.2 Plot

Task 4 : Plot the polygons, coloured by population, with cities overlaid and
labelled. •

We use the “Grammar of graphics” R package ggplot24 functions for this.
Function ggplot sets up the graphics system, and geom_sf adds “Simple
Features” geometry objects to the plot.
ggplot(data = NY8) +

geom_sf(aes(fill = POP8)) +
geom_sf(data = cities) +
geom_sf_label(data = cities, aes(label = names))

the land, then part of Tioga County, in 1792.
4 https://ggplot2-book.org/
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Q1 : What is the georeference of this dataset? This is referred to as the
Coördinate Reference System (CRS). Note that can’t be determined from
the previous plot, because the geom_sf function uses geographic coordinates
by default. Jump to A1 •

The st_crs function extracts this information from objects of the sf classes.
st_crs(NY8)$proj4string

## [1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

st_crs(cities)$proj4string

## [1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

We first examine the spatial organization of the area data (“Spatial neigh-
bours”, §4) and how to weight the neighbourhood relations (“Spatial weights”,
§6). We then describe the attributes of each area and how to discover the
autocorrelation structure (“Spatial autocorrelation”, §7).

4 Spatial neighbours

Supplementary reading:

• Bivand et al. [1, §9.2]: Spatial neighbours & spatial weights

The concept of “neighbour” is crucial in area data analysis, especially in
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the spatial autoregressive models, which include neighbour effects in linear
models (§9). But what is a “neighbour”? Depending on the process, i.e.,
how neighbours influence each other, there are several reasonable definitions,
which we now will review.

The spdep package represents neighbour relationships by an object of class
nb; this stores a list of each polygon, each with a list of the index numbers of
neighbours. These are created from polygons as explained in the following
subsections.

Note: They can also be provided in the “GAL lattice” format5.

4.1 Neighbours based on contiguity

The poly2nb function of the spdep package takes a SpatialPolygons or
SpatialPolygonsDataFrame object and finds neighbours, returning a neigh-
bours list of class nb. This function defines a “neighbour” as a polygon
that shares a boundary (“rook” and “queen” neighbour) or boundary point
(“queen” neighbour with the target polygon.

Task 5 : Compute a neighbours list for the 8-counties. Display its sum-
mary, and for the first polygon, the number of (using the card function)
and identity of its neighbours. •

The default is ”queen” connectivity, based on adjacency, not distance.
NY8_nb <- poly2nb(NY8)
class(NY8_nb)

## [1] "nb"

summary(NY8_nb)

## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 1624
## Percentage nonzero weights: 2.056712
## Average number of links: 5.779359
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10 11
## 6 6 16 37 58 61 48 30 14 3 2
## 6 least connected regions:
## 56 98 101 102 245 246 with 1 link
## 2 most connected regions:
## 35 83 with 11 links

card(NY8_nb)[1]

## [1] 8

NY8_nb[[1]]

## [1] 2 13 14 15 47 48 49 50

Notice the summary informarion on the neighbourhood structure.
5 These are Luc Anselin’s GeoDa files; see the help for read.gal for details
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The poly2nb function has two optional arguments that can greatly affect
the neighbours list based on connectivity:

• snap: boundary points less than a “snap” distance apart are considered
to be contiguous; default a very small machine-dependent quantity,
effectively zero.

• queen: a single shared boundary point meets the contiguity condition
(so, in chess, the queen could move between the polygons, but a rook
could not); default TRUE.

The snap argument is useful for (1) poorly-digitized maps; (2) to skip over
small polygons, e.g., a small river or highway that is given as a separate poly-
gon. Setting the queen argument to FALSE reduces the number of neighbours
and requires a shared boundary line.

Task 6 : Compute the neighbour list with rook (not queen) contiguity; plot
the polygon map with the rook links in black and the deleted queen links in
red. •

Again this is based on adjacency, not distance.
NY8_nb2 <- poly2nb(NY8, queen=FALSE)
summary(NY8_nb2)

## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 1528
## Percentage nonzero weights: 1.935133
## Average number of links: 5.437722
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10 11
## 6 8 18 53 67 48 49 20 8 2 2
## 6 least connected regions:
## 56 98 101 102 245 246 with 1 link
## 2 most connected regions:
## 35 83 with 11 links

NY8_nb[[1]]

## [1] 2 13 14 15 47 48 49 50

NY8_nb2[[1]]

## [1] 2 13 14 15 48 49 50

Note:

It is also possible to use the st_touches function to obtain neighbour lists
for ”Queen” connectivity.
# st_touches includes single points of contact
NY8_st <- st_touches(NY8)
NY8_st[[1]]

## [1] 2 13 14 15 47 48 49 50

class(NY8_st)

## [1] "sgbp" "list"
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This can be converted to nb objects simply by assigning that class, since the
structures are identical.
NY8_st_nb <- NY8_st
class(NY8_st_nb) <- "nb"

Q2 : How many links were deleted? Which set of links more realistically
represents the concept of “neighbour” between census tracts? Jump to A2
•

To answer this, we sum the length of the link list, within the list of census
blocks, using the lapply ‘apply a function to a list‘ function:
(n.links.queen <- sum(unlist(lapply(NY8_nb, length))))

## [1] 1624

(n.links.rook <- sum(unlist(lapply(NY8_nb2, length))))

## [1] 1528

print(n.links.queen - n.links.rook)

## [1] 96

Task 7 : Plot the polygons with the links superimposed. •
plot(st_geometry(NY8), border="grey",

main = "NY8 8-County Census Tracts",
axes = TRUE)

coords_centers <- st_coordinates(st_centroid(st_geometry(NY8)))
plot(NY8_nb, coords_centers, add=TRUE,

pch=19, cex = 0.6, col="red")
plot(NY8_nb2, coords_centers, add=TRUE,

pch=19, cex = 0.6,col="blue")
legend(461000, 4801000, c("rook","queen"),

lty=1, col=c("blue","red"))
grid()
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Q3 : How are these first-order (direct) links defined? Are they of ap-
proximately equal length? What accounts for the difference? Should all
neighbours be weighted equally when considering spatial influence between
polygons? Jump to A3 •

Task 8 : Display the distribution of the number of links. •

We apply the length “length of vector” function across the list of points;
this returns the number of neighbours of the point; then convert the list
to a vector with the unlist function. Then the table function shows the
number of census tracts with each number of neighbours.
(n.nb <- unlist(lapply(NY8_nb, length)))

## [1] 8 6 6 4 6 6 5 4 9 5 6 6 6 6 5 7 5 3 6 8 7
## [22] 5 7 4 4 7 5 7 5 3 3 8 4 7 11 6 9 7 5 3 6 9
## [43] 5 4 5 6 5 7 3 7 5 8 5 6 5 1 4 5 4 4 5 9 6
## [64] 3 4 7 5 3 6 7 6 5 4 6 5 3 3 4 7 4 5 6 11 5
## [85] 7 7 5 4 6 4 8 4 6 2 2 4 5 1 5 7 1 1 8 6 5
## [106] 8 3 6 2 8 6 4 8 7 5 4 5 8 7 5 7 5 7 6 6 6
## [127] 6 6 7 7 7 6 8 4 5 5 9 6 8 6 6 6 8 6 6 5 8
## [148] 6 6 7 5 7 6 4 7 6 6 6 4 6 7 4 9 7 3 6 8 5
## [169] 7 6 5 5 4 3 7 8 5 7 4 4 7 5 9 5 6 6 3 7 4
## [190] 9 5 8 9 5 5 5 6 7 10 3 8 5 4 5 8 9 4 7 5 7
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## [211] 4 7 9 3 8 7 5 5 8 7 5 9 6 9 7 6 6 2 8 6 2
## [232] 7 2 6 8 6 8 5 7 10 6 8 7 7 1 1 8 6 5 7 6 8
## [253] 5 9 6 3 5 4 6 8 5 5 6 5 8 4 7 6 4 5 5 7 8
## [274] 4 4 7 7 10 4 4 6

table(n.nb)

## n.nb
## 1 2 3 4 5 6 7 8 9 10 11
## 6 6 16 37 58 61 48 30 14 3 2

Q4 : What is the most common number of neighbours? Jump to A4 •

Task 9 : Identify a polygon with only one neighbour, and one with a large
number of neighbours; we will use these for comparing how spatial weights
are computed in the next section. •

We find the polygons with the minimum and maximum number of neigh-
bours with the which function and a logical condition using either min or
max and the == “is equal to” operator, and then display their information in
the polygon object by row selection.
min(n.nb); max(n.nb)

## [1] 1
## [1] 11

(ix.min.nb <- which(n.nb==min(n.nb)))

## [1] 56 98 101 102 245 246

NY8[ix.min.nb,]

## Simple feature collection with 6 features and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 360387.1 ymin: 4752012 xmax: 440217.7 ymax: 4808545
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS
## 56 NA 36011990100 -50.24266 36.81422 10494 3.85
## 98 Canastota village 36053030300 18.89833 41.54373 4773 0.44
## 101 NA 36053030403 8.49700 38.27917 4295 1.39
## 102 Cazenovia village 36053030501 10.82350 24.17720 2599 3.24
## 245 Marcellus village 36067016502 -28.68800 30.85230 1870 1.03
## 246 Skaneateles village 36067016600 -35.98330 26.86590 2786 1.04
## PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE
## 56 0.000367 0.5365118 0.03220888 -0.77182 0.0774664 2.047259
## 98 0.000092 0.5683716 0.15482925 -1.19833 0.0206926 0.727191
## 101 0.000324 0.7482353 0.11105937 -0.58616 0.0226724 0.818563
## 102 0.001247 0.5618091 0.14736437 0.48944 0.0332935 1.202777
## 245 0.000551 0.4950860 0.15187166 0.08210 0.0525526 1.659229
## 246 0.000373 0.6508585 0.19059584 -0.31166 0.0918058 2.217090
## Cases Xm Ym Xshift Yshift
## 56 3.83889 -50242.66 36814.22 369078.9 4765669
## 98 0.43958 18898.33 41543.73 438219.9 4770399
## 101 1.39555 8497.00 38279.17 427818.6 4767134
## 102 3.23935 10823.50 24177.20 430145.1 4753032
## 245 1.02822 -28688.00 30852.30 390633.6 4759707
## 246 1.04204 -35983.30 26865.90 383338.3 4755721
## geometry
## 56 POLYGON ((369143 4807833, 3...
## 98 POLYGON ((438903.1 4768869,...

11



## 101 POLYGON ((430465.2 4767073,...
## 102 POLYGON ((429880.3 4754495,...
## 245 POLYGON ((391274.5 4760874,...
## 246 POLYGON ((382461.1 4755744,...

(ix.max.nb <- which(n.nb==max(n.nb)))

## [1] 35 83

NY8[ix.max.nb,]

## Simple feature collection with 2 features and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 411636.9 ymin: 4662952 xmax: 428909.5 ymax: 4737992
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
## 35 NA 36007012800 6.219888 -64.6361 5594 5.13 0.000917
## 83 NA 36023990100 1.861683 -16.6013 5532 3.35 0.000606
## PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases Xm
## 35 0.6905334 0.1973543 0.09150 0.1459107 2.680410 5.13091 6219.888
## 83 0.6787440 0.1231020 -0.24037 0.0763459 2.032689 3.33995 1861.683
## Ym Xshift Yshift geometry
## 35 -64636.1 425541.5 4664219 POLYGON ((421936.5 4665583,...
## 83 -16601.3 421183.3 4712254 POLYGON ((411675.8 4736791,...

There are several polygons with minimum and maximum neighbours.

Q5 : How many polygons have only one neighbour? What is the maximum
number of neighbours for any polygon? What are their indices in the list of
polygons? What are their census codes (see field AREAKEY)? What are their
indices in the 8-county dataset (these are the row.names)? Jump to A5 •

We plot the locations of these two polygons:
plot(st_geometry(NY8), border="grey",

main = "NY8 Census Tracts with max/min neighbours",
sub = "min: red; max: green",
axes = TRUE)

plot(st_geometry(NY8[ix.min.nb,]), border="black", col="red", lwd=1, add=T)
plot(st_geometry(NY8[ix.max.nb,]), border="black", col="green", lwd=1, add=T)
plot(NY8_nb, coords_centers, add=TRUE,

pch=19, cex = 0.6, col="black", lwd=0.2)
grid()
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min: red; max: green

Most of the polygons with only one neighbour are completely inside other
polygons – these are villages within towns.

4.2 Neighbours based on distance between centroids

There are other concepts of neighbours. One is by distance: a “neighbour”
polygon is not necessarily contiguous with the target polygon, but whose
centroid is within a given distance band of the target polygon’s centroid,
will be considered a neighbour.

This is appropriate if the spatial process is hypothesized to depend on dis-
tance rather than contiguity, and there is a radius over which the process
is hypothesized to operate. Here we do not yet have a spatial process to
evaluate, so we choose an arbitrary distance.

Task 10 : Find the neighbours of each polygon within 12 km. •

The dnearneigh function computes this, using a point set as the target.
These can be arbitrary points, but here we want the centroids of the target
polygons.
NY8_nb_d <- dnearneigh(coords_centers, d1=0, d2=12000,

row.names=row.names(NY8))

13



summary(NY8_nb_d)

## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 13102
## Percentage nonzero weights: 16.593
## Average number of links: 46.62633
## 11 regions with no links:
## 30 31 56 74 75 80 83 109 252 253 258
## 16 disjoint connected subgraphs
## Link number distribution:
##
## 0 1 2 3 4 5 6 7 8 9 10 11 14 15 16 17 18
## 11 9 16 9 9 10 2 12 2 2 2 2 3 2 3 15 3
## 19 20 21 23 24 27 29 30 31 32 33 34 35 36 37 38 39
## 2 1 2 5 1 1 2 1 4 4 4 1 3 3 2 7 5
## 40 41 42 43 44 48 54 66 69 71 72 77 79 80 81 83 85
## 3 2 6 4 1 1 1 1 1 1 1 1 2 1 1 1 2
## 86 87 88 89 90 92 93 94 95 96 97 98 99 100 101 102 103
## 1 3 2 1 1 2 3 3 1 4 3 1 4 4 5 8 14
## 104 105 106 107
## 13 10 4 4
## 9 least connected regions:
## 60 81 90 105 106 107 108 257 279 with 1 link
## 4 most connected regions:
## 113 118 119 215 with 107 links

There is no requirement that the d1 “closest distance” be zero; this function
can be used to find “neighbours” in any distance band.

Task 11 : Plot the polygon map with these neighbour links. •
plot(st_geometry(NY8), border="grey",

main = "NY8 Census Tracts, 12 km neighbours", axes = TRUE)
plot(NY8_nb_d, coords_centers,

pch=19, cex = 0.6, add=TRUE, col="blue", lwd = 0.2)
grid()
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These are mostly in the urban areas.

4.3 Nearest neighbours based on distance

Another possibility is to define a fixed number of nearest neighbours, again
based on centroid distance.

This is a appropriate if the spatial process is hypothesized to depend on a
fixed set of nearest neighbours, no matter their distances.

Task 12 : Create a neighbours list including the three nearest neighbours
of each polygon. •

The knearneigh function finds the nearest neighbours as a matrix, then the
knn2nb function converts this to a neighbours list.
knn3 <- knearneigh(coords_centers, k=3)
str(knn3$nn)

## int [1:281, 1:3] 2 1 2 6 10 4 6 7 18 5 ...

knn3$nn[1:3,]

## [,1] [,2] [,3]
## [1,] 2 15 49

15



## [2,] 1 13 3
## [3,] 2 13 35

NY8_nb_3nn <- knn2nb(knn3, row.names=row.names(NY8))
print(NY8_nb_3nn)

## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 843
## Percentage nonzero weights: 1.067616
## Average number of links: 3
## Non-symmetric neighbours list

Task 13 : Plot the polygon map with these neighbour links. •
plot(st_geometry(NY8), border="grey",

main = "NY8 Census Tracts, 3 nearest neighbours", axes = TRUE)
plot(NY8_nb_3nn, coords_centers, pch=19, cex=0.6, col="blue", add=TRUE)
grid()
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5 Subsetting the dataset

This is a fairly large dataset; to make the analysis faster and the figures
easier to understand, we subset the data.

Q6 : What field in the dataframe of NY8 gives the geographic names? How
many are there? What is the name for Syracuse city? Jump to A6 •
names(NY8)

## [1] "AREANAME" "AREAKEY" "X" "Y" "POP8"
## [6] "TRACTCAS" "PROPCAS" "PCTOWNHOME" "PCTAGE65P" "Z"
## [11] "AVGIDIST" "PEXPOSURE" "Cases" "Xm" "Ym"
## [16] "Xshift" "Yshift" "geometry"

length(unique(NY8$AREANAME))

## [1] 64

sort(unique(NY8$AREANAME))

## [1] Auburn city Baldwinsville village Barker town
## [4] Bayberry-Lynelle Mead Binghamton city Binghamton town
## [7] Brookfield town Camillus village Canastota village
## [10] Cazenovia village Chenango town Colesville town
## [13] Conklin town Cortland city East Cayuga Heights C
## [16] East Syracuse village Endicott village Endwell CDP
## [19] Fairmount CDP Fayetteville village Fenton town
## [22] Hamilton village Ithaca city Johnson City village
## [25] Kirkwood town Lafayette town Lansing village
## [28] Liverpool village Maine town Manlius village
## [31] Marcellus village Minoa village NA
## [34] Nanticoke town Newfield town North Syracuse villag
## [37] Norwich city Oneida city Onondaga
## [40] Onondaga town Otisco town Owego village
## [43] Pitcher Hill CDP Pompey town Remainder of Camillus
## [46] Remainder of Cicero t Remainder of Clay tow Remainder of De Witt
## [49] Remainder of Dryden t Remainder of Geddes t Remainder of Ithaca t
## [52] Remainder of Lansing Remainder of Lysander Remainder of Manlius
## [55] Remainder of Owego to Remainder of Salina t Remainder of Sullivan
## [58] Remainder of Union to Remainder of Van Bure Skaneateles village
## [61] Solvay village Spafford town Syracuse city
## [64] Vestal town
## 64 Levels: Auburn city Baldwinsville village ... Vestal town

which(NY8$AREANAME == "Syracuse city")

## [1] 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
## [17] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
## [33] 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
## [49] 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

Task 14 : Extract the subset of the data covering the city of Syracuse6 and
all its neighbours within the distance radius specified in §4.2. Plot it, along
with its adjacency neighbour links. •

Subset the data with a logical expression to select matrix rows for Syracuse,
then find the tracts within the specified distance of any of the Syracuse
tracts. Then the two together form the subset.
6 https://www.syr.gov
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(ix <- grep("Syracuse city", NY8$AREANAME, fixed = TRUE))

## [1] 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
## [17] 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
## [33] 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
## [49] 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172

# find near neighbours by distance
(iy <- unique(unlist(NY8_nb_d[ix])))

## [1] 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
## [17] 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
## [33] 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
## [49] 159 160 161 162 163 164 165 166 167 168 169 170 171 172 177 178
## [65] 179 180 181 182 183 184 185 188 189 193 196 200 201 202 203 204
## [81] 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
## [97] 221 222 223 224 225 240 241 242 243 110 226 227 234 175 176 233
## [113] 228 229 235 230 231 199 239 238 237

Syr <- NY8[iz <- union(ix, iy),]
dim(Syr)

## [1] 121 18

Syr_nb <- poly2nb(Syr)

We have reduced the size of the dataset. Now the plot. Note the use of
the row.names function to extract the census tract numbers, and the text
function to place text on the plot.
plot(st_geometry(Syr), border="grey",

main = "Syracuse Census Tracts", axes = TRUE)
coords_centers_Syr <- st_coordinates(st_centroid(st_geometry(Syr)))
plot(Syr_nb, coords_centers_Syr, col = "blue", lwd = 0.7,

pch=19, cex=0.6, add=TRUE)
text(coords_centers_Syr, row.names(Syr))
grid()
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5.1 * Geographic setting

It always helps understanding to see the geographic setting of a dataset; in
this optional sectio we show how to display the Syracuse census tracts on
Google Earth.

Task 15 : Export the Syracuse polygons in KML format and display in
Google Earth. •

The st_write function of the sf package exports in many formats. For
display in Google Earth, coordinates must be in Longitude/Latitude on the
WGS84 ellipsoid; we use the st_transform method to transform from the
original UTM to this system, defined by an EPSG code.
Syr.ll <- st_transform(Syr, 4326)
st_write(Syr.ll, "./Syr.kml", driver = "kml", delete_dsn = TRUE)

Opening the KML in Google Earth and adjusting the symbology, we see
Figure 1.
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Figure 1: Syracuse area census tracts
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6 Spatial weights

Supplementary reading:

• Bivand et al. [1, §9.2]: Spatial neighbours & spatial weights

In models where neighbours are considered, the question is how to apportion
the presumed neigbourhood effect among the neighbours of a given polygon,
i.e, how to assign spatial weights. This should correspond to the presumed
process by which the neighbourhood effect occurs.

For example, a weight might be proportional to the distance between polygon
centroids (spatial diffusion process) or length of shared boundary (migration
process) or size of the neighbour polygon (pressure process) – in this last
case, the weights would be asymmetric.

Spatial weights extend the list of neighbours for a point, by assigning some
value between 0 (no relation) and 1 (full relation). In the simplest case
we have only 0’s and 1’s: a neighbour of a point is either influential (1) or
not (0), and all influential neighbours are equally influential in the process
we are modelling. This simple view can be modified by assigning different
weights to each relationship, but of course we must have knowledge of the
underlying process to deviate from the simple 0/1 model.

There are many choices of weightings, which we now review.

Spatial weights are represented in spdep as a list of lists: (1) points, (2)
neighbours of that point, with weights on [0 . . . 1]. They can also be rep-
resented as a matrix: rows for the source point and columns for the target.
An entry of 0 means the points are not neighbours.

Task 16 : Create a weights object for the New York polygons, with the
default (queen’s) neighbour list. •

The nb2listw function of the spdep package converts a neighbours list ob-
ject (class nb) to a weights object (class listw, an extension of nb).

There are various conversion styles as an optional argument; the default is
style="W", in which the weights for each areal entity must sum to unity
along rows of the weights matrix; this is the inverse of the number of neigh-
bours. This may give a false impression at the edges of the study area, where
fewer neighbours are expected. We discuss some other spatial weight styles
in §7.1.1.

6.1 Weights style W

We create the weights object, summarize it, and examine its structure:
NY8_lw_W <- nb2listw(NY8_nb)
print(NY8_lw_W)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 281
## Number of nonzero links: 1624
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## Percentage nonzero weights: 2.056712
## Average number of links: 5.779359
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 281 78961 281 106.6125 1164.157

print(NY8_lw_W$neighbours[[1]])

## [1] 2 13 14 15 47 48 49 50

print(NY8_lw_W$weights[[1]])

## [1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

The object is composed of three lists:

1. the weights style style, here style="W";

2. a list of the regions, each having a vector of its neighbours’ region
numbers;

3. a list of the regions, each having a vector of the weights given to each
neighbouring region.

In the above code, we see that region 1 has 8 neighbouring regions, and each
has equal weight 0.125. To extract these, we used the [[]] list extraction
operator.

Q7 : What are the weights of each link for the polygons with minimum and
maximum neighbours? Jump to A7 •

These are the respective lists for the two identified polygons:
unlist(unique(NY8_lw_W$weights[ix.min.nb]))

## [1] 1

unlist(unique(NY8_lw_W$weights[ix.max.nb]))

## [1] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909
## [7] 0.09090909 0.09090909 0.09090909 0.09090909 0.09090909

The weights are stored in list format because so many of them will be zero,
i.e., a full matrix is sparse. However, it is possible to “unwrap” the list into
a full matrix.

Task 17 : Also make the weights matrix for the Syracuse area. •
Syr_lw_W <- nb2listw(Syr_nb)
print(Syr_lw_W)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
##
## Weights style: W
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## Weights constants summary:
## n nn S0 S1 S2
## W 121 14641 121 43.6013 498.1653

Task 18 : Optional: Convert the weights into a full matrix and display the
upper 9 x 9 corner, i.e., the weights between the first ten regions. •

We write a small function to do the conversion from an object of class nb;
we can use this with any neighbour list.

Note: To make the result more interpretable, we format the matrix as a
data.frame, and name the rows and columns of the data frame using the
row.names and colnames functions (yes, one has a . and one does not …).
The polygon names are found in the region.id attribute of the neighbours
object; we extract these with the attr “get attributes” function.

build.wts.matrix <- function(wts.list) {
# set up a matrix to receive the weights, initially all 0
len <- length(wts.list$weights)
wts.matrix <- as.data.frame(matrix(0, nrow=len, ncol=len))
row.names(wts.matrix) <- attr(wts.list$neighbours, "region.id")
colnames(wts.matrix) <- attr(wts.list$neighbours, "region.id")
for (i in 1:len) { # each item in the weights list

nl <- wts.list$neighbours[[i]] ## one row's neighbours
wl <- wts.list$weights[[i]] ## one row's weights
if (nl[1] != 0) { # empty neighbour lists have a single `0' element

# fill in this row of the weights matrix
for (j in 1:length(nl)) wts.matrix[i, nl[j]] <- wl[j]
}

}
return(wts.matrix)

}
tmp <- build.wts.matrix(Syr_lw_W)
tmp[1,]

## 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124
## 110 0 0.125 0 0 0.125 0 0 0 0 0 0.125 0 0 0 0
## 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139
## 110 0 0 0 0 0 0.125 0.125 0 0 0 0 0 0 0 0
## 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
## 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
## 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 172 177 178 179 180 181 182 183 184 185 188 189 193 196 200 201
## 110 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
## 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
## 110 0 0 0 0 0.125 0 0 0 0 0 0 0 0 0.125 0
## 217 218 219 220 221 222 223 224 225 240 241 242 243 226 227 234
## 110 0 0 0.125 0 0 0 0 0 0 0 0 0 0 0 0 0
## 175 176 233 228 229 235 230 231 199 239 238 237
## 110 0 0 0 0 0 0 0 0 0 0 0 0

round(tmp[1:9,1:9], 4)

## 110 111 112 113 114 115 116 117 118
## 110 0.0000 0.1250 0.0000 0.0000 0.1250 0.0000 0.000 0.000 0.000
## 111 0.1667 0.0000 0.1667 0.1667 0.1667 0.1667 0.000 0.000 0.000
## 112 0.0000 0.2500 0.0000 0.2500 0.0000 0.0000 0.000 0.000 0.000
## 113 0.0000 0.1250 0.1250 0.0000 0.0000 0.1250 0.125 0.125 0.125
## 114 0.1429 0.1429 0.0000 0.0000 0.0000 0.1429 0.000 0.000 0.000
## 115 0.0000 0.2000 0.0000 0.2000 0.2000 0.0000 0.200 0.000 0.000
## 116 0.0000 0.0000 0.0000 0.2500 0.0000 0.2500 0.000 0.250 0.000
## 117 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000 0.200 0.000 0.200
## 118 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.000 0.125 0.000
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rm(tmp)

Notice that the full weights matrix for weights style W is not symmetric; the
number of neighbours of a target polygon is not the same as the number of
other polygons with which this one shares influence on a different target.

Note that the analyst can directly create a weights matrix based on knowl-
edge of the assumed data generating process.

6.2 Other weights styles

The nb2listw function has several options for the style optional argument
Bivand et al. [1, §9.2.2]:

W : explained above: inversely proportional to the number of neighbours;

B : binary: 1 for a neighbour, 0 otherwise;

C : globally standardized: inversely proportional to the total number of
links; that is, all non-zero links get the same weight;

U : C divided by the number of neighbours.

Row-standardisation (style W) favours observations with few neighbours,
whereas the other styles favour observations with many neighbours. We
can see this by comparing weights for few- and many-neighbour entries in
the neighbour list:

First, find the tracts with the miniumum and maximum number of neighours:
n.nb.s <- unlist(lapply(Syr_nb, length))
table(n.nb.s)

## n.nb.s
## 1 2 3 4 5 6 7 8 9 10
## 1 2 5 17 23 29 24 12 7 1

min(n.nb.s); max(n.nb.s)

## [1] 1
## [1] 10

(ix.min.s <- which(n.nb.s==min(n.nb.s)))

## [1] 113

Syr[ix.min.s,]

## Simple feature collection with 1 feature and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 416999.9 ymin: 4763591 xmax: 420412.2 ymax: 4766288
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS
## 228 Fayetteville village 36067015000 -1.2134 35.81025 4709 3.08
## PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE
## 228 0.000654 0.7092391 0.1299639 -0.14338 0.0232898 0.84543
## Cases Xm Ym Xshift Yshift
## 228 3.07105 -1213.4 35810.25 418108.2 4764665
## geometry
## 228 POLYGON ((417172.5 4765099,...
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(ix.max.s <- which(n.nb.s==max(n.nb.s)))

## [1] 103

Syr[ix.max.s,]

## Simple feature collection with 1 feature and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 407359.5 ymin: 4754983 xmax: 409878.6 ymax: 4762986
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS
## 240 Onondaga town 36067016100 -10.32513 29.87623 1214 1.02
## PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases
## 240 0.00084 0.9234234 0.1037891 0.50918 0.0272618 1.002901 1.01831
## Xm Ym Xshift Yshift
## 240 -10325.13 29876.23 408996.4 4758731
## geometry
## 240 POLYGON ((408376.3 4762335,...

Syr_lw_W <- nb2listw(Syr_nb)
summary(Syr_lw_W)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10
## 1 2 5 17 23 29 24 12 7 1
## 1 least connected region:
## 228 with 1 link
## 1 most connected region:
## 240 with 10 links
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 121 14641 121 43.6013 498.1653

Syr_lw_B <- nb2listw(Syr_nb, style="B")
summary(Syr_lw_B)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10
## 1 2 5 17 23 29 24 12 7 1
## 1 least connected region:
## 228 with 1 link
## 1 most connected region:
## 240 with 10 links
##
## Weights style: B
## Weights constants summary:
## n nn S0 S1 S2
## B 121 14641 714 1428 18224

Syr_lw_C <- nb2listw(Syr_nb, style="C")
summary(Syr_lw_C)
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## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10
## 1 2 5 17 23 29 24 12 7 1
## 1 least connected region:
## 228 with 1 link
## 1 most connected region:
## 240 with 10 links
##
## Weights style: C
## Weights constants summary:
## n nn S0 S1 S2
## C 121 14641 121 41.0112 523.3811

Syr_lw_U <- nb2listw(Syr_nb, style="U")
summary(Syr_lw_U)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
## Link number distribution:
##
## 1 2 3 4 5 6 7 8 9 10
## 1 2 5 17 23 29 24 12 7 1
## 1 least connected region:
## 228 with 1 link
## 1 most connected region:
## 240 with 10 links
##
## Weights style: U
## Weights constants summary:
## n nn S0 S1 S2
## U 121 14641 1 0.00280112 0.03574763

We can also compute weights based on any criterion that seems appropriate
to the process. One obvious possibility is inverse distance (perhaps to some
power) of the area centroids: the further the centroids, the less influence.
This is well-established for many processes originating at points, e.g., inverse-
square light or sound intensity from point sources. It may be applicable to
social processes as well.

Q8 : Considering the leukemia incidence, why or why not would the inverse-
distance weighting represent the underlying process? Jump to A8
•

Task 19 : Compute a weights matrix based on inverse distance of the
centroids. •

We use nbdists to calculate the distances for an object of class nb, from the
centroid coordinates of the polygon object computed above, then lapply
to invert the distances; this lapply takes an argument of class function,
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which in this case we build ourselves, since there is no “invert” function for
vectors. Finally, we pass these to the weight-generating function nb2listw
with the optional glist “general list” argument – this must be a list of lists,
one for each area.

Note: Note that the function to compute the inverse distance could also
have some power. Here we just use distance itself, with linear distance decay
of any hypothesized effect.

We illustrate the calculation with the first-listed polygon, while applying it
to the whole dataset with the lapply “list apply” function.
row.names(Syr[1,])

## [1] "110"

Syr_nb[[1]]

## [1] 2 5 11 21 22 83 92 96

dsts <- nbdists(Syr_nb, coords_centers_Syr)
dsts[1]

## [[1]]
## [1] 1656.873 1514.638 1098.564 1944.120 1871.600 4877.886 2454.290
## [8] 2449.660

idw <- lapply(dsts, function(x) 1/(x/1000))
# could do this, IDW^2
# idw2 <- lapply(dsts, function(x) (1/(x/1000)^2))
idw[1]

## [[1]]
## [1] 0.6035465 0.6602238 0.9102789 0.5143715 0.5343021 0.2050068
## [7] 0.4074498 0.4082199

Syr_lw_idwB <- nb2listw(Syr_nb, glist=idw, style="B")
Syr_lw_idwB$weights[[1]]

## [1] 0.6035465 0.6602238 0.9102789 0.5143715 0.5343021 0.2050068
## [7] 0.4074498 0.4082199

Here is the summary of the weights:
summary(unlist(Syr_lw_idwB$weights))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.08052 0.31557 0.60062 0.70777 0.92669 12.09146

And here is the summary of the sums of weights per polygon:
summary(sapply(Syr_lw_idwB$weights, sum))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.4796 2.1198 3.6456 4.1764 6.2446 12.6601

There is a wide range of total weights assigned to a polygon, very unlike the
“W” style weights.

Task 20 : Optional: Compare the weights matrices of the different weighting
styles. •
tmp <- build.wts.matrix(Syr_lw_W)
round(tmp[1:9,1:9],4)

27



## 110 111 112 113 114 115 116 117 118
## 110 0.0000 0.1250 0.0000 0.0000 0.1250 0.0000 0.000 0.000 0.000
## 111 0.1667 0.0000 0.1667 0.1667 0.1667 0.1667 0.000 0.000 0.000
## 112 0.0000 0.2500 0.0000 0.2500 0.0000 0.0000 0.000 0.000 0.000
## 113 0.0000 0.1250 0.1250 0.0000 0.0000 0.1250 0.125 0.125 0.125
## 114 0.1429 0.1429 0.0000 0.0000 0.0000 0.1429 0.000 0.000 0.000
## 115 0.0000 0.2000 0.0000 0.2000 0.2000 0.0000 0.200 0.000 0.000
## 116 0.0000 0.0000 0.0000 0.2500 0.0000 0.2500 0.000 0.250 0.000
## 117 0.0000 0.0000 0.0000 0.2000 0.0000 0.0000 0.200 0.000 0.200
## 118 0.0000 0.0000 0.0000 0.1250 0.0000 0.0000 0.000 0.125 0.000

tmp <- build.wts.matrix(Syr_lw_B)
round(tmp[1:9,1:9], 4)

## 110 111 112 113 114 115 116 117 118
## 110 0 1 0 0 1 0 0 0 0
## 111 1 0 1 1 1 1 0 0 0
## 112 0 1 0 1 0 0 0 0 0
## 113 0 1 1 0 0 1 1 1 1
## 114 1 1 0 0 0 1 0 0 0
## 115 0 1 0 1 1 0 1 0 0
## 116 0 0 0 1 0 1 0 1 0
## 117 0 0 0 1 0 0 1 0 1
## 118 0 0 0 1 0 0 0 1 0

tmp <- build.wts.matrix(Syr_lw_C)
round(tmp[1:9,1:9], 4)

## 110 111 112 113 114 115 116 117 118
## 110 0.0000 0.1695 0.0000 0.0000 0.1695 0.0000 0.0000 0.0000 0.0000
## 111 0.1695 0.0000 0.1695 0.1695 0.1695 0.1695 0.0000 0.0000 0.0000
## 112 0.0000 0.1695 0.0000 0.1695 0.0000 0.0000 0.0000 0.0000 0.0000
## 113 0.0000 0.1695 0.1695 0.0000 0.0000 0.1695 0.1695 0.1695 0.1695
## 114 0.1695 0.1695 0.0000 0.0000 0.0000 0.1695 0.0000 0.0000 0.0000
## 115 0.0000 0.1695 0.0000 0.1695 0.1695 0.0000 0.1695 0.0000 0.0000
## 116 0.0000 0.0000 0.0000 0.1695 0.0000 0.1695 0.0000 0.1695 0.0000
## 117 0.0000 0.0000 0.0000 0.1695 0.0000 0.0000 0.1695 0.0000 0.1695
## 118 0.0000 0.0000 0.0000 0.1695 0.0000 0.0000 0.0000 0.1695 0.0000

tmp <- build.wts.matrix(Syr_lw_U)
round(tmp[1:9,1:9], 4)

## 110 111 112 113 114 115 116 117 118
## 110 0.0000 0.0014 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000
## 111 0.0014 0.0000 0.0014 0.0014 0.0014 0.0014 0.0000 0.0000 0.0000
## 112 0.0000 0.0014 0.0000 0.0014 0.0000 0.0000 0.0000 0.0000 0.0000
## 113 0.0000 0.0014 0.0014 0.0000 0.0000 0.0014 0.0014 0.0014 0.0014
## 114 0.0014 0.0014 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000
## 115 0.0000 0.0014 0.0000 0.0014 0.0014 0.0000 0.0014 0.0000 0.0000
## 116 0.0000 0.0000 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000
## 117 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0014 0.0000 0.0014
## 118 0.0000 0.0000 0.0000 0.0014 0.0000 0.0000 0.0000 0.0014 0.0000

tmp <- build.wts.matrix(Syr_lw_idwB)
round(tmp[1:9,1:9], 4)

## 110 111 112 113 114 115 116 117 118
## 110 0.0000 0.6035 0.0000 0.0000 0.6602 0.0000 0.0000 0.0000 0.0000
## 111 0.6035 0.0000 0.9265 0.5963 1.0111 1.4139 0.0000 0.0000 0.0000
## 112 0.0000 0.9265 0.0000 0.9858 0.0000 0.0000 0.0000 0.0000 0.0000
## 113 0.0000 0.5963 0.9858 0.0000 0.0000 0.7191 1.0020 1.1118 0.7829
## 114 0.6602 1.0111 0.0000 0.0000 0.0000 1.3676 0.0000 0.0000 0.0000
## 115 0.0000 1.4139 0.0000 0.7191 1.3676 0.0000 1.7476 0.0000 0.0000
## 116 0.0000 0.0000 0.0000 1.0020 0.0000 1.7476 0.0000 1.7162 0.0000
## 117 0.0000 0.0000 0.0000 1.1118 0.0000 0.0000 1.7162 0.0000 1.0592
## 118 0.0000 0.0000 0.0000 0.7829 0.0000 0.0000 0.0000 1.0592 0.0000
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7 Spatial autocorrelation

Supplementary reading:

• Bivand et al. [1, §9.3]: Testing for spatial autocorrelation’

Now that we have neighbours and their weights, we can determine whether
there is any spatial autocorrelation: are attribute values in neighbouring
polygons (suitably weighted) similar? Note we are not yet trying to deter-
mine causes, although the results of this step may motivate a hypothesis.
For example, neighbouring polygons could influence each other; alternately,
a geographic factor common to adjacent areas could influence them both.

However, we first need to describe the feature-space attributes of each area.
These are all reported on the basis of 1980 census tracts.

Cases : the number of leukaemia cases 1978–1982; some cases had insuffi-
cient georeference, these were added proportionally to tracts, so some
“counts” are not integers.

Z : log-transformed rate, i.e., normalized by census tract population: 𝑍𝑖 =
log(1000[Cases + 1]/𝑛)

PEXPOSURE : “potential exposure”, computed as the logarithm of 100 times the in-
verse of the distance between a census tract centroid and the nearest
TCE7-producing site8;

PCTAGE65P : percent older than 65 years; this could represent long-term exposure
to any environmental factor;

PCTOWNHOME : percent home ownership; this could indicate lifestyle or economic level.

In this section we examine spatial autocorrelation of the transformed disease
incidence, attribute Z. Among the various metrics of spatial association, we
choose Moran’s I [3]. In all such tests, we make several implicit assumptions:

• We assume that there is no spatial patterning due to some underlying
but un-modelled factor;

• We assume that the assigned spatial weights (previous §) are those
that generated the autocorrelation.

As examples of these:

• If assessing spatial correlation of disease incidence, we assume there are
no environmental factors that are spatially-distributed, e.g., industry
or different water sources.

• Equal spatial weights of 1/𝑛 from each of 𝑛 neighbours assumes that
each neighbour is equally influential in the modelled process. If the
process depends for example on the “pressure” due to population or
area of a polygon, this is unlikely to be true.

7 Trichloroethylene, an industrial solvent often found in groundwater
8 see ?NY_data
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So tests such as Moran’s I should ideally be applied to residuals after re-
moving known spatial patterning, and with weights based on the assumed
process that gave rise to autocorrelation. What is left can then be tested to
see if there is a real effect of spatial correlation, not one brought on by a
“lurking variable”.

As an example, we might hypothesize that the crime rate in a city is (at least
in part) related to low incomes, low employment, low home ownership, and
number of abandoned houses. If we can build a model (non-spatial) relating
these factors to crime rate, any apparent spatial correlation in crime rate
may disappear in the residuals, because the predictive factors share the same
spatial patterning, i.e., the mean model is not a null (average) model but
instead has spatially-pattered predictors.

However, in some data sets we don’t have the spatially-patterned covariables;
or, we want to test if there is any spatial patterning, not considering the cause
(perhaps to see if there is any cause); then Moran’s I and similar tests can
be applied to the variable without attempting to model it with covariables.

Moran’s I is defined as:

𝐼 =
𝑛∑

𝑖

∑
𝑗 𝑤𝑖 𝑗

∑
𝑖

∑
𝑗 𝑤𝑖 𝑗 (𝑦𝑖 − 𝑦) (𝑦 𝑗 − 𝑦)∑

𝑖 (𝑦𝑖 − 𝑦)2 (1)

where 𝑦𝑖 is the 𝑖th of 𝑛 polygon, 𝑦 is its global mean, and 𝑤𝑖 𝑗 is the spatial
weight of the link between polygons 𝑖 and 𝑗 , as discussed in the previous
section. The first term normalizes by the sum of all weights, so the test
is comparable among datasets with different numbers of polygons. The
denominator of the second term centres on the mean.

7.1 Global tests

A global test summarizes the spatial correlation of an entire map: is there
evidence of spatial correlation, on average? We consider the incidence of
leukemia, presented as a log-transformed rate 𝑍 [1, p. 291]:

𝑍𝑖 = log
1000(𝑌𝑖 + 1)

𝑛𝑖
(2)

where 𝑌𝑖 is the count of cases in a census tract and 𝑛𝑖 is its population. This
is presented as field Z. We refer to this as leukemia incidence.
summary(Syr$Z)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.7390 -0.7994 -0.2928 -0.2059 0.2453 4.7105

Task 21 : Test the assumption that leukemia cases incidence is spatially
independent (randomly distributed among census tracts). •

We first visualize the spatial relation with several colour-ramp plots. The
first is the incidence itself in each census tract.
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ggplot(data = Syr) +
geom_sf(aes(fill = Z)) +
labs(title = "Leukemia incidence")
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The second the rank of the leukemia incidence in each census tract, from
lowest (lightest shade) to highest (darkest).
rank <- rank(Syr$Z)
ggplot(data = Syr) +

geom_sf(aes(fill = rank)) +
scale_fill_gradient2(guide = guide_colourbar(reverse = TRUE)) +
labs(title = "Rank of Leukemia incidence")
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Another view is the relative intensity of incidence, shown with the same
grey scale, but with the intensity of the grey proportional to the maximum
proportion of cases.

Note: The -min(Syr$Z) in the numerator and denominator is to re-scale
from zero for grey-shading. Note that field 𝑍 has some negative numbers; if
all were positive the expression Syr$Z/max(Syr$Z) would also give a proper
sequential gray scale.

Note: The pmax “parallel maximum” function ensures that the lowest inci-
dence uses the first grey in the scale, i.e., the lightest; if this were omitted
the index would be 0 and give no corresponding colour.

rel.risk <- ((Syr$Z-min(Syr$Z))/(max(Syr$Z)-min(Syr$Z)))
n <- length(Syr$Z)
rel.risk <- pmax(ceiling(n*rel.risk), 1)
rel.risk.pal <- rev(brewer.pal(9, 'Spectral'))
ggplot(data = Syr) +

geom_sf(aes(fill = rel.risk)) +
scale_fill_gradientn(colors = rel.risk.pal) +
labs(title = "Relative risk of Leukemia incidence")
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Q9 : Does leukemia incidence appear to be spatially autocorrelated? Which
of the maps shows this best? Jump to A9 •

Now we make the formal test, using the moran.test function. We accept the
default alternative="greater" argument (so, no need to write it explicitly
in the command), because we are not interested in determining whether the
leukemia incidence is more spatially dispersed than by chance, only if it is
more spatially clustered9.
(moran.z <- moran.test(Syr$Z, Syr_lw_W))

##
## Moran I test under randomisation
##
## data: Syr$Z
## weights: Syr_lw_W
##
## Moran I statistic standard deviate = 4.9597, p-value =
## 3.531e-07
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.246563167 -0.008333333 0.002641332

Q10 : Is leukemia incidence provably spatially autocorrelated with this
weighting? Jump to A10 •

9 The other choices are "less" and "two-sided", see help(moran.test)
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7.1.1 Effect of weights

The above results are for the default weighting: inversely by number of
neighbours. Other reasonable weightings would be by inverse distance of
the centroids, or by population, or by area, or by shared border length,
depending on the process being modelled.

We computed several weightings in §6.2, here we see their effect on Moran’s
I.

Task 22 : Re-compute Moran’s I with inverse-distance weighting. •

Again we use the moran.test function, with the new weights matrices:
print(moran.z.idwB <- moran.test(Syr$Z, Syr_lw_idwB))

##
## Moran I test under randomisation
##
## data: Syr$Z
## weights: Syr_lw_idwB
##
## Moran I statistic standard deviate = 3.0215, p-value =
## 0.001257
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.210832392 -0.008333333 0.005261246

print(moran.z)

##
## Moran I test under randomisation
##
## data: Syr$Z
## weights: Syr_lw_W
##
## Moran I statistic standard deviate = 4.9597, p-value =
## 3.531e-07
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.246563167 -0.008333333 0.002641332

# (moran.pctage65p.idwB <- moran.test(Syr$PCTAGE65P, NY8_lw_idwB))

Q11 : How did the probabilities of Type I error to reject the null hypothesis
of no association change with this weighting? Jump to A11 •

7.2 Local tests

Global tests for spatial autocorrelation are aggregated from local relation-
ships (see the formula for Moran’s I). This local information can be aggre-
gated locally, rather than over the whole map, to detect “hotspots” where
there is strong autocorrelation of high values, and “cold spots” where there
is strong autocorrelation of low values. In geostatistical terms, the spatial
process may not be stationary.

34



7.2.1 Local Moran’s I

One good way to visualize the relation between the global and local measures
is to plot a so-called Moran scatterplot: the target variable on the x-axis,
and the (spatially-weighted) sum of neighbouring values on the y-axis; these
are called the spatially lagged values.

Task 23 : Plot the local Moran’s I scatterplot for the Syracuse leukemia
incidence, with the default W weighting. •

The moran.plot function takes two arguments: the vector of values and the
neighbour list with weights:
mp <- moran.plot(Syr$Z, Syr_lw_W, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia incidence",

sub="weights style `W'")
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The regression line is the global Moran’s I. Points with high influence are
identified by a special symbol and their row number in the original (8-county)
dataset.

Task 24 : Identify the high-influence areas; find their neighbour relations.
•

The is.inf “is influential” field in the list resulting from the moran.plot
function is TRUE if any of the six measures of each observation’s have high
influence on the plotted regression line. These six measures are computed by
the influence.measures method, which is often applied to linear models.
See the help text for this function for their interpretation.
str(mp)

## 'data.frame': 121 obs. of 10 variables:
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## $ x : num 4.7105 0.312 -0.512 -0.0322 0.3659 ...
## $ wx : num 0.4405 0.8523 0.2998 0.0507 1.4167 ...
## $ is_inf: logi TRUE FALSE FALSE FALSE TRUE FALSE ...
## $ labels: chr "110" "111" "112" "113" ...
## $ dfb.1_: num -0.3526 0.1957 0.0955 0.0368 0.3272 ...
## $ dfb.x : num -0.87604 0.10488 -0.03764 0.00722 0.19124 ...
## $ dffit : num -0.8897 0.2051 0.1135 0.0369 0.3482 ...
## $ cov.r : num 1.348 0.967 1.003 1.023 0.873 ...
## $ cook.d: num 0.392065 0.020561 0.006416 0.000684 0.056316 ...
## $ hat : num 0.27206 0.01119 0.00929 0.00859 0.01183 ...
## - attr(*, "xname")= chr "Syr$Z"

mp[1,]

## x wx is_inf labels dfb.1_ dfb.x dffit
## 1 4.71053 0.44048 TRUE 110 -0.3526264 -0.8760432 -0.8896601
## cov.r cook.d hat
## 1 1.348297 0.3920649 0.2720624

Task 25 : Identify the influential observations, i.e., the tracts that most
influence the global Moran’s I. •
ix.infl <- which(infl <- mp$is_inf)
mp[ix.infl, ]

## x wx is_inf labels dfb.1_ dfb.x
## 1 4.71053 0.4404800 TRUE 110 -0.3526264060 -0.8760432122
## 5 0.36591 1.4166557 TRUE 114 0.3272464861 0.1912421149
## 11 2.63806 1.8010020 TRUE 120 0.4798323535 0.9087075928
## 12 2.31264 0.7457357 TRUE 121 0.1032011152 0.1821695904
## 22 0.70212 1.5321171 TRUE 131 0.3638244747 0.3128714827
## 76 -1.73903 -0.5582267 TRUE 196 0.0001076495 -0.0003342337
## 113 -0.14338 -1.5270700 TRUE 228 -0.2666944805 -0.0193683985
## dffit cov.r cook.d hat
## 1 -0.8896600597 1.3482965 3.920649e-01 0.272062396
## 5 0.3482403952 0.8729336 5.631629e-02 0.011833158
## 11 0.9502949231 0.9802453 4.249224e-01 0.096536251
## 12 0.1927370262 1.0942341 1.866125e-02 0.077491169
## 22 0.4333468506 0.8700929 8.682458e-02 0.017263218
## 76 0.0003843228 1.0527249 7.447788e-08 0.033915838
## 113 -0.2701717847 0.8893430 3.427467e-02 0.008307156

print(cbind(ix.infl, Syr[ix.infl, c("AREAKEY","Z")]))

## Simple feature collection with 7 features and 3 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 392069.5 ymin: 4763591 xmax: 420412.2 ymax: 4778175
## Projected CRS: WGS 84 / UTM zone 18N
## ix.infl AREAKEY Z geometry
## 110 1 36067000100 4.71053 POLYGON ((402409.2 4768615,...
## 114 5 36067000500 0.36591 POLYGON ((404918.3 4769246,...
## 120 11 36067001100 2.63806 POLYGON ((403875.9 4768084,...
## 121 12 36067001200 2.31264 POLYGON ((405187.3 4768087,...
## 131 22 36067002100 0.70212 POLYGON ((403479.2 4767678,...
## 196 76 36067011800 -1.73903 POLYGON ((392069.5 4778135,...
## 228 113 36067015000 -0.14338 POLYGON ((417172.5 4765099,...

Here are the neighbours that are influenced by the first influential observa-
tion in the list:
print(cbind(ix.infl[1], Syr[ix.infl[1], c("AREAKEY","Z")]))

## Simple feature collection with 1 feature and 3 fields
## Geometry type: POLYGON
## Dimension: XY
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## Bounding box: xmin: 402303.2 ymin: 4767678 xmax: 405768.7 ymax: 4771050
## Projected CRS: WGS 84 / UTM zone 18N
## ix.infl.1. AREAKEY Z geometry
## 110 1 36067000100 4.71053 POLYGON ((402409.2 4768615,...

Syr[Syr_lw_W$neighbours[ix.infl][[1]],c("AREAKEY","Z")]

## Simple feature collection with 8 features and 2 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 395980.6 ymin: 4766831 xmax: 407482.7 ymax: 4775489
## Projected CRS: WGS 84 / UTM zone 18N
## AREAKEY Z geometry
## 111 36067000200 0.31195 POLYGON ((405510.2 4770238,...
## 114 36067000500 0.36591 POLYGON ((404918.3 4769246,...
## 120 36067001100 2.63806 POLYGON ((403875.9 4768084,...
## 130 36067002000 0.16464 POLYGON ((402278.8 4768606,...
## 131 36067002100 0.70212 POLYGON ((403479.2 4767678,...
## 206 36067012800 -0.01696 POLYGON ((395980.6 4775397,...
## 215 36067013700 -1.29225 POLYGON ((400926.7 4773091,...
## 219 36067014100 0.65037 POLYGON ((404576.9 4771617,...

Q12 : Which areas strongly influenced the global Moran’s I line? Are these
high-influence area neighbours? Jump to A12 •

Task 26 : Compute the local Moran’s I for the leukemia incidence. •

Local Moran’s I is defined for each area 𝑖 as:

𝐼𝑖 =
(𝑦𝑖 − 𝑦) ·∑ 𝑗 (𝑦 𝑗 − 𝑦)
1/𝑛 ·∑𝑖 (𝑦𝑖 − 𝑦)2 (3)

where the symbols are defined as in Equation 1. The two expressions in
the numerator define a point in the Moran scatterplot, above. The denom-
inator standardizes the local Moran’s I so that ∑

𝑖 𝐼𝑖 = 𝐼. Again, we are
looking for the probability that rejecting the null hypothesis of no spatial
autocorrelation would be a Type I error.

This test is computed by the localmoran function.
lm1 <- localmoran(Syr$Z, Syr_lw_W)
summary(lm1)

## Ii E.Ii Var.Ii
## Min. :-1.04282 Min. :-2.660e-01 Min. :0.0000292
## 1st Qu.:-0.06202 1st Qu.:-7.549e-03 1st Qu.:0.0120096
## Median : 0.04088 Median :-2.883e-03 Median :0.0568500
## Mean : 0.24656 Mean :-8.333e-03 Mean :0.1603903
## 3rd Qu.: 0.21858 3rd Qu.:-4.802e-04 3rd Qu.:0.1475865
## Max. : 7.53723 Max. :-1.510e-06 Max. :2.7793308
## Z.Ii Pr(z != E(Ii))
## Min. :-2.4991 Min. :0.0000
## 1st Qu.:-0.4792 1st Qu.:0.1958
## Median : 0.3526 Median :0.4330
## Mean : 0.4049 Mean :0.4476
## 3rd Qu.: 0.8843 3rd Qu.:0.6976
## Max. : 5.5380 Max. :0.9975

ix <- which(lm1[,"Pr(z != E(Ii))"] < 0.05)
print(cbind(Syr[ix,c("AREAKEY","POP8","Z")],ix))
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## Simple feature collection with 16 features and 4 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 399576 ymin: 4766144 xmax: 422725.2 ymax: 4782255
## Projected CRS: WGS 84 / UTM zone 18N
## First 10 features:
## AREAKEY POP8 Z ix geometry
## 110 36067000100 9 4.71053 1 POLYGON ((402409.2 4768615,...
## 111 36067000200 3704 0.31195 2 POLYGON ((405510.2 4770238,...
## 114 36067000500 1401 0.36591 5 POLYGON ((404918.3 4769246,...
## 120 36067001100 143 2.63806 11 POLYGON ((403875.9 4768084,...
## 121 36067001200 99 2.31264 12 POLYGON ((405187.3 4768087,...
## 122 36067001300 1475 -0.36886 13 POLYGON ((405835.2 4768412,...
## 130 36067002000 2587 0.16464 21 POLYGON ((402278.8 4768606,...
## 131 36067002100 1997 0.70212 22 POLYGON ((403479.2 4767678,...
## 132 36067002200 1211 0.91381 23 POLYGON ((404684.8 4767683,...
## 133 36067002300 2549 -0.22275 24 POLYGON ((406432.7 4768037,...

Q13 : Is there evidence of local clustering? Could you interpret this from
the Moran scatterplot? Jump to A13 •

7.2.2 Effect of weights

Task 27 : Optional: Repeat the above plots and analysis for other weighting
styles. •

We have the already computed the required weight matrices (§7.1.1), so we
just use these in the call to moran.plot. For example, using binary and
inverse-distance weightings and comparing with style W:
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par(mfrow=c(1,3))
mp <- moran.plot(Syr$Z, Syr_lw_W, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `W'")
mp <- moran.plot(Syr$Z, Syr_lw_B, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `B' (binary)")
mp <- moran.plot(Syr$Z, Syr_lw_idwB, xlab="Z",

ylab="average neighbour Z")
title(main="Moran scatterplot, Syracuse leukemia",

sub="weights style `I' (inverse distance)")
par(mfrow=c(1,1))
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Now the overall test and the influential observations:
##
moran.test(Syr$Z, Syr_lw_W)

##
## Moran I test under randomisation
##
## data: Syr$Z
## weights: Syr_lw_W
##
## Moran I statistic standard deviate = 4.9597, p-value =
## 3.531e-07
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.246563167 -0.008333333 0.002641332

lm1 <- localmoran(Syr$Z, Syr_lw_W)
summary(lm1[,"Ii"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.04282 -0.06202 0.04088 0.24656 0.21858 7.53723

(ix <- which(lm1[,"Pr(z != E(Ii))"] < 0.05))

## 110 111 114 120 121 122 130 131 132 133 139 183 188 215 219 176
## 1 2 5 11 12 13 21 22 23 24 30 70 73 92 96 111

##
moran.test(Syr$Z, Syr_lw_B)

##
## Moran I test under randomisation
##
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## data: Syr$Z
## weights: Syr_lw_B
##
## Moran I statistic standard deviate = 5.2079, p-value =
## 9.55e-08
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.250184887 -0.008333333 0.002464094

lm1 <- localmoran(Syr$Z, Syr_lw_B)
summary(lm1[,"Ii"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -8.3425 -0.3101 0.2537 1.4763 1.2583 37.6861

(ix <- which(lm1[,"Pr(z != E(Ii))"] < 0.05))

## 110 111 114 120 121 122 130 131 132 133 139 183 188 215 219 176
## 1 2 5 11 12 13 21 22 23 24 30 70 73 92 96 111

##
moran.test(Syr$Z, Syr_lw_idwB)

##
## Moran I test under randomisation
##
## data: Syr$Z
## weights: Syr_lw_idwB
##
## Moran I statistic standard deviate = 3.0215, p-value =
## 0.001257
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## 0.210832392 -0.008333333 0.005261246

lm1 <- localmoran(Syr$Z,Syr_lw_idwB)
summary(lm1[,"Ii"])

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -15.2502 -0.2104 0.1048 0.8805 0.7373 36.2245

(ix <- which(lm1[,"Pr(z != E(Ii))"] < 0.05))

## 110 111 114 120 121 122 130 131 132 133 183 188 193 176
## 1 2 5 11 12 13 21 22 23 24 70 73 75 111

##

Q14 : What are the principal differences between the global Moran’s I,
the local Moran’s I plots, and the influential observations, for these three
neighbour weightings? Jump to A14 •

7.2.3 Getis-Ord local 𝐺 statistics

Another way to visualize “hot” and “cold” spots is local association statistics
developed by Ord and Getis [4]. These are symbolized as 𝐺𝑖 and 𝐺∗

𝑖 ; the
subscript 𝑖 emphasizes that they are computed separately for each area.
These statistics do not attempt to characterize overall spatial dependency;
rather, they help identify local areas where there may be dependency. In
this it is similar to local Moran’s I.
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“These statistics are especially useful in cases where global statis-
tics may fail to alert the researcher to significant pockets of clus-
tering.” – [4, p. 287]

There are two variants: 𝐺𝑖 and 𝐺∗
𝑖 , where the ‘starred’ variant includes the

self-weights 𝑤𝑖𝑖 of each target polygon The first variant 𝐺𝑖 shows whether an
area is within a surrounding hot or cold spot; the second variant 𝐺∗

𝑖 shows
whether the area itself is part of such a spot.

The 𝐺∗
𝑖 statistic is:

𝐺∗
𝑖 =

∑𝑛
𝑗=1 𝑤𝑖, 𝑗𝑥 𝑗 − 𝑥

∑𝑛
𝑗=1 𝑤𝑖, 𝑗

𝑠 · ( [𝑛∑𝑛
𝑗=1 𝑤

2
𝑖, 𝑗 − (∑𝑛

𝑗=1 𝑤𝑖, 𝑗)2]/[𝑛 − 1])1/2
(4)

It may be interpreted as a 𝑍-score, i.e., a normal variate, where 0 is the
global mean of the target variable. Positive Z-scores show clusters of high
values, negative Z-scores show clusters of low values.

Note: In Getis and Ord’s original formulation 𝐺𝑖 depends on a distance
band; this more general formulation includes that special case, because the
weights matrix W can be constructed by distance or by steps to neighbours.

Task 28 : Compute and summarize the 𝐺𝑖 statistics for the Syracuse
leukemia incidence, using the default neighbour weighting. •

The weighting matrices constructed in §6 did not include self-weights, so the
statistic computed by the localG function, using these weights, is 𝐺𝑖:
summary(gi <- localG(Syr$Z, Syr_lw_W))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.5450 -0.7591 -0.1495 0.1412 0.8125 5.5380

Task 29 : Plot these as coloured polygons, with the red correspond to the
positive clusters and blue to the negative ones. •

A colour ramp can be constructed with the colorRampPalette function,
specifying a range of colours, which will be interpolated into a ramp. We
can then select the correct shade out of the ramp for each polygon.

Note: Note the +1, otherwise there would be a shade 0.
shade <- as.numeric(round(n*((gi-min(gi))/

(max(gi)-min(gi)))))+1
colfunc <- colorRampPalette(c("blue", "green", "yellow", "red"))
ramp <- colfunc(n+1)
plot(Syr["Z"], border="grey60", axes=TRUE,

col=ramp[shade],
main="Getis-Ord Gi, Syracuse leukemia incidence")

grid()
text(coords_centers_Syr, as.character(round(gi,2)), col="black")
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Q15 : Where are the clusters? How does this map compare to the local
Moran’s I map? Jump to A15 •

Task 30 : Compute and summarize the 𝐺∗
𝑖 statistics for the Syracuse

leukemia incidence, using the default neighbour weighting. •

To compute 𝐺∗
𝑖 we need to create a weights matrix including each target

area with a weight. We first add each area’s index to its own neighbour list,
and then convert these to weights using the nb2listw function:
Syr_nbi <- Syr_nb
## add the index its own list
for (i in 1:length(Syr_nb)) {

Syr_nbi[[i]] <- sort(c(Syr_nbi[[i]], i))
}
## convert to weights
Syr_lw_Wi <- nb2listw(Syr_nbi)
print(Syr_lw_W)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 714
## Percentage nonzero weights: 4.876716
## Average number of links: 5.900826
##
## Weights style: W
## Weights constants summary:
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## n nn S0 S1 S2
## W 121 14641 121 43.6013 498.1653

print(Syr_lw_W$weights[[1]])

## [1] 0.125 0.125 0.125 0.125 0.125 0.125 0.125 0.125

print(Syr_lw_Wi)

## Characteristics of weights list object:
## Neighbour list object:
## Number of regions: 121
## Number of nonzero links: 835
## Percentage nonzero weights: 5.703162
## Average number of links: 6.900826
##
## Weights style: W
## Weights constants summary:
## n nn S0 S1 S2
## W 121 14641 121 36.775 490.4037

print(Syr_lw_Wi$weights[[1]])

## [1] 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111 0.1111111
## [7] 0.1111111 0.1111111 0.1111111

Q16 : What is the difference between the weights list with and without
including the target area? Jump to A16 •

Now we can compute and plot 𝐺∗
𝑖 :

summary(gi.star <- localG(Syr$Z, Syr_lw_Wi))

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.6622 -0.8901 -0.1250 0.1289 0.7777 6.5118

summary(gi)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -2.5450 -0.7591 -0.1495 0.1412 0.8125 5.5380

summary(gi.star-gi)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.83477 -0.23347 -0.04917 -0.01227 0.18704 2.14370

Q17 : What are the differences between 𝐺∗
𝑖 (including the target area’s

value in the index) and 𝐺𝑖 (not)? Jump to A17 •
## these from plot-gi, above
# n <- length(Syr$Z)
# colfunc <- colorRampPalette(c("blue", "green", "yellow", "red"))
# ramp <- colfunc(n+1)
shade <- as.numeric(round(n*((gi.star-min(gi.star))/

(max(gi.star)-min(gi.star)))))+1
plot(Syr["Z"], border="grey60", axes=TRUE,

col=ramp[shade],
main="Getis-Ord Gi*, Syracuse leukemia incidence")

grid()
text(coords_centers_Syr, as.character(round(gi.star,2)), col="black")
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Q18 : What are the differences between the 𝐺𝑖 and 𝐺∗
𝑖 maps? Jump to

A18 •

8 Spatial models

Supplementary reading:

• Bivand et al. [1, §9.4] Fitting models of areal data

“Finding spatial autocorrelation is not a goal in itself, be it local
or global, but rather just one step in a process leading to a proper
model.”

–Bivand et al. [1, §9.4]

What does it all mean? What is (are) the process(es) which give rise to
the observations? Apparent autocorrelation, such as found in the previ-
ous sections, may instead be caused by some underlying factor(s), i.e., the
assumed zero-mean model (i.e., possibly spatiallt-correlated random fluctu-
ations around zero) is not correct. This is called model mis-specification. It
can arise from a poorly-distributed response variable (e.g., unequal variance
across the map) or a wrong (or missing) functional form from (partially)
deterministic factors that are also spatially-distributed.
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Q19 : What could be some spatially-distributed causes of leukemia? Jump
to A19 •

The aim is to return to a zero-mean model, by removing any feature-space
predictors, in this case other variables collected per census tract. Any kind
of model can be used; we illustrate this with a linear model:

y = X𝑇 𝛽 + 𝜀 (5)

where 𝑌 is the response vector (one element per area), 𝑋 is the model matrix,
𝛽 are the model coefficients (fitted from the data), and 𝜀 is the random error
vector, for now considered to be identically normally and independently
distributed, with zero mean and variance 𝑉 . We do not yet consider spatial
autocorrelation of the residuals.

The database has three possible co-variables (predictors): PEXPOSURE (ex-
posure), PCTAGE65P (proportion of older residents), and PCTOWNHOME (pro-
portion of households that own their houses); see the beginning of §7 for
details. We are most interested in whether TCE exposure is a risk factor
for cancer, if so we should promote cleanup of TCE sites. But cancers may
be positively associated with old age, which implies long-term exposure to
any environmental factor as well as life style, and negatively with home
ownership, which implies a higher economic level and perhaps a healthier
lifestyle.

We return to the full 8-county area, because the TCE sources are spread
throughout; Syracuse city is too small to have substantially different distance
to TCE sources.

Task 31 : Import the map of TCE sources and display them on the 8-county
census tracts, shaded by the exposure potential. •

Again we use st_read to import the points shapefile:
TCE <- st_read("./NY_data", "TCE")

ggplot(data = NY8) +
geom_sf(aes(fill = Z)) +
scale_fill_gradientn(colors = rel.risk.pal) +
geom_sf(data = TCE, aes(col = name), cex=3) +
labs(title = "8 counties, TCE sources",

fill = "Incidence",
col = "TCE site")
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We see that Syracuse is far from these sources; however Syracuse is an
industrial city, so there may be exposure to other chemicals.

Task 32 : Model the 8-county leukemia incidences by an additive model
of three predictors: an index of TCE exposure (PEXPOSURE), proportion of
population older than 65 years (PCTAGE65P), and the proportion of home
ownership (PCTOWNHOME).

•

To set a baseline, we use the Ordinary Least Squares (OLS) estimate pro-
vided by the standard lm function.
summary(NY8)

## AREANAME AREAKEY X
## NA : 83 Length:281 Min. :-55.482
## Syracuse city : 63 Class :character 1st Qu.:-19.460
## Binghamton city : 18 Mode :character Median :-12.469
## Remainder of Clay tow: 6 Mean :-11.309
## Johnson City village : 5 3rd Qu.: -1.213
## Onondaga town : 5 Max. : 53.509
## (Other) :101
## Y POP8 TRACTCAS PROPCAS
## Min. :-75.29 Min. : 9 Min. :0.000 Min. :0.0000000
## 1st Qu.:-30.60 1st Qu.: 2510 1st Qu.:0.310 1st Qu.:0.0000930
## Median : 31.97 Median : 3433 Median :1.890 Median :0.0004130
## Mean : 4.98 Mean : 3764 Mean :2.107 Mean :0.0005947
## 3rd Qu.: 39.12 3rd Qu.: 4889 3rd Qu.:3.080 3rd Qu.:0.0009170
## Max. : 56.41 Max. :13015 Max. :9.290 Max. :0.0069930
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##
## PCTOWNHOME PCTAGE65P Z
## Min. :0.0008224 Min. :0.004044 Min. :-1.9206
## 1st Qu.:0.4588745 1st Qu.:0.099926 1st Qu.:-0.7168
## Median :0.6508585 Median :0.126415 Median :-0.2876
## Mean :0.5872621 Mean :0.137262 Mean :-0.2157
## 3rd Qu.:0.7560976 3rd Qu.:0.160963 3rd Qu.: 0.2498
## Max. :1.0000000 Max. :0.505050 Max. : 4.7105
##
## AVGIDIST PEXPOSURE Cases
## Min. :0.01847 Min. :0.6134 Min. :0.00014
## 1st Qu.:0.02703 1st Qu.:0.9942 1st Qu.:0.30928
## Median :0.03238 Median :1.1749 Median :1.88876
## Mean :0.14919 Mean :1.8042 Mean :2.10676
## 3rd Qu.:0.13008 3rd Qu.:2.5656 3rd Qu.:3.08284
## Max. :3.52637 Max. :5.8654 Max. :9.28601
##
## Xm Ym Xshift Yshift
## Min. :-55482 Min. :-75291 Min. :363839 Min. :4653564
## 1st Qu.:-19460 1st Qu.:-30601 1st Qu.:399862 1st Qu.:4698254
## Median :-12469 Median : 31970 Median :406852 Median :4760825
## Mean :-11309 Mean : 4980 Mean :408013 Mean :4733835
## 3rd Qu.: -1213 3rd Qu.: 39123 3rd Qu.:418108 3rd Qu.:4767978
## Max. : 53509 Max. : 56410 Max. :472830 Max. :4785265
##
## geometry
## MULTIPOLYGON : 3
## POLYGON :278
## epsg:NA : 0
## +proj=utm ...: 0
##
##
##

m.z.ppp <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data=NY8)
summary(m.z.ppp)

##
## Call:
## lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME, data = NY8)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.7417 -0.3957 -0.0326 0.3353 4.1398
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.51728 0.15856 -3.262 0.00124 **
## PEXPOSURE 0.04884 0.03506 1.393 0.16480
## PCTAGE65P 3.95089 0.60550 6.525 3.22e-10 ***
## PCTOWNHOME -0.56004 0.17031 -3.288 0.00114 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.6571 on 277 degrees of freedom
## Multiple R-squared: 0.1932,Adjusted R-squared: 0.1844
## F-statistic: 22.1 on 3 and 277 DF, p-value: 7.306e-13

Q20 : How much of the variability between census tracts in leukemia inci-
dence is explained by this model? Which factors are significant in the linear
model? Was the zero-model assumed in previous sections valid? Can you
interpret these as possible processes? Jump to A20 •
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Task 33 : Plot a histogram of the residuals; identify the extreme outlier
and display its database entry. •

The residuals function extracts a vector of residuals from a lm object:
hist(residuals(m.z.ppp))
rug(residuals(m.z.ppp))
ix <- which.max(residuals(m.z.ppp))
NY8[ix,]

## Simple feature collection with 1 feature and 17 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 402303.2 ymin: 4767678 xmax: 405768.7 ymax: 4771050
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
## 110 Syracuse city 36067000100 -15.3264 40.5083 9 0 0
## PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases Xm
## 110 0.5 0.3333333 4.71053 0.0284377 1.045131 0.00014 -15326.4
## Ym Xshift Yshift geometry
## 110 40508.3 403995.2 4769363 POLYGON ((402409.2 4768615,...
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This is our old friend, tract 110.

Q21 : Why is this residual so extreme? Jump to A21 •

Now we can check this model for spatial correlation of the residuals, with
the lm.morantest function. This requires a model (which we just built) and
a weights list (see §6).

Task 34 : Build a weights list, from the default (queen’s) neighbour list,
using binary weights. Apply the Moran’s test of the residuals, using these
weights. •
NY8listwB <- nb2listw(NY8_nb, style = "B")
(m.z.ppp.moran.test <- lm.morantest(m.z.ppp, NY8listwB))

##
## Global Moran I for regression residuals
##
## data:
## model: lm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
## data = NY8)
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## weights: NY8listwB
##
## Moran I statistic standard deviate = 2.3844, p-value =
## 0.008554
## alternative hypothesis: greater
## sample estimates:
## Observed Moran I Expectation Variance
## 0.071381909 -0.009884823 0.001161659

Q22 : Is there evidence that the residuals are spatially correlated? Jump
to A22 •

Task 35 : Visualize the regression residuals as a map of the census tracts,
with the residuals represented by a grey scale. •

We add the residuals to the data frame (i.e., attribute table) of the polygons,
then map these. Residuals are defined as (actual - modelled), so darker greys
are larger under-predictions.

Note: For a better visualization, we set the upper end of the scale at the
99% quantile, to exclude tract 109 from the stretch.

NY8$lmresid <- residuals(m.z.ppp)
summary(NY8$lmresid)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.74174 -0.39572 -0.03258 0.00000 0.33527 4.13982

ggplot(data = NY8) +
geom_sf(aes(fill = lmresid)) +
labs(fill = "Linear model residuals", main = "Central NY State") +
scale_fill_gradientn(colors = colorspace::diverge_hcl(12)) +
geom_sf(data = TCE, aes(col = name)) +
labs(col = "TCE sites")
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Q23 : Is there visual evidence that the *residuals* are spatially correlated?
What does this suggest about our model? Jump to A23 •

9 Autoregressive Models

Supplementary reading:

• Bivand et al. [1, §9.4.1]: Spatial statistics approaches

In the linear model of the previous section we did not account for spatial au-
tocorrelation of the residuals, which indeed was present. So the linear model
violated one of its assumptions, i.e., independent residuals. To account for
this, we should refit the model as an autoregressive mode which accounts
for spatial autocorrelation.

There are three main forms of Simultaneous Autoregressive (SAR) models,
with different explanations on the source of the autocorrelation of the OLS
residuals:

spatial error : These imply that there are underlying spatially-correlated predictors
which are not included in the linear model predictor list. Either we
don’t suspect they are present, or else we have not measured them.

For example, leukemia incidence has been suspected to have some rela-
tion to extremely low frequency electromagnetic energy. This would be
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a predictor similar to TCE exposure, which is included in our model,
and would be similar spatially-concentrated. This suspected predic-
tor is not included in our model, since we have no information on its
sources in the study area.

spatial lag : These imply that the response variable is influenced by the same re-
sponse variable in neighbouring areas.

In this example it would mean that leukemia incidence in one area is
influenced by incidence in nearby areas. This makes sense for infec-
tious diseases, for example, feline leukemia, which can be transmitted
between cats by saliva or nasal secretions, and the local nature of cat-
to-cat interactions suggests that such “spillover” would occur between
neighbouring areas. However, human leukemia is not known to be
infectious, so this model is difficult to justify here.

spatial Durbin : These imply that the response variable is influenced both by the target
variable and by the feature-space predictors in the model specification
not only within each area separately, but also by the same predictors
from neighbouring areas.

In this example it’s hard to imagine how home ownership or proportion
of older people or TCE exposure in neighbouring tracts could affect
leukemia in a target tract.

Note: “Durbin” models are named for the British statistician James
Durbin, following his formulation of autoregressive time series models
[2].

We now see how these model specifications can be applied to our example.

9.1 Spatial Error SAR model

We start with the spatial error SAR model.

The concept here is that the linear model residuals are no longer considered
independent, instead they are modelled by a regression on the residuals from
adjacent areas:

𝑒𝑖 =
𝑚∑
𝑖=1

𝑏𝑖 𝑗𝑒𝑖 + 𝜀𝑖 (6)

where the 𝜀𝑖 are the independent N ∼ (0, 1) errors; these have a diagonal
covariance matrix (so no interactions) Σ𝜀 with elements 𝜎2

𝑒𝑖 , which are often
considered identical. The 𝑏 values express the spatial dependence; note that
𝑏𝑖𝑖 � 0 – an area can not depends on itself.

This formulation then adds a term to the linear model, to account for the
autoregression of Equation 6:

y = X𝑇 𝛽 + (𝜆W)(y −X𝑇 𝛽) + 𝜀 (7)

where 𝜆 is the strength of this autoregression term and𝑊 is a weights matrix.
This is the same kind of list, of class listw we’ve created in §6. This depends
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on the neighbour list and a weighting model; we have already build one using
binary weights as NY8listwB. The autoregression term (𝜆W) multiples the
linear model residuals (y −X𝑇 𝛽).

This formula shows why a SAR model is called “simultaneous”. We can’t
solve for 𝜆 (strength of correlation of the residuals) without first computing
the coefficients 𝛽, but we can’t compute the 𝛽 without knowing 𝜆. However
by assuming that the covariance matrix of the spatially-correlated errors
is diagonal Σ𝜀 = 𝜎2I, i.e., no correlation between these errors with equal
variance, the variance of the response variable 𝑌 can be written:

Var(𝑦) = 𝜎2(I − 𝜆W)−1)(𝐼 − 𝜆W𝑇 )−1 (8)

and this can be used to find an optimal 𝜆 by maximum likelihood, which
then allows solution of Equation 7 by generalized least squares (GLS).

Note: See [1, §9.4.1.1] for derivation of the maximum-likelihood estima-
tion of the regression coefficients for these models and how these are solved
numerically.

Package spatialreg provides function spautolm to compute according to
these formulas.

Task 36 : Recompute the linear model of the previous section, taking into
account spatial autocorrelation of the residuals in a spatial error SAR model.

•
m.z.ppp.sar <- spatialreg::spautolm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB)
summary(m.z.ppp.sar)

##
## Call:
## spatialreg::spautolm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
## data = NY8, listw = NY8listwB)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.58367 -0.38764 -0.03025 0.34023 4.02902
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.598779 0.174905 -3.4234 0.0006183
## PEXPOSURE 0.065148 0.041639 1.5646 0.1176753
## PCTAGE65P 3.756876 0.623907 6.0215 1.728e-09
## PCTOWNHOME -0.429711 0.190201 -2.2592 0.0238683
##
## Lambda: 0.03573 LR test value: 4.2281 p-value: 0.03976
## Numerical Hessian standard error of lambda: 0.016955
##
## Log likelihood: -276.6148
## ML residual variance (sigma squared): 0.41606, (sigma: 0.64503)
## Number of observations: 281
## Number of parameters estimated: 6
## AIC: 565.23

An important information in this summary is the likelihood ratio test,
marked LR test value in the summary output. This compares the mod-
els with and without spatial autocorrelation: the likelihood of the observed
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values of the response variable, given the values of the predictor, with and
without taking into account spatial correlation of the residuals. The p-value
is as usual the probability that rejecting the null hypothesis that the two
models are equally likely, given the data, would be a Type I error. Here the
p-value is low, so we confirm the impression from the map of the residuals
that indeed they are spatially autocorrelated.

Q24 : How did the coefficients for the three predictive factors, and their
significance, change from the model that did not include simultaneous au-
toregression? Jump to A24
•

We can display these in compact form as fields in the model summaries:
round(summary(m.z.ppp)$coefficients[,c(1,4)],4)

## Estimate Pr(>|t|)
## (Intercept) -0.5173 0.0012
## PEXPOSURE 0.0488 0.1648
## PCTAGE65P 3.9509 0.0000
## PCTOWNHOME -0.5600 0.0011

round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

## Estimate Pr(>|z|)
## (Intercept) -0.5988 0.0006
## PEXPOSURE 0.0651 0.1177
## PCTAGE65P 3.7569 0.0000
## PCTOWNHOME -0.4297 0.0239

Task 37 : Plot these residuals; compute their global Moran’s I. •
NY8$sarresid <- residuals(m.z.ppp.sar)
summary(NY8$sarresid)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -1.583670 -0.387639 -0.030250 0.000789 0.340226 4.029025

ggplot(data = NY8) +
geom_sf(aes(fill = sarresid)) +
labs(fill = "SAR model residuals", main = "Central NY State") +
scale_fill_gradientn(colors = colorspace::diverge_hcl(12)) +
geom_sf(data = TCE, aes(col = name)) +
labs(col = "TCE sites")
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Since spautolm does not produce a lm object, we can not use lm.morantest;
instead we use the moran.test function directly on the residuals:
moran.test(NY8$sarresid, NY8listwB)

##
## Moran I test under randomisation
##
## data: NY8$sarresid
## weights: NY8listwB
##
## Moran I statistic standard deviate = -0.032431, p-value =
## 0.5129
## alternative hypothesis: greater
## sample estimates:
## Moran I statistic Expectation Variance
## -0.004684626 -0.003571429 0.001178181

Q25 : Did the simultaneous autoregressive model account for all the spatial
autocorrelation in leukemia incidence? Jump to A25 •

We can also see where the residuals changed, and by how much:
NY8$resid.change <- (NY8$sarresid - NY8$lmresid)
summary(NY8$resid.change)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## -0.2750716 -0.0298531 0.0045675 0.0007889 0.0366336 0.2148055

ggplot(data = NY8) +
geom_sf(aes(fill = resid.change)) +
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scale_fill_gradientn(colors = colorspace::diverge_hcl(12)) +
labs(title="SAR error model residuals - linear model residuals",

fill = 'SAR - LM residual')
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The modelled autocorrelation of the residuals was removed in the SAR
model; we see some large decreases in the model residuals in the Onondaga
Lake lakefront areas in Syracuse, and large increases in the northeast sub-
urbs of Syracuse. The largest positive residual appears to be in the town of
Moravia; this was slightly increased in the SAR model.

We can gain further insight into the model by decomposing the prediction
into the trend, i.e., “deterministic”, and stochastic components according to
the model formula of Equation 7, which we repeat here for convenience:

y = X𝑇 𝛽 + (𝜆W)(y −X𝛽) + 𝜀 (9)

where the first term is the linear model and the second the correction due
to spatial autocorrelation of the linear model residuals. Recall that 𝜆 gives
the strength of this; 𝜆 = 0 implies no correction.

The fitted model is of class spautolm. This includes a fit field, which itself
has two fields, one for each of these components of the fit. So we can just
extract these two and plot them.

Task 38 : Plot the leukemia incidence fit by the model, split into the
two components, trend (based on feature space predictors) and spatially-
correlated stochastic residuals. •

Following the nice Fig. 9.11 of [1], we use a colour palette provided by the
RColorBrewer package and built with the colorRampPalette function.
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class(m.z.ppp.sar)

## [1] "Spautolm"

NY8$sar_trend <- m.z.ppp.sar$fit$signal_trend
NY8$sar_stochastic <- m.z.ppp.sar$fit$signal_stochastic
rds <- colorRampPalette(brewer.pal(8, "RdBu"))
g1 <- ggplot(data = NY8) +

geom_sf(aes(fill = sar_trend)) +
scale_fill_gradientn(colours = hcl.colors(12, "purple-green")) +
labs(fill = "", title = "deterministic")

#
g2 <- ggplot(data = NY8) +

geom_sf(aes(fill = sar_stochastic)) +
scale_fill_gradientn(colours = hcl.colors(12, "blue-red")) +

labs(fill = "", title = "stochastic")
gridExtra::grid.arrange(g1, g2, nrow = 1)

42.0°N

42.2°N

42.4°N

42.6°N

42.8°N

43.0°N

43.2°N

43.4°N

76.6°W 76.4°W 76.2°W 76.0°W 75.8°W 75.6°W 75.4°W 75.2°W

−0.5

0.0

0.5

1.0

deterministic

42.0°N

42.2°N

42.4°N

42.6°N

42.8°N

43.0°N

43.2°N

43.4°N

76.6°W 76.4°W 76.2°W 76.0°W 75.8°W 75.6°W 75.4°W 75.2°W

−0.1

0.0

0.1

0.2

0.3

stochastic

Q26 : Which of the two components (deterministic “trend” and stochastic
residual) gives more information on the predicted leukemia incidence? Jump
to A26 •

Q27 : Where is the stochastic residual component most influential in ad-
justing the trend? Jump to A27
•

9.2 Spatial Lag SAR model

Supplementary reading:

• Bivand et al. [1, §9.4.2]: Spatial econometrics approaches

The spatial lag model implies that the response variable is influenced by the
same response variable in neighbouring areas. Its formula is:
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y = X𝑇 𝛽 + 𝜌Wy + 𝜀 (10)

The parameter 𝜌 controls the degree of autocorrelation of the response vari-
able.

Although it’s difficult to imagine how this model could apply to leukemia
incidence, to illustrate how this model works we fit and interpret it. The
lagsarlm function of the spatialreg package fits this model.

Task 39 : Fit a spatial lag SAR model of leukemia incidence predicted
by TCE exposure, proportion of home ownership, and proportion of older
people, with the neighbour weights as in the previous models. •
m.z.ppp.lagsar <- spatialreg::lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB)
summary(m.z.ppp.lagsar)

##
## Call:
## spatialreg::lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
## data = NY8, listw = NY8listwB)
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.587414 -0.387680 -0.029478 0.348490 4.035772
##
## Type: lag
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.513704 0.156073 -3.2914 0.0009968
## PEXPOSURE 0.045623 0.034554 1.3203 0.1867284
## PCTAGE65P 3.636951 0.600085 6.0607 1.355e-09
## PCTOWNHOME -0.405475 0.170427 -2.3792 0.0173520
##
## Rho: 0.037232, LR test value: 6.6704, p-value: 0.0098027
## Asymptotic standard error: 0.014506
## z-value: 2.5667, p-value: 0.010266
## Wald statistic: 6.5882, p-value: 0.010266
##
## Log likelihood: -275.3936 for lag model
## ML residual variance (sigma squared): 0.41217, (sigma: 0.64201)
## Number of observations: 281
## Number of parameters estimated: 6
## AIC: 562.79, (AIC for lm: 567.46)
## LM test for residual autocorrelation
## test value: 2.0255, p-value: 0.15468

NY8$lagsar_fit <- m.z.ppp.lagsar$fit
NY8$lagsar_resid <- m.z.ppp.lagsar$residuals
g1 <- ggplot(data = NY8) +

geom_sf(aes(fill = lagsar_fit)) +
scale_fill_gradientn(colours = hcl.colors(12, "purple-green")) +
labs(fill = "", title = "Lag SAR fitted incidence")

#
g2 <- ggplot(data = NY8) +

geom_sf(aes(fill = lagsar_resid)) +
scale_fill_gradientn(colours = hcl.colors(12, "blue-red")) +
labs(fill = "", title = "Lag SAR residuals")

gridExtra::grid.arrange(g1, g2, nrow = 1)
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Q28 : What was the strength of the autocorrelation parameter? Is this
model better than one without the spatial lag term? Jump to A28 •

Q29 : Which predictors are now significant? Compare to the SAR error
model. Jump to A29 •
round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

## Estimate Pr(>|z|)
## (Intercept) -0.5988 0.0006
## PEXPOSURE 0.0651 0.1177
## PCTAGE65P 3.7569 0.0000
## PCTOWNHOME -0.4297 0.0239

round(summary(m.z.ppp.lagsar)$Coef[,c(1,4)],4)

## Estimate Pr(>|z|)
## (Intercept) -0.5137 0.0010
## PEXPOSURE 0.0456 0.1867
## PCTAGE65P 3.6370 0.0000
## PCTOWNHOME -0.4055 0.0174

9.3 Spatial Durbin SAR model

The spatial Durbin model is:

y = X𝑇 𝛽 + 𝜌Wy +WX𝛾 + 𝜀 (11)

This adds another spatial covariance parameter, 𝛾, which controls the degree
of influence of the spatial lag of the covariates (predictors).

Task 40 : Fit a spatial Durbin SAR model of leukemia incidence predicted
by TCE exposure, proportion of home ownership, and proportion of older
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people, also with the effect of predictor variables in neighbouring areas, with
the neighbour weights as in the previous models. •

The lagsarlm function of the spatialreg package also fits this model, if
the type optional argument is specified as "mixed":
m.z.ppp.durbin <- spatialreg::lagsarlm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data=NY8, listw=NY8listwB, type="mixed")
summary(m.z.ppp.durbin)

##
## Call:
## spatialreg::lagsarlm(formula = Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,
## data = NY8, listw = NY8listwB, type = "mixed")
##
## Residuals:
## Min 1Q Median 3Q Max
## -1.765234 -0.360481 -0.014463 0.310558 4.002391
##
## Type: mixed
## Coefficients: (asymptotic standard errors)
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1.094858 0.253452 -4.3198 1.562e-05
## PEXPOSURE 0.198140 0.082388 2.4050 0.016174
## PCTAGE65P 3.351065 0.654743 5.1181 3.086e-07
## PCTOWNHOME 0.138433 0.261916 0.5285 0.597125
## lag.(Intercept) 0.121965 0.055618 2.1929 0.028313
## lag.PEXPOSURE -0.029996 0.015186 -1.9753 0.048238
## lag.PCTAGE65P 0.176055 0.214533 0.8206 0.411851
## lag.PCTOWNHOME -0.152598 0.057907 -2.6352 0.008408
##
## Rho: 0.023834, LR test value: 2.0874, p-value: 0.14852
## Asymptotic standard error: 0.01635
## z-value: 1.4578, p-value: 0.14491
## Wald statistic: 2.1251, p-value: 0.14491
##
## Log likelihood: -269.5561 for mixed model
## ML residual variance (sigma squared): 0.39743, (sigma: 0.63042)
## Number of observations: 281
## Number of parameters estimated: 10
## AIC: 559.11, (AIC for lm: 559.2)
## LM test for residual autocorrelation
## test value: 4.6067, p-value: 0.031847

This model summary shows the coefficients of the three predictors, and also
coefficients for their lagged effect, i.e., the effect of the neighbours’ values of
the predictors.

Q30 : What was the strength of the autocorrelation parameter? Is this
model better than one without the spatial lag term? Jump to A30 •

Q31 : Which predictors are now significant? Compare to the SAR error
model. Are any of the the neighbour (“lag”) effects significant? How do
these affect the other coefficients? Jump to A31 •
round(summary(m.z.ppp.sar)$Coef[,c(1,4)],4)

## Estimate Pr(>|z|)
## (Intercept) -0.5988 0.0006
## PEXPOSURE 0.0651 0.1177
## PCTAGE65P 3.7569 0.0000
## PCTOWNHOME -0.4297 0.0239
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round(summary(m.z.ppp.durbin)$Coef[,c(1,4)],4)

## Estimate Pr(>|z|)
## (Intercept) -1.0949 0.0000
## PEXPOSURE 0.1981 0.0162
## PCTAGE65P 3.3511 0.0000
## PCTOWNHOME 0.1384 0.5971
## lag.(Intercept) 0.1220 0.0283
## lag.PEXPOSURE -0.0300 0.0482
## lag.PCTAGE65P 0.1761 0.4119
## lag.PCTOWNHOME -0.1526 0.0084

NY8$durbin_fit <- m.z.ppp.durbin$fit
NY8$durbin_resid <- m.z.ppp.durbin$residuals
g1 <- ggplot(data = NY8) +

geom_sf(aes(fill = durbin_fit)) +
scale_fill_gradientn(colours = hcl.colors(12, "purple-green")) +
labs(fill = "", title = "Durbin fitted incidence")

#
g2 <- ggplot(data = NY8) +

geom_sf(aes(fill = durbin_resid)) +
scale_fill_gradientn(colours = hcl.colors(12, "blue-red")) +
labs(fill = "", title = "Durbin residuals")

gridExtra::grid.arrange(g1, g2, nrow = 1)
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9.4 * Comparison with point-based modelling

Another way to model polygon data is to consider all attributes to be con-
centrated at the centroids, and use point-based geostatistical models. Here
we compare the coefficients of the OLS linear model based on centroids with
that based on polygons – these should be the same. We then examine the
spatial dependence of the OLS model residuals; this is the same idea as
Moran’s I, but based only on distances between centroids. If there is de-
pendence, we then model it and use it to fit coefficients, and re-estimate the
spatial correlation structure, using Generalized Least Squares (GLS). We
can then compare the GLS coefficients with those from the SAR model from
the previous section.
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Task 41 : Make an sf object from the centroids of the polygons and their
attributes. •

For this we use the st_centroidunction.
NY8.pts <- st_centroid(NY8)
str(NY8.pts)

## Classes 'sf' and 'data.frame': 281 obs. of 27 variables:
## $ AREANAME : Factor w/ 64 levels "Auburn city",..: 5 5 5 5 5 5 5 5 5 5 ...
## $ AREAKEY : chr "36007000100" "36007000200" "36007000300" "36007000400" ...
## $ X : num 4.07 4.64 5.71 7.61 7.32 ...
## $ Y : num -67.4 -66.9 -67 -66 -67.3 ...
## $ POP8 : num 3540 3560 3739 2784 2571 ...
## $ TRACTCAS : num 3.08 4.08 1.09 1.07 3.06 1.06 2.09 0.02 2.04 0.02 ...
## $ PROPCAS : num 0.00087 0.001146 0.000292 0.000384 0.00119 ...
## $ PCTOWNHOME : num 0.328 0.427 0.338 0.462 0.192 ...
## $ PCTAGE65P : num 0.147 0.235 0.138 0.119 0.142 ...
## $ Z : num 0.142 0.356 -0.582 -0.296 0.457 ...
## $ AVGIDIST : num 0.237 0.209 0.171 0.141 0.158 ...
## $ PEXPOSURE : num 3.17 3.04 2.84 2.64 2.76 ...
## $ Cases : num 3.08 4.08 1.09 1.07 3.06 ...
## $ Xm : num 4069 4639 5709 7614 7316 ...
## $ Ym : num -67353 -66862 -66978 -65996 -67318 ...
## $ Xshift : num 423391 423961 425031 426935 426638 ...
## $ Yshift : num 4661502 4661993 4661878 4662859 4661537 ...
## $ geometry :sfc_POINT of length 281; first list element: 'XY' num 422178 4662168
## $ lmresid : num 0.1089 0.0346 -0.5591 -0.1194 0.3879 ...
## $ sarresid : num 0.1372 0.0729 -0.577 -0.1079 0.4427 ...
## $ resid.change : num 0.0284 0.0383 -0.018 0.0115 0.0549 ...
## $ sar_trend : num 0.0175 0.299 -0.0405 -0.1783 0.0301 ...
## $ sar_stochastic: num -0.0128 -0.0164 0.0359 -0.0102 -0.016 ...
## $ lagsar_fit : num 0.0738 0.3199 0.078 -0.1596 0.0833 ...
## $ lagsar_resid : num 0.0682 0.0356 -0.6597 -0.1368 0.3736 ...
## $ durbin_fit : num 0.0464 0.3758 0.2062 -0.0953 0.1871 ...
## $ durbin_resid : num 0.0956 -0.0203 -0.7878 -0.201 0.2698 ...
## - attr(*, "sf_column")= chr "geometry"
## - attr(*, "agr")= Factor w/ 3 levels "constant","aggregate",..: NA NA NA NA NA NA NA NA NA NA ...
## ..- attr(*, "names")= chr [1:26] "AREANAME" "AREAKEY" "X" "Y" ...

ggplot(data = NY8.pts) +
geom_sf(aes(color=Z))
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Task 42 : Model the 8-county leukemia incidences by an additive model
of the same three factors as in the spatial model of polygons, i.e., exposure
potential, percent older than 65 years, and percent home ownership. •

This uses the same non-spatial attributes, and so will have exactly the same
coefficients and goodness-of-fit, as using the polygons with no spatial struc-
ture..
m.z.ppp.pts <- lm(Z ~ PEXPOSURE + PCTAGE65P + PCTOWNHOME,

data = NY8.pts)
coefficients(m.z.ppp.pts)

## (Intercept) PEXPOSURE PCTAGE65P PCTOWNHOME
## -0.51727634 0.04883627 3.95088956 -0.56004134

coefficients(m.z.ppp)

## (Intercept) PEXPOSURE PCTAGE65P PCTOWNHOME
## -0.51727634 0.04883627 3.95088956 -0.56004134

This fit assumes independence among model residuals. For a spatial points
dataset, we use the variogram of the model residuals to check for this. First,
however, we view the a bubble plot to visually assess the spatial correlation.

Task 43 : Display a bubble plot of the model residuals. •

There is no built-in bubble plot function for sf point geometries, so we
build a small user-defined function for this. It will also be used later in theuser-defined

function tutorial.

Note: This code uses the ability of R to build a command string using the
paste function, parse it into R internal format with the parse functions, and
then evaluate it in the current environment with the eval function.

Arguments:

.oint.obj.name : Name of the point object, not the object itself

.field.name : Name of the data column (“field”) in the point object to be plotted

.field.label : A text label for the field

.title : Plot title, default none.
bubble.sf <- function(.point.obj.name, .field.name, .field.label, .title="") {

# make a plus/minus indicator
eval(parse(

text = paste0("pm <- factor(",
.point.obj.name, "$",
.field.name, "> 0)")

))
# rename them
levels(pm) <- c("-, overprediction", "+, underprediction")
# plot
eval(parse(

text = paste0("ggplot(",
.point.obj.name,
") + geom_sf(aes(colour = pm, size = abs(",
.field.name,
")), shape = 1) + labs(size = paste('+/-', .field.label),
colour = '', title = '",
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.title, "') +
scale_colour_manual(values = c('red', 'green'))")

))
}

Now use this function on the OLS residuals:
NY8.pts$lm.resid <- residuals(m.z.ppp.pts)
bubble.sf("NY8.pts", "lm.resid",

"Leukemia incidence, residuals", "OLS")

42.0°N

42.2°N

42.4°N

42.6°N

42.8°N

43.0°N

43.2°N

76.6°W76.4°W76.2°W76.0°W75.8°W75.6°W75.4°W

+/− Leukemia incidence, residuals

1

2

3

4

−, overprediction

+, underprediction

OLS

Q32 : Does there appear to be spatial dependence among the residuals?
Jump to A32 •

Task 44 : Examine the variogram of the model residuals. •
vr <- variogram(lm.resid ~ 1, loc=NY8.pts)
plot(vr, plot.numbers=T)
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Q33 : Does the variogram support the assumption of spatial dependence
among the residuals? Jump to A33 •

We conclude that if we consider space as centroids the OLS fit to a linear
model is justified.

10 Answers

A1 : The CRS of the imported objects is +proj=utm +zone=18 +ellps=WGS84
+units=m +no_defs. This refers to the PROJ4 format10. This one is easy enough
to read: UTM projection from the WGS84 ellipsoid, coordinate system UTM in
zone 18N. Return to Q1 •

A2 : The number of links is reduced from 1624 “Queen” links to 1528 “Rook”
links, i.e., a loss of 96 or 6.28%.

There is no “correct” answer to the second part of this question, it depends on the
process being modelled. Return to Q2 •

A3 :

1. The first-order (direct) links are defined by polygon adjacency: if two poly-
gons share any border, or even meet at a single point (see: Newfield and
Spencer, lower left corner) they are considered neighbours. The link is drawn
between polygon centroids.

2. The link lengths are quite different: very short to very long.

3. This is mainly because of polygon size: centroids of large polygons are further
apart than for small ones – compare inside the cities (e.g., Syracuse) with
rural counties (e.g., Chenango, middle-right of figure).

10 http://trac.osgeo.org/proj/
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4. Intuitively, it seems that some neighbours should be weighted more than
others when considering spatial influence between polygons, because they are
closer. Note, we are not yet considering attributes (e.g., rural vs. urban areas,
population density) because we don’t know what attributes is being analyzed.

Return to Q3 •

A4 : The most common number of links is 6; there are 61 census districts with
this number of neighbours. Return to Q4 •

A5 : There are 6 polygons with only one neighbour:
NY8[ix.min.nb, ]

## Simple feature collection with 6 features and 26 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 360387.1 ymin: 4752012 xmax: 440217.7 ymax: 4808545
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS
## 56 NA 36011990100 -50.24266 36.81422 10494 3.85
## 98 Canastota village 36053030300 18.89833 41.54373 4773 0.44
## 101 NA 36053030403 8.49700 38.27917 4295 1.39
## 102 Cazenovia village 36053030501 10.82350 24.17720 2599 3.24
## 245 Marcellus village 36067016502 -28.68800 30.85230 1870 1.03
## 246 Skaneateles village 36067016600 -35.98330 26.86590 2786 1.04
## PROPCAS PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE
## 56 0.000367 0.5365118 0.03220888 -0.77182 0.0774664 2.047259
## 98 0.000092 0.5683716 0.15482925 -1.19833 0.0206926 0.727191
## 101 0.000324 0.7482353 0.11105937 -0.58616 0.0226724 0.818563
## 102 0.001247 0.5618091 0.14736437 0.48944 0.0332935 1.202777
## 245 0.000551 0.4950860 0.15187166 0.08210 0.0525526 1.659229
## 246 0.000373 0.6508585 0.19059584 -0.31166 0.0918058 2.217090
## Cases Xm Ym Xshift Yshift
## 56 3.83889 -50242.66 36814.22 369078.9 4765669
## 98 0.43958 18898.33 41543.73 438219.9 4770399
## 101 1.39555 8497.00 38279.17 427818.6 4767134
## 102 3.23935 10823.50 24177.20 430145.1 4753032
## 245 1.02822 -28688.00 30852.30 390633.6 4759707
## 246 1.04204 -35983.30 26865.90 383338.3 4755721
## geometry lmresid sarresid resid.change
## 56 POLYGON ((369143 4807833, 3... -0.1813091 -0.1869162 -0.005607100
## 98 POLYGON ((438903.1 4768869,... -1.0099686 -0.9624871 0.047481482
## 101 POLYGON ((430465.2 4767073,... -0.1285998 -0.1309291 -0.002329248
## 102 POLYGON ((429880.3 4754495,... 0.6803931 0.6657846 -0.014608524
## 245 POLYGON ((391274.5 4760874,... 0.1955863 0.2247398 0.029153565
## 246 POLYGON ((382461.1 4755744,... -0.2911735 -0.2897520 0.001421545
## sar_trend sar_stochastic lagsar_fit lagsar_resid durbin_fit
## 56 -0.57494379 -0.009959993 -0.549902361 -0.2219176 -0.53984254
## 98 -0.21396515 -0.021877705 -0.186078362 -1.0122516 -0.35960042
## 101 -0.44973987 -0.005491047 -0.402521807 -0.1836382 -0.48976089
## 102 -0.20820610 0.031861485 -0.132817256 0.6222573 -0.28808108
## 245 -0.13286400 -0.009775819 -0.113706224 0.1958062 -0.24730518
## 246 -0.01797552 -0.003932528 -0.001379646 -0.3102804 0.02397284
## durbin_resid
## 56 -0.23197746
## 98 -0.83872958
## 101 -0.09639911
## 102 0.77752108
## 245 0.32940518
## 246 -0.33563284

There are 2 polygons with 11 neighbours:
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NY8[ix.max.nb, ]

## Simple feature collection with 2 features and 26 fields
## Geometry type: POLYGON
## Dimension: XY
## Bounding box: xmin: 411636.9 ymin: 4662952 xmax: 428909.5 ymax: 4737992
## Projected CRS: WGS 84 / UTM zone 18N
## AREANAME AREAKEY X Y POP8 TRACTCAS PROPCAS
## 35 NA 36007012800 6.219888 -64.6361 5594 5.13 0.000917
## 83 NA 36023990100 1.861683 -16.6013 5532 3.35 0.000606
## PCTOWNHOME PCTAGE65P Z AVGIDIST PEXPOSURE Cases Xm
## 35 0.6905334 0.1973543 0.09150 0.1459107 2.680410 5.13091 6219.888
## 83 0.6787440 0.1231020 -0.24037 0.0763459 2.032689 3.33995 1861.683
## Ym Xshift Yshift geometry
## 35 -64636.1 425541.5 4664219 POLYGON ((421936.5 4665583,...
## 83 -16601.3 421183.3 4712254 POLYGON ((411675.8 4736791,...
## lmresid sarresid resid.change sar_trend sar_stochastic
## 35 0.08487727 0.12009268 0.03521540 0.02055104 -0.04914372
## 83 0.07139986 -0.02619639 -0.09759625 -0.29553780 0.08136419
## lagsar_fit lagsar_resid durbin_fit durbin_resid
## 35 -0.007850536 0.09935054 -0.1567066 0.2482066
## 83 -0.298550829 0.05818083 -0.3077049 0.0673349

These have indices 103 and 113, respectively, and in the 8-county dataset they have
row names 103 and 113, respectively. Return to Q5 •

A6 : Field AREANAME, with 64 names; "Syracuse city" is the factor name for
Syracuse. Return to Q6 •

A7 : The weights for the minimum and maximum number of adjacent polgygons,
in style W, are 1, 0.0909091 Return to Q7 •

A8 : Hypothesized process: there are environmental causes of the leukemia (e.g,
industrial pollution) and close-by neighbourhoods have similar distances to these
sources. For example, referring to Figure 1, we see the Lakeside neighbourhood
(with high incidence) appears to be mostly an industrial area fronting Onondaga
Lake. Return to Q8 •

A9 : Yes, several high incidences are in the NW (Lakefront neighbourhood and
near Westside) of Syracuse City, and some low incidences are clustered near the
suburban areas. The ranking map shows this a bit better. Return to Q9 •

A10 : The expectation of Moran’s I is −1/(𝑛−1) = −1/62 = −0.0161290; the actual
value is of opposite sign and much larger in absolute value; this is quite unlikely to
be equal to the expectation of no spatial association. The probability of incorrectly
rejecting the null hypothesis of no association (Type I error) is 0. Return to Q10 •

A11 : The probability increased, i.e., the evidence is less strong to reject the null
hypothesis. For leukemia incidence, the probability increased from 0 to 0.001257.
However, with both weightings the evidence is strong, and we reach the same con-
clusion. Return to Q11
•
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A12 : The highest-leverage area is marked on the graph as original row 110; it has
the highest incidence (4.71053) and a moderately-high weighted spatially-lagged
proportion.

This supports the hypothesis of autocorrelation. This area is adjacent to areas with
row numbers 114, 120, 121, 131 and 196. Return to Q12 •

A13 : Yes, clear evidence; there are 2 areas with local Moran’s I sufficiently high
to reject the null hypothesis with less than a 5% chance of Type I error. Some
of these (areas 109, 119, 120, 130) are highlighted in the Moran scatterplot, but
others (131, 161) are not – these do not greatly influence the global Moran’s I but
are locally-clustered. An interesting case is area 161 (northern part of Brighton),
with a very low incidence (Z = -1.354) and low-incidence neighbours. Return to
Q13 •

A14 : The global Moran’s I are all close to 0.2 ± 0.005 and are highly significant;
there is not much variability. Note that the expected value is the same because this
just depends on the number of observations, not on the weighting. The influential
observations are the same five, except for inverse-distance which adds district 162.
Looking at the local Moran’s I plots, there is some difference in the positions of the
influential observations on the y-axis (weighted average neighbour Z); note that the
x-axis is the same because this is just the observed Z value in each district. Also,
note the different scales of the y-axis because of the different weights; however the
position of the horizontal line showing the expected value is the same. Return to
Q14 •

A15 : Clusters of high leukemia incidence are in the NW, between Onondaga Lake
and downtown. There are a few very high Z-scores, indicating a high probability of
clustering. Clusters of low incidence are in the centre of the map, but these Z-scores
are much lower, so the apparent clustering is likely not statistically significant. The
local Moran’s I plot identifies the high incidence clusters in the same area. Return
to Q15 •

A16 : 𝐺∗
𝑖 has a wider range than 𝐺𝑖, because the value in the target area is

included in the weighted sum for each area. However, on average in this case
𝐺∗

𝑖 < 𝐺𝑖, because of the negative values of the index. Return to Q16 •

A17 : The weights are now distributed across one more polygon for each polygon’s
weights; this is the target polygon. So, there are more weights and a larger sum of
weights. Return to Q17 •

A18 : Including the target area’s value emphasizes the hotspots with extreme
values of the target variable. In particular the lakeside area now has a much higher
Z-score than in the 𝐺𝑖 plot. Return to Q18 •

A19 : Leukemia is a form of cancer; its causes are obscure, but seem to include
genetic, demographic and environmental factors.
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For the genetic factors, one could think of the ethnic composition of census tracts;
this would certainly be true for sickle-cell anaemia, which occurs largely in people
with recent west African ancestors.

For the demographic factors, as with almost all cancers leukemia is more prevalent
with increasing age, explained by more time to allow something to wrong with cell
renewal.

For the environmental factors, industrial chemicals, especially petrochemicals, may
increase the risk of leukemia. Smoking may also increase the risk. In both cases,
the older a person, the more years they have been exposed to the environmental
factor, increasing the natural effect of age just mentioned.. Return to Q19 •

A20 : 18.4%, i.e., about one-fifth. This is significantly different from zero, so the
zero-mean model was not justified. The most significant factor is a positive relation
with the proportion of older people (suggesting perhaps a link to smoking? or
general increased cancer risk with age?) and negative relation with home ownership
(suggesting perhaps a higher living standard and healthier lifestyle?); surprisingly,
the positive relation with log-distance to TCE source is not significant. Return to
Q20 •

A21 : Tract 110 has a very high log-incidence (field Z), because although it has
few cases, the population is only 9 people – look at Figure 1: this area is mostly in-
dustrial, with almost no homes. This nicely illustrates the modifiable area problem:
if this tract were included in a neighbouring tract with a more typical population
(several hundred to several thousands), the extreme incidence would disappear or
at least be diluted. Return to Q21 •

A22 : Yes, the probability that we would be wrong to reject the null hypothesis
of no spatial correlation is only 0.0086. Return to Q22 •

A23 : Yes. Although there are scattered highs and lows, there seems to be a cluster
of high residuals (under-predictions) near Ithaca (Morse Chain TCE site), another
in and around Binghamton and Johnson City (many TCE sites), and another near
the Smith-Corona factory in Cortland.

The most under-predicted area is one we’ve seen before, the Onondaga lakefront
industrial area in Syracuse. Perhaps this is a TCE source that was not mapped?
Or it produces a different petrochemical linked to leukemia? Hint: what is its
population?

There are several areas of near-zero clusters, e.g., in southern Chenango and north-
ern Broome counties (SE corner of the map). The north of Cayuga county (far N)
has quite similar moderately positive residuals. All these similar values (whether
high, zero or low) contribute to the observed Moran’s test value. The inference is
that the model is not complete: either there are other spatially-distributed predic-
tive factors (i.e., more information about the census tracts) or that there is really
a spatial process independent of predictive factors.

For leukemia, this latter is hard to imagine. But for an insect-borne disease (e.g., a
plant virus) spreading through an area by diffusion, this could well be the principal
process.
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Finally, since the high residuals seem to be linked with TCE sites, perhaps the log-
inverse distance weighting was not the most appropriate to represent this process.

Return to Q23 •

A24 : The positive coefficient for “exposure potential” increased at the expense
of the other two factors. It is now significant at the 𝑝 < 0.1 level. The other two
factors remain dominant, especially age. Thus by building the SAR model we have
more evidence that TCE exposure may be an important factor related to leukemia
incidence. Return to Q24 •

A25 : Yes, the p-value of the global Moran’s test is quite high; we have no evidence
to reject the null hypothesis of no residual autocorrelation; thus the autocorrelation
in the linear model residuals has been accounted for. Return to Q25 •

A26 : The trend is much more influential, ranging from about -1 to +1 in normal-
ized incidence (variable Z). Return to Q26
•

A27 : In Syracuse city and in a band from SE Onondaga county through most
of Cortland county the effect of accounting for spatial correlation of the residuals
increases the predicted incidence. There is not much negative influence, only in
the SW Town of Ithaca, some tracts in Binghamton city, and in the Cicero game
management area in the centre N; this area has a very small population. Return
to Q27 •

A28 : The strength of spatial association among predictors is 𝜌 = 0.037. The LR
test shows that there is less than a 1% chance that rejecting the null hypothesis
of no improvement from the OLS model due to including autocorrelation in the
model would be wrong. This is strong evidence that there is autocorrelation in the
response variable, which is accounted for by the SAR lag model. Return to Q28 •

A29 : As in the SAR error model, the proportion of older people is dominant (pos-
itive association), and the proportion of homeowners somewhat less so (negative).
The coefficients are quite close to those for the SAR error mode but all somewhat
closer to zero; thus the predictive factors are somewhat less predictive once the
residual autocorrelation of the response variable is accounted for. Return to Q29 •

A30 : The strength of spatial association among predictors is 𝜌 = 0.024. According
to the LR-test we can not reject the null hypothesis that the spatial Durbin SAR
model is not superior to the OLS model. Return to Q30 •

A31 : The non-lagged coefficients are noticeably different from those in the SAR
error model; the sign for PCTOWNHOME is flipped from negative (as expected) to
slightly positive. These changes can be explained by the lagged coefficients. The
model proposes that home ownership in neighbouring areas is predictive of leukemia
in a target area! TCE exposure becomes significant at the 1–2% level for both the
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target and neighbouring areas.

This model is difficult to justify; in fact the LR-test suggests that this model should
not be used in preference to the SAR error model. Return to Q31 •

A32 : No, the red and green circles seem to be intermixed. Return to Q32 •

A33 : There is less spatial correlation at close range (e.g., within Syracuse and
the smaller cities) than at longer range. So there is no spatial dependence to be
removed from the model. Return to Q33 •
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Index of Commands
== operator, 11
[[]] operator, 22

attr, 23

card, 7
class, 3
colnames, 23
colorRampPalette, 41
colorRampPalette (RColorBrewer package),

55

d1 argument (dnearneigh function), 14
data.frame class, 23
dnearneigh (spdep package), 13

eval, 62

function, 23
function class, 26

geom_sf (ggplot2 package), 5, 6
ggplot (ggplot2 package), 5
ggplot2 package, 2, 5
gstat package, 2

influence.measures, 35

knearneigh argument (spdep function), 15
knitr package, 2
knn2nb argument (spdep function), 15

lagsarlm (spatialreg package), 57, 59
lapply, 9, 26, 27
length, 10
library, 2
list.files, 3
listw class, 21, 51
lm, 46
lm class, 48, 54
lm.morantest (spdep package), 48, 54
localG (spdep package), 41
localmoran (spdep package), 37

matrix class, 23
max, 11
min, 11
moran.plot (spdep package), 35, 38
moran.test (spdep package), 33, 34, 54

nb class, 7, 9, 21, 23, 26

nb2listw (spdep package), 21, 24, 27, 42
nbdists (spdep package), 26

parse, 62
paste, 62
pmax, 32
poly2nb (spdep package), 7, 8

queen argument (poly2nb function), 8

RColorBrewer package, 55
read.gal (spdep package), 7
residuals, 48
row.names, 12, 18, 23

sf class, 61, 62
sf package, 2–6, 19
snap argument (poly2nb function), 8
sp package, 2
SpatialPolygons (sp class), 7
SpatialPolygonsDataFrame (sp class), 7
spatialreg package, 2, 52, 57, 59
spautolm (spatialreg package), 52
spautolm (spdep package), 54
spautolm class, 55
spdep class, 7
spdep package, 2, 7, 21
st_centroid (f package), 61
st_crs (sf package), 6
st_is_valid (sf package), 5
st_make_valid (sf package), 5
st_read (sf package), 3, 4, 45
st_touches (sf package), 8
st_transform (sf package), 19
st_write (sf package), 19
str, 3

table, 10
text, 18
type argument (lagsarlm function), 59

unlist, 10

which, 11
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