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1 Introduction

e, Hiauh
“Do not fear slowness, only fear stopping”
— Chinese proverb

In this exercise you will learn several ways to predict at unsampled points,
using data values from a set of sample points.

After completing this exercise you should be able to:

1. Predict attributes over a region with a trend surface;

2. (optionally) Predict attributes over a region using strata;

3. Construct a prediction grid over a region;

4. Predict attributes over a region using Ordinary Kriging (OK);
5

. (optionally) Predict attributes over a region using OK with an anisotropic
variogram model;

6. (optionally) Gain insight into the OK system.

This exercise includes several sections (marked with a *) with topics that
are optional and not covered in the self-test. You should at least read the
first paragraph of these sections to know their topic, since you may want to
work through them later.

Task 1 : If R is not already running, start it. If you haven’t already done
so, load the gstat and sp libraries, as shown in the previous exercises. e

2 Trend surfaces

In a previous exercise (Exercise 3 §2) we computed a regional trend from a
set of point observations. In a different exercise (Exercise 2 §6) we created
a raster of the study area in which the observations are found, at a given
resolution, and computed the predictions at all the grid cells of the raster.

The trend surface computed by the krige method of the gstat package
is the same as that computed directly by the 1m linear modelling method
with codrdinates as predictors; they both use least-squares (by default un-
weighted) to fit the surface.

There are several differences:
e krige does not report the trend surface coefficients;

— However, the underlying predict.gstat method with the op-
tional BLUE=T argument can be used for this.

e 1m only predicts at the observation points (with the fitted access
method; krige at any number of points.



— However, predict.1lm can be used to predict at any set of points,
using the newdata argument.

If you wish to review this, we repeat here the procedures for:
1. computing the trend surface equation with the 1m function;
2. computing an interpolation grid;
3. computing a trend surface with the krige method; and
4. visualizing the result.

> load("tcp.RData")
> 1s0)

[1] "th"
> str(tcp)

'data.frame': 147 obs. of 4 variables:

$ UTM_E : num 702638 701659 703488 703421 703358 ...
$ UTM_N : num 326959 326772 322133 322508 322846 ...
$ clay35: num 78 80 66 61 53 57 70 72 70 62 ...

$ pH35 : num 4.8 4.4 4.2 4.54 4.4 ...

The trend suface equation, as computed by 1lm:

> summary(lm(clay35 ~ UTM_N + UIM_E, data = tcp))
Call:
Im(formula = clay35 ~ UTM_N + UTM_E, data = tcp)
Residuals:

Min 1Q Median 3Q Max

-31.601 -5.106 -0.363 3.607 20.467

Coefficients:
Estimate Std. Error t value Pr(>|tl)
(Intercept) -2.50e+02 5.19e+01 -4.83 3.5e-06 *x**

UTM_N -4.50e-04 9.24e-05 -4.88 2.8e-06 *x*x*
UTM_E 6.51e-04 5.97e-05 10.91 < 2e-16 *x*x
Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.11 on 144 degrees of freedom
Multiple R-squared: 0.506, Adjusted R-squared: 0.499
F-statistic: 73.7 on 2 and 144 DF, p-value: <2e-16

The interpolation grid, as a SpatialPoints object:

> coordinates(tcp) <- “UTM_E + UTM_N

> gr <- expand.grid(UTM_E = seq(659000, 704000, by = 500),

+ UTM_N = seq(310000, 343000, by = 500), KEEP.QUT.ATTRS = F)
> coordinates(gr) <- “UTM_E + UTM_N

> str(gr)



Formal class 'SpatialPoints' [package "sp"] with 3 slots

..Q@ coords : num [1:6097, 1:2] 659000 659500 660000 660500 661000 ...
..— attr(x%, "dimnames")=List of 2
..$ : NULL
.. .. ..%$ : chr [1:2] "UTM_E" "UTM_N"
..Q@ bbox : num [1:2, 1:2] 659000 310000 704000 343000

..— attr(x, "dimnames")=List of 2
..$ : chr [1:2] "UTM_E" "UTM_N"
e <o ..$ : chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

The interpolation from the trend surface, using krige:

> tsl <- krige(clay35 ~ UTM_E + UTM_N, loc = tcp, newdata = gr,
+ model = NULL)

[ordinary or weighted least squares prediction]

Now we display the trend surface as a raster map. The levelplot function
is part of the lattice graphics package; to make sure this is loaded we use
the require command:

> require(lattice)
> print(levelplot(varl.pred ~ UTM_E + UTM_N, as.data.frame(tsl),
+ col.regions=bpy.colors(64), asp="iso",

main="First-order trend surface, clay %, 30-50"cm layer",
sub="Sample points overprinted as post-plot",
xlab="UTM E", ylab="UTM N",
panel=function(x,y,z, ...) {
panel.levelplot(x, y, z, ...)

panel.grid(h=-1,v=-1, col="gray", lty=1)

panel.points(coordinates(tcp),
cex=3*tcp$clay3s/max (tcp$clay3s),
pch=1, col="white")

+ o+ + + + + o+ o+

M)
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This should have refreshed your memory.

Task 2 : Clean up the local variables created in this section. o

> rm(tcp, gr, tsl)

* Design-based prediction

This is an optional section that shows a non-geostatistical method of spatial
prediction that should be familiar from basic GIS. It is still useful when there
are not enough points to establish a spatial structure. It is also applicable
if there is no spatial structure, but there are difference between strata.

One method of “spatial” prediction is to divide the area into strata where
the attribute to be predicted is supposed to be homogeneous within each
stratum:

1. Same expected value;
2. Same probability distribution and its parameters, e.g. variance;
3. No spatial dependence.

This is essentially reclassification of a classified GIS layer; it should not be
used if the structure of spatial dependence can be modelled. In case there are
differences between strata and residual spatial structure, use Kriging with
External Drift (KED), with the strata as the “drift” (see Exercise 5a, §6).



We illustrate this with the Jura dataset from the gstat package. This is
the same dataset we used in the previous exercises, but here we use the
built-in example dataset jura, which has both point observations and an
interpolation grid.

Task 3 : Load the Jura example data set and examine its contents. .

Q1 : What objects are loaded with the Jura example dataset? What do
they represent? Jump to Al e

Example datasets are loaded with the data method:

> data(jura)

> 1s0
[1] "jura.grid" "jura.pred" "jura.val"
[4] "juragrid.dat"  "prediction.dat" "transect.dat"

[7] "validation.dat"
> help(jura)

Notice that three dataframes were loaded: jura.pred, jura.val, and jura.grid.

Task 4 : Indentify the attributes in the prediction points dataset that could
be used for stratification. .

> str(jura.pred)

'data.frame': 259 obs. of 11 variables:
$ Xloc :num 2.39 2.54 2.81 4.31 4.38 ...
$ Yloc :num 3.08 1.97 3.35 1.93 1.08 ...
$ Landuse: Factor w/ 4 levels "Forest","Pasture",..: 3223333333 ...
$ Rock : Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3232555113
$ Cd :num 1.74 1.33 1.61 2.15 1.56 ...
$ Co :num 9.32 10 10.6 11.92 16.32 ...
$ Cr : num 38.3 40.2 47 43.5 38.5 ...
$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...
$ Ni :num 21.3 29.7 21.4 29.7 26.2 ...
$ Pb :num 77.4 77.9 30.8 56.4 66.4 ...
$ Zn :num 92.6 73.6 64.8 90 88.4 ...
Q2 : Which attributes could be used for stratification? Jump to A2 e

Task 5 : Determine which of these attributes are also in the interpolation
grid dataset. i

> str(jura.grid)



'data.frame': 5957 obs. of 4 variables:
$ Xloc :num 0.3 0.35 0.35 0.4 0.4 0.40.40.40.40.4 ...
$ Yloc :num 1.7 1.7 1.75 1.7 1.75 1.8 1.85 1.9 2.1 2.15 ...

$ Landuse: Factor w/ 4 levels "Forest","Pasture",..:

2222111133 ...

$ Rock : Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3332223311

Q3 :  Which of the attributes that could be used for stratification are also

known over the interpolation grid?

Jump to A3 e

Task 6 : Promote the prediction points and interpolation grid to spatial

objects.

Objects are promoted to spatial objects with the coordinates method, spec-
fying which fields represent the coordinates:

> class(jura.pred)

[1] "data.frame"

> coordinates(jura.pred) <- "Xloc + Yloc

> class(jura.pred)

[1] "SpatialPointsDataFrame"

attr(, "package")
[1] IISPII

We also promote the grid to a spatial object; by default a set of points is
of class SpatialPointsDataFrame, but since this is on a grid we’d like it to
be treated as SpatialPixelsDataFrame; one way to accomplish this is by
using the gridded method to specify that the points are on a grid.

> class(jura.grid)

[1] "data.frame"

> coordinates(jura.grid) <- "Xloc + Yloc

> class(jura.grid)

[1] "SpatialPointsDataFrame"

attr(, "package")
[1] Ilspll

> gridded(jura.grid) <- TRUE

> class(jura.grid)

[1] "SpatialPixelsDataFrame"

attr(, "package")
[1] "Sp"

We will use rock type as a stratifying attribute for metal content. This is
logical if the heavy metals in soils in this area are mainly from parent rock

(and not from human activity).



Task 7 : Display a map of the rock type strata. J

One way to do this is with the spplot method. Since the jura.grid object
is now a SpatialGridDataFrame, the spplot method automatically uses a
square filled printing character (i.e., pch=15) to simulate a raster display.
We also place the legend to the right with the key. space optional argument.

Note: We know from the summary above that the field Rock has five classes,
so we could just write topo.colors(5) to specify a five-colour legend. It
is more elegant to compute the number of classes automatically with the
nlevels method, which returns the number of “levels” or classes in a classified
field; so we write topo.colors(nlevels(jura.grid$Rock)).

> print(spplot(jura.grid, zcol="Rock",

+ col.regions=topo.colors(nlevels(jura.grid$Rock)),
+ key.space="right",
+ main="Rock types, Jura"))

Rock types, Jura

Quaternary
Portlandian
Sequanian
Kimmeridgian

Argovian

Note: The spplot method is a front-end for various methods in the lattice
graphics package, such as xyplot and levelplot.

Task 8 : Display a postplot of the Co concentrations at the observation
points colour-coded by their rock types. o

We use the xyplot method, specifying the axes as a formula Yloc ~ Xloc
(since the vertical axis should have the North coordinate), the character size
cex from the cobalt (Co) value, and the colour col from the rock type class.



Note that we must convert the factor Rock to a number with the as.numeric
method.

Note also the use of the groups graphics argument to automatically colour
the different rock types, and the auto.key=T graphics argument to show this
in a legend.

> print(xyplot(Yloc ~ Xloc, as.data.frame(jura.pred),

+ groups=jura.pred$Rock,

+ cex=2*jura.pred$Co/max (jura.pred$Co), pch=1,
+ asp="iso", xlab="East", ylab="North",

+ main="Co concentration in topsoils, Jura",

+ auto.key=T)
+)

Co concentration in topsoils, Jura
Argovian o
Kimmeridgian ©
Sequanian o
Portlandian o
Quaternary

North

Q4 : Does the Co content appear to be related to the rock types?  Jump
to A4 e

We predict in the class based on the analysis of variance of a linear model,
which gives the mean and pooled standard deviation.

Task 9 : Compute the one-way Analysis of Variance (ANOVA) of Co con-
centration as modelled by rock type; display the summary. .

We use the 1m method and then summarize with summary.lm:

> m.co.rt <- 1m(Co ~ Rock, data = jura.pred)
> summary(m.co.rt)

10



Call:
Im(formula = Co ~ Rock, data = jura.pred)

Residuals:
Min 1Q Median 3Q Max
-9.497 -1.565 0.086 1.878 8.124

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 5.394 0.404 13.35 < 2e-16 **x
RockKimmeridgian 5.655 0.515 10.99 < 2e-16 **x
RockSequanian 4.581 0.548 8.36 4.2e-15 *x*x*
RockPortlandian 3.979 1.745 2.28 0.023 *
RockQuaternary 4.202 0.566 7.42 1.7e-12 **x
Signif. codes: O 's*x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.94 on 254 degrees of freedom
Multiple R-squared: 0.334, Adjusted R-squared: 0.324
F-statistic: 31.9 on 4 and 254 DF, p-value: <2e-16

Q5 : How much of the variation in Co content is explained by the model?
Jump to A5 e

Q6 : What are the expected values for each rock type? Jump to A6 e

These are the means for each class; we can find these with the by method:
> by(jura.pred$Co, jura.pred$Rock, mean)

jura.pred$Rock: Argovian

[1] 5.3939

jura.pred$Rock: Kimmeridgian
[1] 11.049

jura.pred$Rock: Sequanian
[1] 9.9752

jura.pred$Rock: Portlandian
[1] 9.3733

jura.pred$Rock: Quaternary
[11 9.5959

Task 10 : Display a map of the predicted values of the Co content, with a
colour ramp. .

The map of predicted values is just the map of strata reclassified with the
predicted value for each class; we can get these with the predict generic
method on the fitted model:

11



Note: We choose to specify the data.frame component (i.e., slot @data)
of the the target grid jura.grid, which is of class SpatialPixelsDataFrame
as the newdata argument to predict.lm. This is in general not necessary
since many methods extract the data frame component; however this syntax
makes it explicit that the prediction is non-spatial, it only uses the attributes
of the spatial object jura.grid.

> head(predict(m.co.rt, newdata = jura.grid@data))

1 2 3 4 5 6
9.9752 9.9752 9.9752 11.0489 11.0489 11.0489

The difficulty here is that the ordered list of classes is not in sorted order
of the predictions. For example, the second-listed class (Kimmeridgian) has
the highest predicted concentration. So, we use the as.ordered method on
the predicted values to sort the values in the proper order for a colour ramp
display.

> co.reclass <-

+ data.frame(Rock=jura.grid$Rock,

+ Co=as.ordered(round(predict(m.co.rt,
+ newdata=jura.grid@data),2)))

> coordinates(co.reclass) <- coordinates(jura.grid)
> gridded(co.reclass) <- TRUE

Now we can show the prediction:

> print(spplot(co.reclass, zcol="Co",
+ col.regions=bpy.colors(nlevels(jura.grid$Rock)),
+ main="Predicted Co concentration in topsoils, Jura"))

12



Predicted Co concentration in topsoils, Jura

11.05
9.98
9.6
9.37

5.39

Q7 : Explain the abrupt spatial changes in predicted Co concentrations
over the map. Jump to A7 e

We also would like to know the confidence interval for this prediction, i.e.
the range within which we expect any new observation to fall, with a given
probability of being wrong.

Task 11 : Compute the standard errors of prediction. .

Because of the uneven number of samples in the strata, we compute the
standard deviation of the prediction for each class separately, directly from
the samples, using the sd method.

We could use the by method, as we did for the means, above, but instead
we’ll use a more general method, splitting the data frame into separate lists
for each rock type. To get these lists, we use the split method, specifying
the rock type as the factor. Then we use the sapply method to apply a
function, in this case sd, to each element in a list separately:

> co.split <- split(as.data.frame(jura.pred)$Co, jura.pred$Rock)
> sapply(co.split, sd)

Argovian Kimmeridgian Sequanian Portlandian  Quaternary
2.0673 2.8064 2.1987 2.4509 4.3067

Q8 : What are the standard errors of prediction for each rock type? Jump

13



3.1 Answers

to A8 e

Once the standard errors of prediction are known, they can be used to com-
pute confidence intervals, i.e., intervals in which we are fairly sure (to some
user-specified probability) that the true value lies.

The confidence interval can be computed easily with the t.test method,
again applied to all classes with sapply. The t.test method returns a
large structure; we are only interested in the confidence interval:

> data.frame(sapply(co.split, t.test)["conf.int", ],
+ row.names = c("lower", "upper"))

Argovian Kimmeridgian Sequanian Portlandian Quaternary
lower 4.8241 10.444 9.4215 3.2849 8.4316
upper  5.9637 11.654  10.5290 15.4617 10.7601

> data.frame(sapply(co.split, t.test, conf.level = 0.99)["conf.int",
+ ], row.names = c("lower", "upper"))

Argovian Kimmeridgian Sequanian Portlandian Quaternary
lower 4.6346 10.247 9.2391 -4.6706 8.0454
upper 6.1531 11.851  10.7114 23.4173 11.1464

The first example is with the default 95% confidence level; in the second
example we specify a 99% confidence level with the optional conf.level
argument to the t.test command. Note that the original data must be
approximately normally distributed within each class for this to be valid.

Note: We use of the data.frame function to restructure the list of two-
element vectors into a data frame with named rows (using row.names) for a
nicer display.

We will see in Exercise ba how to combine the stratification with local pre-
diction.

Task 12 : Clean up the local variables created in this section. o

> rm(co.reclass, co.split)

A1: Seven R objects are loaded: jura.grid, jura.pred, jura.val, juragrid.dat,
prediction.dat, transect.dat validation.dat. The help text shows that there
are two versions of everything except a transect. The names like jura.* are pre-
ferred. Return to Q1

A2: The classified attributes are Landuse (land use) and Rock (rock type). Return
to Q2 e

14



A3 : Both Landuse (land use) and Rock (rock type) are also in the interpolation
grid and so may be used for design-based prediction. Return to Q3 e

A4 : Somewhat; the first-listed rock type, Argovian, has the smallest symbols.
Return to Q4 e

A5 : 32.4% (see the adjusted R?); so just under one-third of the variation in Co
concentration is explained by the rock type. Return to Q5

A6 : The prediction for each rock type is:

Argovian | Kimmeridgian | Sequanian | Portlandian | Quaternary
5.3939 11.0489 9.9752 9.3733 9.5959

Return to Q6 e

A7 : The abupt changes are at rock type boundaries. Within each rock type all
locations have the same prediction. Return to Q7 e

A8 : The standard error of prediction for each rock type is:

Argovian | Kimmeridgian | Sequanian | Portlandian | Quaternary
2.0673 2.8064 2.1987 2.4509 4.3067

Return to Q8 e

4 Ordinary kriging

For this section of the exercise we continue with the Jura soil samples in-
troduced in Exercise 2, §2. We saved this as an R object in Exercise 2,
§3.2.

4.1 Variogram modelling

The tasks in this subsection are repeated from Exercise 3, §3, where you fit a
variogram model to the Co content in the calibration dataset; if you already
have these in your workspace there is no need to repeat them.

Task 13 : If the jura.all spatial object is not already in the workspace,
load it from the saved image. .

> load("Jura.RData")

Task 14 : Divide the Jura dataset into a calibration set jura.cal, made up
of the first 259 observations from the full set, and a evaluation (also called
validation) set jura.val, made up of the remaining 100 observations from
the full set. .

15



4.2 Prediction at

This is just row selection from a matrix using the [] operator, which also
works with the @data slot of an sp object:

> jura.cal <- jura.all[1:259, ]
> jura.val <- jura.all[260:359, ]

Task 15 : Compute the experimental variogram of the Co values in the
calibration dataset, with a cutoff of 1.6 km, and model it. .

> v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)
> (vmf <- fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5)))

model psill range
1 Nug 1.3712 0.0000
2 Pen 12.9322 1.5239

Now we have a model of local spatial dependence, and can use it for predic-
tion.

single points

Kriging can be used to predict at specific points; it does not have to be used
to produce a regular grid (for that, see §4.4). We illustrate this with the 100
observations which we held out as a evaluation set.

Note: The mathematics behind this are explored in optional §7, below.

Task 16 : Use the fitted variogram model to predict at the 100 evaluation
points by Ordinary Kriging (OK). .

The krige method of the gstat package has the following required argu-

ments:

1. a formula specifying the model of spatial dependence (the formula
argument; if this comes first it does not need to be named);

2. a spatial object of observation points where the attribute value is
known (the loc argument; if this comes second it does not need to
be named);

3. a variogram model (the model argument)

and predicts at the points of a second spatial object where the attribute
values are to be predicted (the newdata argument):

So, to predict at the evaluation points (newdata = jura.val), using the
spatial object of calibration samples (loc = jura.cal), only based on lo-
cal spatial separation (formula = Co ~ 1), using the variogram model just
computed (model = vmf):

> k.val <- krige(Co ~ 1, loc = jura.cal, newdata = jura.val,
+ model = vmf)

16



[using ordinary kriging]
> summary (k.val)

Object of class SpatialPointsDataFrame
Coordinates:
min max
X 0.491 4.745
Y 0.524 5.285
Is projected: NA
proj4string : [NA]
Number of points: 100
Data attributes:

varl.pred varl.var
Min. : 3.58 Min. :1.98
1st Qu.: 7.70 1st Qu.:4.35
Median :10.08 Median :4.84
Mean : 9.46 Mean 14.72
3rd Qu.:11.27 3rd Qu.:4.93
Max. :14.01 Max. :7.92

Q9 : What are the two data fields computed by krige? What are their

units of measure?

Jump to A9 e

Task 17 :

Plot the predictions and their variances. o

First the predictions:

> print(spplot(k.val, zcol = "varl.pred", col.regions = bpy.colors(64),

+
+

key.space = "right", main = "Predicted values, Co (ppm)",
xlab = "UTM E", ylab = "UTIM N", scales = list(draw = T)))

Predicted values, Co (ppm)
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Now the kriging variances. We use a different colour scheme (here, the
colour ramp produced by the topo.colors method) so that we don’t visually
confuse predictions and their variances.

> print(spplot(k.val, zcol = "varl.var", col.regions = topo.colors(64),
+ key.space = "right", main = "Kriging variance, Co (ppm~2)",
+ xlab = "UTM E", ylab = "UIM N", scales = list(draw = T)))

Kriging variance, Co (ppm*2)
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4.3 Confidence limits

The advantage of knowing both the predictions and their variances is that we
can determine the probability that the true value at the prediction location is
in a given range, or above or below a given threshold. A common application
is in risk assessement.

Task 18 : Determine the 95% confidence limits for the first evaluation point.

Recall from probability theory that the two-sided interval which has proba-
bility (1 — &) of containing the true value z is:

(2-Cxp2-0) <z <(2+Cx/2-0)

where Z is the predicted value, Cx/2 is the standard normal variate at con-
fidence level /2, and o is the kriging prediction standard deviation.

Note: The total probability of Type I error «, say 0.05, is halved, say to
0.025 for each side of the interval, because this is a two-sided interval.
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Q10 :  Which field in the kriging prediction object corresponds to the
estimated value Z and which to the kriging prediction standard deviation
ag? Jump to A10 e

To evaluate this formula, we need to find quantiles of the Normal distribu-
tion. As you might expect, R includes a method for this; in fact R includes
methods to evaluate cumulative distribution functions (CDF), the probabil-
ity density function (PDF) and the quantiles, and to draw random samples,
from a large number of distributions; see see Chapter 8 of Venables et al. [1]
for details.

We use the gnorm (“quantile of the normal-distribution) method, specifying
the quantile (here, the 97.5%, because the test is two-tailed):

> (z.val <- gnorm(0.975))
[1] 1.96

This is then multiplied by the standard deviation of the prediction to give the
width of the confidence interval on each side of the prediction. For example,
at the first prediction point:

> sqrt(k.val$varl.var[1]); (ciw <- z.val * sqrt(k.val$vari.var[1]))
[1] 1.878
[1] 3.6808
Finally we can compute the interval:
> k.val$varl.pred[1]; k.val$varl.pred[1] - ciw; k.val$varl.pred[1] + ciw
[1] 5.0495
[1] 1.3686
[1] 8.7303

Let’s express this in the language of hypothesis testing:

Q11 : What is the maximum cobalt concentration at the first evaluation
point, with only a probability of 2.5% chance that this value is exceeded?
Jump to All e

In Exercise 6 we will compare these to the known values at these points, so
do not delete object k.val.

Clean up from this section:

> rm(z.val, ciw)
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4.4 Prediction on a regular grid

Kriging is typically used to make a raster map by predicting at all nodes of
a regular grid.

We have the 50 m grid of the irregularly-shaped study area provided with the
Jura dataset in the gstat package (§3); we will use this grid in subsequent
exercises. However here we create and use a rectangular grid for two reasons:
(1) to demonstrate how to create one; (2) to see the effects of extrapolation
outside the study area.

Task 19 : Make a regular grid covering the Jura study area. J

First, we have to decide on a grid spacing. This is always a compromise be-
tween speed/storage space and spatial resolution. The spacing also depends
on the objectives of the interpolation. There are some objective criteria that
can help us decide on a suitable spacing, which we now examine.

The first criterion is the minimum spacing between sample points; it doesn’t
make sense to predict any more densely, because we have no information
about spatial dependence at closer spacings. We can see from the post-plots
we’ve made of the calibration dataset that there are some points quite close
to each other.

To find out the actual minimum spacing, we can use the variogram cloud.
Recall from Exercise 2 §7.1 that this semivariance vs. separation. So we can
compute the cloud for close spacings and then find the minimum separation
with the min method applied to the dist field of the variogram cloud object:

> vc <- variogram(Co ~ 1, loc = jura.cal, cloud = T,

+ cutoff = 0.1)
> str(vc)
Classes 'variogramCloud' and 'data.frame': 262 obs. of 6 variables:
$ np : num 8.59e+10 6.44e+10 1.16e+11 6.44e+10 1.50e+11 ...
$ dist : num 0.0064 0.00608 0.01526 0.09161 0.08737 ...
$ gamma : num 0.1152 0.0128 0.1152 0.8712 0.6728 ...
$ dir.hor: num 0000 0000O00O0 ...
$ dir.ver: num 0000 0000O00O0 ...
$ id : Factor w/ 1 level "vari": 1111111111 ...
- attr(*, "direct")='data.frame': 1 obs. of 2 variables:

..$id : Factor w/ 1 level "varl": 1
..$ is.direct: logi TRUE

- attr(*, ".BigInt")= num 4.29e+09

- attr(*, "what")= chr "semivariance"

> min(vc$dist)
[1] 0.005
> sum(vc$dist < 0.1)

[1] 262
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Q12 : How many point-pairs are separated by 100 m or less? What is the
closest spacing? Jump to A12 e

Another criterion is the number of points in the grid; this is the product of
the number of rows and columns at a given grid spacing.

Task 20 : Compute the number of grid cells that would be needed to cover
the bounding box of the full Jura dataset at 100 m, 50 m, 20 m, and 5 m
spacing. o

We can use the bbox spatial method to find the corners of the enclosing
rectangle, compute its area, and the number of cells. Note the use of the
factor 10002 to convert square kilometers (units of the bounding box) to
square meters (units of the grid).

> bbox(jura.all)

min max
0.491 4.92
0.524 5.69

< e

> diff (bbox(jura.all) ["X", 1)

max
4.429

> diff (bbox(jura.all) ["Y", 1)

max

5.166

> area <- diff(bbox(jura.all) ["X", 1) * diff(bbox(jura.all)["Y",
+ iD)

> for (i in c(100, 50, 20, 5)) print(paste("spacing",

+ i, "m requires ", ceiling(area * (100072)/(i"2)),

+ "points"))

[1] "spacing 100 m requires 2289 points"
[1] "spacing 50 m requires 9153 points"
[1] "spacing 20 m requires 57201 points"
[1] "spacing 5 m requires 915209 points"

> rm(area)

The expression area* (100072) converts the area in km?2 to area in m2; this
is then divided by the number of m? of each cell.

Note the use of the for command to repeat the print method, once for each
spacing. The output was formatted with the paste method, which makes
one string of characters out of its arguments.

Q13 : What is the area of the bounding box? How many grid cells would
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be required to cover it at 100 m, 50 m, 20 m and 5 m spacing? Jump to
Al3 e

To keep the processing time and storage space down while still having a
relatively attractive map, we’ll use a 50 m spacing.

For the trend surface of §2 we made a rectangular grid. It is easy enough to
repeat this procedure for this area.

Task 21 : Determine the corners of a bounding box for a 50 m prediction
grid, and the number of cells in each dimension. J

We first expand the bounding box by 100 m and round to the nearest 100 m
in the correct sense (lower for the minimum, higher for the maximum). This
makes use of the floor and ceiling methods, which work on integers. Note
how we first multiply the coérdinates (which are in km) by 10 to make an
integral number of 100 m, then use the floor and ceiling methods, and
then divide the result by 10 to recover the km units. The number of cells is
the dimension in km multiplied by number of cells per km, i.e. 20.

> (min.x <- floor((bbox(jura.all) ["X", "min"] - 0.1) *
+ 10)/10)

1] 0.3

> (max.x <- ceiling((bbox(jura.all) ["X", "max"] + 0.1) *
+ 10)/10)

[1] 5.1

> (min.y <- floor((bbox(jura.all) ["Y", "min"] - 0.1) *
+ 10)/10)

[1] 0.4

> (max.y <- ceiling((bbox(jura.all)["Y", "max"] + 0.1) *
+ 10)/10)

[1] 5.8

> (cells.x <- (max.x - min.x) * 20)
[1] 96

> (cells.y <- (max.y - min.y) * 20)
[1] 108

> cells.x * cells.y

[1] 10368

Q14 : How many points are in this prediction grid? What is its bounding
box? Jump to Al4 e

22



Instead of the expand. grid method we used in §2, we will use the SpatialGrid
method from the sp spatial package to create an object of class SpatialGrid.
This class takes advantage of the known regular spacing between points, as
opposed to the SpatialPoints class which can include any set of points, no
matter what their spacing.

The first argument to the SpatialGrid method is a grid, which is created
by the GridTopology method. This has three arguments:

e cellcentre.offset: a vector with the smallest coordinate of the cell
centre for each dimension; in this case min.x and min.y plus half a
cell size;

e cellsize: a vector with the cell size in each dimension; in this case
both are 0.05 km;

e cells.dim: a vector with (integer) number of cells in each dimension;
we calculated these from the expanded bounding box as cells.x and

cells.y.
> jura.raster <- SpatialGrid(GridTopology(c(min.x +
+ 0.025, min.y + 0.025), c(0.05, 0.05), c(cells.x,
+ cells.y)))
> str(jura.raster)

Formal class 'SpatialGrid' [package "sp"] with 3 slots

..0 grid :Formal class 'GridTopology' [package "sp"] with 3 slots
..0@ cellcentre.offset: num [1:2] 0.325 0.425
..0 cellsize : num [1:2] 0.05 0.05

.. ..Q@ cells.dim : int [1:2] 96 107

..Q@ bbox : num [1:2, 1:2] 0.3 0.4 5.1 5.75

..— attr(*, "dimnames")=List of 2

..$ : NULL
..$ : chr [1:2] "min" "max"

..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q projargs: chr NA

> rm(min.x, max.x, min.y, max.y, cells.x, cells.y)

Task 22 : Use the fitted variogram model to predict at all the grid points
by Ordinary Kriging (OK). .

This is exactly the same as predicting at the 100 evaluation points, above,
but here we specify the prediction grid instead as the newdata:

> k.grid <- krige(Co “ 1, loc = jura.cal, newdata = jura.raster,
+ model = vmf)

[using ordinary kriging]
> summary (k.grid)

Object of class SpatialGridDataFrame
Coordinates:
min max
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[1,]1 0.3 5.10
[2,] 0.4 5.75
Is projected: NA
proj4string : [NA]
Grid attributes:
cellcentre.offset cellsize cells.dim

1 0.325 0.05 96
2 0.425 0.05 107
Data attributes:

varl.pred varl.var
Min. :2.91 Min. : 1.85

1st Qu.: 8.48 1st Qu.: 4.26
Median : 9.73 Median : 5.63

Mean : 9.54 Mean : 7.86
3rd Qu.:10.98 3rd Qu.:12.24
Max. :15.81 Max. :15.01
Task 23 : Plot the predictions and their variances. .

Again we use the spplot method to plot a spatial object, but this time with
the optional contour=T argument to get a superimposed contour lines, and
with the optional pretty=T argument to ensure that the contour lines are
at “pretty” (i.e. integer) values.

First the predictions:

print (spplot(k.grid, zcol="varl.pred", pretty=T,
contour=T, col.regions=bpy.colors(64),
main="Predicted values, Co (ppm)",
xlab="UTM E", ylab="UTM N",
scales=list(draw=T)))

+ 4+ + + V
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Predicted values, Co (ppm)

UTM N

Q15 :  Describe the major spatial features of the Ordinary Kriging predic-
tion. Jump to Al5

Now the kriging variances:

print (spplot(k.grid, zcol="varl.var", pretty=T,
contour=T, col.regions=topo.colors(64),
main="Kriging variance, Co (ppm~2)",
xlab="UTM E", ylab="UTM N",
scales=list(draw=T)))

+ 4+ + + V
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Kriging variance, Co (ppm*2)

UTM N

This can also be displayed as a kriging standard deviation, in the same units
as the prediction. To do this, we first add the standard deviation as a field
in the kriging object, then display it:

> k.grid$varl.sd <- sqrt(k.grid$vari.var)

> print(spplot(k.grid, zcol="varl.sd", pretty=T,

+ contour=T, col.regions=terrain.colors(64),
main="Kriging standard deviation, Co (ppm)",
xlab="UTM E", ylab="UTM N",
scales=list(draw=T)))

+ 4+ 4+
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Kriging standard deviation, Co (ppm)

r4.0

r35

r3.0

UTM N

r25

1.0

Q16 : Describe the major spatial features of the variances of the Ordinary
Kriging prediction. Jump to A16

The kriging variances are only an internal measure of quality; like the pre-
dictions they depend on the model. We will see how to evaluate the quality
of these predictions with external measures (i.e. evaluation) in Exercise 6.

4.5 * Predicting at a sample point

This optional section illustrates a quirk of the OK system: using OK to
predict at a sample point:

1. The prediction is exactly the sample value; this is because there is one
point (the sample point) at zero separation, so it receives all the weight
in the OK system of equations;

2. The prediction variance is zero, even if there is a nugget in the var-
iogram model. If any part of the nugget is known error (e.g., lab.
precision) this must be added back in.

Note: The mathematics behind this are explored in optional §7.1, below.

Task 24 : Create a spatial object with just the first calibration point. .

This point is the first row (case) of the jura.cal object; so we just select
this row and assign it to a new object:

> (jura.test <- jura.calll, ])
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coordinates Rock Land Cd Cu Pb Co Cr
1 (2.386, 3.077) Sequanian Meadow 1.74 25.72 77.36 9.32 38.32
Ni Zn
1 21.32 92.56

> jura.test$Co

[1] 9.32

Task 25 : Predict the Co concentration by OK. .

This is exactly as in §4.2, but at this point as newdata, using the fitted
model, which has a nugget (as we first show):

> print(vmf[1, 1)

model psill range
1 Nug 1.3712 0

> (k.test <- krige(Co ~ 1, loc = jura.cal, newdata = jura.test,
+ model = vmf))

[using ordinary kriging]
coordinates varl.pred varl.var
1 (2.386, 3.077) 9.32 5.5348e-31

Q17 : What is the prediction? How does it compare with the sample point?
Jump to A17 e

Q18 : What is the prediction variance? Jump to A18 e

Conclusion: a known point included in the sample set is back-predicted ex-
actly with no error. This seems counter-intuitive if there is any nugget vari-
ance, but the theory of random fields requires it. If the nugget is (partially)
due to measurement error, this can be accounted for after the prediction.

To show that the nugget has not disappeared, let’s predict at a point that
is just a very short distance away from the sample point.

Task 26 : Change each coordinateof the single point to be predicted by
0.001 km (i.e., 1 m), predict the Co concentration at this point by OK. e

It is not possible to change codrdinates of a spatial object directly; instead:

1. Convert from a spatial object to a dataframe;
2. Adjust the fields representing coordinates;

3. Convert back to a spatial object by assigning cotrdinates.

> (jura.test <- as.data.frame(jura.test))
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4.6 Answers

X Y Rock Land Cd Cu Pb  Co Cr Ni
X 2.386 3.077 Sequanian Meadow 1.74 25.72 77.36 9.32 38.32 21.32
Zn
X 92.56

> jura.test$X <- jura.test$X + 0.001
> jura.test$Y <- jura.test$Y + 0.001
> coordinates(jura.test) <- "X + Y
> print(jura.test)
coordinates Rock Land Cd Cu Pb  Co Cr
X (2.387, 3.078) Sequanian Meadow 1.74 25.72 77.36 9.32 38.32
Ni Zn

X 21.32 92.56

Now we can krige and observe the results:

> (k.test <- krige(Co ~ 1, loc = jura.cal, newdata = jura.test,
+ model = vmf))

[using ordinary kriging]
coordinates varl.pred varl.var
X (2.387, 3.078) 9.4493 2.3013

Q19 : What is the prediction? How does it compare with the sample point
(which was the same as the OK prediction at this point)? Jump to A19 e

Q20 : What is the prediction variance? How does it compare to the nugget
variance? Jump to A20 e

A9 : There are two:

1. varl.pred: the predicted value of the attribute; units are mg kg-! Co

2. varl.var: the variance of the predicted value; units are mg kg1 Co 2

Return to Q9 e

A10: Field varl.pred corresponds to the estimated value Z; the square root of
field varl.var to the kriging prediction standard deviation 0.  Return to Q10 e

Al11: 873 mg kgl Return to Q11

A12: 262 point-pairs are separated by 100 m (0.1 km) or less; the closest spacing
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is & m. Return to Q12 e

A13: The area of the bounding box is 22.88 km?; a grid with 100 m spacing would
require 2 289 points; 50 m spacing would require 9 153 points; 20 m spacing would
require 57 201 points; and 5 m spacing would require 915 209 points; i.e. almost a
million. Return to Q13 e

A14 : 10368 points, from X = (0.3,5.1),Y = (0.4,5.8) Return to Q14 e

A15 : The predictions form a smooth surface, with no abrupt changes. There are
clear “hot” and “cold” spots (high and low values). At the NW and NE corners of
the grid there is a uniform prediction; this is the spatial mean.  Return to Q15 e

A16 : Variances are lowest near sample points, and in particular near clusters
where several points were sampled nearby. Away from the area where samples
were located the variance increases rapidly and reaches the variance of the dataset.

Return to Q16

A17 : The prediction is 9.32, exactly the same as this calibration point. Return
to Q17 e

A18 : The prediction variance is effectively 0. Return to Q18

A19 : The prediction is 9.4493, considerably different from the calibration point
9.32 — even though this prediction point is only /2 m away from a known sample!
Return to Q19 e

A20: The prediction variance is 2.3013; this is quite a bit higher than the nugget,
1.3712. Return to Q20 e

5 Saving the workspace

Several objects created or modified here will be used later exercises:
1. All sample points jura.all
. Calibration points jura.cal

. Validation points jura.val

. The fitted variogram model for Co, vmf

2

3

4. Prediction grid jura.raster

5

6. Predictions of Co at the evaluation points, k.val
7

. Predictions of Co on the grid, k.grid
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In order to avoid re-creating them each time, we save them as an R data set.

Task 27 : Save the above-list objects in an R data set disk file. o

One or more objects are saved with the save method, specifying a file name;
we did this with the full Jura data set in Exercise 2, §3.2. To save more than
one object, just list them:

> save(jura.all, jura.cal, jura.val, jura.raster, jura.grid,
+ vmf, k.val, k.grid, file = "JuraEx4.RData")

These can then be loaded with the 1load method in later exercises.

6 * Ordinary kriging with anisotropy

In Exercise 3 §4.6 we saw how to fit a variogram model incorporating geo-
metric anisotropy (same model and sill, different ranges). In this section we
see how to predict by OK with such a model, and compare it to OK with
an isotropic model. As explained in Exercise 3 §4.6 the Jura data exhibits
no anisotropy, so for this section we return to the Meuse dataset used in
Exercise 2 §8 and Exercise 3 §4.6.

We begin by summarizing the variogram modelling of Exercise 3 §4.6.

Task 28 : Load the meuse sample dataset from the sp package and convert
it from a dataframe to a spatial object by specifying its cotrdinates. o

> require(sp)

> data(meuse)
> coordinates(meuse) <- “x + y

6.1 Computing the anisotropic variogram

This repeats some of Exercise 3 §4.6.

Task 29 : Compute and display the directional variograms of the logarithm
of Zn content at 30° N and 120° N, i.e. the suspected major and minor axes
of the anisotropy ellipse. .

> require(gstat)
> v.a <- variogram(log(zinc)~1, meuse, alpha=c(30,120), cutoff=1600)
> print(plot(v.a,

+ main="Directional Variograms, Meuse River, log(Zn)",
+ sub="Azimuth 30N (left), 120N (right)",
+ pl=T, pch=20, col="blue"))
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Directional Variograms, Meuse River, log(Zn)
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As explained in Exercise 3 §4.6, these directional variograms show strong
anisotropy — the two variograms are quite different.

An important detail about this computation is the horizontal (angular) toler-
ance on both sides the major and minor directions. By default, as here when
not specified, this optional tol.hor argument to the variogram function is
90° divided by the number of angles specified with the alpha argument. Here
we specified two angles (30° N and 120° N), so each will have a horizontal
tolerance of 45 ° on both sides of the directions; that is, every point-pair will
be included in either the 30° N or 120° N directional variograms. This can
lead to a “smearing” effect where the directionality is not so clear; on the
other hand it allows for some angular deviations from single directions.

Challenge: Compute and display the two directional variograms with
smaller angular tolerances, e.g., by specifying tol.hor=30 or narrower. Com-
pare these with the default tol.hor=45. What are the differences? You
could also use the variograms with narrower angular tolerance for the fol-
lowing steps (variogram modelling) and compare with the results.

6.2 Geometric anisotropy

Recall that geometric anisotropy is when the major and minor directions
(axes) are fit with the same model and sill, but with different ranges. In
essence, the anisotropy ratio transforms the ellipse into a circle.

In the present example, the anisotropy does not appear to be geometric
at longer ranges (past about 500 m). However, we will investigate how to
model it as geometric anisotropy because (1) the small sample size makes
the variogram for the minor axis not very reliable; (2) the dimension of the
study area in the direction of the minor axis is small, so that modelling
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longer ranges is not important for interpolation.

Task 30 : Fit a spherical variogram model, with geometric anisotropy, to
the directional variograms and display the fit. o

From the two directional variograms we estimate that the structural sill of
the major axis variogram is = 0.55, the range is = 1100 m, and the nugget
variance is ~ 0.05 (for a total sill of ~ 0.6). This total sill is reached at ~
550 m along the minor axis, so the anisotropy ratio is 1100/550 = 0.5 in
the minor direction, i.e., 120°.

The tricky part here is the anis “anisotropy” argument to the vgm “specify
a variogram model” function. In 2D (as in the present case), this is a list
(composed with the ¢ function) of:

1. the direction of the major axis, in degrees from N;

2. the “shrinkage” along the minor axis; that is, the minor axis’ proportion
of the major axis range specified with the range argument.

So in this case we specify range = 1100, that is, the range along the major
axis is 1100 m; and anis = c(30, 0.5), that is, the major axis is at 30°N,
and the range along the orthogonal axis (here, 120°N) is half of the range
along the major axis, i.e., 1100 * 0.5 = 550 m.

The automatic fit with fit.variogram adjusts the major range, structural
sill, and nugget, but not the angle or anisotropy ratio.

> (vmf.a <-
+ fit.variogram(v.a,

+ vgm(psill=0.55, model="Sph", range=1100,

+ nugget=0.05, anis=c(30, 0.5))))
model psill range angl anisl

1 Nug 0.0560948 0.000 0 1.0

2 Sph 0.5877192 1208.673 30 0.5

> print(plot(v.a,

+ main="Fitted Anisotropic Variogram Model, Meuse River, log(Zn)",
+ model=vmf.a,

+ sub="Azimuth 30N (left), 120N (right)",

+ pl=T, pch=20, col="blue"))
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Fitted Anisotropic Variogram Model, Meuse River, log(Zn)

500 1000 1500
1 1 1 1 1 1
30 120
77
$17
1.0 47 N
46
$6

0.8 1999261 -
(0]
o
c
8

g ’ -

£ ° o7

(0]
(2]

84 -

35 A
. n
T T T T T T
500 1000 1500
distance

Azimuth 30N (left), 120N (right)

Q21 : How well does the model fit the empirical variogram? Identify any
discrepancies. Jump to A21 e

Challenge: Recompute the empirical variogram with a shorter cutoff and
re-fit the anisotropic model.

Task 31 : Compute the best omnidirectional spherical model for the same
variable and display the fitted model on the empirical variogram. .

> v <- variogram(log(zinc)~1, meuse, cutoff=1600)
> (vmf <- fit.variogram(v, vgm(0.55, "Sph", 1100, 0.05)))

model psill range
1 Nug 0.05097029  0.0000
2  Sph 0.59139781 901.8033

> attributes (vmf)$SSErr
[1] 9.453761e-06
> print(plot(v,

+ main="Fitted Isotropic Variogram Model, Meuse River, log(Zn)",
+ model=vmf, pl=T, pch=20, col="blue"))
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Fitted Isotropic Variogram Model, Meuse River, log(Zn)
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This model fits very well; however note that the range is a compromise
between the very different ranges in the two orthogonal directions.

Task 32 : Predict by Ordinary Kriging over the Meuse grid with both the
anistropic and isotropic models, and summarize the (non-spatial) differences
for the predictions and their variances. .

A grid of the Meuse area at 40 m horizontal resolution is provided with the
sp package as meuse.grid.

The exact same krige method of the gstat package is used for the anisotropic
and isotropic cases; the only difference is in the variogram model.

data(meuse.grid)

coordinates(meuse.grid) <- "x + y

gridded(meuse.grid) <- TRUE

k <- krige(log(zinc) ~ 1, loc = meuse, newdata = meuse.grid,
model = vmf)

+ V V VvV VvV

[using ordinary kriging]

> k.a <- krige(log(zinc) ~ 1, loc = meuse, newdata = meuse.grid,
+ model = vmf.a)

[using ordinary kriging]
> summary (k.a$varl.pred - k$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.330400 -0.035760 0.005721 0.017200 0.057860 0.412800

> summary(k.a$varl.var - k$varl.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-0.045200 0.003089 0.011660 0.014150 0.021630 0.097860

Task 33 : Display the predictions side-by-side on the same scale. .
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>
+
+
>
+
+
+
+
+
>
+
+
+
+
+
>

p-at <- seq(round(min(k$varl.pred, k.a$varl.pred),1)-0.1,

round (max (k$varl.pred, k$varl.pred.a)+0.1, 1),
by=0.1)

pl <- spplot(k, zcol="varl.pred",

col.regions=bpy.colors(length(p.at)),
key.space="right", at=p.at,

main="Predicted values, Zn log(ppm)",

sub="Isotropic variogram model", xlab="E", ylab="N",
scales=1list(draw=T))

p2 <- spplot(k.a, zcol="varl.pred",

col.regions=bpy.colors(length(p.at)),
key.space="right", at=p.at,

main="Predicted values, Zn log(ppm)",

sub="Anisotropic variogram model", xlab="E", ylab="N",
scales=1list(draw=T))

> print(pl, split=c(1,1,2,1), more=T)
> print(p2, split=c(2,1,2,1), more=F)
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Q22 : Describe the spatial differences between the two predictions. Jump

to A22 e

We can also map the differences themselves.
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Task 34 : Compute and display the differences between the two predictions.

It’s easiest to compute the differences and add as a field to one of the predic-
tion grid data frames. To visualize, it’s best to use a different colour scheme
(here, the colour ramp produced by the heat.colors method) so that we
don’t visually confuse predictions and differences.

We also show the values at each point as a postplot, using the sp.layout
optional argument to spplot. This argument takes a list of specifications of
plots to add to the main figure.

Finally, we add the river outline to help interpretation.

Note: The river outline is provided with the sp package as meuse.riv. a
matrix of cotrdinates. It can be converted into an SpatialPolygons object
with the SpatialPolygons method, which requires a list of Polygons objects;
this is built with the Polygons method, which itself requires a list of Polygon
objects, built with the Polygon method.

This is a lot of work just to get one polygon, but the logical sequence of
single polygon, to set of polygons, to spatially-explicit polygons, is logical.

data(meuse.riv)
meuse.riv.poly <- SpatialPolygons (
list(Polygons(list(Polygon(meuse.riv)),
"meuse.riv")))
k.a$varl.diff <- k.a$varl.pred - k$varl.pred
sp.pts <- list("sp.points", meuse, pch=1,
cex=2*1log(meuse$zinc) /max(log(meuse$zinc)))

sp.riv <- list("sp.polygons", meuse.riv.poly)

spplot(k.a, zcol="varl.diff", col.regions=heat.colors(64),
main="0K predictions, Aniso - Iso", sub="log(ppm Zn)",
sp.layout=list(sp.pts, sp.riv))

+ + VvV + VYV + 4+ VYV
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Q23 :  Where are the largest prediction differences, both positive and neg-
ative? Jump to A23

Task 35 : Display the prediction variances side-by-side on the same scale.

It’s best to use a different colour scheme (here, the colour ramp produced
by the topo.colors method) so that we don’t visually confuse predictions
and their variances.

> p.at <- seq(round(min(k$varl.var, k.a$varl.var),1)-0.1,
+ round (max (k$varl.var, k$varl.var.a)+0.1, 1),
+ by=0.01)

> pl <- spplot(k, zcol="varl.var",

+ col.regions=topo.colors(length(p.at)),

+ key.space="right", at=p.at,

+ main="Prediction variances, Zn log(ppm) 2",
+ sub="Isotropic variogram model",

+ xlab="E", ylab="N", scales=list(draw=T))

> p2 <- spplot(k.a, zcol="varl.var",

+ col.regions=topo.colors(length(p.at)),

+ key.space="right", at=p.at,

+ main="Prediction variances, Zn log(ppm) 2",
+ sub="Anisotropic variogram model",

+ xlab="E", ylab="N", scales=list(draw=T))

> print(pl, split=c(1,1,2,1), more=T)

> print(p2, split=c(2,1,2,1), more=F)
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> print(pl, split=c(1,1,2,1), more=T)
> print(p2, split=c(2,1,2,1), more=F)
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Q24 : Describe the spatial pattern of the differences between the two OK
prediction variances. Jump to A24

Task 36 : Compute and display the differences between the two prediction
variances. .

Again we compute the differences and add as a field to one of the prediction
grids data frames, and visualize with yet another colour scheme. We overlay
the points, but here only their location; recall that OK prediction variances
does not depend on data values, only the point configuration.

> k.a$varl.diff.v <- k.a$varl.var - k$varl.var
> sp.pts <- list("sp.points", meuse, pch=20)
> spplot(k.a, zcol="varl.diff.v", col.regions=cm.colors(64),

+ main="0K prediction variances, Aniso - Iso",
+ sub="log(ppm Zn) 2",
+ sp.layout=list(sp.pts, sp.riv))
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Q25 :  Where are the largest prediction variance differences, both positive

and negative? Jump to A25 e
Q26 : For this dataset is isotropic or anisotropic OK more appropriate?
Why? Jump to A26 e

Task 37 : Clean up from this section, leaving the points, grid, and empirical
variogram for the next section. .

> rm(v, vmf, vmf.a, k, k.a, p.at, sp.pts, sp.riv,
+ meuse.riv, meuse.riv.poly, pl, p2)

6.3 Zonal anisotropy

We saw that the anisotropy is not geometric beyond a minor range of about
600 m. Thus the anisotropy is zonal. Modelling this is more complicated
than for the geometric case, because two geometric models (one per direc-
tion) must be combined.

In this case we have a geometric model that fits fairly well up to 550 m
in the minor range. That is, an ellipse with eccentricity 1 — (0.5)2 =~
0.8660 represents the anisotropy within a range of 600 m (minor) and 1200 m
(major). This will give proper weighting for kriging.

However, points with greater separations in the minor axis (or, proportion-
ally at intermediate angles) will receive too much weight with the geometric
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model — the semivariance between these and the prediction point as mod-
elled by the geometric model is too low. So we need to add another structure
to the model, with a longer range and higher partial sill in the minor direc-
tion. This is possible by specifying the optional add.to argument to the vgm
function, when describing the added structure.

To ensure that the added component does not interfere with the successful
geometric model along the major axis, the range of the added component is
set to a very large value, and the anisotropy ratio to a correspondingly very
small value along the opposite axis; these should be set to cancel each other
out except for the desired range.

For example, suppose the desired range is 1100 m along a given axis, say
120°. We would then specify anis=c(30, .0001), i.e., the orthogonal axis
and a range that multiplies the desired range by the inverse of the anisotropy
ratio, here 1/0.0001 = 10000. Then the range along the orthogonal axis
(the one which we don’t want to modify) becomes very long, so the existing
model is hardly affected in that direction — the sill is not reached until a
very long range, so the slope of the added variogram is very low near the
origin, where the existing model is well-fit. On the given axis, however, the
anisotropy ratio cancels out the very long range factor, restoring the desired
range along that axis:

10000 * 0.0001 = 1, therefore:
1100 * (10000 % 0.0001)
1100 % 10000

1100 — along the opposite axis
11000000 — along the named axis

Task 38 : Specify an anisotropic variogram model with two components:
geometric at short range, with an added component for the minor axis. e

A detail here is that the range of the geometric model along the minor axis
should be lengthened (i.e., larger anisotropy ratio) to compensate for the
added range of the second component; otherwise

First the adjusted geometric model:

> vm.major <- vgm(0.52, "Sph", 1100, 0.05, anis = c(30, 0.9))
> plot(v.a, vm.major, pl = T, pch = 20, col = "blue")
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And then add the second component:
> (vm.zonal <- vgm(0.45, "Sph", 1000 * 10000, anis = c(30, 1le-04),

+ add.to =

model psill

1 Nug
2  Sph
3 Sph

0.05 0.0e+00
0.52 1.1e+03
0.45 1.0e+07

vm.major))

range angl anisl

0 1e+00

30 9e-01
30 1e-04

> plot(v.a, vm.zonal, pl

=T, pch = 20, col =

"blue n)
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Note: Automatic fitting with fit.variogram doesn’t usually work because
of the large difference between ranges, leading to numerical instability and a
computationally-singular matrix during the attempted minimization.
Task 39 : Predict by Ordinary Kriging over the Meuse grid; display the

predictions and their variances.

>
+

k.z <- krige(log(zinc) ~ 1, loc=meuse,

newdata=meuse.grid, model=vm.zonal)

[using ordinary kriging]

>
+
+
+
>
+
+
+

pl <- spplot(k.z, zcol="varl.pred",
col.regions=bpy.colors(64),

main="0K predictions, zonal model",

sub="log ppm(Zn)")
p2 <- spplot(k.z, zcol="varl.var",

col.regions=topo.colors(64),

main="0K prediction variances, zonal model",

sub="(log ppm(Zn))~2")
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> print(pl, split = c(1, 1, 2, 1), more = T)
> print(p2, split = c(2, 1, 2, 1), more = F)
OK predictions, zonal model OK prediction variances, zonal model

F75

r 0.5

r7.0

r04

6.5

0.3

0.2

.,

0.1

log ppm(Zn) (log ppm(Zn))*2

Task 40 : Clean up from this section. .

> rm(k.z, vm.zonal, vm.major, v.a, meuse, meuse.grid, pl, p2)

Q27 :  What are the spatial differences between this prediction (and its
variances) and that using the geometric model of the previous §6.27 Jump
to A27 e

Challenge: Compare the results of the zonal and geometric models using
the same techniques as the previous §6.2.

Challenge:  After completing §3 “Cross-validation” of Exercise 6, com-
pare the three predictions (isotropic OK, geometric anisotropic OK, zonal
anisotropic OK) by cross-validation. Display the residuals as bubble plots
and compare their numeric summaries. Which approach gives the most re-
liable predictions? Explain why.
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6.4 Answers

A21 : The model fits reasonably well first 500 m of the 120° variogram, but at
longer ranges the fit is very bad, seriously underfitting the sill. The fit to the 30°
variogram is a bit high, because of the influence of the 120° variogram’s longer-range
point-pairs on the sill. Return to Q21 e

A22 : The anisotropic predictions clearly show the effect of the longer major axis
at 30° N. The higher predictions along the NW side are narrower (aligned with
that axis); the lower predictions in the centre of the area are elongated along the
NNE-SSW axis. This effect is also seen around the “hot spot” in the SE.  Return
to Q22 e

A23 : The largest positive differences (anisotropic predicts higher) are on the
E edge, especially above the “hot spot” in the SE and in the centre-E. These are
influenced by higher values along the NNE-SSW axis near them.

The largest positive differences (anisotropic predicts lower) are at several patches
just inside (SE) of the W edge (main river) and two large patches in the centre.
These are areas where low values are to the NNE and/or SSE.  Return to Q23 e

A24 : The variances are also aligned NNE-SSW for the anisotropic OK predictions,
whereas they are isotropic for isotropic OK. Return to Q24 e

A25 : The largest positive differences (anisotropic prediction variance higher) are
along the E edge and to the NW and SE of the “hot spot” at the first bend in the
river. This is because there are few points in the NNE-SSW direction from these
locations.

The largest negative differences (anisotropic prediction variance higher) are at many
locations; note that these differences are not as large in absolute value as the positive
differences. These are locations with points to the orthogonal direction (WNW-SSE)
that in the anisotropic case have less weight. Return to Q25

A26 : The directional variograms show strong anisotropy, due to the main river
axis and the presumed origin of the metals from river flooding. Although the kriging
prediction variances are on average higher for anisotropic OK, this seems realistic.
So, anisotropic OK is preferred here. Return to Q26

A27 : The pattern of predictions with the zonal model are more strongly aligned
with the major axis, because the influence of minor axis points further than =~ 600 m
is less. The pattern of prediction variances is along more linear; this is especially
apparent along the E side of the grid, where there are very narrow bands of similar
variances aligned at 30° N. Return to Q27

7 * Insight into the OK system

In this optional section we look at how gstat solves the kriging system.
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Because the size of the kriging matrix depends on the number of sample
points, we first reduce the size of the problem.

Task 41 : Select the first six sample points of the prediction sample, and
their Co concentration. .

To select one row (case), we use the row selection operator [], with the
sequence operator : to select the first six. We also specify the data field:

> (jura.pred.6 <- jura.pred[1:6, "Co"])

coordinates Co
1 (2.386, 3.077) 9.320
2 (2.544, 1.972) 10.000
3 (2.807, 3.347) 10.600
4 (4.308, 1.933) 11.920
5 (4.383, 1.081) 16.320
6 (3.244, 4.519) 3.508

Q28 : What is the bounding box of these six points? How does that compare
with the bounding box for the whole prediction sample?  Jump to A28 e

> bbox(jura.pred.6)

min max
Xloc 2.386 4.383
Yloc 1.081 4.519

> bbox(jura.pred)

min max
Xloc 0.626 4.92
Yloc 0.580 5.69

Task 42 : Define a one-point SpatialPoints object at (3.0,2.5), and plot
its location along with the six sample points. .

This location is choosen to illustrate kriging weights as influenced by point
configuration.

> jura.pt <- SpatialPoints(data.frame(Xloc = 3, Yloc = 2.5))
> str(jura.pt)

Formal class 'SpatialPoints' [package "sp"] with 3 slots

..Q@ coords : num [1, 1:2] 3 2.5
..— attr(*, "dimnames")=List of 2
..$ : NULL
.. ..$ : chr [1:2] "Xloc" "Yloc"
..Q@ bbox : num [1:2, 1:2] 3 2.5 3 2.5

..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "Xloc" "Yloc"
..$ : chr [1:2] "min" "max"
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Yloc

..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..0Q projargs: chr NA

> plot(coordinates(jura.pred.6), col = "blue", pch = 20,
+ asp = 1, main = "Sample and prediction points",
+ sub = "Co concentration")
> text(coordinates(jura.pred.6) [, "Xloc"], coordinates(jura.pred.6)[,
+ "Yloc"], col = "blue", pos = 2, jura.pred.6$Co)
> points(coordinates(jura.pt), col = "red", cex = 1.2,
+ pch = 20)
> text(coordinates(jura.pt), col = "red", pos = 2,
+ ll??“)
Sample and prediction points

v ] 3.508 o

<

Q]

<

0 |

@ 10.6 o

o | 9.32 o

(o]

2 - e

S 10 . 11.92 «

v

o | 16.32

- | | |

2 3 4 5
Xloc

Co concentration

Task 43 : Predict at this point with OK, showing the kriging system, by
using the optional debug.level argument to the krige method. o

The debug.level argument is passed by the krige function to the more gen-
eral predict.gstat method; 7predict.gstat shows various useful values;
debug.level=32 prints the covariance matrices, design matrices, solutions,
and kriging weights.

> k.pt <- krige(Co ~ 1, locations = jura.pred.6, newdata = jura.pt,
+ model = vmf, debug.level = 32)

[using ordinary kriging]

we're at location X: 3 Y: 2.5 Z: 0O
zero block size

we're at point X: 3 Y: 2.6 Z: O
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# X:

Matrix: 6 by 1
row O:

row
row
row
row
row b5: 1

[using generalized covariances: max_val - semivariance()]
# Covariances (x_i, x_j) matrix C (lower triangle only):
Matrix: 6 by 6

W N e
e

row O: 14.3033801 0 0 0
0 0
row 1: 0.501396836 14.3033801 0 0
0 0
row 2: 5.52709612 0.0163626925 14.3033801 0
0 0
row 3: 0 0 0 14.3033801
0 0
row 4: 0 0 0 1.91089294
14.3033801 0
row 5: 0 0 0.161934353 0
0 14.3033801
# X'C-1 X:
Matrix: 1 by 1
row O: 0.35937143
# beta:
Vector: dim: 1
10.1549349

# Cov(beta), (X'C-1 X)-1:
Matrix: 1 by 1
row O: 2.78263634

# Corr(beta):
Matrix: 1 by 1
row O: 1

# X0 (X values at prediction location x0):
Matrix: 1 by 1
row O: 1

# BLUE(mu), E(y(x0)) = XO'beta:
Vector: dim: 1

10.1549349
# Covariances (x_i, x_0), CO:
Matrix: 6 by 1

row O: 2.00719186
row 1 3.28488332
row 2 1.81217503
row 3: 0.00826190553
row 4: 0
row 5 0
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# C

-1 CO:

Matrix: 6 by 1

row
row
row
row
row
row

0: 0.0982056253
1: 0.226114052
2: 0.0884997462
3: 0.000588115932
4: -7.85706995e-05
5: -0.00100194143

# [a] Cov_ij(B,B) or Cov_ij(0,0):
Matrix: 1 by 1

row

0: 14.3033801

# [c] (x0-X'C-1 c0)'(X'C-1 X)-1(x0-X'C-1 c0):
Matrix: 1 by 1

row

0: 0.961009957

# [b] cO0'C-1 cO:
Matrix: 1 by 1

row

0: 1.1002577

# Best Linear Unbiased Predictor:
Vector: dim: 1

10.0845083

# MSPE ([al-[bl+[cl):
Matrix: 1 by 1

row

0: 14.1641324

# kriging weights:
Matrix: 6 by 1

row
row
row
row
row
row

0: 0.176715804
1: 0.337595687
2: 0.17107886
3: 0.101442478
4: 0.100775792
5 0.11239138

Working through this output, we see:

1.
2.

The prediction point and block size (here, zero);

The design matrix X, here just a column of 1’s to predict the spatial
mean;

. The covariance matrix C between sample points; this depends of course

on the variogram model;

. The quadratic form X7 C~1X used in many of the subsequent calcula-

tions;

. The spatial mean f3, estimated by GLS using the covariance matrix;
. The variance of the spatial mean;

. The correlation of the the spatial mean with itself, of course this is 1

for a single trend parameter (the spatial mean) but is not necessarily
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so for a UK system with more trend parameters;

8. The BLUE of the mean at the prediction point, here just the spatial
mean;

9. The covariance vector C, between the prediction point and each sample
point;

10. The product C~1Co;

11. The within-block or at-point covariance, here just the total variogram
sill (estimating the overall variance);

12. A matrix product used in the BLUP;

13. A matrix product used in the BLUP;

14. The BLUP at the prediction point; this is the kriging prediction;
15. The kriging prediction variance at the prediction point;

16. The kriging weights, i.e. the weights given to each sample point when
their values are summed into the BLUP.

The final result is in the kriging object:
> print(k.pt)

coordinates varl.pred varl.var
1 (3, 2.5) 10.085 14.164

Task 44 : Plot the sample points and their Co concentration, with the
prediction point and its predicted concentration and standard error of the

prediction. .
> plot(coordinates(jura.pred.6), col = "blue", pch = 20,
+ asp = 1, main = "Sample and prediction points",
+ sub = "Co concentration")
> text(coordinates(jura.pred.6) [, "Xloc"], coordinates(jura.pred.6) [,
+ "Yloc"], col = "blue", pos = 2, jura.pred.6$Co)
> points(coordinates(jura.pt), col = "red", cex = 1.2,
+ pch = 20)
> text(coordinates(jura.pt), col = "red", pos = 4,
+ paste(round(k.pt$varl.pred, 2), "+/-", round(sqrt(k.pt$varl.var),
+ 3N
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Task 45 : Display this plot but with the kriging weights, rather than the
predictions. o

To find the weights, we capture the output into a workspace variable with
capture.output, and then search through it for the weights.

> tmp.ok <- capture.output(krige(Co ~ 1, locations = jura.pred.6,

+ newdata = jura.pt, model = vmf, debug.level = 32))
> (ix <- which(tmp.ok == "# kriging weights:"))
(1] 89

> (n <- as.numeric(strsplit(tmp.ok[ix + 11, " ")[[11]1[2]1))

[11 6

> (ix <- which(tmp.ok == "# kriging weights:"))

[1]1 89

> ok.wt <- NULL

> for (i in 1:n) ok.wt[i] <- as.numeric(strsplit(tmp.ok[ix +
+ 1+ 4], "1 2D

> print(ok.wt)

[1] 0.17672 0.33760 0.17108 0.10144 0.10078 0.11239

> plot(coordinates(jura.pred.6), col="darkgreen",
+ pch=20, asp=1, ylim=c(0,5),
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+ main="0rdinary Kriging weights")
> grid()
> text(coordinates(jura.pred.6)[,"Xloc"],
+ coordinates (jura.pred.6) [,"Yloc"],
+ col="black", pos=4, round(ok.wt, 3))
> text(coordinates(jura.pred.6) [,"Xloc"],
+ coordinates(jura.pred.6) [,"Yloc"],
+ col="blue", pos=3, 1:6)
> points(coordinates(jura.pt), col="red",
+ cex=2, pch=20)
Ordinary Kriging weights
o
6
e 0.112
q- -
3
1 0.171
o . 0.177
3 °
>
2 4
N + 0.338 e 0.101
5
- ¢ 0.101
O -
T T T T T T
1 2 3 4 5 6
Xloc
Q29 : Which points get the most kriging weight? Jump to A29 e

We will return to this example in Universal Kriging.

7.1 The OK system at a sample point

What happens to the system if we try to predict at a known point? As
explained in §4.5, the known point (at zero separation from the point to be
predicted) gets all the weight, is predicted exactly, and the MSPE (kriging
prediction variance) is zero. Here we demonstrate how the OK system looks
in this case.

Task 46 : Create a spatial object with a single prediction point: the first
point of the calibration set, and predict at this point from the six sample
points, again showing the diagnostics. .
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The point to be predicted does not need any data, just a location (although,
there is no harm in keeping the data); so we convert the object to the
SpatialPoints class with the generic as method:

> (jura.pt <- as(jura.pred[1, ], "SpatialPoints"))

SpatialPoints:
Xloc Yloc
1 2.386 3.077
Coordinate Reference System (CRS) arguments: NA

> (k.pt <- krige(Co ~ 1, locations = jura.pred.6, newdata = jura.pt,
+ model = vmf, debug.level = 32))

[using ordinary kriging]

we're at location X: 2.386 Y: 3.077 Z: O
zero block size

we're at point X: 2.386 Y: 3.077 Z: O

# X:
Matrix: 6 by 1
row O:

[y

row
row
row

W N
e

row
row b5: 1

[using generalized covariances: max_val - semivariance()]
# Covariances (x_i, x_j) matrix C (lower triangle only):
Matrix: 6 by 6

row O: 14.3033801 0 0 0
0 0
row 1: 0.501396836 14.3033801 0 0
0 0
row 2: 5.52709612 0.0163626925 14.3033801 0
0 0
row 3: 0 0 0 14.3033801
0 0
row 4: 0 0 0 1.91089294
14.3033801 0
row 5: 0 0 0.161934353 0
0 14.3033801
# X'C-1 X:
Matrix: 1 by 1
row O: 0.35937143
# beta:
Vector: dim: 1
10.1549349

# Cov(beta), (X'C-1 X)-1:
Matrix: 1 by 1
row O: 2.78263634

# Corr(beta):
Matrix: 1 by 1
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row O: 1

# X0 (X values at prediction location x0):
Matrix: 1 by 1
row O: 1

# BLUE(mu), E(y(x0)) = XO'beta:
Vector: dim: 1

10.1549349
# Covariances (x_i, x_0), CO:
Matrix: 6 by 1

row O: 14.3033801
row 1 0.501396836
row 2 5.52709612
row 3: 0
row 4 0
row 5 0
# C-1 CO:

Matrix: 6 by 1

row O: 1
row 1 0
row 2 0
row 3 0
row 4 0
row 5 0

# [a] Cov_ij(B,B) or Cov_ij(0,0):
Matrix: 1 by 1
row O: 14.3033801

# [c] (x0-X'C-1 c0)'(X'C-1 X)-1(x0-X'C-1 c0):
Matrix: 1 by 1
row O: 0

# [b] c0'C-1 cO:
Matrix: 1 by 1
row O: 14.3033801

# Best Linear Unbiased Predictor:
Vector: dim: 1
9.32
# MSPE ([al-[bl+[c]):
Matrix: 1 by 1
row O: 0

# kriging weights:
Matrix: 6 by 1

row O: 1
row 1 0
row 2 0
row 3 0
row 4 0
row 5 0
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7.2 Answers

8 Self-test

coordinates varl.pred varl.var
1 (2.386, 3.077) 9.32 0

Q30 : What is the OK prediction at the known point? How does it compare
with the original value? Jump to A30 e

Q31 : What is the OK prediction variance at this point? Jump to A31 e

Task 47 : Clean up from this section. o

> rm(jura.pred.6, jura.pt, k.pt)

A28 : The bounding box is 2.386 to 4.383 (X) and 1.081 to 4.519 (Y); this is
considerably smaller than the bounding box for the whole sample. Return to Q28

A29 : Point 2 gets over 1/3 of the total weight, since (1) it is fairly close to the
prediction point; (2) it is the only point in the SW sector; (3) points 1 and 3 are
also close to the prediction point but are clustered and hence “share” the weight for
the NW sector. Interestingly, points 4 and 5 have the same weight although point
4 is closer to the prediction point. This is likely because point 4 is also closer to
point 2. Return to Q29 e

A30 : The prediction is 9.32, exactly the same as this calibration point. Return
to Q30 e

A31 : The prediction variance is 0. Return to Q31 e

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

For this self-test we continue with the Jura dataset, which should already
be loaded from the exercise.

We begin with a closer look at a portion of the study area.
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Task 1 : Make a prediction grid with 10 m resolution of the square km
bounded by [3 ...4] East and [3 ...4] North!. Use the corner points as
centres of the grid (i.e. grid points fall on the even km lines). .

Task 2 : Predict the Cobalt concentration over this grid with Ordinary
Kriging, using the variogram model previously determined and the Jura
sample set. Plot the predictions and their variances. o

Q1 : What are the minimum, mean and maximum predictions? How do
these compare with the values for the rectangle covering the entire study
area (see above)? Explain any differences. .

Q2 : What are the minimum, mean and maximum kriging variances? How
do these compare with the values for the rectangle covering the entire study
area (see above)? Explain any differences. .

Task 3 : Remove temporary objects from the workspace. .

Now we pose some theoretical questions, to test your understanding of trend
surfaces, variograms, and kriging. The following questions require careful
thought. They are about the general situation, i.e., in any area, not only
about our test area.

Q3 : For predicting by a trend surface:

(1) In general, would there be a different trend surface equation using
(a) all the calibration sample points or (b) just the calibration samples from
this square to fit the trend surface?

(2) If the aim is to predict in this 1 km? area, under what assumptions
would you prefer to use all the calibration sample points, and under what
assumptions would you prefer to use just the just the calibration samples
from this square to fit the trend surface to be used for that prediction? e

Q4 : For predicting by a Ordinary Kriging:

(1) In general, would there be a different model of spatial dependence
(i.e. variogram model) using (a) all the calibration sample points or (b) just
the calibration samples from this in this 1 km? area to fit the model of spatial
dependence?

(2) What is a practical reason to use all the calibration sample points, rather
than just those in the square, to model the variogram?

Li.e. lower-left corner (E,N) = (3,3), upper-right corner (E,N) = (4,4)
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9 Quitting R

(3) What assumption must be made in order to use all the calibration sample
points, rather than just the calibration samples from this square, to fit the
model of spatial dependence to be applied to predict in the square? o

Q5 :  For predicting by a Ordinary Kriging; once we have a model of
spatial dependence (i.e. variogram model):

(1) In general, would there be a different prediction map using the same
variogram model to krige from (a) all the calibration sample points or (b)
just the calibration samples from this in this 1 km? area for prediction by
OK?

(2) What assumption must be made in order to use all the calibration sample
points, rather than just the calibration samples from this square, to predict
in the 1 km?2 area by OK?

(3) What are the advantages of using all the calibration sample points, not
just those in the square? o

We will use both the Meuse and Jura datasets again, so let’s leave them in
the workspace and save them in .RData.

Task 4 : Leave R, saving the workspace. J
qO

The q “quit” method without any argument saves all objects in the special
file (normally hidden in Windows Explorer) .RData.
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Index of R Concepts

: operator, 46
[] operator, 16, 46

add.to argument (vgm function), 41
alpha argument (variogram function), 32
anis argument (vgm function), 33

as, b3

as.numeric, 10

as.ordered, 12

auto.key=T graphics argument, 10

bbox (sp package), 21
by, 11, 13

c, 33

capture.output, 51

ceiling, 22

conf.level argument (t.test function), 14
coordinates (sp package), 8

data, 7

data.frame, 14

data.frame class, 12

debug.level function argument, 47

expand.grid, 23

fit.variogram (gstat package), 33, 43
fitted, 3

floor, 22

for operator, 21

gridded (sp package), 8
GridTopology (sp package), 23
groups graphics argument, 10
gstat package, 3, 7, 16, 20, 35, 45

heat.colors, 37
jura dataset, 7

key.space graphics argument, 9
krige (gstat package), 3-5, 16, 17, 35, 47

lattice package, 5, 9

levelplot (lattice package), 5, 9
1m, 3, 4, 10

load, 31

meuse dataset, 31

meuse.grid dataset, 35
meuse.riv dataset, 37
min, 20

newdata argument (predict.lm function),
4,12
nlevels, 9

paste, 21

pch graphics argument, 9

Polygon (sp class), 37

Polygon (sp package), 37

Polygons (sp class), 37

Polygons (sp package), 37

predict, 11

predict.gstat (gstat package), 3, 47
predict.lm, 4, 12

print, 21

q, 57
gnorm, 19

range argument (vgm function), 33
require, 5

row.names, 14

sapply, 13, 14

save, 31

sd, 13

sp package, 3, 23, 31, 35, 37
sp.layout argument (spplot function), 37
SpatialGrid (sp package), 23
SpatialGridDataFrame class, 9
SpatialPixelsDataFrame (sp class), 8
SpatialPixelsDataFrame class, 12
SpatialPoints (sp class), 4, 53
SpatialPoints (sp package), 46
SpatialPointsDataFrame (sp class), 8
SpatialPolygons (sp class), 37
SpatialPolygons (sp package), 37
split, 13

spplot (sp package), 9, 24, 37
summary.lm, 10

t.test, 14
tol.hor argument (variogram function), 32
topo.colors, 18, 38

variogram (gstat package), 32
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vgm (gstat package), 33, 41

xyplot (lattice package), 9
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