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5.3.4 Resampling . . . . . . . . . . . . . . . . . . . . . . . . . 29

6 Answers 37

7 Self-test 40

References 44

Index of R concepts 46

P!: !"L!!!!!!!ÈvÑ!"ŒK!v%Ñ!"9K
– !Ì 7.22

“When I walk along with two others, they surely can serve as
teachers. I will select their good qualities and follow them, their

bad qualities and avoid them.”
– The Analects, 7.22

This exercise shows some ways to integrate R with GIS for spatial analysis,
and for carrying out typical GIS operations directly within R. An excellent
text, with many more applications, is “Applied Spatial Data Analysis with
R” (ASDAR) by Bivand, Pebesma, and Gómez-Rubio [2] in the Springer
UseR! series; here we can only scratch the surface. We’ve tried to explain
some of the steps in more detail here than in the ASDAR book, to make
these notes perhaps more suitable for a first exposure.

Note: The code in these exercises was tested with Sweave [9, 8] on R version
3.1.0 (2014-04-10), sp package Version: 1.0-15, gstat package Version: 1.0-
19, lattice package Version: 0.20-29, maptools package Version: 0.8-30,
rgdal package Version: 0.8-16, running on Mac OS X 10.6.8 So, the text and
graphical output you see here was automatically generated and incorporated
into LATEX by running actual code through R and its packages. Then the
LATEX document was compiled into the PDF version you are now reading.
Your output may be slightly di↵erent on di↵erent versions and on di↵erent
platforms.

1 Introduction

Spatial data within R is a rapidly-developing field. Of particular importance
is the sp package, which is an integrating framework for spatial data. We
have used this extensively in the previous exercises. This package has two
so-called vignettes (small explanation), which can be displayed with the vi-
gnette command; no need to read these now, but it’s good to know how to
find them and what they discuss.

Task 1 : Display the vignettes for the sp package. •
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> vignette(package = "sp")
> vignette("intro_sp")
> vignette("over", package = "sp")

Other relevant packages covered in this exercise include:

the rgdal package for GDAL-standard data access to most geographic
data sources, including shapefiles and KML files;

the maptools package for direct access to some common geographic
data formats (e.g. shapefiles), creation of topology, and conversion be-
tween R formats;

the gstat package for geostatistical analysis;

the lattice graphics system, which is used by sp for much of its
graphical output.

Other packages of interest, but not covered here, include:

the raster package for creating rasters (grids) and doing GIS map
algebra operations on them.

Task 2 : Load the relevant spatial packages. •
Packages are loaded, if not already in the environment, with therequire
command:

> require(sp)
> require(rgdal)
> require(maptools)
> require(gstat)
> require(lattice)

2 Projections and co

¨

ordinate systems

To this point in the exercises we have treated coördinates as metric numbers
on a Euclidean plane. You may have noticed an unused slot in spatial objects,
namely proj4string. We now explain how this is used to specify coörd-
inates. These must be related to to the Earth’s surface by some projection

used to render the surface of an elipsoid as a plane; in addition the original of
the system and the assumed figure of the earth must be given; these together
are called the datum.

Note: If you are unfamiliar with the concepts of projections and datums,
they are explained in many surveying and geodesy texts, and in more detail
in various works by Snyder and colleagues [e.g. 15, 3]. An excellent practi-
cal introduction to the concept of coordinate reference systems, with many
explanatory colour figures, is by Ili↵e and Lott [7]. A similar recent work is
by van Sickle [16].
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2.1 Spatial objects without co

¨

ordinate systems

We will use as an example the well-known Meuse River soil pollution dataset
from the southern part of the Netherlands. This will have some complica-
tions as we attempt to get proper coördinate reference information; although
these problems are specific to the Netherlands, they well illustrate the kind
of detective work you will ususally have to do with a legacy dataset.

Note: It is very important to fully understand the coördinate systems for the
spatial objects in a project. Failure to bring di↵erent sources to a common
system will usually cause gross errors in any analysis, since the di↵erent
spatial coverages will not be properly alligned.

Task 3 : Load the Meuse River soil pollution dataset (supplied with the sp
package), convert it to a spatial object, and examine its structure. •
According to the on-line documentation1, the coördinates are in fields x and
y:

> data(meuse)
> coordinates(meuse) = ~x + y
> head(coordinates(meuse))

x y
1 181072 333611
2 181025 333558
3 181165 333537
4 181298 333484
5 181307 333330
6 181390 333260

> str(meuse)

Formal class SpatialPointsDataFrame [package "sp"] with 5 slots
..@ data : data.frame : 155 obs. of 12 variables:
.. ..$ cadmium: num [1:155] 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
.. ..$ copper : num [1:155] 85 81 68 81 48 61 31 29 37 24 ...
.. ..$ lead : num [1:155] 299 277 199 116 117 137 132 150 133 80 ...
.. ..$ zinc : num [1:155] 1022 1141 640 257 269 ...
.. ..$ elev : num [1:155] 7.91 6.98 7.8 7.66 7.48 ...
.. ..$ dist : num [1:155] 0.00136 0.01222 0.10303 0.19009 0.27709 ...
.. ..$ om : num [1:155] 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...
.. ..$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...
.. ..$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...
.. ..$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...
.. ..$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...
.. ..$ dist.m : num [1:155] 50 30 150 270 380 470 240 120 240 420 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:155] "1" "2" "3" "4" ...
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611

1 ?meuse; help(meuse)
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.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class CRS [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

Q1 : (1) Which slot is designed to hold information on the projection and
datum?

(2) What are the units of measure of the coördinates? Jump to A1 •

The proj4string function retrieves the current projection:

> proj4string(meuse)

[1] NA

Q2 : What is the listed projection and datum? Jump to A2 •

In this case, the coördinates are just numbers, with no specified projection
or datum.

2.2 Specifying a co

¨

ordinate reference system

The listed coördinates must come from some projection and datum together
referred to as a a coordinate reference system, abbreviated CRS. The sp

package provides the proj4string method to specify the CRS for opjects of
any spatial class. Such a CRS object is created by calls to the CRS method,
with one argument: a valid string of PROJ.4 arguments. These are docu-
mented in three manuals2 provided by the PROJ.4 project.

Note: PROJ.4 is an open-source of library of projection functions3; it is
not part of R or the sp package, and may be used stand-alone or linked in
another program.

PROJ.4 arguments must be entered exactly as in the PROJ.4 documen-
tation, in particular there cannot be any white space in +<arg>=<value>

strings, and successive such strings can only be separated by blanks.

There are two ways to specify a CRS:

1. With a reference to the EPSG database (§2.2.1);

2. Directly from the parameters (§2.2.2).

The first is much simpler, and we will explain it first. If you can find the CRS
in the EPSG database (explained next), this is quicker and more reliable. If
not, you will have to try the second method.

2 OF90-284.pdf, proj.4.3.pdf and proj.4.3.I2.pdf
3 http://trac.osgeo.org/proj/
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2.2.1 Specifying a CRS with the EPSG database

In our example, the metadata4 tell us that the coördinates are in the RDH
(Rijksdriehook = Dutch triangulation) CRS.

The parameters of this and many other systems are included in the European
Petroleum Survey Group (EPSG) database5, which is an attempt to collect
and verify information on all the projection systems in use now and in the
past. The database is supplied with the rgdal package6 under the“Geodetic
dataset” button, in file library/rgdal/proj/epsg in the R installation7.

Note: The rgdal package is an R interface to the open-source Geospatial
Data Abstraction Library (GDAL)8, which presents a single abstract data
model for a large variety of spatial data.

The advantage of this approach is that you only need to know the refer-
ence number in the EPSG database, and the parameters are then all set
automatically.

Task 4 : Load the EPSG database into R and search for the “Amersfoort /
RD” CRS. •
We use the make_EPSG utility function of the rgdal package to load the
definitions into a list, and then search with grep for the string Amersfoort,
which is the name of the origin of the Rijksdriehook (Dutch triangulation)
coördinate system9.

> EPSG <- make_EPSG()
> (EPSG[grep("Amersfoort", fixed = T, EPSG$note), ])
> rm(EPSG)

code note
2985 28991 # Amersfoort / RD Old
2986 28992 # Amersfoort / RD New

prj4
2985 +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889
+k=0.9999079 +x_0=0 +y_0=0 +ellps=bessel +units=m +no_defs
2986 +proj=sterea +lat_0=52.15616055555555 +lon_0=5.38763888888889
+k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel +units=m +no_defs

We see that there are two systems,“RD Old”and“RD New”. For information
on these we refer to the review of coordinate systems in the Netherlands by
Mugnier [11]; this is one of a long series of “Grids & Datums” articles10

4 ?meuse
5 now maintained by the International Association of Oil & Gas producers (OGP)
6 The latest version is also available on-line and as an MS-Access databse, at http:

//www.epsg.org
7 if the rgdal package is installed, of course
8 http://www.gdal.org/
9 the centre point of the projection is the top of the Onze Lieve Vrouwetoren in the city
of Amersfoort

10 http://www.asprs.org/Grids-Datums.html
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in Photogrammetric Engineering & Remote Sensing ; this series of articles
should be your first stop for information on a country’s coordinate systems.

From this article we see that the new system di↵ers from the old only in the
location of (0,0) point in the English Channel (instead of at Amersfoort);
there are thus new false orgins, i.e. the +x_0 and +y_0 parameters.11

The list shows that the RD new system is EPSG reference 2899212

Task 5 : Set the projection information for the Meuse dataset to EPSG
reference 28992. •
This is easily done with the CRS method, using a single argument string,
+init=, i.e. “initialize” the entire CRS from the given EPSG entry.

> proj4string(meuse) <- CRS("+init=epsg:28992")
> proj4string(meuse)
> head(coordinates(meuse))

[1] " +init=epsg:28992 +proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel
+units=m +no_defs"

Note that the +init parameter is as we specified it, but this has been ex-
panded with the list of parameters (+proj, +lat_0 etc.) for this system,
according to the EPSG database.

Q3 : (1) Were the coördinates changed?

(2) What are now the units of measure of the coördinates? Jump to A3 •

Unfortunately, the EPSG is not (as of this writing) up-to-date; in particular
it is missing a key issue: the o↵set of the centre of the Earth in the RD system
to that in the “WGS84” CRS. This will not a↵ect conversion to geographic
coördinates in terms of the RDH’s elipsoid, but will cause serious errors, on
the order of 100’s of meters, when converting to the WGS84 CRS used as a
default by most consumer GPS receivers and Google Earth (§5).

The Netherlands Geodetic Commission [5] has published the following ad-
justment, which requires six parameters (see next §2.2.2 for details); they
are also shown in an example in the ASDAR book [2, §4.3.1].

+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812

Task 6 : Add the WGS84 displacement to the CRS definition for the Meuse
dataset. •
11 This ensures that within the national territory of the Netherlands all East coördinates

are less than 280 000 m, and all North coördinates greater than than 300 000 m; thus
there can never be a confusion between N and E coordinates.

12 This information is also found in the help text for the writeOGR method, where it is
used as an example.
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We retrieve the current CRS with the proj4stringmethod, paste it together
with the additional information with the paste function, and then format
the combined string into a CRS with the CRS method:

> proj4string(meuse) <- CRS(paste(proj4string(meuse),
+ "+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812"))
> proj4string(meuse)

[1] " +init=epsg:28992 +proj=sterea +lat_0=52.15616055555555
+lon_0=5.38763888888889 +k=0.9999079 +x_0=155000 +y_0=463000 +ellps=bessel
+units=m +no_defs
+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812"

2.2.2 * Specifying a CRS directly

If a CRS can’t be found in the EPSG database, you must search for its
parameters in some other source, most likely the survey agency responsible
for the system. As explained above, an excellent source of information on
many countries and regions is the series of columns “Grids & Datums”13

in Photogrammetric Engineering & Remote Sensing written by Cli↵ord J.
Mugnier.

In our example, the Rijksdriehook CRS is extensively documented (more
completely than in Mugnier [11]) in a publication of the Netherlands Geode-
tic Commission [5]. Referring to this document, we discover that this CRS
is a:

stereographic projection (parameter +proj) . . .

on the Bessel ellipsoid (parameter +ellps) . . .

with a fixed origin (parameters +lat_0 and +lon_0), and

scale factor at the tangency point (parameter +k).

In addition, the coördinate system has a false origin (parameters +x_0
and +y_0).

The centre of the ellipsoid is displaced with respect to the standard
WGS84 ellipsid (parameter +towgs84, with three distances, three an-
gles, and one scale factor).

Task 7 : Set the correct projection information for the Meuse dataset and
check it, •
To both set and check the projection, we use the proj4string method,
setting up the CRS from a text string with the CRS method:

> proj4string(meuse) <- CRS("+proj=stere
+ +lat_0=52.15616055555555 +lon_0=5.38763888888889
+ +k=0.999908 +x_0=155000 +y_0=463000
+ +ellps=bessel +units=m +no_defs
+ +towgs84=565.2369,50.0087,465.658,

13 http://www.asprs.org/Grids-Datums.html
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+ -0.406857330322398,0.350732676542563,-1.8703473836068,
+ 4.0812")

Note: Note that these towgs84 parameters are more precise than those from
the ASDAR book [2], which are:

+towgs84=565.237,50.0087,465.658,-0.406857,0.350733,-1.87035,4.0812

2.2.3 Transformation of CRS

The rgdal package provides methods to convert between projections and
datums; this dual process we can call “transformation” between CRS. The
most general is the generic spTransform method. It works on any spatial
class with a defined CRS; the second argument is an object of class CRS,
specifying the target CRS.

Task 8 : Transform the Meuse dataset from the Rijksdriehook CRS to
geographic coördinates on the WGS84 elipsoid. •
Very important:

To force spTransform to do a datum transformation, the target CRS
must include the +datum parameter. Otherwise only a reprojection
will be done, but on the same datum.

In almost all cases the non-WGS84 system should specify a +towgs84

parameter, with either 3 (origin shift) or 7 (origin shift + rotation)
values.

> meuse.wgs84 <- spTransform(meuse, CRS("+proj=longlat +datum=WGS84"))
> proj4string(meuse.wgs84)

[1] "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"

> head(coordinates(meuse.wgs84))

x y
1 5.7585603 50.991526
2 5.7578871 50.991051
3 5.7598796 50.990856
4 5.7617701 50.990374
5 5.7618871 50.988989
6 5.7630641 50.988356

Note: Note the projection is longlat, not latlong! So, E before N, as with
metric coördinate systems.

Note: There is also an EPSG refererence for this system, 4326; so this could
have been written as:

meuse.wgs84 <- spTransform(meuse, CRS("+init=epsg:4326"))
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The coördinates are now in geographic coordinates on the WGS84 ellipsoid,
as required.

Q4 : What are the units of measure of these transformed coördinates?
Jump to A4 •

2.2.4 * Measurements on the elipsoid

Spatially-aware methods automatically measure distances along a great-
circle on the elipsoid, if the CRS is a geographic (long/lat) system and
the elipsoid is known. An example is the variogram method of the gstat

package.

Task 9 : Compute the default variogram on both the elipsoid and RD metric
system. •

> (v.wgs84 <- variogram(log(zinc) ~ 1, loc = meuse.wgs84))

np dist gamma dir.hor dir.ver id
1 57 0.079269952 0.12344793 0 0 var1
2 299 0.163923879 0.21621849 0 0 var1
3 419 0.267284017 0.30278588 0 0 var1
4 457 0.372621281 0.41214476 0 0 var1
5 547 0.478324369 0.46341279 0 0 var1
6 533 0.585151621 0.56469327 0 0 var1
7 574 0.692926159 0.56896826 0 0 var1
8 565 0.796021090 0.61760666 0 0 var1
9 588 0.902937992 0.64822464 0 0 var1
10 543 1.010942686 0.69157049 0 0 var1
11 501 1.117588338 0.70273849 0 0 var1
12 477 1.221119674 0.60381181 0 0 var1
13 451 1.328812070 0.65240318 0 0 var1
14 458 1.436853980 0.56530875 0 0 var1
15 415 1.542891299 0.57480955 0 0 var1

> (v.rd <- variogram(log(zinc) ~ 1, loc = meuse))

np dist gamma dir.hor dir.ver id
1 57 79.292437 0.12344793 0 0 var1
2 299 163.973666 0.21621849 0 0 var1
3 419 267.364828 0.30278588 0 0 var1
4 457 372.735422 0.41214476 0 0 var1
5 547 478.476695 0.46341279 0 0 var1
6 533 585.340581 0.56469327 0 0 var1
7 574 693.145256 0.56896826 0 0 var1
8 564 796.183649 0.61867686 0 0 var1
9 589 903.146498 0.64714789 0 0 var1
10 543 1011.291773 0.69157049 0 0 var1
11 500 1117.862346 0.70339835 0 0 var1
12 477 1221.328099 0.60387704 0 0 var1
13 452 1329.164065 0.65171578 0 0 var1
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14 457 1437.256203 0.56653178 0 0 var1
15 415 1543.202482 0.57482273 0 0 var1

Q5 : (1) What is the same and what is di↵erent in the two variograms?

(2) Which distances should be larger, on the elipsoid or metric?

(3) Which in fact are larger? Try to explain. Jump to A5 •

Task 10 : Compute the di↵erences between the average distances of the
semivariogram bins, in centimetres. Compute the percent di↵erence relative
to the long dimension of the bounding box. •

> (v.rd$dist - v.wgs84$dist * 1000) * 100

[1] 2.2485935 4.9786902 8.0810702 11.4140892 15.2325795
[6] 18.8959922 21.9096532 16.2558547 20.8505890 34.9086958
[11] 27.4007407 20.8424737 35.1995466 40.2223240 31.1182715

> max(v.rd$dist - v.wgs84$dist * 1000) * 100

[1] 40.222324

> max(v.rd$dist - v.wgs84$dist * 1000)/diff(bbox(meuse)["y",
+ ]) * 100

max
0.010321356

Q6 : What is the maximum di↵erence, in cm? Jump to A6 •

3 Importing and exporting points, lines and polygons

R is able to read and write so-called“vector”GIS layers, i.e., points, (poly)lines,
or polygons, from a large number of formats. So if you are working with GIS
data there should be little problem doing parts of the analysis in R.

3.1 Importing ESRI shapefiles

Both the rgdal and maptools packages have functions to read ESRI shape-
files, which may be of any vector data type: points, (poly)lines, or polygons.
We prefer the readOGR function of the rgdal library, since it can read any
spatial vector data for which a driver has been written14. OGR also supports
CRS as explained in §2, and preserves this information, if present, from the
input source. This topic is explained in detail by Bivand et al. [2, §4].

When reading a shapefile, the following arguments to readOGR are required:

14 Current list at http://www.gdal.org/ogr/ogr_formats.html
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dsn : the path to the directory (sometimes called ‘folder’) where the shapefile
is located;

layer : the name of the shapefile, with no extension, as it appears in an ESRI
catqlog. Note that the shapefile actually consists of several related files
in the same directory as specified by dsn (see next, §3.2) which are all
needed to construct the sp object.

As an example of reading shapefile, we will import a polygon shapefile of
281 USA census tracts for eight central New York State counties developed
by Waller and Gotway [17] and adapted by Bivand et al. [2]; the area is
about 160 km N-S and 120 km E-W. The dataset is provided at the ASDAR
book website15 under the “Data sets download” tab as “New York leukemia
dataset”16.

Task 11 : Locate this file, download it, unpack it in a working directory,
and list the files whose names begin with NY8. •
The list.files utility function lists the files in a directory; it has an op-
tional pattern argument that restricts the display to a set of files whose
names match the regular expression, here NY8

> list.files("./NY_data", pattern = "NY8")

[1] "NY8_utm18.dbf" "NY8_utm18.prj" "NY8_utm18.shp"
[4] "NY8_utm18.shx" "NY8cities.dbf" "NY8cities.fix"
[7] "NY8cities.prj" "NY8cities.qix" "NY8cities.shp"
[10] "NY8cities.shx"

Task 12 : Import the polygon data of the census tracts, along with point
files showing cities. •

> NY8 <- readOGR("./NY_data", "NY8_utm18")
> cities <- readOGR("./NY_data", "NY8cities")

OGR data source with driver: ESRI Shapefile
Source: "./ds/ASDAR/NY_data", layer: "NY8_utm18"
with 281 features and 17 fields
Feature type: wkbPolygon with 2 dimensions

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

OGR data source with driver: ESRI Shapefile
Source: "./ds/ASDAR/NY_data", layer: "NY8cities"
with 6 features and 1 fields
Feature type: wkbPoint with 2 dimensions

15 http://www.asdar-book.org/
16 NY_data.zip
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[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

As you can see, readOGR reports the feature type of the source file, and
converts these to sp objects.

Q7 : What is the georeference of this dataset? Jump to A7 •

To answer this, use the proj4string function to extract this information
from the imported objects:

> proj4string(NY8)

[1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

> proj4string(cities)

[1] "+proj=utm +zone=18 +ellps=WGS84 +units=m +no_defs"

We take the opportunity to correct a mis-spelling in the dataset17.

> levels(cities$names)

[1] "Auburn" "Binghampton" "Cortland" "Ithaca"
[5] "Oneida" "Syracuse"

> levels(cities$names)[2] <- "Binghamton"

Task 13 : Plot the polygons, with cities overlaid and labelled. •
The plotmethod specializes to an spmethod to plot the SpatialPolygonsDataFrame
object; similarly the points method extracts the coordinates from the spa-
tial object.

> class(NY8)

[1] "SpatialPolygonsDataFrame"
attr(,"package")
[1] "sp"

> plot(NY8, border="grey60", axes=TRUE, asp=1,
+ main="Central New York census tracts")
> class(cities)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

17 This mis-spelling reveals that a downstate New Yorker must have compiled the database;
the incorrect “Binghampton” is by analogy to Long Island place names ending in
“-hampton”, e.g. Easthampton; the correct spelling “Binghamton” is a topnym ending in
“-ton”, i.e., “town”, so is “Bingham’s town”, named for William Bingham of Philadelphia
who bought the land after the Native American occupants had ceded it in the Treaty of
Fort Stanwix (1784).
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> points(cities, col="red")
> text(coordinates(cities), labels=as.character(cities$names),
+ font=2, cex=0.75, pos=4)
> grid()
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See exercise exASDA.pdf “Areal Data and Spatial Autocorrelation” for anal-
ysis of this dataset.

3.2 Exporting ESRI shapefiles

The writeOGR function of the rgdal library writes in any format for which
there is a driver; the driver argument is used to specify this. The first
argument is the sp object to write, followed by the dsn argument which
gives the path to the data set and the layer argument, which is the coverage
name.

Note: The syntax of dsn and layer vary with the driver.

The available driver names may be listed with the ogrDrivers function. For
shapefiles the name is ESRI Shapefile (with the space).

As a first example, we write the Meuse sample points to an ESRI shapefile
point coverage; we choose the WGS84 georeferenced version created in §2.2.1
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to the current directory (by specifying dsn="."):

> writeOGR(meuse.wgs84, dsn=".", layer="meuse84",
+ driver="ESRI Shapefile", overwrite_layer=TRUE)

Note: This function does not return any value; it is only called for the
side-e↵ect of writing the external file(s).

If you now examine the current directory, you will see the four files used in
the ESRI shapefile format18 for this dataset:

.shp : the actual shapes

.shx : an index to the shapes for quick navigation

.prj : projection information

.dbf : the attribute table, here all the fields from the Meuse dataframe.

If you have access to a GIS that reads shapefiles, you can now open the
shapefile and view the map.

4 Importing and exporting grids

Grids (rasters) are particularly easy to exchange. The major complication
is preserving true coordinates and projection information.

4.1 ESRI ASCII grids

This is an interchange format developed by ESRI for image data. Most
raster GIS (e.g. Imagine, ILWIS) can export grids in this format. An ESRI
ASCII grid can be read and written directly as spatial objects (as defined in
package sp) with methods read.asciigrid and write.asciigrid.

We use as an example a test image file which includes missing values, pro-
vided with the sp package:

Task 14 : Find the location on your system of the example test.ag file in
the sp package. •
We use the system.file method to find the full path of a file distributed
with a package, in this case sp:

> f <- system.file("external/test.ag", package = "sp")[1]

Task 15 : View the contents of the file in a plain-text editor. You can also
use the file.show function to display the file in a separate window within
R. •

> file.show(f)

18 Comprehensively described in the Wikipedia entry http://en.wikipedia.org/wiki/

Shapefile as of 24-June-2012
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The output here has been abbreviated with ...:

NCOLS 80
NROWS 115
XLLCORNER 178400.000000
YLLCORNER 329400.000000
CELLSIZE 40.000000
NODATA_VALUE 1.0e31
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 ...
...
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31
1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31 1.0e31
1.0e31 1.0e31 816.139 883.365 942.816 843.089 699.424
616.902 580.08 557.019 552.757 525.807 460.971 406.23
345.293 286.796 283.064 269.464 222.415 234.081 279.537
305.188 318.359 326.189 333.156
...

Q8 : How many header lines are there? What information do they give?
Jump to A8 •

Task 16 : Import the file to a spatial object, examine its structure, and
display it. •
Note the use of the optional colname argument to read.asciigrid; this
names the single item in the dataframe, which otherwise would be given the
name of the source file.

> test.grid <- read.asciigrid(f, colname = "z")
> str(test.grid)

Formal class SpatialGridDataFrame [package "sp"] with 4 slots
..@ data : data.frame : 9200 obs. of 1 variable:
.. ..$ z: num [1:9200] NA NA NA NA NA NA NA NA NA NA ...
..@ grid :Formal class GridTopology [package "sp"] with 3 slots
.. .. ..@ cellcentre.offset: num [1:2] 178420 329420
.. .. ..@ cellsize : num [1:2] 40 40
.. .. ..@ cells.dim : int [1:2] 80 115
..@ bbox : num [1:2, 1:2] 178400 329400 181600 334000
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class CRS [package "sp"] with 1 slots
.. .. ..@ projargs: chr NA

Q9 : What is the data type of the imported object? Jump to A9 •
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Q10 : What is the coordinate system and projection? Jump to A10 •

Q11 : What are the names of the two coordinates? Jump to A11 •

Task 17 : Display the imported grid. •
To display gridded data held in a spatial object, we can use the imagemethod
from sp.

> image(test.grid, col = topo.colors(64))

To go further with this, we need coordinate system, projection and datum
information from metadata, which in this case we do not have.

> rm(f, test.grid)

4.2 Matrices as spatial objects

Sometimes images are provided only as a list of values. These can be read
into R with the scan method and converted to a matrix with the matrix

method.

As an example, we use the volcano dataset, provided in the datasets pack-
age. This is a matrix of elevations on a regular grid.

Task 18 : Load the volcano dataset and examine its structure; also read
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its metadata and display it as a filled contour plot. •
The filled.contour plot displays a matrix as a sequence of solid colours
along a colour ramp.

> data(volcano)
> str(volcano)

num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...

> dim(volcano)

[1] 87 61

> filled.contour(volcano, color.palette = terrain.colors,
+ asp = 1)
> help(volcano)
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Note: In this case the matrix was already saved as an R object: a matrix
with dimensions. In general the matrix must be created from a vector, using
the matrix method.

Q12 : What is the data type of this object? Does it have any coördinates?
If so, what are they? Jump to A12 •

To use matrices as spatial objects, they must be provided with coordinates.
The row and column numbers of the matrix can serve.

Task 19 : Convert the volcano object into a SpatialPixelsDataFrame

object. •
First we convert to a data frame, using the data.frame method. The fields
with the matrix row and column numbers must be computed from the matrix
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dimensions, extracted with the dim method.

Note the two uses of the rep method:

1. to repeat the sequence 1:dim(volcano)[1] a given number of times
(dim(volcano)[2]) for the columns;

2. to repeat each element of the sequence 1:dim(volcano)[2] a given
number number of times ( dim(volcano)[1]), with the each argu-
ment.

> volcano.sp <- data.frame(x = rep(1:dim(volcano)[1],
+ dim(volcano)[2]), y = rep(1:dim(volcano)[2],
+ each = dim(volcano)[1]), z = as.vector(volcano))
> str(volcano.sp)

data.frame : 5307 obs. of 3 variables:
$ x: int 1 2 3 4 5 6 7 8 9 10 ...
$ y: int 1 1 1 1 1 1 1 1 1 1 ...
$ z: num 100 101 102 103 104 105 105 106 107 108 ...

Second, we convert this to a spatial object by specifying which columns are
the coordinates, using the coordinates method:

> coordinates(volcano.sp) <- ~x + y
> str(volcano.sp)

Formal class SpatialPointsDataFrame [package "sp"] with 5 slots
..@ data : data.frame : 5307 obs. of 1 variable:
.. ..$ z: num [1:5307] 100 101 102 103 104 105 105 106 107 108 ...
..@ coords.nrs : int [1:2] 1 2
..@ coords : num [1:5307, 1:2] 1 2 3 4 5 6 7 8 9 10 ...
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : NULL
.. .. ..$ : chr [1:2] "x" "y"
..@ bbox : num [1:2, 1:2] 1 1 87 61
.. ..- attr(*, "dimnames")=List of 2
.. .. ..$ : chr [1:2] "x" "y"
.. .. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class CRS [package "sp"] with 1 slots
.. .. ..@ projargs: chr NA

Finally, since it is gridded (i.e. points are on a regular grid), we thus inform sp

with the griddedmethod, thereby converting the SpatialPointsDataFrame
to SpatialPixelsDataFrame.

> gridded(volcano.sp) <- TRUE
> str(volcano.sp)

Formal class SpatialPixelsDataFrame [package "sp"] with 7 slots
..@ data : data.frame : 5307 obs. of 1 variable:
.. ..$ z: num [1:5307] 100 101 102 103 104 105 105 106 107 108 ...
..@ coords.nrs : num(0)
..@ grid :Formal class GridTopology [package "sp"] with 3 slots
.. .. ..@ cellcentre.offset: Named num [1:2] 1 1
.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
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.. .. ..@ cellsize : Named num [1:2] 1 1

.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"

.. .. ..@ cells.dim : Named int [1:2] 87 61

.. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"

..@ grid.index : int [1:5307] 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 ...

..@ coords : num [1:5307, 1:2] 1 2 3 4 5 6 7 8 9 10 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 0.5 0.5 87.5 61.5

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class CRS [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> print(spplot(volcano.sp, col.regions = terrain.colors(64),
+ main = "Maunga Whau (Mt Eden)"))

Maunga Whau (Mt Eden)
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To go further with geographic analysis, e.g. to write a Google Earth overlay,
we’d need to georeference the image to some CRS; in this case there is no
information on tie points.

Task 20 : Clean up from this section. •

> rm(volcano, volcano.sp)

5 Creating GoogleEarth layers

Google Earth uses KML19 (“Keyhole Markup Language”) to specify how to
display geographic data. From the web site:

19 http://code.google.com/apis/kml/documentation/index.html
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“Just as web browsers display HTML files, Earth browsers such
as Google Earth display KML files. Once you’ve properly con-
figured your server and shared the URL (address) of your KML
files, anyone who’s installed Google Earth can view the KML
files hosted on your public web server.”

So to display maps created in R, there are five steps, three of which we have
already done:

1. Create a map to export (§2.1);

2. Assign projection information to the map (§2.2);

3. Transform to geographic coördinates (Long/Lat) on the WGS84 da-
tum, as required by Google Earth (§2.2.3);

4. Export as a KML file;

5. Open the KML file in Google Earth.

5.1 Placemarks

One type of KML is the placemark. It contains the location and (optionally)
feature-space attributes for one or more geographic points.

We have a point coverage meuse.wgs84, already transformed to the correct
CRS. So the next step is to export it.

The rgdal package provides the writeOGR method to export spatial vector
data (e.g. points); one of the supported formats is KML.

Task 21 : Export the point coverage of Meuse Zn values as a KML file. •
We do this with writeOGR, specifying the KML driver:

> writeOGR(meuse.wgs84["zinc"], "meuseZnPoints.kml",
+ "zinc", driver = "KML", overwrite_layer = TRUE)

For this next task you must have Google Earth installed.

Task 22 : Open the created KML file to view the points in Google Earth.
•

The screen should look something like Figure 1; the points are written with
their data values, which can be seen by clicking on them in Google Earth.
An example is one of the most polluted sites, at the bend of the river just
south of the village of Meers (Figure 2), and on the river side of the dike
that protects that village.

Other parameters can be included in calls to writeOGR; as with other GDAL
drivers, this is documented on the GDAL web page20, not within R. We see

20 http://www.gdal.org/ogr/drv_kml.html
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Figure 1: Meuse sample points, shown in Google Earth

Figure 2: Meuse sample points, detail
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from this that several layers can be written to the same object and then
selected within Google Earth.

5.2 * A more sophisticated placemark plot

KML provides a rich graphics language. For an introduction see the Google
tutorial21. Here is a small sample, adapted from Hengl [6], with some ex-
planatory comments inter linea.

> ## setup: get the max. value, to normalize postplot symbol size
> varname <- "zinc" # layer name
> (maxvar <- max(meuse.wgs84@data[varname])) # maximum value

[1] 1839

> ## open the KML file
> filename <- file(paste(varname, "_bubble.kml", sep=""), "w")
> ## header
> write("<?xml version=\"1.0\" encoding=\"UTF-8\"?>", filename)
> ## begin KML
> write("<kml xmlns=\"http://earth.google.com/kml/2.2\">",
+ filename, append = TRUE)
> write("<Document>", filename, append = TRUE)
> write(paste("<name>", varname, "</name>", sep=" "),
+ filename, append = TRUE)
> write("<open>1</open>", filename, append = TRUE)
> ## Write placemark symbols in a loop:
> for (i in 1:length(meuse.wgs84@data[[1]])) {
+ write(paste( <Style id=" , pnt , i, "> ,sep=""),
+ filename, append = TRUE)
+ write(" <LabelStyle>", filename, append = TRUE)
+ write(" <scale>0.7</scale>", filename, append = TRUE)
+ write(" </LabelStyle>", filename, append = TRUE)
+ write(" <IconStyle>", filename, append = TRUE)
+ write(" <color>ff0000ff</color>", filename, append = TRUE)
+ ## postplot: scale by data value
+ write(paste(" <scale>",
+ meuse.wgs84[i,varname]@data[[1]]/maxvar*2+0.1,
+ "</scale>", sep=""),
+ filename, append = TRUE)
+ write(" <Icon>", filename, append = TRUE)
+ ## this is the icon to use -- here a donut
+ write(" <href>
+ http://maps.google.com/mapfiles/kml/shapes/donut.png</href>",
+ filename, append = TRUE)
+ write(" </Icon>", filename, append = TRUE)
+ write(" </IconStyle>", filename, append = TRUE)
+ write(" </Style>", filename, append = TRUE)
+ }
> ## placemark positions
> write("<Folder>", filename, append = TRUE)
> write(paste("<name>Donut icon for", varname,"</name>"),
+ filename, append = TRUE)

21 http://code.google.com/apis/kml/documentation/kml_tut.html
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> ## write placemark positions in a loop
> for (i in 1:length(meuse.wgs84@data[[1]])) {
+ write(" <Placemark>", filename, append = TRUE)
+ ## the <name> will be displayed next to the symbol
+ write(paste(" <name>", meuse.wgs84[i,varname]@data[[1]],
+ "</name>", sep=""),
+ filename, append = TRUE)
+ ## this URL is a reference to the point stored above
+ ## in the <Style> list
+ write(paste(" <styleUrl>#pnt",i,"</styleUrl>", sep=""),
+ filename, append=TRUE)
+ ## extract the placemark coordinates
+ write(" <Point>", filename, append = TRUE)
+ write(paste(" <coordinates>",
+ coordinates(meuse.wgs84)[[i,1]],",",
+ coordinates(meuse.wgs84)[[i,2]],
+ ",10</coordinates>", sep=""),
+ filename,, append = TRUE)
+ write(" </Point>", filename, append = TRUE)
+ write(" </Placemark>", filename, append = TRUE)
+ }
> write("</Folder>", filename, append = TRUE)
> ## end KML
> write("</Document>", filename, append = TRUE)
> write("</kml>", filename, append = TRUE)
> ## close the KML file
> close(filename)

When this is opened in Google Earth, the results are as shown in Figure 3.

5.3 PNG ground overlays

Another type of Google Earth layer is the ground overlay. This a graph-
ics image (not a map or GIS layer), in Portable Network Graphics (PNG)
format, along with a control KML file that specifies how the graphic is to
be placed in Google Earth. So we must write two files: the image and the
control.

This task is made possible by methods from the maptools package, in par-
ticular the GE_SpatialGrid method to define the size and position of a PNG
image overlay in Google Earth, and the kmlOverlay method write the KML
file including this PNG image overlay.

5.3.1 Interpolation grid

Task 23 : Create an interpolated map of log(Zn) concentration in the Meuse
topsoils, on a regular grid in the original (RD) coördinate system. •
A regular grid has been supplied with the sample data; it is in the same
coördinate system as the point data, and is converted to geo-referenced data
the same way; we use the shortcut gridded method to specify both that
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Figure 3: Meuse sample points, with zinc concentrations, shown in Google Earth
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the points are on a regular grid, and which fields give their coördinates. We
then specify that the CRS is the same here as for the points.

> data(meuse.grid)
> gridded(meuse.grid) = ~x + y
> proj4string(meuse.grid) = proj4string(meuse)

5.3.2 Kriging interpolation

The next task is to interpolate; any method will do for our purposes. But
since this variogram shows nice structure we’ll model it and do a kriging
interpolation.

Task 24 : Compute the empirical variogram for log(Zn) and model it. •
The variogram method computes the variogram; the vgm specifies an ini-
tial modelm and the fit.variogram method adjusts it with weighted least-
squares:

> v <- variogram(log(zinc) ~1, loc=meuse)
> max(v$gamma)

[1] 0.70339835

> which(v$gamma==max(v$gamma))

[1] 11

> v[which(v$gamma==max(v$gamma)),"dist"]

[1] 1117.8623

> (vm <- fit.variogram(v, model=vgm(max(v$gamma),
+ "Sph", v[which(v$gamma==max(v$gamma)),"dist"]
+ ,0)))

model psill range
1 Nug 0.050659365 0.00000
2 Sph 0.590604764 896.99857

> print(plot(v, pl=T, model=vm,
+ main="Fitted varogram, log(Zn), Meuse soils"))
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Fitted varogram, log(Zn), Meuse soils
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Note: The automatic fit began with the initial variogram estimate of 0
nugget, partial sill equal to the maximum semivariance in the empirical vari-
ogram, and range equal to the bin average where that maximum semivariance
was reached (note the use of which). The form of the model, here "Sph",
should be known from previous work. The automatic fit does not need very
accurate initial values if the form of the variogram is good, as here.

Q13 : How much did the automatic fit adjust the automatic initial esti-
mates of variogram parameters? How well does the automatic fit match the
empirical variogram? Jump to A13 •

Task 25 : Interpolate log(Zn) by ordinary kriging on the regular grid, using
the fitted variogram model and the sample points. •

> kr <- krige(log(zinc) ~ 1, loc = meuse, newdata = meuse.grid,
+ model = vm)

[using ordinary kriging]

> print(spplot(kr, zcol = "var1.pred", col.regions = heat.colors(64),
+ main = "Meuse topsoils, Log-ppm zinc"))
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Meuse topsoils, Log−ppm zinc
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5.3.3 Re-projecting to geographic coördinates

The interpolation has to be in geographic coördinates to be useful in Google
Earth. So, we re-project the kriging prediction grid to geographic coörd-
inates; this will take some time, since the new position of every pixel has to
be separately computed.

Task 26 : Re-project the kriging prediction grid to geographic coördinates.
•

> class(kr)

[1] "SpatialPixelsDataFrame"
attr(,"package")
[1] "sp"

> head(coordinates(kr))

x y
1 181180 333740
2 181140 333700
3 181180 333700
4 181220 333700
5 181100 333660
6 181140 333660

> kr.wgs84 <- spTransform(kr, CRS("+proj=longlat +datum=WGS84"))
> class(kr.wgs84)

[1] "SpatialPointsDataFrame"
attr(,"package")
[1] "sp"

> head(coordinates(kr.wgs84))

28



x y
1 5.7601080 50.992680
2 5.7595353 50.992322
3 5.7601051 50.992321
4 5.7606748 50.992319
5 5.7589627 50.991965
6 5.7595324 50.991963

Notice that the object was converted to spatial points (pixel centres), i.e.
class SpatialPointsDataFrame, even though the source grid was of class
SpatialPixelsDataFrame, i.e. a regular grid. This is because the regular
centres on the metric grid are not regular centres in geographic coördinates.

Q14 : How can you tell that the geographic coördinates are not regular
centres? Jump to A14 •

5.3.4 Resampling

The image overlay has to be on a regular grid, but alligned with WGS84
longitude and latitude. So, we have to set up a regular grid in geographic
coördinates and then resample to it.

Note: Resampling is explained in remote sensing texts [e.g. 14, 10, 1].

So, the next step is to set up a grid in geographic coördinates (as required
by Google Earth) as the target object for export. This is done with the
GE_SpatialGrid function, which also sets up a container for the PNG file,
and so returns information that can be used when opening the PNG graphics
device (i.e. the output file). Note that a PNG is just a graphics file for
visualization, it is not meant as a precise grid, as was the case with the points
KML overlay. So we will sacrifice some precision for ease of visualization.

The resolution of the PNG should more or less match the cell size of the inter-
polation; this is specified with the maxPixels argument to GE_SpatialGrid,
which gives the number of pixels in the longest dimension. Here we know
it’s the N-S dimension, which has been transformed but was 78 by 104:

> kr@grid@cells.dim

x y
78 104

So, we should set up the grid accordingly22. A complication here is that
the grid must be clipped to the study area; it is not a rectangle. Fortu-
nately, we have the area covered by a grid already (in RD coördinates),
which we used for interpolation. This grid has already been converted to
class SpatialPixelsDataFrame; but GE_SpatialGrid expects a single poly-
gon, into which it will create a grid suitable for Google Earth.

22 This code adapted from §4.3.2 of Bivand et al. [2]
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Task 27 : Create a single polygon surrounding the study area. •
To convert the gridded pixels to a polygon, we first convert them to in-
dividual small polygons with the as type-cast method, and then find the
topological union of them with the unionSpatialPolygons method of the
maptools package. The union discards all boundaries that are inside the
largest polygon(s) that can be made from a set of polygons; here this will be
the outside boundary of the study area, with a jagged edge corresponding
to the pixels.

Note: The unionSpatialPolygons method relies on functions in the rgeos

“R Interface to the Geometry Engine - Open Source (GEOS)”package, which
must be loaded before calling this method. The GEOS library is external to
the rgeos package but is compiled with it, so that if you install the binary
version of the rgeos package GEOS should automatically be installed.

We follow this process with the class method to see the evolution of the
class, and the length method to see how many polygons are in the original
and union objects:

> require(rgeos)
> class(meuse.grid)

[1] "SpatialPixelsDataFrame"
attr(,"package")
[1] "sp"

> length(meuse.grid@coords[, "x"])

[1] 3103

> grd <- as(meuse.grid, "SpatialPolygons")
> class(grd)

[1] "SpatialPolygons"
attr(,"package")
[1] "sp"

> length(grd@polygons)

[1] 3103

> grd.union <- unionSpatialPolygons(grd, rep("x", length(grd@polygons)))
> class(grd.union)

[1] "SpatialPolygons"
attr(,"package")
[1] "sp"

> length(grd.union@polygons)

[1] 1

> plot(grd.union, main = "Bounding polygon, Meuse interpolation grid")
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The figure shows the single polygon; the jagged edges show that it was
derived by the union of many small polygons (equivalent to single pixels).

Q15 : What are the classes of the original and union objects, and how many
polygons are in each? Jump to A15 •

You may want to export this polygon, e.g., to use as a boundary for a pointexporting
a
polygon

dataset. One possible format is the ESRI shapefile, which can be written
by the writeOGR function. However, shapefile polygons must be labelled;
in sp terms the object must be of class SpatialPolygonsDataFrame. The
grd.union object is now of class SpatialPolygons. So we have to build a
dummy data frame with data.frame, with a single field and column, with
the row name matching the polygon ID.

A shapefile is written when the driver argument to writeOGR is given as
"ESRI Shapefile". The dsn “data source name” argument for a shapefile
is the folder name in which to write the shapefile; in the code below it is
given as ".", i.e., the current working directory23; you can change this as
you wish. The layer “layer name” argument is the name of the shapefile.

> tmp.df <- data.frame(x = 1, row.names = "x")
> grd.union.df <- SpatialPolygonsDataFrame(grd.union,
+ data = tmp.df)
> writeOGR(grd.union.df, dsn = ".", layer = "meuseBoundary",
+ driver = "ESRI Shapefile")
> rm(tmp.df, grd.union.df)

To be used to create Google Earth layers, this polygon must now be re-
projected to theWGS84 CRS; for this we again use the spTransformmethod,
as in §2.2.3.

Task 28 : Re-project the bounding polygon to the WGS84 CRS. •

> bbox(grd.union)

23 You can see what this is with the getwd function.
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min max
x 178440 181560
y 329600 333760

> grd.union.wgs84 <- spTransform(grd.union,
+ CRS("+proj=longlat +datum=WGS84"))
> bbox(grd.union.wgs84)

min max
x 5.7208453 5.7654809
y 50.9555501 50.9928609

We can see the e↵ect of the transformation in the bounding box, with method
bbox.

Task 29 : Create a spatial grid, with ancillary information for the Google
Earth KML file, covering the study area. •
Now the GE_SpatialGrid method can be used. This can accept several
kinds of spatial objects as an argument; in the case of SpatialPolygons it
will fill the bounding box of the polygon with grid cells. The resolution is
by default 600 pixels in the maximum dimension; this will result in a very
fine overlay and large PNG graphic file. Recall that the dimensions of this
area, divided into 40x40 m pixels, were much smaller; the largest dimension
is only 104. To make the image somewhat smooth we’ll double this:

> GRD.wgs84 <- GE_SpatialGrid(grd.union.wgs84, maxPixels = 2 *
+ max(kr@grid@cells.dim))
> str(GRD.wgs84)

List of 6
$ height: int 208
$ width : int 157
$ SG :Formal class SpatialGrid [package "sp"] with 3 slots
.. ..@ grid :Formal class GridTopology [package "sp"] with 3 slots
.. .. .. ..@ cellcentre.offset: Named num [1:2] 5.72 50.96
.. .. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
.. .. .. ..@ cellsize : Named num [1:2] 0.000285 0.000179
.. .. .. .. ..- attr(*, "names")= chr [1:2] "max" "max"
.. .. .. ..@ cells.dim : int [1:2] 157 208
.. ..@ bbox : num [1:2, 1:2] 5.72 50.96 5.77 50.99
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "x" "y"
.. .. .. ..$ : chr [1:2] "min" "max"
.. ..@ proj4string:Formal class CRS [package "sp"] with 1 slots
.. .. .. ..@ projargs: chr "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
$ asp : num 1.33
$ xlim : Named num [1:2] 5.72 5.77
..- attr(*, "names")= chr [1:2] "min" "max"
$ ylim : Named num [1:2] 51 51
..- attr(*, "names")= chr [1:2] "min" "max"
- attr(*, "class")= chr "GE_SG"
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Notice that GE_SpatialGrid computed the proper map aspect from the
geographic latitude:

> GRD.wgs84$asp

[1] 1.3275158

A grid created by GE_SpatialGrid has a triple purpose:

1. to contain the graphics file (PNG) to be displayed in Google Earth;

2. to give information for setting up the PNG graphics device in R, i.e.
the number of pixels;

3. to provide display information for Google Earth, i.e. the geographic
location (bounding box) and the aspect ratio.

We can see this triple role in its structure:

> str(GRD.wgs84)

List of 6
$ height: int 208
$ width : int 157
$ SG :Formal class SpatialGrid [package "sp"] with 3 slots
.. ..@ grid :Formal class GridTopology [package "sp"] with 3 slots
.. .. .. ..@ cellcentre.offset: Named num [1:2] 5.72 50.96
.. .. .. .. ..- attr(*, "names")= chr [1:2] "x" "y"
.. .. .. ..@ cellsize : Named num [1:2] 0.000285 0.000179
.. .. .. .. ..- attr(*, "names")= chr [1:2] "max" "max"
.. .. .. ..@ cells.dim : int [1:2] 157 208
.. ..@ bbox : num [1:2, 1:2] 5.72 50.96 5.77 50.99
.. .. ..- attr(*, "dimnames")=List of 2
.. .. .. ..$ : chr [1:2] "x" "y"
.. .. .. ..$ : chr [1:2] "min" "max"
.. ..@ proj4string:Formal class CRS [package "sp"] with 1 slots
.. .. .. ..@ projargs: chr "+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0"
$ asp : num 1.33
$ xlim : Named num [1:2] 5.72 5.77
..- attr(*, "names")= chr [1:2] "min" "max"
$ ylim : Named num [1:2] 51 51
..- attr(*, "names")= chr [1:2] "min" "max"
- attr(*, "class")= chr "GE_SG"

This is a list with six items: height and width will be used for the PNG
device; xlim, ylim, and asp for the KML file, and SG to hold the image.

The grid is created as a rectangle covering the bounding box; we want all
the pixels outside the study area to be missing values (i.e. not interpolated).
To do this we’ll set up a vector of the same length as the grid, with each
cell either 1 (cell is inside the study area) or NA (cell is outside). This is
easily accomplished with the over method, which when applied to a grid
and polygon returns the polygon number in which each grid cell is found:

> GRD.wgs84_in <- over(GRD.wgs84$SG, grd.union.wgs84)
> str(GRD.wgs84_in)
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int [1:32656] NA NA NA NA NA NA NA NA NA NA ...

> unique(GRD.wgs84_in)

[1] NA 1

The unique function lists the unique values in a vector, here either 1 or NA.

Finally, we set up a SpatialPixelsDataFrame to receive the resampled val-
ues, with the same structure as the Google Earth grid. Note the use of the
as type-casting method to convert the grid to individual pixels.

Note also the dummy @data slot, with one variable (pred), initialized to all
1’s (the enclosing polygon number from the previous over method results).
This is necessary for a spatial object with data, such as SpatialGridDataFrame.
Without this there would be no data frame in which to write the resampled
values.

> llSGDF <- SpatialGridDataFrame(grid = GRD.wgs84$SG@grid,
+ proj4string =
+ CRS(proj4string(GRD.wgs84$SG)),
+ data =
+ data.frame(pred = GRD.wgs84_in))
> llSPix <- as(llSGDF, "SpatialPixelsDataFrame")
> print(spplot(llSPix, zcol="pred", col.regions="lightblue"))

0.6

0.8

1.0

1.2

1.4

Note that the SpatialGridDataFrame constructor method discarded the
grid cells outside the bounding polygon, and only retained the grid cells
from the source grid (GRD.wgs84$SG@grid) that had valid data, i.e. not NA.
So now the grid covers only the study area.

Note: For a rectangular grid there would be no need for the overlay, and
the initial data would be specified as:
pred = rep(0, GRD.wgs84$height*GRD.wgs84$width)

That is, a vector of any value of length equal to the product of the dimensions.

Now we have to resample, i.e. interpolate to the centres of the grid. We
know the the krige method interpolates, and without a variogram model it
defaults to linear inverse distance interpolation. However, the idw method
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allows the specification of an inverse-distance decay power, by default 2 (i.e.
inverse-distance squared) which will give a smoother-looking picture24. We
write the interpolation directly into the pred field in the grid’s data frame,
using the grid as locations to interpolate (newdata argument to idw).

This interpolation may take some time; we can time this by calling the
interpolation inside a call to the system.time method:

> (st <- system.time(llSPix$pred <- idw(var1.pred ~
+ 1, loc = kr.wgs84, newdata = llSPix, nmax = 8)$var1.pred))

[inverse distance weighted interpolation]
user system elapsed

11.872 0.022 12.184

> summary(llSPix)

Object of class SpatialPixelsDataFrame
Coordinates:

min max
x 5.7208453 5.765571
y 50.9555501 50.992861
Is projected: FALSE
proj4string :
[+proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0]
Number of points: 12410
Grid attributes:
cellcentre.offset cellsize cells.dim

x 5.7209877 0.00028487730 157
y 50.9556398 0.00017937874 208
Data attributes:

Min. 1st Qu. Median Mean 3rd Qu. Max.
4.7853 5.2436 5.5770 5.7064 6.1691 7.4306

Note: You can see the elapsed time on my system: 12.2 seconds; is yours
faster or slower?

We display the smooth interpolation as an image (not a map), with the
image function:

> image(llSPix, "pred", col = bpy.colors(20))

24 Remember, this is for visualization, not quantitative prediction.
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This can now be exported to the PNG graphics format, using the pngmethod
to open a PNG graphics file, and the dev.off method at the end to close it.
The parameters of the file are set with par, and the pixels are written with
the image graphics function:

> png(file = "MeuseZnInterpolation.png", width = GRD.wgs84$width,
+ height = GRD.wgs84$height, bg = "transparent")
> par(mar = c(0, 0, 0, 0), xaxs = "i", yaxs = "i")
> image(llSPix, "pred", col = bpy.colors(128))
> dev.off()

Note: In the png function, note how the width and height arguments
are taken from the control file which was created by the multi-purpose
GE_SpatialGrid method.

Note: The par function sets graphics device parameters; for the png device
setting the margins to all 0’s removes the default boundary, so that the image
lines up with the coördinates specified in the KML file (see next), and setting
the axis style to "i" also stops the driver from extending the image to show
axis labels.

Note: If the image had been rectangular, it could have also been written
as a matrix, specifying the rows and columns as arguments to the matrix

function:

> image(
+ matrix(llSPix$pred,
+ nrow=GRD.wgs84$SG@grid@cells.dim[1],
+ ncol=GRD.wgs84$SG@grid@cells.dim[2]))
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Finally, this PNG file is converted to a KML image overlay with the kmlOverlay
method, which takes care of all the details of setting this up for use in Google
Earth:

> kmlOverlay(obj=GRD.wgs84, kmlfile="MeuseZn.kml",
+ imagefile="MeuseZn.png",
+ name="Log(Zn) concentration, Meuse soils")

[1] "<?xml version= 1.0 encoding= UTF-8 ?>"
[2] "<kml xmlns= http://earth.google.com/kml/2.0 >"
[3] "<GroundOverlay>"
[4] "<name>Log(Zn) concentration, Meuse soils</name>"
[5] "<Icon><href>MeuseZn.png</href><viewBoundScale>0.75</viewBoundScale></Icon>"
[6] "<LatLonBox><north>50.992860922255</north><south>50.9555501437319</south><east>5.76557102914588</east><west>5.72084529373032</west></LatLonBox>"
[7] "</GroundOverlay></kml>"

Notice the output, which shows each line of the KML file. We can check the
file:

> file.show("MeuseZn.kml")

Note: The KML file does not contain the ground overlay image, it only
specifies where (geographically) to plot it. Google Earth will look for the
image in the same directory from which the KML file was launched. If the
overlay is located on a server, the reference to it in the <href> ... </href>

tag of the KML has to be adjusted to point to the URL where the image is
stored.

Task 30 : View the ground overlay in Google Earth. •
The screen should look something like Figure 4; note that the overlay has
been made partially transparent by using the transparency slider in Google
Earth.

Task 31 : Clean up from this section. •

> rm(meuse, meuse.wgs84, meuse.grid, v, vm, v.rd, v.wgs84,
+ GRD.wgs84, GRD.wgs84_in, llSGDF, llSPix, grd,
+ grd.union, grd.union.wgs84, kr, kr.wgs84, st)

6 Answers

A1 : (1) The slot (marked with @) proj4string is of class CRS, this will hold the
projection information.

(2) The units of measure at this point are unknown, there is no specification. Return
to Q1 •

A2 : It is now empty (NA meaning “not available” or “not applicable”, take your
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Figure 4: Interpolated Log(Zn) concentration, shown in Google Earth
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pick). Return to Q2 •

A3 : (1) No, we just specified what they mean.

(2) We have now specified that these are meters on the Dutch national grid system,
with respect to its (0,0) origin. Return to Q3 •

A4 : Decimal degrees of longitude (x) and latitude (y), with respect to Greenwich
meridian (longitude) and the equator (latitude). Return to Q4 •

A5 : (1) The number of point-pairs (field np) and the average semivariances (field
gamma) are exactly the same; the average separation between point-pairs in the bin
(field dist) are di↵erent in two ways: (i) units of measure: on the elipsoid they are
in km, in the metric system in the system’s units, in this case meters; (ii) once the
km are converted to m, there is still some di↵erence in average separation.

(2) It seems that the distance over a curved surface would be longer than over a
flat one.

(3) The explanation may be that the study area (near Maastricht) is far from the
centre of the stereographic projection (Amersfoort), so the metric coördinates are
stretched here. Return to Q5 •

A6 : In fact, the measurements on the elipsoid are shorter in this region of the
RDH system (considerably removed from the origin in Amersfoort). The largest
di↵erence is -40.2 cm, i.e. approximately the length of a small adult’s foot. This is
0.0103 % of the longest dimension of the bounding box; a very small relative error
in this small area. Return to Q6 •

A7 : The CRS is the UTM projection on the WGS84 ellipsoid, in the appropriate
zone (18). Return to Q7 •

A8 : Six header lines: (1, 2) number of rows and columns in the image; (3, 4) lower
left corner coordinates in X (columns) and Y (rows); (5) cell size; (6) the value used
for missing data.

Note the units of measure are not specified. Return to Q8 •

A9 : The data type is SpatialGridDataFrame. Return to Q9 •

A10 : The coordinate system is a grid with unspecified units; the projection is
given in the @proj4string slot as @projargs = NA, i.e. unknown; this interchange
format does not preserve projection information. Return to Q10 •

A11 : These are given in the second attributes of the @coords slot; they can also
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be accessed with the coornames function; here they are . Return to Q11 •

A12 : It is a two-dimensional matrix with no coördinates as such; however the
matrix indices can serve as coördinates in an unspecified system for purposes of the
image function. Return to Q12 •

A13 : The nugget was raised from 0 to 0.0507.

The partial sill was changed from 0.7034 to 0.5906.

The range was changed from 1118 to 897 meters.

The automatic fit looks excellent. Return to Q13 •

A14 : Points that have the same metric RD x-coördinates, e.g. 1 and 3, now have
slightly di↵erent geographic longitudes (x-coördinates); similarly for the y-coörd-
inates of points 2, 3, and 4. Return to Q14
•

A15 : Both are SpatialPolygons, i.e. a list of Polygons, each itself a list of
Polygon. The converted grid has 3103, i.e. one for each pixel in the original grid,
and the union has only 1 polygon. Return to Q15 •

7 Self-test

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise.

Answer the questions and submit the graphics mentioned in the tasks.

AQUIFER.TXT contains a set of observations on the elevation above mean
sea level of the top of an aquifer in western Kansas, USA measured in a
number of observation wells. This dataset is used as an example in the well-
known geology statistics text of Davis [4, pp. 435-438], and (along with all
the datasets for the book) is available from the Kansas Geological Survey at
http://www.kgs.ku.edu/Mathgeo/Books/Stat/index.html.

The practical task is to map the elevation of the top of the aquifer over the
study area.

Note: More information on the aquifer monitoring network from which this
dataset is taken is available at the Kansas Geological Survey25, for example
Olea and Davis [12, 13]. The water-level logs are also available on-line26.

Figure 5 is taken from the original report [12]. It shows the location of wells,
the boundary of the aquifer, and the well IDs. The example dataset uses a
small portion of this, in the SE corner (portions of Pratt, Kingman, Sta↵ord
and Reno counties).

25 http://www.kgs.ku.edu
26 http://www.kgs.ku.edu/Magellan/WaterLevels/
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Figure 5: Location of aquifer monitoring wells, SE Kansas (USA). Source: [12], plate 1

Task 1 : Copy the file AQUIFER.TXT to a working directory, and use a
plain-text editor or the file.show function, to examine its contents. •
The field names are self-explanatory. The UTM zone is 14N (see Davis [4,
Fig. 5-100 caption]) and the coordinates are meters, probably on the North
American Datum 1927. The aquifer elevation is in US feet27 above mean sea
level according to an unspecified vertical datum (probably NAVD 88).

Task 2 : Read text file AQUIFER.TXT into an R data frame, rename the
columns to shorter names, and examine its structure. •

Note: The header line of AQUIFER.TXT has more spaces than the other
lines, so if you try to use the header for the variable names, R will count all
the spaces and conclude that the other lines are incomplete. One solution
would be to place quotes around the variable names, or rename the variables
without spaces, in the text file. Another way is to skip the first line when
reading, and assign variable names within R.

27 1 foot = 0.3048 m exactly
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Q1 : How many observation wells are in this dataset? What was recorded
at each well? •

Task 3 : Convert the dataset into a spatial object. •

Task 4 : Display a graphical postplot of the data values, with size propor-
tional to the data value. Choose a colour, symbol, and maximum symbol
size to most e↵ectively show the range of elevations. •

Q2 : What is the apparent spatial pattern of the groundwater depths? •

From the Kansas Geological Survey website mentioned above, it appears
that the UTM coördinates are in Zone 14N, on the North American Datum
1927. The parameters of this and many other systems are included in the
European Petroleum Survey Group (EPSG) database, which is supplied with
the rgdal package

Note: The datum is not explicitly mentioned; it could be NAD83 which
is equivalent to WGS84. Experimenting with both possibilities showed that
NAD27 seems to give well locations that are closer to what appear to be
the wells in the Google Earth image. But as you will see after creating
and displaying the KML file, the georeference of the wells may not be very
precise.

Note: The latest version is available on-line and as an MS-Access databse,
at http://www.epsg.org.

Task 5 : Find the EPSG database entry for this system. •

Q3 : What is the EPSG code for this CRS? •

Task 6 : Set the Coordinate Reference System (CRS) information for the
aquifer dataset to the proper EPSG reference. •

Task 7 : Make a copy of the aquifer dataset, reprojected into Long/Lat
coordinates on the WGS84 datum, as required by Google Earth. •

Q4 : What is the bounding box of the aquifer dataset, in geographic coor-
dinates? •

Task 8 : Export the transformed dataset as a KML file. •
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Task 9 : Open the KML file in Google Earth. Take a screenshot and submit
with your report. •

Task 10 : Model the aquifer surface. Justify your choice of methods, with
reference to the spatial pattern: trend and any local structure. •

Task 11 : Display a map of the predicted aquifer depth over a grid of
75 columns and 101 rows equally-spaced (1 x 1 km) across the study area,
beginning with UTM (500 000E, 4150 000N) in the lower-left corner. This
corresponds to the grid used in Davis’ text. •

Task 12 : Create a Google Earth image overlay of the predicted aquifer
depth, and display it in Google Earth. Take a screenshot and submit with
your report. •
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bbox (sp package), 32

class, 30
colname function argument, 16
coordinates (sp package), 19
coornames (sp package), 40
CRS (sp class), 9, 37
CRS (sp package), 5, 7, 8

data.frame, 18, 31
datasets package, 17
dev.off, 36
dim, 19
driver argument (writeOGR function), 14,

31
dsn argument (readOGR function), 12
dsn argument (writeOGR function), 14, 31

each function argument, 19

file.show, 15
filled.contour, 18
fit.variogram (gstat package), 26

GE_SpatialGrid (maptools package), 24, 29,
32, 33, 36

getwd, 31
grep, 6
gridded (sp package), 19, 24
gstat package, 2, 3, 10

height graphics argument, 36

idw (gstat package), 34, 35
image, 35, 36, 40
image (sp package), 17

kmlOverlay (maptools package), 24, 37
krige (gstat package), 34

lattice package, 2, 3
layer argument (writeOGR function), 14, 31
length, 30
list.files, 12

make_EPSG (rgdal package), 6
maptools package, 2, 3, 11, 24, 30
matrix, 17, 18, 36

ogrDrivers (rgdal package), 14
over (sp package), 33, 34

par, 36
par function argument, 36
paste, 8
pattern argument (list.files function),

12
plot, 13
png, 36
points, 13
Polygon (sp class), 40
Polygons (sp class), 40
proj4string (sp package), 5, 8, 13

raster package, 3
read.asciigrid (sp package), 15, 16
readOGR (rgdal package), 11, 13
rep, 19
require, 3
rgdal package, 2, 3, 6, 9, 11, 14, 21
rgeos package, 30

scan, 17
sp package, 2–5, 12–15, 17, 19, 31
SpatialGridDataFrame (sp class), 34
SpatialGridDataFrame (sp package), 34
SpatialPixelsDataFrame (sp class), 18, 19,

29, 34
SpatialPointsDataFrame (sp class), 19, 29
SpatialPolygons (sp class), 32, 40
SpatialPolygons class, 31
SpatialPolygonsDataFrame (sp class), 13
SpatialPolygonsDataFrame class, 31
spTransform (rgdal package), 9, 31
system.file, 15
system.time, 35

unionSpatialPolygons (maptools package),
30

unique, 34

variogram (gstat package), 10, 26
vgm (gstat package), 26
vignette, 2
volcano dataset, 17, 18

which, 27
width graphics argument, 36
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write.asciigrid (sp package), 15
writeOGR (rgdal package), 7, 14, 21, 31
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