
Technical note
Processing the Harmonized World Soil Database (Version 1.2) in R

D G Rossiter / W'�
Visiting Scientist / ¢§Y�

Institute of Soil Science, Chinese Academy of Sciences / -ýÑfbW¬
�ä�v@

August 10, 2017

Contents

1 Importing the HWSD into R 2

2 Selecting a region 3
2.1 Selecting by a bounding box . 3
2.2 Selecting by a bounding polygon 7

3 Attribute database 10

4 Raster attribute maps 17

5 Polygon maps 18
5.1 Raster to polygon . 18
5.2 Polygon attribute maps . 20

6 Map units with multiple components 20

7 Cleanup 27

A Extracting a window 28

B Extracting a country 30

References 32

Version 1.4. Copyright 2012–2014, 2017 © D G Rossiter. All rights re-
served. Reproduction and dissemination of the work as a whole (not
parts) freely permitted if this original copyright notice is included. Sale
or placement on a web site where payment must be made to access this
document is strictly prohibited. To adapt or translate please contact the
author (d.g.rossiter@cornell.edu).

d.g.rossiter@cornell.edu

Index of R concepts 33

ii

This note attempts to explain how to access and query the Harmonized
World Soil Database (HWSD) [3] using the open-source R project for sta-
tistical computing [7]. This allows integration of the HWSD with any
other geographic coverage, as well as statistical summaries.

This note shows how to:

1. Access the HWSD at IIASA and import it to R;

2. Select a geographic window from the HWSD, either by a rectangular
bounding box or a boundary polygon(s);

3. Project from the original Plate Carrée (non)projection to the UTM
coordinate reference system;

4. Determine the area covered by each soil class;

5. Save the window in the original HWSD format and as a projected
raster;

6. Link the attribute database to the raster and save the records for
the window as either a CSV or Excel file;

7. Convert from the original raster format to polygons;

8. Create and display attribute raster and polygon maps.

There is certainly more that can be done in R with the HWSD1, including
integration with other freely-available geographic layers such as digital
elevation models and satellite imagery. Readers are referred to the ex-
cellent textbook of Bivand et al. [1] from the UseR! Springer textbook
series.

The only operation that is not carried out in R is directly working with
MS-Access databases (file extension .mdb), which is the format in which
the HWSD attributes are supplied. This is possible with the RODBC “R
interface with Open Database Connectivity” package2; however I did not
know this at the time I first developed these notes. I chose therefore to
use another database format, SQL databases. These are explained in §3.
I exported the MS-Access database (44.6 Mb) to SQLite format (19.7 Mb)
using the MDB Explorer program3 on OS X. There are similar programs
available for other platforms.

Note: I would welcome an adaptation of these notes to work directly
with the Access database using RODBC. If you are interested in doing this,
please contact me.

The procedures in this note use important R packages, including sp for
spatial data [1, 6], rgdal for spatial data import, export and geometric
transformation [4], raster for working with large raster (grid) image [2],
and RSQLite for working with the SQLite format relational databases.
These must loaded before their first use, as is shown in the code.

1 and maybe will be, in later versions
2 http://cran.r-project.org/web/packages/RODBC/index.html
3 http://www.mdbexplorer.com/

1

http://cran.r-project.org/web/packages/RODBC/index.html
http://www.mdbexplorer.com/

Note: The code in this document was tested with R version 3.4.0 (2017-
04-21) and packages from that version or later running on Mac OS X
10.7.5. The text and graphical output you see here was written as a
NoWeb file, including both R code and regular LATEX source, and then run
through the excellent knitr package Version: 1.16 [11] on R to and auto-
matically generated and incorporated into LATEX. Then the LATEX document
was compiled into the PDF version you are now reading. The R code (file
R_HWSD.R, supplied with this document) was also generated by knitr
from the same source document. If you run this R code, or copy code
from this document, your output may be slightly different on different
versions and on different platforms.

1 Importing the HWSD into R

Task 1 : Download the HWSD database from IIASA. •

The HWSD is found at IIASA4. We do not use the HSWD Viewer, instead,
we download the data for use in R. Three files are provided (Table 1):

Task 2 : Uncompress the compressed file HWSD_RASTER.zip. •

This will create a subdirectory HWSD_RASTER with three files: the band-
interleaved image (hwsd.bil, 1.7 Gb), a small file giving the extent and
resolution (hwsd.blw), and the header (hwsd.hdr). The latter two are
automatically consulted on data import.

Task 3 : Import the world raster image to R. •

The raster package can work with very large images, such as this one,
because it only reads the image into memory as necessary, otherwise
keeping the image on disk. The raster function associates an R object
name with the file on disk. The band-interleaved format is known to
this command. The raster package depends on the sp package, which

4 http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/

file name contents format size
HWSD_raster.zip Raster soil unit map band-

interleaved
image
(.bil,
.blw,
.hdr)

19.7 Mb

HWSD.mdb Soil attribute database MS Access
(.mdb)

44.6 Mb

HWSD_META.mdb Soil attribute metadata MS Access
(.mdb)

0.8 Mb

Table 1: HWSD database files

2

http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/

it automatically loads if needed. We load the raster package with the
require function, which only loads a package if it’s not already in the
workspace:
> require(sp)
> require(raster)
> hwsd <- raster("./HWSD_RASTER/hwsd.bil")

Task 4 : Examine the raster image’s properties. •

The raster package provides some useful commands for this, which are
self-explanatory:
> ncol(hwsd); nrow(hwsd); res(hwsd); extent(hwsd); projection(hwsd)

[1] 43200
[1] 21600
[1] 0.008333333 0.008333333
class : Extent
xmin : -180
xmax : 180
ymin : -90
ymax : 90
[1] NA

This raster is not provided with any projection information (reported as
NA, “not available”). We know from the documentation [3] that this is a
Plate Carrée5 projection using the WGS84 datum; it just maps latitude
and longitude directly to a grid cell, so that the figure is increasingly
distorted towards the poles.

Task 5 : Provide the projection information for the raster database. •

This is a very simple “projection”; we use the proj4string function,
which uses the syntax of the PROJ4 projection system [5]. We provide
a “projection” (here, none, i.e., use the geographic coordinates), the da-
tum, elipse, and translation to WGS84 (yes, all three are needed, and the
datum name must be in upper case: WGS84):
> require(rgdal)
> (proj4string(hwsd) <-"+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0")

[1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

2 Selecting a region

The entire database is very large; usually we want to work in some region.

2.1 Selecting by a bounding box

The raster package can crop an image to an “extent”. This can be ex-
tracted from the bounding box of any sp object, or directly specified
using the extent function. Here we will select a 2° by 2° tile centred
near Nanjing, Jiangsu, China, and covering parts of Jiangsu and Anhui

5 French: “square plate”

3

provinces. This same procedure can be used to select any tile of interest.
We then crop to this extent with the crop function.
> hwsd.zhnj <- crop(hwsd, extent(c(117.5, 119.5, 31, 33)))
> nrow(hwsd.zhnj); ncol(hwsd.zhnj); bbox(hwsd.zhnj)

[1] 240
[1] 240

min max
s1 117.5 119.5
s2 31.0 33.0

The unique function shows the unique values in a raster:
> unique(hwsd.zhnj)

[1] 11328 11331 11341 11365 11367 11368 11372 11373 11375 11376
[11] 11377 11379 11381 11389 11390 11391 11392 11394 11434 11435
[21] 11460 11461 11466 11472 11474 11476 11481 11483 11485 11486
[31] 11488 11489 11490 11491 11492 11493 11495 11499 11501 11513
[41] 11535 11604 11605 11609 11613 11614 11615 11616 11617 11619
[51] 11620 11621 11623 11625 11627 11630 11634 11645 11649 11650
[61] 11651 11652 11655 11656 11657 11661 11663 11665 11667 11668
[71] 11671 11672 11673 11675 11677 11678 11679 11680 11814 11815
[81] 11817 11818 11823 11834 11857 11858 11859 11860 11863 11870
[91] 11875 11876 11877 11878 11925 11927 11928 11929

This is the only content of the raster database: each pixel has a code,
which links to the attribute database, see below.

Task 6 : Display the tile with a suitable colour scheme. •

There are too many classes (98) to show with distinct colours. One way
is to use a continuous colour ramp:
> plot(hwsd.zhnj, col=bpy.colors(length(unique(hwsd.zhnj))))

117.5 118.0 118.5 119.0 119.5

31
.0

31
.5

32
.0

32
.5

33
.0

11400

11500

11600

11700

11800

11900

4

This looks good, since the codes appear to be ordered by similar soils.
We can also use just the first three digits of the map unit codes, which
presumably are also a meaningful grouping; to remove the ‘hundreds’
places we use the %/% “integer divide” operator . The RColorBrewer
package provides colour palettes; here we select one (named “Accent”)
that emphasizes differences between classes; we select it with the brewer.pal
function:
> hwsd.zhnj3 <- (hwsd.zhnj%/%100)
> freq(hwsd.zhnj3)

value count
[1,] 113 5919
[2,] 114 2152
[3,] 115 273
[4,] 116 32591
[5,] 118 12536
[6,] 119 4129

> require(RColorBrewer)
> plot(hwsd.zhnj3, col=brewer.pal(length(unique(hwsd.zhnj3)),"Accent"))

117.5 118.0 118.5 119.0 119.5

31
.0

31
.5

32
.0

32
.5

33
.0

113

114

115

116

117

118

119

This image is distorted from geographic reality, because it is not pro-
jected. We can see the effect of projection, using the projectRaster
method and specifying a target coordinate reference system (CRS). Note
that we use the nearest-neighbour resampling (method=”ngb”) since this
is a classified map.

We first determine the appropriate UTM zone for the centre of the win-
dow, recalling that UTM zone 30 is centred on 3° E.
> print(paste("UTM zone:", utm.zone <-
+ floor((sum(bbox(hwsd.zhnj3)[1,])/2 + 180)/6) + 1))

[1] "UTM zone: 50"

5

> proj4string.utm50 <-
+ paste("+proj=utm +zone=", utm.zone,
+ "+datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0",
+ sep="")
> hwsd.zhnj3.utm <- projectRaster(hwsd.zhnj3, crs=proj4string.utm50,
+ method="ngb")
> unique(hwsd.zhnj3.utm)

[1] 113 114 115 116 118 119

> (cell.dim <- res(hwsd.zhnj3.utm))

[1] 787 924

> paste("Cell N dimension is ", round(((cell.dim[2]/cell.dim[1]) - 1)*100,1),
+ "% larger than cell dimension E", sep="")

[1] "Cell N dimension is 17.4% larger than cell dimension E"

> plot(hwsd.zhnj3.utm, col=brewer.pal(6,"Accent"), asp=1)
> grid()

550000 600000 650000 700000 750000

34
50

00
0

35
00

00
0

35
50

00
0

36
00

00
0

36
50

00
0

113

114

115

116

117

118

119

Notice how the region is now longer in the N–S direction (as shown by the
results of the res function, above); at 32° N a degree of latitude is larger
than a degree of longitude. Also, notice the region is slightly angled with
respect to UTM north; this is because the region is not centred on the
meridian of zone 50 (117° E = UTM 500 000 E) and the UTM projection is
equal-angle but not equal area, becoming most distorted at the edge of
the 6° zone.

Now that this is geometrically-correct, we can compute the area covered
by each code, and the total area of the tile, here in km2:
> (cell.area <- cell.dim[1]*cell.dim[2]/10^4)

[1] 72.7188

6

> (tmp <- cbind(freq(hwsd.zhnj3.utm)[,1],freq(hwsd.zhnj3.utm)[,2]*cell.area/10^2))

[,1] [,2]
[1,] 113 4280.2286
[2,] 114 1570.7261
[3,] 115 198.5223
[4,] 116 23744.1426
[5,] 118 9115.3016
[6,] 119 2999.6505
[7,] NA 5189.9408

> ix <- which(is.na(tmp[,1]))
> sum(tmp[-ix,2])

[1] 41908.57

> rm(cell.dim, cell.area, tmp, ix)

The area of a grid cell is about 72 ha; at the equator this would be about
100 ha (1 km2). The tile covers almost 42 000 km2. Notice also that there
are some NA cells; these are the ones at the edges of the projected image,
needed to keep the raster square.

We are done with the generalized map, so remove it:
> rm(hwsd.zhnj3.utm)

Back to the unprojected image, we can query at any location with the
click function. When this is called, click with the mouse at a cell in
the displayed image; this will return the coordinates of the point, and, if
the optional argument click is set to TRUE, the code at the raster cell is
returned. For example, clicking on the approximate peak of the Purple
Mountain to the east of downtown Nanjing (118° 50’ 30” E, 32° 04’ 20” N
according to Google Earth). The click function has optional arguments,
which we use, to return the raster attribute value:
> plot(hwsd.zhnj, col=bpy.colors(length(unique(hwsd.zhnj))))
> xy <- click(hwsd.zhnj, n=1, id=TRUE, xy=TRUE, type="p")

> print(xy)

x y hwsd
118.8292 32.0875 11376.0000

> (zjs.id <- xy["hwsd"])

hwsd
11376

> rm(xy)

The coordinates are in decimal degrees. The result is the soil map unit
code of the pixel.

2.2 Selecting by a bounding polygon

Another way to select a subset of the database is with the polygon bound-
ary of a region, e.g., a country.

Task 7 : Make a SpatialPolygons object from the boundary of the

7

Kingdom of Bhutan. •

We obtain the boundaries of Bhutan from the worldHires dataset of
the mapdata package, which was created from what the authors call a
“cleaned-up” version of the CIA World Data Bank II data of 20036. We
extracted the boundaries with the map function, and then converted them
to a SpatialPolygons object with the map2SpatialPolygons function
of the maptools package.

Note: These appear to be the boundaries claimed by the country in
question as of that date; in the case of Bhutan it appears to include some
small border regions also claimed by the People’s Republic of China. We
do not resolve border disputes, just use this convenient data source to
build a bounding polygon.

Note: The fill argument to the map function converts the boundary
coordinates into a polygon by joining the last and first points.

> require(maps)
> require(mapdata)
> str(tmp <- map('worldHires','Bhutan', fill=TRUE, plot=FALSE))

List of 4
$ x : num [1:1666] 91.7 91.7 91.7 91.7 91.7 ...
$ y : num [1:1666] 27.8 27.8 27.8 27.8 27.8 ...
$ range: num [1:4] 88.8 92.1 26.7 28.3
$ names: chr "Bhutan"
- attr(*, "class")= chr "map"

> require(maptools)
> bhutan.boundary <-
+ map2SpatialPolygons(tmp, IDs=tmp$names,
+ proj4string=
+ CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))
> bbox(bhutan.boundary)

min max
x 88.75082 92.11529
y 26.70138 28.32526

> class(bhutan.boundary)

[1] "SpatialPolygons"
attr(,"package")
[1] "sp"

> rm(tmp)

Task 8 : Extract the portion of the HWSD database within this polygon
as a raster window. •

Working with a RasterLayer object we can only extract rectangular ar-
eas. So first we use the bounding box of Bhutan to extract Bhutan and
some areas of neighbouring countries, using the crop function. We then
convert the rectangular window to a SpatialPixelsDataFrame object
as required by the sp package. At that point we can use over to find the
pixels in the country. This command returns NA for pixels outside the

6 http://www.evl.uic.edu/pape/data/WDB/

8

http://www.evl.uic.edu/pape/data/WDB/

polygon, and the (single) polygon ID for pixels inside. We then select the
pixels that are not NA, i.e., have a code.
> hwsd.bhutan.box <- crop(hwsd, bbox(bhutan.boundary))
> hwsd.bhutan.box.sp <- as(hwsd.bhutan.box, "SpatialPixelsDataFrame")
> sort(unique(hwsd.bhutan.box.sp$hwsd))

[1] 3650 3651 3662 3683 3717 3821 3849 3850 6998 11000
[11] 11004 11052 11103 11335 11378 11388 11404 11413 11423 11535
[21] 11540 11705 11710 11711 11718 11719 11721 11724 11727 11730
[31] 11732 11736 11740 11748 11750 11752 11754 11758 11759 11765
[41] 11775 11790 11814 11839 11864 11879 11909 11927 11930 11932

> ix <- over(hwsd.bhutan.box.sp, bhutan.boundary)
> hwsd.bhutan.sp <- hwsd.bhutan.box.sp[!is.na(ix),]
> (bhutan.id <- sort(unique(hwsd.bhutan.sp$hwsd)))

[1] 3651 3662 3717 3821 3849 6998 11052 11103 11705 11710
[11] 11718 11719 11724 11727 11730 11740 11750 11765 11839 11864
[21] 11879 11909 11930

There are only 23 different soil map units in Bhutan.

We display maps with the spplot method; the scales argument here
specifies that we want the axes to be drawn.

> spplot(hwsd.bhutan.box.sp, main="HWSD, Bhutan bounding box",
+ col.regions=topo.colors(64), scales=list(draw = TRUE))
> spplot(hwsd.bhutan.sp, main="HWSD, Bhutan",
+ col.regions=topo.colors(64), scales=list(draw = TRUE))

HWSD, Bhutan bounding box

27°N

27.5°N

28°N

89°E 89.5°E 90°E 90.5°E 91°E 91.5°E 92°E

4000

5000

6000

7000

8000

9000

10000

11000

12000

HWSD, Bhutan

27°N

27.5°N

28°N

89°E 89.5°E 90°E 90.5°E 91°E 91.5°E 92°E

4000

5000

6000

7000

8000

9000

10000

11000

12000

This can be converted back to a RasterLayer object:
> hwsd.bhutan <- as(hwsd.bhutan.sp, "RasterLayer")
> rm(hwsd.bhutan.box, hwsd.bhutan.box.sp, ix)

9

3 Attribute database

There is no R package to read Access databases (file extension .mdb).
However, R can work with SQL databases7; one option is the RSQLite
package, which provides the interface to an SQL database via the DBI
package. The author has exported the Access database to SQLite for-
mat8, with file name HWSD.sqlite.

Note: As an additional benefit, SQLite databases require much less disk
storage than MS-Access databases with the same contents; in this case
12 Mb instead of 44.6 Mb, almost a four-fold reduction!

Task 9 : Connect to the SQLite version of the HWSD attribute databse
and list the tables. •

We first load the RSQLite package with require; this automatically
loads the DBI package if necessary. We then use the dbDriver function
to specify the database driver to be used by DBI (in this case, SQLite),
and then the dbConnect function with this driver and the name of the
database on disk to set up a database connection; this variable in the R
workspace then refers to the database and is used in every command
which queries or manipulates it. The dbListTables function lists the
relational tables in the database.
> require(RSQLite)
> m <- dbDriver("SQLite")
> con <- dbConnect(m, dbname="HWSD.sqlite")
> dbListTables(con)

[1] "D_ADD_PROP" "D_AWC" "D_COVERAGE"
[4] "D_DRAINAGE" "D_IL" "D_ISSOIL"
[7] "D_PHASE" "D_ROOTS" "D_SWR"
[10] "D_SYMBOL" "D_SYMBOL74" "D_SYMBOL85"
[13] "D_SYMBOL90" "D_TEXTURE" "D_USDA_TEX_CLASS"
[16] "HWSD_DATA" "HWSD_SMU" "WINDOW_BRETAGNE"
[19] "WINDOW_KH"

This database has 17 files, 16 of which are lookup tables of the attribute
codes, while the remaining table HWSD_DATA is the list of map units.

Task 10 : Display the structure of the main table. •

SQL syntax used in SQLite is explained, with syntax diagrams, at the
SQLite web page9. This language is not immediately intuitive; the reader
who is unfamiliar with it is encouraged to follow a tutorial10 to under-
stand its principles.

The dbGetQuery function requires a database connection and a query
string in SQL format. SQL uses the PRAGMA command to display database
structure; we include it in the query string.

7 see [8, §4] for a discussion of R and relational databases
8 using the MDB Explorer program on OS X
9 http://www.sqlite.org/lang.html

10 For example, http://www.w3schools.com/sql/

10

http://www.sqlite.org/lang.html
http://www.w3schools.com/sql/

Note: Unlike R, SQL is not case-sensitive, so the command strings can be
upper, lower, or mixed case. By convention I use upper-case for database
names.

> dbGetQuery(con, "pragma table_info(HWSD_DATA)")$name

[1] "ID" "MU_GLOBAL"
[3] "MU_SOURCE1" "MU_SOURCE2"
[5] "ISSOIL" "SHARE"
[7] "SEQ" "SU_SYM74"
[9] "SU_CODE74" "SU_SYM85"
[11] "SU_CODE85" "SU_SYM90"
[13] "SU_CODE90" "T_TEXTURE"
[15] "DRAINAGE" "REF_DEPTH"
[17] "AWC_CLASS" "PHASE1"
[19] "PHASE2" "ROOTS"
[21] "IL" "SWR"
[23] "ADD_PROP" "T_GRAVEL"
[25] "T_SAND" "T_SILT"
[27] "T_CLAY" "T_USDA_TEX_CLASS"
[29] "T_REF_BULK_DENSITY" "T_BULK_DENSITY"
[31] "T_OC" "T_PH_H2O"
[33] "T_CEC_CLAY" "T_CEC_SOIL"
[35] "T_BS" "T_TEB"
[37] "T_CACO3" "T_CASO4"
[39] "T_ESP" "T_ECE"
[41] "S_GRAVEL" "S_SAND"
[43] "S_SILT" "S_CLAY"
[45] "S_USDA_TEX_CLASS" "S_REF_BULK_DENSITY"
[47] "S_BULK_DENSITY" "S_OC"
[49] "S_PH_H2O" "S_CEC_CLAY"
[51] "S_CEC_SOIL" "S_BS"
[53] "S_TEB" "S_CACO3"
[55] "S_CASO4" "S_ESP"
[57] "S_ECE"

> dbGetQuery(con, "pragma table_info(HWSD_DATA)")$type

[1] "INTEGER" "INTEGER" "TEXT" "INTEGER" "INTEGER" "REAL"
[7] "INTEGER" "TEXT" "INTEGER" "TEXT" "INTEGER" "TEXT"
[13] "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER"
[19] "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER" "INTEGER"
[25] "INTEGER" "INTEGER" "INTEGER" "INTEGER" "REAL" "REAL"
[31] "REAL" "REAL" "REAL" "REAL" "REAL" "REAL"
[37] "REAL" "REAL" "REAL" "REAL" "INTEGER" "INTEGER"
[43] "INTEGER" "INTEGER" "INTEGER" "REAL" "REAL" "REAL"
[49] "REAL" "REAL" "REAL" "REAL" "REAL" "REAL"
[55] "REAL" "REAL" "REAL"

The field names, data types, and units of measure and lookup tables are
explained in detail in [3, §2].

Task 11 : Determine the number of records in the main table. •

We use the count SQL function to count selected records (in this case,
all of them, as symbolized by the *), and name the result with the as SQL
operator. We select all records (by omitting a where clause).
> dbGetQuery(con, "select count(*) as grid_total from HWSD_DATA")

grid_total
1 48148

Task 12 : Display the ID, map unit code, whether it is a soil unit or

11

not, the percent in map unit, the FAO 1990 class code, and the topsoil
texture codes, for the first ten records of the main database. •

An SQLite database is not guaranteed to have any particular ordering, so
“the first” may vary by implementation. We use the limit SQL operator
to limit the number of records returned, and specify the fields to return.

Note: The paste function with the collapse argument collapses a char-
acter vector into a single string, with the elements separated by the argu-
ment to paste.

> (display.fields <- c("ID","MU_GLOBAL","ISSOIL","SHARE","SU_CODE90",
+ "SU_SYM90","T_USDA_TEX_CLASS"))

[1] "ID" "MU_GLOBAL" "ISSOIL"
[4] "SHARE" "SU_CODE90" "SU_SYM90"
[7] "T_USDA_TEX_CLASS"

> tmp <- dbGetQuery(con, paste("select", paste(display.fields, collapse=", "),
+ "from HWSD_DATA limit 10"))

> dim(tmp)

[1] 10 7

> print(tmp[,display.fields])

ID MU_GLOBAL ISSOIL SHARE SU_CODE90 SU_SYM90 T_USDA_TEX_CLASS
1 1 7001 0 100 201 UR NA
2 2 7002 0 100 202 HD NA
3 3 7003 0 100 198 WR NA
4 4 7004 0 100 89 HSf 3
5 5 7005 0 100 199 GG NA
6 6 7006 1 70 35 ANz 11
7 7 7006 1 20 32 ANh 11
8 8 7006 1 10 37 ANi 9
9 9 7007 1 80 35 ANz 11
10 10 7007 1 20 32 ANh 11

> rm(tmp)

We see that some map units (e.g., 7001) are non-soil. Some map units
(e.g., 7004) have only one component, others (e.g., 7006) have several,
with their proportions.

Task 13 : Display the structure of the lookup table for FAO 1990 soil
classes. •

From the HWSD documentation we know that the lookup tables have
names with pattern D_*; the table for FAO 1990 classes is D_SYMBOL90.
Here we know the table is fairly small, so we read it into memory by
selecting all rows; then we examine the structure.
> str(dbGetQuery(con, "select * from D_SYMBOL90"))

'data.frame': 193 obs. of 3 variables:
$ CODE : int 1 2 3 4 5 6 7 8 9 10 ...
$ VALUE : chr "FLUVISOLS" "Eutric Fluvisols" "Calcaric Fluvisols" "Dystric Fluvisols" ...
$ SYMBOL: chr "FL" "FLe" "FLc" "FLd" ...

12

Task 14 : Show the map unit record for the pixel identified in the
previous section. •

Again we use the dbGetQuery function, but now with a query string to
find the map unit’s record. Note the use of the paste function to build
a query string with some fixed text (in quotes) and some text taken from
a variable, here the soil map unit code saved as variable zjs.id during
the interactive map query, above.
> (tuple <- dbGetQuery(con, paste("select * from HWSD_DATA where MU_GLOBAL = ",
+ zjs.id)))

ID MU_GLOBAL MU_SOURCE1 MU_SOURCE2 ISSOIL SHARE SEQ SU_SYM74
1 12184 11376 34200 NA 1 100 1 <NA>
SU_CODE74 SU_SYM85 SU_CODE85 SU_SYM90 SU_CODE90 T_TEXTURE

1 NA <NA> NA CMd 63 2
DRAINAGE REF_DEPTH AWC_CLASS PHASE1 PHASE2 ROOTS IL SWR

1 4 100 1 NA NA NA NA NA
ADD_PROP T_GRAVEL T_SAND T_SILT T_CLAY T_USDA_TEX_CLASS

1 0 10 42 38 20 9
T_REF_BULK_DENSITY T_BULK_DENSITY T_OC T_PH_H2O T_CEC_CLAY

1 1.41 1.3 1.45 5.1 32
T_CEC_SOIL T_BS T_TEB T_CACO3 T_CASO4 T_ESP T_ECE S_GRAVEL

1 12 38 4.3 0 0 2 0.1 19
S_SAND S_SILT S_CLAY S_USDA_TEX_CLASS S_REF_BULK_DENSITY

1 45 35 20 9 1.42
S_BULK_DENSITY S_OC S_PH_H2O S_CEC_CLAY S_CEC_SOIL S_BS S_TEB

1 1.36 0.5 5.2 35 9 33 2.6
S_CACO3 S_CASO4 S_ESP S_ECE

1 0 0 2 0.1

> tuple$SU_SYM90

[1] "CMd"

This is the code; we can find the corresponding name in the lookup table:
> dbGetQuery(con, paste("select * from D_SYMBOL90 where symbol='",
+ tuple$SU_SYM90,"'",sep=""))

CODE VALUE SYMBOL
1 63 Dystric Cambisols CMd

Indeed, the soils of the Purple Mountain area are in general shallow and
with low base saturation, so Dystric Cambisols is a reasonable classific-
tion.

Now we make a derived soil properties map in the raster window.

Task 15 : Extract a table of the map units in the raster window. •

One way to extract the appropriate records from the map unit database
is to make a database table of the list of map units in the window, and
then use this as a selection criterion with a JOIN. The dbWriteTable
function creates a table; it requires an R data frame as the initial value.
From this it infers the table structure.
> dbWriteTable(con, name="WINDOW_ZHNJ",
+ value=data.frame(smu_id=unique(hwsd.zhnj)),
+ overwrite=TRUE)
> dbGetQuery(con, "pragma table_info(WINDOW_ZHNJ)")

13

cid name type notnull dflt_value pk
1 0 smu_id INTEGER 0 NA 0

Now we join on the common field; the new table does not contribute any
new fields. We also show how to sort the results, in this case by the FAO
1990 soil map unit symbol:

Note: The select T.* clause selects the fields from the HWSD_DATA
table; this is represented by T in the join clause. We do not need the
fields from the table with the list of map units in the window, since the
HWSD_DATA table has the same codes in field MU_GLOBAL.

14

> records <- dbGetQuery(con,
+ "select T.* from HWSD_DATA as T

join WINDOW_ZHNJ as U on T.MU_GLOBAL=U.SMU_ID
order by SU_SYM90")

> dim(records)

[1] 98 57

> head(records)[,display.fields]

ID MU_GLOBAL ISSOIL SHARE SU_CODE90 SU_SYM90
1 12469 11661 1 100 22 ACp
2 12479 11671 1 100 22 ACp
3 12622 11814 1 100 21 ACu
4 12623 11815 1 100 21 ACu
5 12625 11817 1 100 21 ACu
6 12626 11818 1 100 21 ACu
T_USDA_TEX_CLASS

1 9
2 3
3 10
4 10
5 11
6 3

> sort(unique(records$SU_SYM90))

[1] "ACp" "ACu" "ALf" "ALp" "ANh" "AT" "ATc" "CMc" "CMd" "CMe"
[11] "CMo" "DS" "FLc" "FLe" "GLe" "GLk" "GLm" "LP" "LPd" "LPk"
[21] "LVh" "PLd" "PLe" "RGc" "RGd" "RGe" "UR" "VRe" "WR"

In this window all the map units have only one component, as we can
see from the SHARE field:
> unique(records$SHARE)

[1] 100

This was a decision by the compilers of the Chinese portion of the HWSD.
See §6, below, for a window where some map units have multiple com-
ponents.

Many of these fields are R factors although they were in the relational
database as integers or characters; we have to inform R of this.

Task 16 : Convert fields to R factors as appropriate. •
> for (i in names(records)[c(2:5,8:15,17:19,28,45)])
+ {
+ eval(parse(text=paste("records$",i," <- as.factor(records$",i,")", sep="")))
+ }

Note: This is an example of building a valid R command string using
paste to include both fixed and variable text (which changes each time
through the loop), then parsing it with parse to build a valid R expression
and finally evaluating it with eval.

We could assign the names for factor levels from the metadata lookup
tables (not yet implemented).

Task 17 : Remove fields with no data from the window’s attribute table.

15

•

Some fields are completely undefined in this window. For example, the
MU_SOURCE2 field (second source of data) is not used in data from China;
we check this with the all function applied to a logical vector created
by the is.na function and the ! (“not”) logical operator:
> ix <- which(names(records)=="MU_SOURCE2")
> all(is.na(records[,ix]))

[1] TRUE

We find all these and remove them from the dataframe, thus simplifying
the table:
> df <- records
> for (i in 1:length(names(records))) {
+ if (all(is.na(records[,i]))) df <- df[-i]
+ }
> dim(records); dim(df)

[1] 98 57
[1] 98 48

> records <- df
> rm(df, ix, i)

Now we have a table of just the units in our window, with just the defined
fields.

This table is a flat file, and can be exported for use in spreadsheets or to
be imported into a database program.

Task 18 : Export the map unit table as a comma-separated values (CSV)
file. •

The write.csv function does just that:
> write.csv(records, file="./HWSD_Nanjing.csv")

We can also write direct to Excel files with the write.xls function of
the dataframes2xls package. This has the advantage that it correctly
writes R factors as character variables, not as integers.
> require(dataframes2xls)
> write.xls(records, file="./HWSD_Nanjing.xls")

We can see the names of the map units with another table join. To do
this, we repeat the previous query but save the results as a new table,
which we name tmp. We can then use this for the next join, to return
the map unit codes, symbols and names.

Note: Here we use the dbExecute function instead of dbGetQuery, be-
cause our aim is not to return a data frame with a query, rather it is to
create a temporary table.

16

> dbExecute(con,
+ "create table TMP as select * from HWSD_DATA as T

join WINDOW_ZHNJ as U on T.MU_GLOBAL=U.SMU_ID
order by SU_SYM90")

[1] 1

> head(window.fao90 <- dbGetQuery(con,
+ "select CODE, VALUE, SYMBOL from D_SYMBOL90 as U

join TMP as T on T.SU_CODE90=U.CODE"))

CODE VALUE SYMBOL
1 22 Plinthic Acrisols ACp
2 22 Plinthic Acrisols ACp
3 21 Humic Acrisols ACu
4 21 Humic Acrisols ACu
5 21 Humic Acrisols ACu
6 21 Humic Acrisols ACu

> dbRemoveTable(con, "TMP")

4 Raster attribute maps

The raster package is not suited to working with attribute databases
linked to maps; instead the sp package is preferred.

Task 19 : Convert the HWSD window to a SpatialGridDataFrame, and
add the attributes from the database. •

The match function finds the position of a given value in a lookup table.
Here we match the SMU ID from the converted raster to the record in
the attribute data frame. We then use that index to extract the proper
record for each pixel, and add it to the dataframe. We then display two
attribute maps: one categorical and one continuous.
> hwsd.zhnj.sp <- as(hwsd.zhnj, "SpatialGridDataFrame")
> str(hwsd.zhnj.sp@data)

'data.frame': 57600 obs. of 1 variable:
$ hwsd: int 11466 11466 11466 11466 11466 11466 11466 11466 11875 11875 ...

> m <- match(hwsd.zhnj.sp@data$hwsd, records$MU_GLOBAL)
> str(m)

int [1:57600] 54 54 54 54 54 54 54 54 87 87 ...

> hwsd.zhnj.sp@data <- records[m,]
> rm(m)

Task 20 : Display a map of the FAO 1990 soil types, and a map of the
topsoil sand proportion. •

We do this with the spplot method, specifying the variable to be dis-
played with the zcol argument:

17

> spplot(hwsd.zhnj.sp, zcol="SU_SYM90",
+ col.regions=topo.colors(length(levels(hwsd.zhnj.sp$SU_SYM90))),
+ main="FAO 1990 soil type code", scales=list(draw = TRUE))
> spplot(hwsd.zhnj.sp, zcol="T_SAND", col.regions=bpy.colors(64),
+ main="Toposil sand proportion, %", scales=list(draw = TRUE))

FAO 1990 soil type code

31°N

31.5°N

32°N

32.5°N

33°N

117.5°E 118°E 118.5°E 119°E 119.5°E

ACp
ACu
ALf
ALp
ANh
AT
ATc
CMc
CMd
CMe
CMo
DS
FLc
FLe
GLe
GLk
GLm
LP
LPd
LPk
LVh
PLd
PLe
RGc
RGd
RGe
UR
VRe
WR

Toposil sand proportion, %

31°N

31.5°N

32°N

32.5°N

33°N

117.5°E 118°E 118.5°E 119°E 119.5°E

10

20

30

40

50

60

70

80

90

5 Polygon maps

Although the HWSD is a raster dataset, it was created from a polygon
map. These use much less storage and are generally more attractive.
Modellers will want to use the raster but many others will prefer poly-
gons.

5.1 Raster to polygon

Task 21 : Convert the raster image to a polygon map; each polygon
should be labelled with the code of the contiguous pixels that make up
the polygon. •

The raster package has a function rasterToPolygons for this; it de-
pends on yet another package, rgeos, to dissolve boundaries between
polygons with the same code.

Note: We time the complicated and slow raster-to-polygon operation
with the system.time function. The conversion requires somewhat less
than one minute on the author’s system.

> require(rgeos)
> system.time(hwsd.zhnj.poly <-
+ rasterToPolygons(hwsd.zhnj, n=4,
+ na.rm=TRUE, dissolve=TRUE))

user system elapsed
27.740 0.268 30.992

18

> class(hwsd.zhnj.poly)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

> str(hwsd.zhnj.poly@data)

'data.frame': 98 obs. of 1 variable:
$ hwsd: num 11328 11331 11341 11365 11367 ...

> spplot(hwsd.zhnj.poly, col.regions=terrain.colors(64),
+ main="HWSD soil map unit ID",
+ scales=list(draw = TRUE))

HWSD soil map unit ID

31°N

31.5°N

32°N

32.5°N

33°N

117.5°E 118°E 118.5°E 119°E 119.5°E

11300

11400

11500

11600

11700

11800

11900

There are only 98 map units (sets of polygons with the same code), as
opposed to 57600 raster cells, a very large savings in memory and pro-
cessing time.

Polygon maps with classes from the sp package are not projected in
the same way as raster maps; there is no re-sampling necessary, just a
re-projection of all the boundaries. This is accomplished by using the
spTransform function of the rgdal package. This requires a target Co-
ordinate Reference System (CRS), which is stored in the proj4string
“PROJ.4 format CRS specification string” in all sp objects. We defined
the appropriate UTM CRS (including elipsoid, datum and offset from the
WGS84 elipsoid) for the UTM version of the raster image in §2.1, so we
can extract the required CRS from the reprojected image.
> proj4string.utm50

[1] "+proj=utm +zone=50+datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0"

> hwsd.zhnj.poly.utm <- spTransform(hwsd.zhnj.poly, CRS(proj4string.utm50))

19

5.2 Polygon attribute maps

So far the polygons just have the soil map unit code.

Task 22 : Add the attribute database to the data frame, and display
soil-type and topsoil sand proportion maps. •

The matching of attributes to codes is the same as in §4. The attribute
name in the the polygon map is hwsd, this is then compared with at-
tribute MU_GLOBAL in the data table:
> m <- match(hwsd.zhnj.poly.utm$hwsd, records$MU_GLOBAL)
> str(m)

int [1:98] 42 46 50 76 79 80 11 12 43 44 ...

> hwsd.zhnj.poly.utm@data <- records[m,]

> spplot(hwsd.zhnj.poly.utm, zcol="SU_SYM90",
+ col.regions=topo.colors(length(levels(hwsd.zhnj.sp$SU_SYM90))),
+ main="HWSD FAO 1990 soil type code", scales=list(draw = TRUE))
> spplot(hwsd.zhnj.poly.utm, zcol="T_SAND",
+ col.regions=bpy.colors(64),
+ main="Toposil sand proportion, %", scales=list(draw = TRUE))

HWSD FAO 1990 soil type code

3450000

3500000

3550000

3600000

600000 650000 700000

ACp
ACu
ALf
ALp
ANh
AT
ATc
CMc
CMd
CMe
CMo
DS
FLc
FLe
GLe
GLk
GLm
LP
LPd
LPk
LVh
PLd
PLe
RGc
RGd
RGe
UR
VRe
WR

Toposil sand proportion, %

3450000

3500000

3550000

3600000

600000 650000 700000

10

20

30

40

50

60

70

80

90

Some areas have no information for the attribute; these are water bodies,
some urban areas, and other unsurveyed areas.

6 Map units with multiple components

By contrast to the Nanjing example used in the previous sections, in
Bhutan some map units have multiple components.

Task 23 : Create a table with the HWSD records for Bhutan, with at-

20

tributes, and display the HWSD ID, component ID, its share, and the FAO
1990 and 1974 classifications. •

This is exactly as was done for the Nanjing example:
> dbWriteTable(con, name="WINDOW_BHUTAN",
+ value=data.frame(smu_id=unique(bhutan.id)),
+ overwrite=TRUE)
> records.bhutan <-
+ dbGetQuery(con, "select T.* from HWSD_DATA as T

join WINDOW_BHUTAN as U on T.MU_GLOBAL=U.SMU_ID
order by SU_SYM90")

> dim(records.bhutan)

[1] 35 57

> unique(records.bhutan$MU_GLOBAL)

[1] 3651 3662 3717 3821 3849 6998 11839 11750 11710 11718
[11] 11719 11740 11930 11103 11727 11705 11730 11765 11724 11864
[21] 11879 11909 11052

> unique(records.bhutan$SHARE)

[1] 40 20 10 60 25 70 30 100

> records.bhutan[,c("ID","MU_GLOBAL","SHARE","SU_SYM90","SU_SYM74","T_SAND")]

ID MU_GLOBAL SHARE SU_SYM90 SU_SYM74 T_SAND
1 41792 3651 40 <NA> Ao 49
2 41793 3651 20 <NA> Ah 46
3 41794 3651 20 <NA> Pl 49
4 41795 3651 10 <NA> Bh 41
5 41796 3651 10 <NA> Dd 31
6 41830 3662 60 <NA> Bd 41
7 41831 3662 20 <NA> Nd 44
8 41832 3662 20 <NA> Rd 42
9 42048 3717 25 <NA> I 43
10 42049 3717 25 <NA> Bh 41
11 42050 3717 25 <NA> U 48
12 42051 3717 25 <NA> RK NA
13 42362 3821 60 <NA> Nd 22
14 42363 3821 20 <NA> Bd 41
15 42364 3821 20 <NA> Rd 42
16 42440 3849 70 <NA> Rd 82
17 42441 3849 30 <NA> Je 39
18 46656 6998 100 <NA> GG NA
19 12647 11839 100 ALh <NA> 40
20 12558 11750 100 CMc <NA> 36
21 12518 11710 100 CMi <NA> 31
22 12526 11718 100 CMi <NA> 31
23 12527 11719 100 CMi <NA> 31
24 12548 11740 100 CMi <NA> 31
25 12738 11930 100 GG <NA> NA
26 11911 11103 100 GRh <NA> 25
27 12535 11727 100 LPe <NA> 46
28 12513 11705 100 LPi <NA> 56
29 12538 11730 100 LPi <NA> 56
30 12573 11765 100 LPi <NA> 56
31 12532 11724 100 LPm <NA> 35
32 12672 11864 100 LVh <NA> 41
33 12687 11879 100 LVh <NA> 41
34 12717 11909 100 LVh <NA> 41
35 11860 11052 100 LVk <NA> 53

We can now see map units with multiple components. For example, map
unit 3717 (records 42048–42051) has four components, each with 25%
share; three have a reported topsoil sand concentration, but one (FAO

21

1974 symbol RK, “rock outcrop”) has none.

Note: This table also reveals different data sources: all the map units
with only one component, except 6998, also are named from FAO 1990;
these are from the portion of Bhutan claimed by China and so mapped
by the Chinese; all the maps units with more than one component are
named by FAO 1974 and are presumably from a reconaissance survey
within Bhutan.

Task 24 : Clean up the records by converting to factors as appropriate
and then removing empty fields; save the cleaned flat file in CSV and
Excel formats. •
> for (i in names(records.bhutan)[c(2:5,8:15,17:19,28,45)])
+ {
+ eval(parse(text=paste("records.bhutan$",i,
+ " <- as.factor(records.bhutan$",i,")", sep="")))
+ }
> ix <- which(names(records.bhutan)=="MU_SOURCE2")
> df <- records.bhutan
> for (i in 1:length(names(records.bhutan))) {
+ if (all(is.na(records.bhutan[,i]))) df <- df[-i]
+ }
> dim(records.bhutan); dim(df)

[1] 35 57
[1] 35 50

> records.bhutan <- df
> rm(df, ix, i)

> write.csv(records.bhutan, file="./HWSD_Bhutan.csv")
> write.xls(records.bhutan, file="./HWSD_Bhutan.xls")

Map units with more than one component create a problem for making
raster attribute maps; the approach of §4 must be modified because
more than one record (tuple) will match in the table join. There are
several solutions to this problem.

Using the match function will find the first match, i.e., the first-listed
component, so then all attributes from a simple join will be for the first
component only. For example, the topsoil sand content:
> hwsd.bhutan.sp <- as(hwsd.bhutan, "SpatialGridDataFrame")
> m <- match(hwsd.bhutan.sp@data$hwsd, records.bhutan$MU_GLOBAL)
> hwsd.bhutan.sp@data <- records.bhutan[m,]
> summary(hwsd.bhutan.sp@data$T_SAND)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
22.0 43.0 49.0 46.1 49.0 82.0 28645

Comparing this to the full list of map unit components, we can see that
only the first is listed, so for example the sand content is only for that
component.

A map shows the attribute of the first-listed component:
> spplot(hwsd.bhutan.sp, zcol="T_SAND", col.regions=bpy.colors(64),
+ main="Toposil sand proportion, %, dominant soil",
+ scales=list(draw = TRUE),
+ at=seq(0, 100, 5))

22

Toposil sand proportion, %, dominant soil

27°N

27.5°N

28°N

89°E 89.5°E 90°E 90.5°E 91°E 91.5°E 92°E
0

20

40

60

80

100

There are several choices for computing one value for the pixel:

1. Accept the default from match, that is, the value for the first-listed
component; since the records should be listed in descending or-
der of SHARE, this is the dominant value. Note however that this
ordering is not guaranteed.

2. Select a single value, either the highest, lowest, a quantile, or me-
dian, according to the application; for example, a map of ground-
water pollution risk might want to select the component with the
highest sand content;

3. Compute an average value weighted by proportion; this might be
selected for a “best” value for land surface modelling.

For some of these choices there is an SQL “aggregate” operator: MAX,
MIN, AVG. These all require an additional clause in the SQL statement,
introduced by the SQL GROUP BY statement, to first group the related
records and then apply the function. These functions can also take an
optional AS modifier, to re-name the resulting field.

For example, to average the sand contents:
> dbExecute(con,
+ "create table TMP as select T.* from HWSD_DATA as T

join WINDOW_BHUTAN as U on T.MU_GLOBAL=U.SMU_ID
order by SU_SYM90")

[1] 1

> avg.sand <- dbGetQuery(con,
+ "select MU_GLOBAL, SU_SYM90,

SU_SYM74, AVG(T_SAND) as T_SAND_AVG from TMP
group by MU_GLOBAL")

> dim(avg.sand)

23

[1] 23 4

> print(avg.sand)

MU_GLOBAL SU_SYM90 SU_SYM74 T_SAND_AVG
1 3651 <NA> Dd 43.20000
2 3662 <NA> Rd 42.33333
3 3717 <NA> RK 44.00000
4 3821 <NA> Rd 35.00000
5 3849 <NA> Je 60.50000
6 6998 <NA> GG NA
7 11052 LVk <NA> 53.00000
8 11103 GRh <NA> 25.00000
9 11705 LPi <NA> 56.00000
10 11710 CMi <NA> 31.00000
11 11718 CMi <NA> 31.00000
12 11719 CMi <NA> 31.00000
13 11724 LPm <NA> 35.00000
14 11727 LPe <NA> 46.00000
15 11730 LPi <NA> 56.00000
16 11740 CMi <NA> 31.00000
17 11750 CMc <NA> 36.00000
18 11765 LPi <NA> 56.00000
19 11839 ALh <NA> 40.00000
20 11864 LVh <NA> 41.00000
21 11879 LVh <NA> 41.00000
22 11909 LVh <NA> 41.00000
23 11930 GG <NA> NA

> dbRemoveTable(con, "TMP")

Compare this table with the table of map units; it only has 23 entries,
rather than 35, this because the map units with multiple components
have been merged. For example, map unit 3717 had four entries, now
only one; the topsoil sand contents (43,41,48,NA) have been averaged
to 44. This is not completely what we want: (1) although in this case the
component proportions are equal, that is not in general true; (2) one of
the components has no sand, so the average should also include this as
an implicit zero. To get the correct weighted average, we would need to
also extract the proportions and weight the sand contents.

One solution was provided to me by Ewen Gallic11. This is a nice illus-
tration of two packages by Hadley Wickham12, dplyr “dataframe pliers”
for manipulating data [9] and tidyr for tidying data [10].

The dplyr package introduced the pipelining operator %>%, which passes
the results from one dplyr function as the argument to another function
in a natural way, similar to the Unix “pipe” operator |. You can break
this long sequence of pipes down to a step-by-step operation if you are
curious how it works.

1. We use the first pipe to pass the records for Bhutan to the select
function, which extracts just the named columns. A detail here
is that we have to explicitly name the package using the :: pack-
age selection operator, because select is an overloaded function
name, defined in several of our loaded packages.

11 http://egallic.fr
12 http://hadley.nz/

24

http://egallic.fr
http://hadley.nz/

2. The column-reduced records are then passed to the gather func-
tion of the tidyr package. This function moves column names
into a key column, gathering the column values into a single value
column. In this case the T_SAND and T_CLAY values are put into a
single column which we name value, and a new column is created
to show which record of the new table corresponds to a sand or
clay value; we specify variable as this column’s name.

3. The next step is to use the mutate function to add a new variable
to this “long format” table; here the variable is named share_2
and is defined as either a 0 if the value in the new column is miss-
ing, otherwise the proportion of the component given by the SHARE
field.

4. The records are then grouped by the map unit code MU_GLOBAL,
using the group_by function. This does not change the table but
does define groups for following operations.

5. We again mutate the grouped table to convert the share_2 field
from a percentage to a proportion, using the sum operator on the
original value of that field. The same could have been done with
the command mutate(share_2) = share_2/100.

6. The next step is to compute each component’s contribution the
weighted average, again using mutate and a formula multiplying
the component’s value by its proportion; this is the new value of
the value field.

7. Then the components’ contributions are summed with the summarise
function; we have to specify how to summarize, and here it is the
sum function. The summarise function works with the groups de-
fined earlier by group_by, so the table is now reduced to one entry
per map unit and variable combination.

8. The ungroup function removes the grouping.

9. Finally, the two variables are separated back into their own value
columns with the spread function of the tidyr package; this is the
inverse operation of the gather function.

> library(dplyr)
> library(tidyr)
> bhutan.avg <- records.bhutan %>%
+ dplyr::select(MU_GLOBAL, SHARE, T_SAND, T_CLAY) %>%
+ gather(variable, value, -MU_GLOBAL, -SHARE) %>%
+ mutate(share_2 = ifelse(is.na(value), yes = 0, no = SHARE)) %>%
+ group_by(MU_GLOBAL, variable) %>%
+ mutate(share_2 = share_2 / sum(share_2)) %>%
+ mutate(value = value * share_2) %>%
+ summarise(value = sum(value, na.rm=TRUE)) %>%
+ ungroup() %>%
+ spread(variable, value)
> print(bhutan.avg)

A tibble: 23 x 3
MU_GLOBAL T_CLAY T_SAND

* <fctr> <dbl> <dbl>
1 3651 20.80000 45.8

25

2 3662 20.80000 41.8
3 3717 22.33333 44.0
4 3821 41.20000 29.8
5 3849 11.60000 69.1
6 6998 0.00000 0.0
7 11052 23.00000 53.0
8 11103 21.00000 25.0
9 11705 6.00000 56.0
10 11710 20.00000 31.0
... with 13 more rows

To map this we again match with the raster grid, but this time there is
only one match per map unit, with the average instead of the value from
the first-listed unit:
> hwsd.bhutan.sp <- as(hwsd.bhutan, "SpatialGridDataFrame")
> m <- match(hwsd.bhutan.sp@data$hwsd, bhutan.avg$MU_GLOBAL)
> # summary(m)
> hwsd.bhutan.sp@data <- bhutan.avg[m,]
> summary(hwsd.bhutan.sp@data$T_SAND)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 44.00 45.80 42.72 45.80 69.10 26394

> summary(hwsd.bhutan.sp@data$T_CLAY)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
0.00 20.80 20.80 20.58 22.33 41.20 26394

> spplot(hwsd.bhutan.sp, zcol="T_SAND", col.regions=bpy.colors(64),
+ main="Toposil sand proportion, %, weighted average",
+ scales=list(draw = TRUE),
+ at=seq(0, 100, 5))

Toposil sand proportion, %, weighted average

27°N

27.5°N

28°N

89°E 89.5°E 90°E 90.5°E 91°E 91.5°E 92°E
0

20

40

60

80

100

This shows clear differences with the previous map based only on the
dominant component.

26

7 Cleanup

Task 25 : Remove temporary tables and disconnect the database. •
> dbRemoveTable(con, "WINDOW_ZHNJ")
> dbRemoveTable(con, "WINDOW_BHUTAN")
> dbDisconnect(con)

27

A Extracting a window

Here is a script that can be used to extract any rectangular (longitude
and latitude) window from the HWSD, using the techniques presented
in this note. The R code extracted from this note includes this as a
code chunk. Files are written into a subdirectory under subdirectory
./window/; these are created if necessary.
R script to extract rectangular windows from the Harmonized World Soil Database
Author: D G Rossiter
Version: 09-Aug-2017

initialize
rm(list=ls())

function to find a UTM zone
long2UTM <- function(long) {

return(floor((long + 180)/6) + 1) %% 60
}

function to extract and format one rectangular window

arguments:

bbox: a `raster'-style extent argument, a vector of xmin, xmax, ymin, ymax

name: a suffix for the file names
(image, UTM image, csv, excel files, PDF of map unit codes)
names start with "HWSD_", in subdirectory "window\" and area name

the image `hwsd' and the SQLite database must
be already available in the environment
extract.one <- function(bbox, name="window")
{

print(paste("Area name: ", name, "; bounding box:
[",paste(bbox,collapse=", "),"]", sep=""))

extract the window
dir.create(paste("./window/",name,sep=""), showWarnings = FALSE,

recursive=TRUE)
setwd(paste("./window/",name,sep=""))
hwsd.win <- crop(hwsd, extent(bbox))

find the zone for the centre of the box
print(paste("Central meridian:", centre <- (bbox[1]+bbox[2])/2))
utm.zone <- long2UTM(centre)
print(paste("UTM zone:", utm.zone))

make a UTM version of the window
hwsd.win.utm <- projectRaster(hwsd.win,

crs=(paste("+proj=utm +zone=",utm.zone,
"+datum=WGS84 +units=m +no_defs +ellps=WGS84 +towgs84=0,0,0",
sep="")), method="ngb")

print(paste("Cell dimensions:",
paste((cell.dim <- res(hwsd.win.utm)),

collapse=", ")))
write the raster images to disk

eval(parse(text=paste("writeRaster(hwsd.win, file='./HWSD_", name,
"', format='EHdr', overwrite=TRUE)",sep="")))

eval(parse(text=paste("writeRaster(hwsd.win.utm, file='./HWSD_", name,
"_utm', format='EHdr', overwrite=TRUE)",sep="")))

extract attributes for just this window
dbWriteTable(con, name="WINDOW_TMP",

value=data.frame(smu_id=unique(hwsd.win)), overwrite=TRUE)
records <- dbGetQuery(con, "select T.* from HWSD_DATA as T

join WINDOW_TMP as U on T.mu_global=u.smu_id
order by su_sym90")

dbRemoveTable(con, "WINDOW_TMP")
convert to factors as appropriate

for (i in names(records)[c(2:5,8:15,17:19,28,45)]) {

28

eval(parse(text=paste("records$",i," <- as.factor(records$",i,")",
sep="")))

}
remove all-NA fields

fields.to.delete <- NULL
for (i in 1:length(names(records))) {

if (all(is.na(records[,i])))
{ fields.to.delete <- c(fields.to.delete, i) }

}
if (length(fields.to.delete > 1))

records <- records[,-fields.to.delete]
print(paste("Dimensions of attribute table: ",

paste(dim(records), collapse=", "),
" (records, fields with data)", sep=""))

write attribute table in CSV formats
eval(parse(text=paste("write.csv(records,

file='./HWSD_", name, ".csv')",sep="")))
make a spatial polygons dataframe,
add attributes

print(system.time(hwsd.win.poly <-
rasterToPolygons(hwsd.win, n=4, na.rm=TRUE, dissolve=TRUE)))

transform to UTM for correct geometry
hwsd.win.poly.utm <- spTransform(hwsd.win.poly,

CRS(proj4string(hwsd.win.utm)))
m <- match(hwsd.win.poly.utm$value,

records$MU_GLOBAL); hwsd.win.poly.utm@data <- records[m,]
plot the map unit ID

print(paste("Number of legend categories in the map:",
lvls <- length(levels(hwsd.win.poly.utm$MU_GLOBAL))))

eval(parse(text=paste("pdf(file='./HWSD_", name, "_SMU_CODE.pdf')",sep="")))
setwd("../..")

} # end extract.one

main program

read in HWSD raster database, assign CRS
require(sp)
require(raster)
hwsd <- raster("./HWSD_RASTER/hwsd.bil")
require(rgdal)
proj4string(hwsd) <-"+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

establish connection to attribute database
require(RSQLite)
m <- dbDriver("SQLite")
con <- dbConnect(m, dbname="HWSD.sqlite")

other packages to be used in the function
require(rgeos)

call the function for each window we want to extract
**** NOTE *** change the bounding box:
c(Long_WestEdge, Long_EastEdge, Lat_SouthEdge, Lat_NorthEdge)
and also the name of the tile, according to your area
this example is for the Southern Tier NY/Norther Tier PA (USA) counties
extract.one(c(-77, -75, 41, 43), "Twin_Tiers")

[1] "Area name: Twin_Tiers; bounding box:\n [-77, -75, 41, 43]"
[1] "Central meridian: -76"
[1] "UTM zone: 18"
[1] "Cell dimensions: 690, 925"
[1] "Dimensions of attribute table: 18, 48 (records, fields with data)"

user system elapsed
26.615 0.212 27.056
[1] "Number of legend categories in the map: 9"

clean up
dbDisconnect(con)

29

B Extracting a country

Here is a script that can be used to extract any rectangular window from
the HWSD, using the techniques presented in this note. The R code ex-
tracted from this note includes this as a code chunk. The country name
is as given in the CIA world database; this was explained in §2.2. Files are
written into a subdirectory ./country/<country name>; this is created
if necessary.
R script to extract a county from the Harmonized World Soil Database
Author: D G Rossiter
Version: 09-Aug-2017

initialize
rm(list=ls())

functions

function to extract and format one country

arguments:

name: a country name, to extract the appropriate bounding polygon(s)
this name must match the CIA database, see help(worldHires)
in the `mapdata' package
will also be used a suffix for the file names
(image, csv attributes)
names start with "HWSD_Country_",
in subdirectory "country\" and area name

the image `hwsd' and the SQLite database
must be already available in the environment
extract.one <- function(name="") {

print(paste("Country:", name))
dir.create(paste("./country/",name,sep=""), showWarnings = FALSE,

recursive=TRUE)
setwd(paste("./country/",name,sep=""))
tmp <- map('worldHires',name, fill=TRUE, plot=FALSE)
boundary <- map2SpatialPolygons(tmp, IDs=tmp$names,

proj4string=
CRS("+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"))

bbox <- bbox(boundary)
print(paste("Bounding box: [",paste(t(bbox),collapse=", "),"]", sep=""))

extract the window
hwsd.win <- crop(hwsd, extent(bbox))

overlay only works for sp objects
hwsd.win.sp <- as(hwsd.win, "SpatialGridDataFrame")
ix <- over(hwsd.win.sp, boundary)
hwsd.win.sp <- hwsd.win.sp[!is.na(ix),]
hwsd.win <- as(hwsd.win.sp, "RasterLayer") # convert back to raster

find the zone for the centre of the box
print(paste("Central meridian:", centre <- (bbox[1]+bbox[2])/2))

write unprojected raster window image
eval(parse(text=paste("writeRaster(hwsd.win, file='./HWSD_raster_", name, "',

format='EHdr', overwrite=TRUE)",sep="")))
extract attributes for this window

dbWriteTable(con, name="WINDOW_TMP", value=data.frame(smu_id=unique(hwsd.win)),
overwrite=TRUE)

records <- dbGetQuery(con, "select T.* from HWSD_DATA as T
join WINDOW_TMP as U on T.mu_global=u.smu_id
order by su_sym90")

dbRemoveTable(con, "WINDOW_TMP")
convert to factors as appropriate

for (i in names(records)[c(2:5,8:15,17:19,28,45)]) {
eval(parse(text=paste("records$",i," <- as.factor(records$",i,")",

sep="")))
}

30

include all fields
print(paste("Dimensions of attribute table: ",

paste(dim(records), collapse=", "), " (records, fields)",
sep=""))

write attribute table in CSV format
eval(parse(text=paste("write.csv(records, file='./HWSD_attributes_",

name, ".csv')",sep="")))
setwd("../..")

} # end extract.one

main program

read in HWSD raster database, assign CRS
require(sp)
require(raster)
hwsd <- raster("./HWSD_RASTER/hwsd.bil")
require(rgdal)
proj4string(hwsd) <-"+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

establish connection to attribute database
require(RSQLite)
m <- dbDriver("SQLite")
con <- dbConnect(m, dbname="HWSD.sqlite")

packages for country boundaries
require(maps)
require(mapdata)
require(maptools)

call the function for each window we want to extract
*** Note *** replace this with the official name of the country you want
this name must match the CIA database, see help(worldHires)
in the `mapdata' package
extract.one('Sri Lanka')

[1] "Country: Sri Lanka"
[1] "Bounding box: [79.6519622802734, 81.8916549682617, 5.91779470443726, 9.82834625244141]"
[1] "Central meridian: 42.7848784923553"
[1] "Dimensions of attribute table: 107, 57 (records, fields)"

clean up
dbDisconnect(con)

31

References

[1] Roger S. Bivand, Edzer J. Pebesma, and V. Gómez-Rubio. Applied
Spatial Data Analysis with R. Springer, 2008. ISBN 978-0-387-78170-
9. URL http://www.asdar-book.org/. 1

[2] Robert J. Hijmans and Jacob van Etten. raster: Geographic anal-
ysis and modeling with raster data, 2012. URL http://CRAN.
R-project.org/package=raster. R package version 2.0-12. 1

[3] IIASA; FAO; ISRIC; ISS-CAS; JRC. Harmonized World Soil Database
(version 1.2). FAO and IIASA, Feb 2012. URL http://webarchive.
iiasa.ac.at/Research/LUC/External-World-soil-database/
HWSD_Documentation.pdf. 1, 3, 11

[4] Timothy H. Keitt, Roger Bivand, Edzer Pebesma, and Barry Rowl-
ingson. rgdal: Bindings for the Geospatial Data Abstraction Li-
brary, 2012. URL http://CRAN.R-project.org/package=rgdal.
R package version 0.7-20. 1

[5] osgeo.org. PROJ.4. URL https://trac.osgeo.org/proj/. 3

[6] Edzer J. Pebesma and Roger S. Bivand. Classes and methods for
spatial data in R. R News, 5(2):9–13, 2005. 1

[7] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2012. URL http://www.R-project.org/. ISBN 3-900051-
07-0. 1

[8] R Development Core Team. R Data Import/Export. The R Founda-
tion for Statistical Computing, version 3.4.1 (2017-07-30) edition,
2017. URL http://cran.r-project.org/doc/manuals/R-data.
pdf. 10

[9] Hadley Wickham. The split-apply-combine strategy for data anal-
ysis. Journal of Statistical Software, 40(1):1–29, 2011. ISSN 1548-
7660. doi: 10.18637/jss.v040.i01. 24

[10] Hadley Wickham. Tidy data. Journal of Statistical Software, 59(10):
1–23, 2014. ISSN 1548-7660. doi: 10.18637/jss.v059.i10. 24

[11] Yihui Xie. knitr: Elegant, flexible and fast dynamic report generation
with R, 2017. URL http://yihui.name/knitr/. 2

32

http://www.asdar-book.org/
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HWSD_Documentation.pdf
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HWSD_Documentation.pdf
http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HWSD_Documentation.pdf
http://CRAN.R-project.org/package=rgdal
https://trac.osgeo.org/proj/
http://www.R-project.org/
http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf
http://yihui.name/knitr/

Index of R Concepts

:: operator, 24
%/% operator, 5
%>% operator, 24

all, 16

brewer.pal (RColorBrewer package), 5

click (raster package), 7
click argument (id function), 7
collapse argument (paste function), 12
crop (raster package), 4, 8

dataframes2xls package, 16
dbConnect (SQLite package), 10
dbDriver (SQLite package), 10
dbExecute (RSQLite package), 16
dbGetQuery (RSQLite package), 16
dbGetQuery (SQLite package), 10, 13, 21
DBI package, 10
dbListTables (SQLite package), 10
dbWriteTable (SQLite package), 13, 21
dplyr package, 24

eval, 15
extent (raster package), 3

fill argument (map function), 8

gather (tidyr package), 25
group_by (dplyr package), 25

is.na, 16

knitr package, 2

map (maps package), 8
map2SpatialPolygons (maptools package),

8
mapdata package, 8
maptools package, 8
match, 17, 20, 22, 23
mutate (dplyr package), 25

ncol (raster package), 3
nrow (raster package), 3

over (sp package), 8

parse, 15
paste, 12, 13, 15

paste argument (collapse function), 12
proj4string (rgdal package), 3
projection (raster package), 3
projectRaster (raster package), 5

raster (raster package), 2
raster package, 1–3, 17, 18
RasterLayer class, 8, 9
rasterToPolygons (raster package), 18
RColorBrewer package, 5
require, 3, 10
res (raster package), 3, 6
rgdal package, 1, 19
rgeos package, 18
RODBC package, 1
RSQLite package, 1, 10

scales argument (spplot function), 9
select (dplyr package), 24
sp package, 1–3, 8, 17, 19
SpatialGridDataFrame (sp class), 17
SpatialPixelsDataFrame (sp class), 8
SpatialPolygons (sp class), 7, 8
spplot (sp package), 9, 17
spread (tidyr package), 25
spTransform (rgdal package), 19
sum, 25
summarise (dplyr package), 25
system.time, 18

tidyr package, 24, 25

ungroup (dplyr package), 25
unique (raster package), 4

worldHires dataset, 8
write.csv, 16
write.xls (dataframes2xls package), 16

zcol argument (spplot function), 17

33

	1 Importing the HWSD into R
	2 Selecting a region
	2.1 Selecting by a bounding box
	2.2 Selecting by a bounding polygon

	3 Attribute database
	4 Raster attribute maps
	5 Polygon maps
	5.1 Raster to polygon
	5.2 Polygon attribute maps

	6 Map units with multiple components
	7 Cleanup
	A Extracting a window
	B Extracting a country
	References
	Index of R concepts

