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This note describes procedures to identify soil boundaries along a tran-
sect where soil samples have been taken at regular intervals. It is based
on the work of Webster [3–6] and used as an example in the text of Davis
[1, pp. 234-243].

Two partitioning methods are described by Webster [4]: Split moving-
window (SMW) (§2) and Maximum Level Variance (MLV) (§4). Only the
first is developed in this technical note.

Note: The code in this document was tested with R version 3.0.1 (2013-
05-16) and packages from that version or later running on Mac OS X
10.7.5. The text and graphical output you see here was written as a
NoWeb file, including both R code and regular LATEX source, and then run
through the excellent knitr package Version: 1.4.1 [7] on R to generate
a LATEX document that includes formatted R code input and the results
of running the code, both text results and graphs. Then the LATEX docu-
ment was compiled into the PDF version you are now reading. If you run
the R code from this document, your output may be slightly different on
different versions and on different platforms.

1 Example transect

We illustrate optimal partitioning with a transect of 42 stations spaced
at 25 m intervals in an undisturbed forest near Juruena, Mato Grosso in
the southern Amazon, collected by Steven Jirka of Cornell University as
part of the LBA1 project. Both field and laboratory measurements were
made; for illustrative purposes we use only the sand and clay content,
measured in g kg-1, of three layers. These are organized as an R data
frame with the rows being the stations and the columns the variables.
The sample dataset is provided as a comma-separated value file tr.csv
and is reproduced in Appendix §A.

Task 1 : Read the transect from the CSV file into R and display its
structure. •
> transect <- read.csv("tr.csv")
> str(transect)

'data.frame': 42 obs. of 6 variables:
$ sand.A: num 438 449 560 549 428 ...
$ clay.A: num 283 316 216 261 472 ...
$ sand.B: num 349 349 449 516 404 ...
$ clay.B: num 372 405 305 272 429 ...
$ sand.C: num 483 616 616 516 271 ...
$ clay.C: num 239 205 172 239 463 ...

Task 2 : Plot the six variables along the transect. •
> plot(transect$sand.A, type="l", ylim=c(0,900),
+ main="Particle-size fraction along transect",
+ xlab="station", ylab="g kg-1",
+ sub="black: A, blue: B, green: C; solid: sand, dashed: clay")
> lines(transect$sand.B, type="l", col="blue")

1 Large-scale Biosphere-Atmosphere Experiment in Amazonia, see http:
//earthobservatory.nasa.gov/Study/LBA/
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> lines(transect$sand.C, type="l", col="green")
> lines(transect$clay.A, type="l", col=1, lty=2)
> lines(transect$clay.B, type="l", col="blue", lty=2)
> lines(transect$clay.C, type="l", col="green", lty=2)
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It is evident that there is spatial autocorrelation, i.e., nearby stations are
likely to be similar. It also appears that the sequence can be broken up
into several more homogeneous sections. A clear difference is that the
beginning of the sequence has fairly equal sand and clay, whereas after
about station 15 there is much more sand than clay. However, there is a
break in this pattern near station 21, where again the clay increases.

It is also evident that there is much redundant information; this is be-
cause an increase in one particle-size fraction must be compensated by a
decrease in one of the others. Further, the sand and clay contents in the
three horizons at each station are similar. We can check the redundancy
and reduce the number of variables with principal components analysis
(PCA). Although all the variables are in the same units of measure, using
standardized components gives equal weight to all variables, regardless
of their ranges.

Task 3 : Compute the standardized principal components of the six
variables, and plot the scores of the first two PCs along the transect. •
> pc <- prcomp(transect, center=T, scale=T, retx=T)$x
> plot(pc[,1], type="l", col="blue",
+ main="PCs of particle-size fraction along transect",
+ xlab="station", ylab="PC score",
+ sub="solid: PC1, dashed: PC2",
+ ylim=c(-4.5, 4.5))
> lines(pc[,2], type="l", lty=2, col="blue")
> abline(h=0)
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The graph of the PCs shows that much more variance is captured by the
first PC than by the second, since the PC scores are much larger for PC1
than PC2. The first PC has many sharp peaks, but there is nonetheless a
clear trend from negative to positive scores moving along the transect.

For both the original variables and the PCs, the question is, where to
put boundaries; in particular, which algorithm will find the ones that we
believe correspond to real soil type differences?

2 Split moving-window

The split moving-window (SMW) approach computes the contrast be-
tween two halves of a window as it moves along the transect, and re-
ports this contrast. The higher the contrast, the more likely it is that
the station at which the window is split is a soil boundary. The contrast
is measured by the squared Mahalanobis distance between halves of the
window. This is defined as:

D2 = (xs − xd)TW−1(xs − xd) (1)

where xs is the average vector of the left half, xd is is the average vector
of the right half, and W is the pooled within-half variance-covariance ma-
trix, after correcting for the respective means. The squared differences
between the mean vectors of each window half are thus corrected in two
ways2:

1. Variables with lower pooled within-half residual variances are given
more weight;

2. Two variables with positively-correlated residuals are not “double-
counted”, that is, a difference with the same sign in both axes is
corrected downwards; by contrast, a difference with opposite sign
is emphasized (because it is unexpected).

2 See numeric example in Appendix D
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The variables are weighted by their discriminating power in the particu-
lar window; this changes as the window moves.

If W is replaced by the identity matrix I, this is equivalent to the squared
Euclidean distance:

E2 = (xs − xd)T I(xs − xd) (2)

where all axes are weighted equally and there is no correction for dis-
criminating power in the window, either for different residual variance
or for covariances.

Note: If the pooled within-half variance-covariance matrix W is singular,
it can not be inverted and thus the Mahalanobis distance is not defined;
however the Euclidean distance is zero, and it makes sense to also make
the Mahalanobis distance zero.

2.1 Functions for the SMW method

I have written three R functions to implement the SMW method; they are
contained in file smw.R and loaded with the source function. The source
code is also shown in Appendix §B.
> source("smw.R")
> ls(pattern = "smw.*")

[1] "smw.dw" "smw.graph" "smw.pc"

These must be called in the following order:

1. smw.pc : (optional) extract PCs;

2. smw.dw : SMW analysis of PCs or original variables;

3. smw.graph : visualise results of SMW. analysis

2.2 Options for the SMW method

The analyst must make several important choices that have a large effect
on the presumed boundaries:

1. Whether to use the original variables or some number of their stan-
dardized principal components;

2. Whether to use Euclidean or Mahalanobis distances;

3. How wide a window to use;

4. Window parity, i.e., whether to use an odd or even window;

5. Whether to use a “mullion”, i.e., leave out some stations near the
middle of the window to allow for a more diffuse boundary;

6. What distance in feature space (as a proportion of the maximum
in the whole transect) probably signals a boundary, and should be
reported?
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2.2.1 Standardized principal components

Function smw.pc computes the standardized principal components from
the correlation matrix3 and replaces the original variables with one or
more synthetic variables that are uncorrelated and arranged in descend-
ing order of the amount of variance of the original data that they explain.
This corrects for different measurement scales, and also for correlation
between variables (redundancy). The default is to extract two compo-
nents; this can be over-ridden with the n.pc named argument.
> pc <- smw.pc(transect)

[1] "PCA: selected components explain 0.923 of the variance"
[1] "Loadings for the first 2 components:"

PC1 PC2
sand.A 0.4061 0.47370
clay.A -0.3968 -0.62764
sand.B 0.4133 -0.25254
clay.B -0.4149 0.02935
sand.C 0.4095 -0.36782
clay.C -0.4087 0.42631

> str(pc)

'data.frame': 42 obs. of 2 variables:
$ PC1: num -2.019 -1.757 -0.401 -0.782 -4.039 ...
$ PC2: num -0.13327 -0.68999 -0.08597 -0.00673 0.03252 ...

Here we see that the two PCs explain most of the variance.

The PCs can be interpreted by examining the loadings. These reveal
which soil variables on this transect are combined into each component.
Interpretation in this case is easy. The first component is associated with
high sand (positive loading) and low clay (negative loading), i.e. with
coarser textures, throughout the profile; the second component is asso-
ciated with higher sand in the topsoil than subsoil, and the reverse for
clay. In other words, the first component is the overall texture and the
second is textural contrast.

The structure returned by smw.pc is a data frame with the principal com-
ponent scores for each station on the transect; these replace the original
variables.

2.2.2 Original variables

Distances can be computed in the multivariate space of the original vari-
ables, rather than in the space of their PCs. To compute the Euclidean
distances between original variables, these must be scaled: corrected in-
dividually to zero mean and unit variance; computation of Mahalanobis
distances implicitly scales them. A data frame can be scaled with the
scale function; the result must be converted back into a data frame:
> tr.scale <- data.frame(scale(transect))
> str(tr.scale)

'data.frame': 42 obs. of 6 variables:
$ sand.A: num -0.96 -0.882 -0.104 -0.181 -1.031 ...

3 rather than the variance-covariance matrix
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$ clay.A: num 0.5823 0.8658 0.0153 0.3933 2.1888 ...
$ sand.B: num -1.341 -1.341 -0.722 -0.309 -1.002 ...
$ clay.B: num 1.228 1.496 0.692 0.424 1.689 ...
$ sand.C: num -0.616 0.214 0.214 -0.409 -1.936 ...
$ clay.C: num 0.2005 -0.0768 -0.3542 0.2005 2.0642 ...

Note all the variables have zero mean and unit variance, and the covari-
ance matrix is a correlation matrix:
> round(apply(tr.scale, 2, mean), 4)

sand.A clay.A sand.B clay.B sand.C clay.C
0 0 0 0 0 0

> var(tr.scale)

sand.A clay.A sand.B clay.B sand.C clay.C
sand.A 1.0000 -0.9016 0.8317 -0.8175 0.8237 -0.7670
clay.A -0.9016 1.0000 -0.7596 0.8417 -0.7541 0.7697
sand.B 0.8317 -0.7596 1.0000 -0.9064 0.8661 -0.8600
clay.B -0.8175 0.8417 -0.9064 1.0000 -0.8221 0.8581
sand.C 0.8237 -0.7541 0.8661 -0.8221 1.0000 -0.9129
clay.C -0.7670 0.7697 -0.8600 0.8581 -0.9129 1.0000

2.2.3 Window width

The narrower the window, the narrower the soil unit that can be distin-
guished, but the more likely are spurious boundaries (and more likely
that the system will be computationally singular). Webster [4] recom-
mends 2/3 of the expected distance between boundaries, in this case the
expected width of a soil unit across the transect.

This can be estimated by auto-correlation of one or more variables, usu-
ally the first PC. By default, the acf (“Auto- and Cross-Covariance and
-Correlation Function Estimation”) function of the default stats pack-
age displays a graph of autocorrelation by lag; the results can also be
printed on the console:
> acf(pc[, 1], main = "Serial auto-correlation, PC1")
> print(acf(pc[, 1], plot = FALSE))

Autocorrelations of series 'pc[, 1]', by lag

0 1 2 3 4 5 6 7 8 9
1.000 0.687 0.637 0.531 0.422 0.440 0.310 0.318 0.300 0.331

10 11 12 13 14 15 16
0.182 0.171 0.027 -0.039 -0.055 -0.200 -0.131
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The auto-correlation decreases to zero near lag 12, suggesting that there
are about three boundaries in this 42-station transect; the suggested win-
dow size is then 8.

If the named argument wid is not supplied to smw.dw by the user, it is
computed as a quarter of the total length of the transect.

2.2.4 Window parity

If the window width n is even, the transect is split at station l + n/2,
where l is the left-most station of the window, and any inferred boundary
is there; i.e., neither half of the window uses the data from that station.
For example, with window width 8, the first window (at the beginning
of the transect) is from station 1 . . .9, the middle of which is station5.
The left half of the split window includes stations 1 . . .4 and the right
half 6 . . .9; station 5 is the potential boundary. If the window width n
is odd, the transect is split half-way between stations l + (n − 1)/2 and
l+ (n+ 1)/2. For example,with window width 7, the first window (at the
beginning of the transect) is from station 1 . . .8. The left half of the split
window includes stations 1 . . .4 and the right half 5 . . .8; the potential
boundary is between stations 4 and 5. This is reported as station 4 but
is actually located at position 4.5.

2.2.5 Mullion

Especially for wide windows, we may accept a more diffuse boundary; in
fact, the ‘boundary’ we are looking for could be identified as a separate
soil unit if a narrower window were used. In this case we may increase
the discriminating power of the method by leaving out some observa-
tions on either side of the potential boundary; this is the so-called “mul-
lion”. In this implementation of SMW the user-specified mullion (if any)
applies to both halves of the window, i.e., it is the number of stations
to omit. The default for the mull named argument to smw.dw is 0; note
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that the middle station is omitted from an even transect in any case. It
doesn’t make sense for the mullion to be more than 1/4 of the window
half width, and the program checks for this. In the present example, with
a suggested window width of 8, the mullion can be 0 or 1.

2.2.6 What Mahanalobis distance to report?

The smw.dw function returns the distances for each possible boundary;
however in its printed summary it only reports those above a certain
threshold, which is a proportion of the maximum feature-space distance
found in the transect. By default this is 0.25; to see more boundaries set
to a lower value with the p.mmd named argument, e.g., p.mmd=0.1. This
does not affect the calculation, only the printed output.

2.3 Analyzing the example transect

The core of the SMW analysis is performed by the smw.dw function. This
has as its first argument the data frame representing the transect (prob-
ably transformed to PCs) and optional arguments for the window width,
mullion, and boundary sensitivity.

2.3.1 Using PCs

The SMW method is often applied to the first few PCs, since these hold
most of the information about the soil properties in compressed form.
However, they are not guaranteed to be the most discriminating.

Task 4 : Analyze the transect using the first two standardized PCs and
a window width of 8. •
> d <- smw.dw(pc, wid = 8)

[1] "Window: 8 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 15 25.489
2 14 24.923
3 7 16.218
4 25 15.564
5 6 7.978
6 24 7.788
7 16 7.528
8 26 6.774
9 38 6.584

There are three main suggested boundaries: at stations 15, 7 and 25;
these are somewhat diffuse, because the alternative adjacent stations
(14 or 16), 6 and (24 or 26) are also identified. A less likely boundary is
found towards the right of the transect at station 38.

Task 5 : Analyze the transect using the first two standardized PCs and
a window width of 7, i.e., an odd window size one unit smaller. •
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Using the next smaller odd window width raises the absolute distances
and sharpens the same three boundaries, here found at positions 6.5,
14.5, and 24.5 (rather than at stations 7, 15 and 25 with window width
8). Station 38 is not found at this reporting threshold.

Task 6 : Analyze the transect using the first two standardized PCs and
a window width of 10, i.e., slightly wider. •
> d <- smw.dw(pc, wid = 10)

[1] "Window: 10 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 15 28.024
2 14 14.356
3 24 10.196
4 25 8.823
5 16 8.262
6 18 7.805
7 26 7.409

Widening the window misses the boundaries near stations 7 and 38 (be-
cause they are closer than the half-width to the ends) but otherwise
agrees with the previous results.

Task 7 : Analyze the transect using the first two standardized PCs, a
window width of 10, and a one-unit mullion. •
> d <- smw.dw(pc, wid = 10, mull = 1)

[1] "Window: 10 stations; mullion: 1"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 16 31.319
2 15 22.126
3 26 17.774
4 17 17.677
5 14 15.682
6 13 11.422
7 24 9.506
8 25 8.639

Adding a mullion to this wider window finds the same boundary many
times, suggesting that the sharper analysis without a mullion was more
appropriate.

Using a narrow window changes the picture radically.

Task 8 : Analyze the transect using the first two standardized PCs and
a window width of 6, i.e., narrower. •
> d <- smw.dw(pc, wid = 6)

[1] "Window: 6 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 6 476.4
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The narrow window finds a very sharp contrast at station 6 which over-
whelms all the others. The boundary near the right of the transect (39)
is now prominent rather than secondary. Stations 25 and 14 (and their
neighbours) are also found. As the window gets smaller, the results tend
to be more erratic and indeed the system may be computationally singu-
lar at some window positions.

Task 9 : Analyze the transect using only the first standardized PCs and
the recommended window width of 8. •
> d <- smw.dw(as.data.frame(pc$PC1), wid = 8)

[1] "Window: 8 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 14 20.699
2 15 10.972
3 25 9.403
4 24 5.239

With this suggested window width (8), using only one PC lowers the ab-
solute distances a bit, and finds the boundaries at station 14 (shifted
from 15 as suggested with two PCs) and 25, but misses the boundary
near station 7. This latter boundary must therefore be associated with
changes in PC2 (textural contrast) rather than PC1 (overall texture).

Task 10 : Analyze the transect using only the second standardized PCs
and the recommended window width of 8. •
> d <- smw.dw(as.data.frame(pc$PC2), wid = 8)

[1] "Window: 8 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary at station"
station D2

1 25 8.841
2 7 7.066
3 6 6.570
4 18 5.269
5 17 4.818
6 24 4.575
7 26 3.976
8 23 3.256
9 19 2.329

And indeed, looking for boundaries with PC2 only we see station 25 (with
23, 24, and 26) but then station 7 (with 6); a new boundary is suggested
at station 18 (with 17 and 19) which may also be associated with textural
contrast.

Notes on use of the Mahalonobis distance with principal components
The Mahalonobis distance uses the covariance matrix of the pooled ob-
servations (corrected for their means) in both halves. This would be
diag(n.pc) if there were only one window (since there is by definition
no correlation between PCs), with the variances on the diagonal pro-
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portional to the eigenvalues within the selected set. The PCs would be
weighted according to their importance. However, for each pooled win-
dow this will be somewhat different; the off-diagonals will usually not
be zero (there may be correlation between the PCs for just these obser-
vations) and the proportions will be different from that for the whole
transect.

2.3.2 Using original variables

The SMW method can also be applied to original variables, either un-
scaled or scaled. A disadvantage is that more variables are needed to
capture the same information as the PCs, so that wider windows are
usually needed to avoid ill-conditioned covariance matrices at some win-
dow positions. For Mahalanobis distances, unscaled and scaled variables
give the same

Task 11 : Analyze the transect using the original variables, and with
the first two PCs, both using a window size 9. •

Note: Using all six PCs would give exactly the same result as original
variables, since the information content is the same.

> d <- smw.dw(transect, wid = 9)

[1] "Window: 9 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary to the right of station"
station D2

1 6 298.92
2 24 208.50
3 25 160.12
4 9 113.35
5 35 108.06
6 14 105.03
7 28 101.51
8 17 77.56

> d <- smw.dw(pc, wid = 9)

[1] "Window: 9 stations; mullion: 0"
[1] "Distances up to 0.25 of the maximum"
[1] "Boundary to the right of station"
station D2

1 14 22.953
2 15 9.811
3 24 8.318
4 17 7.571
5 25 7.160

Both methods suggest a boundary near stations 24 and 25, but using the
original variables suggests boundaries near stations 6, 9 and 35 as well,
whereas using the first two PCs suggests a boundary near station 14; this
is also found with the original variables but with lower priority.
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2.4 Visualizing the boundaries

The results returned by smw.dw can be visualized with the smw.graph
function.

Task 12 : Display the boundaries for the analysis using two PCs and a
window size of 9, as computed just above. •
> smw.graph(d)
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We can compare various approaches visually by writing a small script
and putting the graphs in one frame; this repeats the examples of §2.3
with a few more variations. The following code can be entered at the R
command line but is more easily placed in a file and loaded with source.

The results are quite variable: most approaches find the boundary near
positions 14–16 but some miss this entirely; again the boundary near po-
sition 24–26 is often found as the second-most important but not always.
The extreme case is given by window width 6, two PCs, which only finds
a boundary at position 6; using a window width 7 with these two PCs still
has this as the most important but does find positions 14 and 24. This
example shows the importance of (1) selecting relevant variables whose
transition across the transect should be used to defined boundaries; (2)
deciding whether to combine these as standardized PCs or use original
variables; (3) selecting a window width (and eventually a mullion) which
corresponds to the width of the boundary in nature.
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> par(mfrow=c(4,3))
> d <- smw.dw(pc, wid=8); smw.graph(d, text="window:8; PCs: 2")
> d <- smw.dw(as.data.frame(pc$PC1), wid=8); smw.graph(d, text="window:8; PC 1 only")
> d <- smw.dw(as.data.frame(pc$PC2), wid=8); smw.graph(d, text="window:8; PC 2 only")
> d <- smw.dw(pc, wid=9); smw.graph(d, text="window:9; PCs: 2")
> d <- smw.dw(pc, wid=10); smw.graph(d, text="window:10; PCs: 2")
> d <- smw.dw(pc, wid=10, mull=1); smw.graph(d, text="window:10; mullion:1; PCs: 2")
> d <- smw.dw(pc, wid=6); smw.graph(d, text="window:6; PCs: 2")
> d <- smw.dw(pc, wid=7); smw.graph(d, text="window:7; PCs: 2")
> d <- smw.dw(pc, wid=11); smw.graph(d, text="window:11; PCs: 2")
> d <- smw.dw(pc, wid=9, ident=T); smw.graph(d, text="window:9; PCs: 2; Euclidean")
> d <- smw.dw(transect, wid=9); smw.graph(d, text="window:9; Original vars: 6")
> d <- smw.dw(transect, wid=9, ident=T); smw.graph(d, text="window:9; Original vars: 6; Euclidean")
> par(mfrow=c(1,1))
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3 When SMW fails to find a solution

The core of the SMW algorithm is the between-halves distance calcula-
tion; this is always possible using Euclidean distance (i.e., a diagonal
variance-covariance matrix as in Equation 2) but if using Mahalanobis
distance (as in Equation 1) with non-zero off-diagonals, the matrix may
be singular. In that case the smw.dw function will report something like:

"Position 3: Singular pooled covariance matrix; not a boundary"

This implies a non-stable analytical context. Among the causes are:

• the window is too narrow, so the two halves are in fact quite simi-
lar; after subtracting the respective window half means, the pooled
covariance matrix may have diagonal elements close to zero;

• the chosen variables do not in fact differ much at the window width;
i.e., the variables are not discriminating. This is quite likely for
higher PCs, which can be pure noise (explaining none of the true
variability. The solution here is to only use the first few PCs (the
ones contributing most to the variance); if using original variables
use only those that show clear boundaries, not those that seem to
fluctuate randomly.

Both of these situations can be anticipated by examining the structure of
the local spatial correlation with acf. We have already seen how to use
it to set an appropriate window width. If the autocorrelation is already
low at short lags this is evidence that the variable has no structure, and
any boundaries that the SMW algorithms may find are an artefact and do
not represent real boundaries.

Task 13 : Compute and display the autocorrelation of a uniform ran-
dom variable along a transect of length 42. •

The runif function returns a vector of uniformly-distributed random
numbers on [0 . . .1].

Note: We use set.seed so your results will be identical to these notes;
in practice you would not use this.

> set.seed(321)
> acf(runif(42), main = "Autocorrelation of a uniform random variable")
> acf(runif(42), plot = FALSE)

Autocorrelations of series 'runif(42)', by lag

0 1 2 3 4 5 6 7 8 9
1.000 0.064 -0.169 -0.001 0.098 -0.179 -0.242 0.144 0.127 0.097

10 11 12 13 14 15 16
-0.036 0.122 0.111 -0.197 -0.292 0.000 0.040
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Note that even at the first lag the autcorrelation is almost zero and well
within the confidence limits around 0 (shown by the dashed blue lines).

Task 14 : Build a dataframe with two uniformly-random variables and
plot these along the transect. •
> tr <- data.frame(x=runif(42), y=runif(42))
> tr.pc <- smw.pc(tr)

[1] "PCA: selected components explain 1 of the variance"
[1] "Loadings for the first 2 components:"

PC1 PC2
x -0.7071 0.7071
y 0.7071 0.7071

> plot(tr.pc$PC1, type="b",
+ main="",
+ xlab="station", ylab="",
+ sub="black: PC1, blue: PC2")
> lines(tr.pc$PC2, type="b", col="blue")
> abline(h=0, lty=2)
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There is evidently no structure. However, maybe the automatic proce-
dure will find structure which arose purely by chance.

Task 15 : Attempt to find its boundaries. •
> d <- smw.dw(tr.pc, wid = 8)
> smw.graph(d)
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This illustrates the danger of relying on automatic procedures.

4 Maximum Level Variance

The Maximum Level Variance (MLV) approach [4], based on the work
of Hawkins and Merriam [2], considers the whole transect together and
looks for the best way to divide it into a user-specified number of seg-
ments, so that the pooled within-segment variance is as small as pos-
sible. The advantage of MLV is that it can not be “tuned” with window
width and mullion; only one classification can be found. In addition, it
will find diffuse boundaries if they otherwise separate very contrasting
zones, whereas SMW must be given a wide enough window and possibly a
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mullion to find these. MLV can work on either Euclidean or Mahalanobis
distances, and the classification can be stopped at any number of groups;
that is, the user can specify the number of expected boundaries.

I have not yet implemented this; the mathematics are presented in the
appendix to Webster [4].
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A Example transect

"sand.A","clay.A","sand.B","clay.B","sand.C","clay.C"
438.24,283.1,349.36,371.99,482.69,238.66
449.36,316.43,349.36,405.32,616.02,205.33
560.46,216.44,449.36,305.32,616.02,171.99
549.35,260.88,516.02,271.99,516.02,238.66
428.02,471.98,404.02,429.32,270.7,462.65
498.69,315.54,482.69,405.32,382.69,371.99
427.13,371.99,482.69,371.99,616.02,305.32
460.47,338.65,549.35,238.66,582.68,238.66
449.36,316.43,549.35,238.66,582.68,238.66
271.58,483.09,349.36,405.32,282.7,438.65
282.7,416.43,249.36,371.99,282.7,405.32
360.47,360.87,249.36,371.99,282.7,405.32
404.91,338.65,582.68,338.65,449.36,238.66
337.36,395.98,337.36,395.98,404.02,362.65
616.02,260.88,649.35,205.33,616.02,205.33
671.57,205.33,482.69,205.33,682.68,305.32
585.35,211.99,749.34,105.33,716.01,138.66
749.34,116.44,716.01,138.66,616.02,238.66
593.79,216.44,416.02,305.32,416.02,271.99
685.35,145.33,585.35,278.66,685.35,145.33
385.36,211.99,252.03,345.32,285.36,445.32
552.02,178.66,485.35,211.99,385.36,345.32
618.68,78.66,552.02,245.32,518.69,278.66
637.35,229.32,461.35,271.99,570.68,229.32
785.34,78.66,752.01,112,785.34,178.66
552.02,145.33,685.35,112,685.35,112
685.35,112,685.35,78.66,685.35,112
552.02,211.99,718.68,45.33,718.68,45.33
718.68,112,718.68,78.66,718.68,78.66
752.01,78.66,718.68,78.66,718.68,78.66
785.34,45.33,852.01,12,852.01,12
618.68,145.33,652.01,112,585.35,145.33
652.01,112,718.68,112,718.68,112
785.34,45.33,818.67,12,818.67,12
585.35,112,618.68,112,618.68,112
764.01,102.66,764.01,102.66,852.01,81.33
752.01,78.66,685.35,112,685.35,112
752.01,78.66,718.68,112,718.68,112
685.35,145.33,685.35,112,685.35,112
585.35,245.32,618.68,178.66,585.35,178.66
552.02,245.32,518.69,278.66,518.69,278.66
585.35,178.66,585.35,211.99,618.68,211.99
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B Split moving-window functions
> source("smw.R")
> ls(pattern = "smw.*")

[1] "smw.dw" "smw.graph" "smw.pc"

B.1 PCA

> print(smw.pc)

function(transect, n.pc=2)
{

# can't ask for more PCs than variables
n.pc <- min(n.pc, length(transect[1,]))

# standardized PCs with scores
pc <- prcomp(transect, center=T, scale=T, retx=T)

# frame to return, with named synthetic variables
pcs <- as.data.frame(pc$x[,1:n.pc])

# print some diagnostics
print(paste("PCA: selected component",

ifelse(n.pc==1,"","s"),
" explain",
ifelse(n.pc==1,"s "," "),
round(sum((pc$sdev^2/(sum(pc$sdev^2)))[1:n.pc]),3),
" of the variance", sep=""))

print(paste("Loadings for the first",
ifelse(n.pc==1,"",paste("",n.pc))," component",
ifelse(n.pc==1,"","s"),":", sep=""))

print(pc$rotation[,1:n.pc])
# return frame of synthetic variables (PC scores)

return(pcs)
}

B.2 Find boundaries

> print(smw.dw)

function(tsect, wid=floor(length(tsect[,1])/4), mull=0, p.mmd=.25,
ident=FALSE)

{
# silently correct unreasonable arguments

mull=floor(mull); wid=floor(wid)
p.mmd <- min(1, p.mmd); p.mmd <- max(0.05, p.mmd)

# check if arguments make sense
if (mull < 0) {
print("Error: mullion must be positive");
return(NULL) }

if (mull > (wid/8)) {
print("Error: mullion must be less than 1/4 of the half-window width");
return(NULL) }

# length of sequence
len <- dim(tsect)[1]
if ((wid < 0) || (wid > floor(len/2))) {
print(paste(

"Error: width must be positive and less than 1/2 of transect length:",
len));

return(NULL) }
# number of variables

nvar <- dim(tsect)[2]
# offset from left to possible boundary;
# for odd widths, this is the station to its left

b.offset <- floor(wid/2)
# half width of interval, maybe mullioned
# remove one (common) point for even widths

hwid <- b.offset - (!(wid%%2)) - mull
# collect d's with their centre
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# both ends will be 0 (not wide enough for a window)
d <- vector(mode="numeric", length=len)

# move left boundary of window along transect
for (l in 1:(len-wid)) {

# right boundary of window
r <- l + wid

# option: Mahalanobis distance
# extract halves

win.l <- tsect[l:(l+hwid),]; win.r <- tsect[(r-hwid):r,]
# compute column-wise means, or one mean for a vector

if (is.null(dim(win.l))) {
win.l.mean <- mean(win.l); win.r.mean <- mean(win.r)

}
else {

win.l.mean <- apply(win.l, 2, mean)
win.r.mean <- apply(win.r, 2, mean)

}
if (ident==F) {

# pool halves after subtracting means
pool <- (rbind(t(t(win.l) - win.l.mean), t(t(win.r) - win.r.mean)))

# store D^2 by boundary location
tmp <- try(d[l + b.offset] <-

mahalanobis(win.l.mean, win.r.mean, cov(pool)),
silent=TRUE)

if (class(tmp) == "try-error") {
d[l + b.offset] <- 0
print(paste("Position ", l+hwid,

": Singular pooled covariance matrix; not a boundary",
sep=""))

}
}

# option: Euclidean distance
else

d[l + b.offset] <- mahalanobis(win.l.mean, win.r.mean, diag(nvar))
}

# sort in decreasing order of probable boundary
ds <- sort(d, index=T, decreasing=T)
ds <- data.frame(station=ds$ix[ds$x>0], D2=ds$x[ds$x>0])
print(paste("Window:",wid,"stations; mullion: ",mull))
print(paste("Distances up to", p.mmd, "of the maximum"))
print(paste("Boundary",ifelse(!(wid%%2),"at","to the right of"),"station"))
print(ds[ds$D2 >= (ds$D2[1]*p.mmd),])
return(data.frame(station=seq(1:length(d)), D2=d))

}

Notes on this code

1. The expression if (is.null(dim(win.l))) tests whether the win-
dow half is a two-dimensional array (in which case the expression
is FALSE) or a one-dimensional vector. Vectors do not have dimen-
sion attributes. The mean function can only be applied directly to a
vector; for a multi-dimensional array the mean of each dimension
must be found by using the apply function to compute the mean
across the second dimension (i.e., column-wise) of the array.

2. The window half vector or array is transposed with the t function
to make it conformable with the window half mean; then the dif-
ference between these is again transposed to row-wise, in the form
expected by cov.

3. The try function surrounds code which may cause an error and
which the programmer wants to handle. In this case it traps er-
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rors caused by the attempt to invert a singular pooled within-half
covariance matrix with mahalanobis. If there is such an error, as
detected by the class function, the code sets the between-half dis-
tance to zero; see explanation at Equation 2. In addition a warning
message is printed, explaining what happened.

B.3 Plot the transect

> print(smw.graph)

function (ds, p.mmd=.25, text="", vcol="blue", ymax=NULL) {
# sanity check on proportion of maximum to call a boundary

p.mmd <- min(1, p.mmd); p.mmd <- max(0.05, p.mmd)
if (dev.cur() >1) {

# the transect
ylim <- (if (is.null(ymax)) NULL else c(0, ymax))
plot(ds, xlab="station", ylab="squared distance between halves",

type="l", main="Boundaries?", sub=text, ylim = ylim)
abline(h=0, lty=2)

# main boundaries -- compare to imposed maximum if any
# otherwise within-transect maximum

d.sig <- ds[ds$D2 > ifelse(is.null(ymax), max(ds$D2), ymax)*p.mmd,]
for (i in 1:length(d.sig$D2)) {
s <- d.sig$station[i]; d2 <- d.sig$D2[i]
lines(c(s, s), c(0, d2), col=vcol)
text(s, d2, s, pos=4, col=vcol)

}
}

}
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C Insight into Mahalanobis distance

This appendix is to give a feeling for the Mahalanobis distance, as op-
posed to Euclidean distance, and how it is affected by the variance-
covariance structure of a window.

We compare two windows from a scaled and centred matrix, computed
from the trees example dataset provided in the default datasets pack-
age.

Note: This dataset provides measurements of the girth (diameter at
breast height), height and volume of timber in 31 felled black cherry trees;
see ?trees. It is sorted in order of girth, so forms a sequence.

We consider the distance between the windows in bivariate space formed
by the girth and height.

Task 16 : Load the data, scale and centre it, compute the covariance for
two of variables, and then extract two sequences of four observations:
(1) trees 1 . . .4 and (2) trees 5 . . .8 as window halves. •
> data(trees)
> test <- as.data.frame(scale(trees))
> var(test[, 1:2])

Girth Height
Girth 1.0000 0.5193
Height 0.5193 1.0000

> (left <- test[1:4, 1:2])

Girth Height
1 -1.5769 -0.9416
2 -1.4813 -1.7264
3 -1.4175 -2.0402
4 -0.8758 -0.6278

> (right <- test[5:8, 1:2])

Girth Height
5 -0.8121 0.7847
6 -0.7802 1.0986
7 -0.7165 -1.5694
8 -0.7165 -0.1569

> l.mean <- apply(left, 2, mean)
> r.mean <- apply(right, 2, mean)
> l.mean - r.mean

Girth Height
-0.5816 -1.3732

Over the whole sequence, the variables both have unit variance (because
of scaling) and moderate positive correlation (r = 0.52). There seems to
be a good contrast between the windows because of the varying heights.

The Euclidean distance is simply the RMS of the difference; this can also
be computed by the mahalanobis function, using an identity matrix I in
place of the variance-covariance matrix W:
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> sqrt(sum((l.mean - r.mean)^2))

[1] 1.491

> sqrt(mahalanobis(l.mean, r.mean, diag(2)))

[1] 1.491

Euclidean distance does not weight the variables by their discriminating
power. In this case we see that the height shows more difference between
the two sequences than does the girth. For this we use the pooled within-
half variance-covariance matrix W, which takes into account the variance
of each variable (lower is more discriminating) and their covariance.

Task 17 : Compute the pooled within-half variance-covariance matrix
W. •
> # note the transposition to compute column means
> (left.resid <- t(left) - l.mean)

1 2 3 4
Girth -0.2390 -0.1434 -0.07967 0.4621
Height 0.3924 -0.3924 -0.70624 0.7062

> (right.resid <- t(right) - r.mean)

5 6 7 8
Girth -0.05577 -0.0239 0.03983 0.03983
Height 0.74547 1.0594 -1.60865 -0.19618

> (resid <- (rbind(t(left.resid), t(right.resid))))

Girth Height
1 -0.23900 0.3924
2 -0.14340 -0.3924
3 -0.07967 -0.7062
4 0.46206 0.7062
5 -0.05577 0.7455
6 -0.02390 1.0594
7 0.03983 -1.6086
8 0.03983 -0.1962

> apply(resid, 2, sd)

Girth Height
0.2085 0.8952

> (W <- cov(resid))

Girth Height
Girth 0.04348 0.02947
Height 0.02947 0.80137

> var(test[, 1:2])

Girth Height
Girth 1.0000 0.5193
Height 0.5193 1.0000

So for this particular window, after subtracting the respective mean from
each half, the first scaled variable has much less residual variance than
the second; that is, observations of the first variable are closer, in each
half, to that half’s mean than is the case for the second variable. The
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whole-sequence residual variance is of course 1 for each variable; this is
the same as the variance because each variable has zero mean from the
scaling.

This shows that the variance-covariance matrix of a window can vary
greatly from that of the whole sequence In this case variances are 0.043
and 0.801, respectively, for the two variables, rather than 1 for the whole
sequence) and the covariance is 0.029 (instead of 0.519 for the whole
sequence). The two residuals are weakly correlated (i.e., girth is not a
good predictor of height, and vice-versa), so this will hardly affect the
distance.

We can now examine the contribution of each variable to the distance.

Task 18 : Compute the distance step-by-step according to the definition
of Mahalanobis distance, then with the direct call to mahalanobis. •
> (diff <- l.mean - r.mean)

Girth Height
-0.5816 -1.3732

> (W.inv <- solve(W, diag(2)))

[,1] [,2]
Girth 23.5855 -0.8674
Height -0.8674 1.2798

> W.inv[1, 1]/W.inv[2, 2]

Girth
18.43

> (tmp <- drop(W.inv %*% diff))

Girth Height
-12.525 -1.253

> # note: drop removes redundant dimensions from arrays
> (d.squared <- drop(diff %*% tmp))

[1] 9.005

> sqrt(d.squared)

[1] 3.001

> sqrt(mahalanobis(l.mean, r.mean, W))

[1] 3.001

Notice that the first scaled variable has a much higher weight (over 18
times) than the second. This is because a variable with low variance in
the residuals has higher discriminating power in the mean. The residuals
of the two variables were slightly positively correlated; this lowers the
distance slightly, because of the negative entries in the inverse. The final
result is about twice the Euclidean distance, mainly because of the large
discriminating power (low residual variance) of the first variable.
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Task 19 : Extract another two sequences of four observations: (1) trees
22 . . .25 and (2) treess 26 . . .29 as window halves, and compute their
Mahalanobis distance. •

These windows turn out to have higher variances (because the trees are
larger in this section of the dataframe) and a slight negative correlation
between the residuals. The negative correlation increases the weight of
both variables, because it becomes positive in the inverse. Both variables
discriminate well, but the first has about three times the weight as the
second.
> (left <- test[22:25, 1:2])

Girth Height
22 0.3032 0.6278
23 0.3988 -0.3139
24 0.8768 -0.6278
25 0.9724 0.1569

> (right <- test[26:29, 1:2])

Girth Height
26 1.291 0.7847
27 1.355 0.9416
28 1.482 0.6278
29 1.514 0.6278

> l.mean <- apply(left, 2, mean)
> r.mean <- apply(right, 2, mean)
> (diff <- l.mean - r.mean)

Girth Height
-0.7728 -0.7847

> sqrt(sum((l.mean - r.mean)^2))

[1] 1.101

> left.resid <- t(left) - l.mean
> right.resid <- t(right) - r.mean
> resid <- (rbind(t(left.resid), t(right.resid)))
> apply(resid, 2, sd)

Girth Height
0.2303 0.3728

> (W <- cov(resid))

Girth Height
Girth 0.05306 -0.0384
Height -0.03840 0.1390

> (W.inv <- solve(W, diag(2)))

[,1] [,2]
Girth 23.559 6.509
Height 6.509 8.993

> W.inv[1, 1]/W.inv[2, 2]

Girth
2.62

> tmp <- drop(W.inv %*% diff)
> (d.squared <- drop(diff %*% tmp))
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[1] 27.5

> sqrt(d.squared)

[1] 5.244

> sqrt(mahalanobis(l.mean, r.mean, W))

[1] 5.244

In this case the Euclidean distance, 1.101, is increased dramatically to
the Mahalanobis distance, 5.244.
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Index of R Concepts

acf, 6, 14
apply, 21

class, 22
cov, 21

datasets package, 23

knitr package, 1

mahalanobis, 21, 23, 25
mean, 21

runif, 14

scale, 5
set.seed, 14
source, 4, 12
stats package, 6

t, 21
trees dataset, 23
try, 21
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