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1 Introduction

VINABY T, ZRERR

“If a young person does not strive to learn, in old age he will
only have regrets.”

— Chinese proverb

In Exercise 4 §3 we saw how a feature-space attribute could be used for
prediction. This had the disadvantage that the prediction was the same
everywhere in a stratum, and did not take account of local spatial depen-
dence. In Exercise 4 §4 we saw how to predict using Ordinary Kriging; this
used a model of local spatial dependence but no information on feature-space
attributes other than the target variable. These two approaches can be com-
bined into a mixed predictor that uses both sources of information. There
are three main approaches for this:

1.

Kriging with External Drift (KED): model residual spatial variability,
use classes and this model with all samples to predict;

. Regression Kriging (RK): compute feature-space model, compute resid-

uals from this, model residual spatial variability, use Simple Kriging
(with expected value 0) to predict residuals, add in the class means;

. Stratified Kriging (StK): stratify the area by class, model the variogram

in each class separately, predict by OK in each stratum separately,
merge the classes for the final map;

. Stratified Co-Kriging (StCoK): as StK, but use non-collocated cokrig-

ing to predict within all the strata from all points (in the same or
different stratum); merge for the final map.

These each have advantages and disadvantages:

1.

KED models both local and feature-space in one kriging system, so it
is the easiest extension to OK. The mathematics are exactly the same
as for UK;

. RK is quite flexible but requires that we model the feature space and

residuals separately;

. StK allows the possibility of different spatial structure (e.g. variograms)

in the different strata; however the sample size must be large enough
to estimate this structure in each stratum separately;

. StCoK requires modelling cross-variograms with a linear model of co-

regionalization.

In this exercise we will examine KED and (optionally) StK.

After completing this exercise you should be able to:

1.

Model feature-space relations between a continuous target variable and
a categorical (classified) predictor variable;



2. Model local spatial dependence after accounting for these feature-space
relations;

3. Predict attributes over a region using Kriging with External Drift.

4. (Optionally) Predict attributes over a region using Stratified Kriging.

2 Setup

We continue with the Jura dataset from Exercise 4.

Task 1 : Set up this exercise as explained in the following list. .

1. If R is not already running, start it.
2. If you haven’t already done so, load the gstat and sp libraries.

3. If the calibration dataset jura.cal is not loaded as a spatial object,
do so.

4. If the fitted variogram model vmf from Exercise 4 §4.1 is no longer in
the workspace, re-create it.

If you followed the instructions in Exercise 4, these should all have been
saved in file JuraEx4 .RData, so they can be restored with the load method:

> load("JuraEx4.RData")

Note: If this file is not in the current directory, you either have to change
the directory with the setwd method, or add the full path to the argument
of the load method.

3 Feature-space modelling

The first step in a mixed predictor is to see whether the feature space provides
any useful information with respect to the target variable.

Q1 : What are the categorical attributes in the Jura dataset? Are these
expected to be predictors of heavy metals in soils? Why or why not? Jump
to Al e

> str(jura.cal@data)

'data.frame': 259 obs. of 9 variables:

$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 323 2555113 ...
$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3223 333333...

$Cd : num 1.74 1.33 1.61 2.15 1.56 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$Pb : num 77.4 77.9 30.8 56.4 66.4 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Ni : num 21.3 29.7 21.4 29.7 26.2 ...

$Zn : num 92.6 73.6 64.8 90 88.4 ...



We first see how many observations represent each level of the categorical
variables. Further, to be able to explore possible interactions, we need to
see their cross-tabulation.

Task 2 : Compute and display a cross-tabulation of the number of obser-
vations in each rock category and land use category. .

The table function (cross-)tabulates categorical variables.

> table(jura.cal$Rock)

Argovian Kimmeridgian Sequanian Portlandian

53 85 63 3
Quaternary
55

> table(jura.cal$Land)

Forest Pasture Meadow Tillage
33 56 165 5

> table(jura.cal$Rock, jura.cal$Land)

Forest Pasture Meadow Tillage

Argovian 7 6 39 1
Kimmeridgian 22 18 44 1
Sequanian 3 25 33 2
Portlandian 1 1 1 0
Quaternary 0 48 1

Note: The factor names of the rock types are not consistent: Quaternary,
now called the Pleistocene, is an epoch, which is a higher division than Kim-
meridgian, a stage within the Late Jurassic epoch of the Jurassic period.
The remaining names are now not used for international correlation. The
Sequanian (younger) and Argovian are sub-stages of the Oxfordian stage,
which is just below (older than) Kimmeridgian in the stratigraphic column.
The Portlandian is roughly equivalent to the middle part of the youngest of
the Late Jurassic stage, now called the Tithonian, above the Kimmeridgian®.
So the stratigraphic order, from oldest to youngest is: Argovian (early Ox-
fordian), Sequanian (later Oxfordian), Kimmeridgian, (discontinuity), Port-
landian (middle Tithonian), (gap of =~ 140 Ma), Quaternary.

Q2 : (1) Which rock types are poorly represented in the sample set?
Which land uses are poorly represented in the sample set?

Which combinations have no observations at all? What does this imply for
analysis? Jump to A2 e

Thttp://www.stratigraphy.org/bak/geowhen/stages/Late_Jurassic.html


http://www.stratigraphy.org/bak/geowhen/stages/Late_Jurassic.html

3.1 Merging undersampled classes

Any analysis using such an unbalanced observations will be very uncertain
for the classes with few observations, and impossible for the interactions
with no observations. So before proceding we combine the small classes
(Portlandian rocks and Tillage land use) with their most similar classes.
This requires expert knowledge from a geologist and land use specialist,
respectively.

e The Tillage land use class is managed; the other managed class is
Pasture. Meadow and Forest are unmanaged. If Co concentration
is influenced by land use, that would come from management. So it
seems logical to merge the tillage and pasture classes.

e The Portlandian rock type is a Jurassic formation, closest in age to
the Kimmeridgian.

Task 3 : Create two new categorical variables in the data frame (1) Rock4,
combining Portlandian and Sequanian into a class SeqPortlandian, and (2)
Land3, combining Tillage and Pasture into a class PasTill. Keep the
other classes as they were. .

We take the chance to use simpler class names. Although the original field
is a factor, the new field is created as a string variable, so the as.factor
function must be applied to it, to convert to a factor (categorical variable).

> jura.cal$Rock4 <- ifelse(jura.cal$Rock == "Argovian",
"Argo", ifelse(jura.cal$Rock == "Sequanian",
"Seq", ifelse(jura.cal$Rock == "Quaternary",

"Quat", "KimmPort")))
> class(jura.cal$Rock4)

[1] "character"

> jura.cal$Rock4 <- as.factor(jura.cal$Rock4)
> class(jura.cal$Rock4)

[1] "factor"

> table(jura.cal$Rock4)

Argo KimmPort Quat Seq
53 88 55 63
> jura.cal$land3 <- ifelse(jura.cal$Land == "Forest",
"Forest", ifelse(jura.cal$lLand == "Meadow",

"Meadow", "PasTill"))
jura.cal$Land3 <- as.factor(jura.cal$Land3)
table(jura.cal$Land3)

vV Vv

Forest Meadow PasTill
33 165 61



Note: Another way to do this is with the recode function of John Fox’s
car “Companion to Applied Regression” package [1]. This has a somewhat
unusual syntax: it first gives the factor to be recoded, and then a so-called
“recode specification”; see ?recode for details.

3.2 Visualizing feature-space dependence

We next visualize whether there is any difference in the target variable Co
(cobalt) due to these factors.

Task 4 : Display classified boxplots of Co by rock type and by land use. e

We use the boxplot method with a formula:

> par (mfrow=c(1,2))
> boxplot(Co ~ Rock4, data=jura.cal@data,
varwidth=T, notch=T,
main="Co (ppm) by rock type")
> boxplot(Co ~ Land3, data=jura.cal@data,
varwidth=T, notch=T,
main="Co (ppm) by land use")
> par(mfrow=c(1,1))

Co (ppm) by rock type Co (ppm) by land use

34888* 8

T T T T T T T
Argo KimmPort Quat Seq Forest Meadow PasTill

Note: We have enhanced the boxplot with (1) the optional varwidth ar-
gument, which scales the width of the box by the number of observations
it represents (narrower boxes have fewer observations), and (2) the optional
notch argument, which draws notches on each side of the median, its ap-
proximate confidence interval.

Q3 : Do the areas with different rock types have similar distributions of
Co? If not, what are the major differences? Jump to A3 e

Q4 : Do the areas with different land uses have similar distributions of Co?
If not, what are the major differences? Jump to A4 e



Q5 :  Which of the two classified variables is expected to provide more
differentiation for this target variable? Jump to A5 e

3.3 Modelling feature-space dependence

After visualizing, we can verify our impressions by a linear model of the
target variable as modelled by the categorical variable; this one-way Analysis
of Variance (ANOVA) is computed with the 1m method and summarized with
summary.1lm (which is automatically called by the generic summary method
for objects of class 1m).

Task 5 : Compute and summarize linear models of Co predicted by rock
type and land use, separately. o

Note that we apply the summary method to a linear model object, created
by the 1m method. The linear model object is saved in the workspace with
the <- assignment operator.

> summary (mr <- 1lm(Co ~ Rock4, data = jura.cal@data))

Call:
lm(formula = Co ~ Rock4, data = jura.cal@data)

Residuals:
Min 1Q Median 3Q Max
-9.438 -1.618 0.087 1.908 8.125

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 5.393 0.404 13.34 < 2e-16 **x
Rock4KimmPort 5.594 0.512 10.93 < 2e-16 *x*x
Rock4Quat 4.202 0.566 7.42 1.8e-12 **x
Rock4Seq 4,582 0.548 8.35 4.3e-15 *x*x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 2.94 on 255 degrees of freedom
Multiple R-squared: 0.331, Adjusted R-squared: 0.323
F-statistic: 42.1 on 3 and 255 DF, p-value: <2e-16

> summary(ml <- 1lm(Co ~ Land3, data = jura.cal@data))

Call:
Im(formula = Co ~ Land3, data = jura.cal@data)

Residuals:
Min 1Q Median 3Q Max
-7.034 -2.698 0.286 2.586 8.326

Coefficients:
Estimate Std. Error t value Pr(>lt])
(Intercept) 7.683 0.614 12.50 <2e-16 *x*x*



Land3Meadow 1.710 0.673 2.54 0.0117 *
Land3PasTill 2.242 0.763 2.94 0.0036 *x

Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 3.53 on 256 degrees of freedom
Multiple R-squared: 0.0338, Adjusted R-squared: 0.0262
F-statistic: 4.48 on 2 and 256 DF, p-value: 0.0123

Q6 : How much of the variability is explained by each model? (Hint: Look
at the adjusted R?). Which is thus the better predictor? Jump to A6 e

Q7 : In the rock type model, for which rock types is the mean concentration
most and least accurately estimated? Jump to A7 e

Note: The model coefficients show (1) the mean value for the first-listed
factor level, here Argovian rock type and Forest land use. The coeffi-
cients for the other factor levels are differences from the first-listed factor
level. To see the means for each class, use the formula Co ~ Rock4 - 1
and Co ~ Land3 - 1, respectively. The - 1 removes the intercept from the
model. Do not pay any attention to the reported R? for no-intercept models.

Perhaps there is an interaction between the two predictors.

Task 6 : Compute and summarize a linear model of Co predicted by rock
type and land use, together, both as additive factors (no interaction) and as
interacting factors. o

The formula for additive models names the two factors, joined by +; the
interaction model joins the names by *.

First, the additive model:
> summary (mrl <- 1m(Co ~ Rock4 + Land3, data = jura.cal@data))

Call:
lm(formula = Co ~ Rock4 + Land3, data = jura.cal@data)

Residuals:
Min 1Q Median 3Q Max
-7.536 -1.826 0.001 1.739 8.101

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 3.133 0.623 5.03 9.3e-07 *x*x
Rock4KimmPort 5.953 0.502 11.86 < 2e-16 *x*x
Rock4Quat 3.854 0.551 6.99 2.4e-11 **x
Rock4Seq 4.416 0.544 8.11 2.1e-14 *x*x
Land3Meadow 2.633 0.571 4.61 6.4e-06 *xx*
Land3PasTill 2.444 0.640 3.82 0.00017 s***



Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.06 '.' 0.1 ' ' 1

Residual standard error: 2.84 on 253 degrees of freedom
Multiple R-squared: 0.384, Adjusted R-squared: 0.372
F-statistic: 31.5 on 5 and 253 DF, p-value: <2e-16

Then, the model with interactions:
> summary(mrli <- 1m(Co ~ Rock4 * Land3, data = jura.cal@data))

Call:
Im(formula = Co ~ Rock4 * Land3, data = jura.cal@data)

Residuals:
Min 1Q Median 3Q Max
-7.642 -1.326 0.001 1.543 7.718

Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value

(Intercept) 5.806 1.027 5.65

Rock4KimmPort 2.345 1.173 2.00

Rock4Quat -1.037 1.452 -0.71

Rock4Seq 2.674 1.875 1.43

Land3Meadow -0.927 1.115 -0.83

Land3PasTill 2.040 1.452 1.40

Rock4KimmPort : Land3Meadow 4.781 1.315 3.64

Rock4Quat : Land3Meadow 6.160 1.566 3.93

Rock4Seq:Land3Meadow 2.729 1.982 1.38

Rock4KimmPort:Land3PasTill 1.769 1.673 1.06

Rock4Quat:Land3PasTill NA NA NA

Rock4Seq:Land3PasTill -0.754 2.201 -0.34
Pr(>ltl)

(Intercept) 4.3e-08 xx*x

Rock4KimmPort 0.04664 x*

Rock4Quat 0.47581

Rock4Seq 0.15502

Land3Meadow 0.40680

Land3PasTill 0.16137

Rock4KimmPort :Land3Meadow 0.00034 *x*

Rock4Quat :Land3Meadow 0.00011 *xx

Rock4Seq:Land3Meadow 0.16976

Rock4KimmPort:Land3PasTill 0.29135

Rock4Quat:Land3PasTill NA

Rock4Seq:Land3PasTill 0.73215

Signif. codes: O '*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.72 on 248 degrees of freedom
Multiple R-squared: 0.445, Adjusted R-squared: 0.423
F-statistic: 19.9 on 10 and 248 DF, p-value: <2e-16

Another way to compare hierarchical feature-space models (i.e. where they
are increasingly-complex) is ANOVA. This shows how much more variance
is explained by the more complex models, and whether this is a significant
difference or could have occurred by chance.



Task 7 : Compare the interaction, additive, and single-factor (rock type)
models with an ANOVA. .

We use the anova method, specifying the model in descending order of com-
plexity:

> anova(mrli, mrl, mr)

Analysis of Variance Table

Model 1: Co ~ Rock4 * Land3
Model 2: Co ~ Rock4 + Land3
Model 3: Co ™ Rock4

Res.Df RSS Df Sum of Sq F Pr(>F)
1 248 1831
2 253 2034 -5 -204 5.52 7.7e-05 *xx
3 255 2208 -2 -174 11.77 1.3e-05 **x
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Q8 :  Are the models significantly different? Which increase in complexity
gives the most improvement? Jump to A8 e

Q9 : In words, what does it mean that the additive and interaction models
are significantly better than the single-factor model? Jump to A9 e

We have seen that the interaction model of both rock type and land use gives
the best results; however, for the rest of this exercise we will use only the
single-factor model of rock type; this will allow us to visualize the differences
in predictions against a single map (i.e. that of rock type) and should help
in understanding. In practice you would probably use the best model, since
it is quite a bit better than either single-factor model.

Note: However, in this case, there is one combination that does not occur
in the sample, so any areas in the map with this combination could not be
estimated.

3.4 Answers for feature-space modelling

A1 : Rock type (field Rock) and land use (field Land). Both might be associ-
ated with soil metals: different rocks have different minerals, which have different
proportions of various metals; different land uses may be treated differently (e.g.
fertilisation, removal of plant material) which may cause differential concentrations
of metals in the soil. Return to Q1 e

A2 : (1) There are very few observations on Portlandian rocks.

(2) There are very few observations on land use for tillage (arable crops).



(3) There are no observations in forests on Quaternary rocks or on arable land on
soils derived from Portlandian rocks. Further, there are only one or two observations
in several other combinations. This implies that we can not analyze all interactions
between rock type and land use,

Note that another selection of a calibration set would change these numbers slightly
but the overall pattern would not change. Return to Q2 e

A3: The Argovian rocks have a distribution of Co values that is well below the oth-
ers (although there is some overlap). The Quaternary sediments have the complete
range (probably because they are derived as surface sediments from weathering of
all the others).

The Argovian, Sequanian and Kimmeridgian/Portlandian types are all hard rock
from the Jurassic period (201.3-145 Ma), whereas Quaternary are soft rocks (sed-
iments) that have been recently deposited. The Co in the soils developed on the
weathering products (regolith) of Jurassic rocks is presumably mostly from the
original rock, whereas the Co in the soils developed on Quaternary sediments is
presumably most from sediments eroded from these. Return to Q3 e

A4 : There is not much difference between land uses, except that pasture/tillage
has only two Co values less than 5 mg kg-land meadow has all the values greater
than 15 mg kg-1. Return to Q4

A5 : The rock types appear more discriminating. Return to Q5 e

A6 : Adjusted R? are 32.3% (rock type) and 2.6% (land use); clearly rock type is
the better predictor. Return to Q6

A7 : 'To answer this, look at the standard error of the coefficients. The minimum
(0.404) is for the intercept, which is the first-listed rock type, i.e., Argovian. The
maximum (0.566) is for the Quaternary rock type. Return to Q7 e

A8 : Both improvements are highly significant, so it is unlikely that the improve-
ment is due to chance. The improvement from the additive to the interaction model
is larger (see the differences in mean sum of squares). Return to Q8 e

A9 : Additive: both factors are significant predictors of Co; Interactive: some
combinations of rock type and land use have significantly different Co concentrations
than would be expected from the addition of the effects of the two factors separately.

Return to Q9 e

4 Computing and modelling the residual variogram

We have seen that the feature space explains a fair amount of the variation.
But we also saw that the maximum explained was under half of the total.
Where is the rest?

10



One possibility is the local spatial structure, as we saw for OK (Exercise 4
§4). Now the question is, after accounting for the feature-space predictor, is
there still local structure?

This is shown by the residual variogram, i.e. a plot of the semi-variances of
residuals (not original values) against separation of point pairs. Fortunately,
gstat computes these directly, if you provide an appropriate model formula;
you do not have to compute the residuals manually.

Task 8 : Compute and display the residual variogram for Co, accounting
for the feature-space predictor of rock type. Compare it with the ordinary
variogram. .

We use the variogram method and specify the spatial dependence with
the formula Co ~ Rock4 (as opposed to Co ~ 1 in the ordinary variogram).
This has the same meaning as in the 1m model specification: the cobalt
concentration is to be predicted from the rock type; then the residuals are
to be modelled spatially.

> vr <- variogram(Co ~ Rock4, loc = jura.cal)
> v <- variogram(Co ~ 1, loc = jura.cal)

We plot them on the same scale, using the optional ylim argument; the
maximum is computed by taking the next highest integer (using the ceiling
method) than the maximum of all the semivariances:

> gamma.max <- ceiling(max(v$gamma, vr$gamma))
> plot.1 <- plot(vr, ylim=c(0,gamma.max),

pl=T, main="Residual variogram, Co (ppm) ~ Rock4")
plot.2 <- plot(v, ylim=c(0,gamma.max),

pl=T, main="Ordinary variogram, Co (ppm)")
print(plot.2, split=c(1,1,2,1), more=T)
print(plot.1, split=c(2,1,2,1), more=F)
> rm(gamma.max, plot.1l, plot.2)

v

vV Vv

Ordinary variogram, Co (ppm) Residual variogram, Co (ppm) ~ Rock4

I
1800
1664, 1813
1582 4749

4250
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1654->415

semivariance
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835
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10 o

347

125&664 1813

o
1014285
35

<460

1749

4800

1547
1654 45

T
05 1.0 15

distance

T
0.5 1.0 15

distance

Q10 : Describe the differences between the ordinary and residual variograms
(model form, total sill, nugget, range).

Jump to A10 e

11



Task 9 : Model the residual variogram; compare this to the model for the
original variogram. .

A pentaspherical model is indicated, since that model was with the original
variable. We first make a guess with the vgm method:

> vrm <- vgm(8, "Pen", 1.5, 2)
> print(plot(vr, pl=T, model=vrm,

main="Residual variogram Co (ppm) ~ Rock4, eyeball fit"))

Residual variogram Co (ppm) ~ Rock4, eyeball fit

4800
4749

10 - 1
4
929 1582

10; 1547

8 835 1654 4 -

semivariance

BAT

T T T T
05 1.0 15 2.0

distance

We then ask gstat to fit it with the fit.variogram method:
> (vrmf <- fit.variogram(vr, model=vrm))

model psill range
1 Nug 2.2143 0.00000
2 Pen 7.0973 0.85613

> print(plot(vr, pl=T, model=vrmf,
main="Residual variogram Co (ppm) ~ Rock4, gstat fit"))

Residual variogram Co (ppm) ~ Rock4, gstat fit

10 4

12!

1664 1813
50 4

1800

749

/

/

6 - /
/

/ 460
/

a/

semivariance

92,
1019
87 835

1285

1547

1654

45

0.5

T
1.0

distance

Now we can compare the residual model to the original:

12



> vmf

model psill range
1 Nug 1.3712 0.0000
Pen 12.9322 1.5239

> vrmf

model psill range
1 Nug 2.2143 0.00000
2 Pen 7.0973 0.85613

> vmf$range[2] - vrmf$range[2]

[1] 0.66777

> 1 - (vmf$range[2] - vrmf$range[2])/vmf$range[2]
[1] 0.5618

> sum(vmf$psill)

[1] 14.303

> sum(vrmf$psill)

[1] 9.3116

> 1 - sum(vrmf$psill) /sum(vmf$psill)

[1] 0.34899

Q11 : How much has the range been reduced? How much has the total sill
been reduced? Jump to All e

Q12 : In words, what is the difference between the models? How can you
explain this? Jump to A12 e

4.1 Answers for Computing and modelling the residual variogram

A10: The model form looks more-or-less the same (so the pentaspherical model
we used for OK can also be used for KED); the total sill is considerably lower (10
vs. 16 or so) for the residual variogram; the nugget is similar; the range is shorter
(0.5 vs. 1.2 or s0). Return to Q10 e

A11 : The range has been reduced from 1.52 km to 0.87 km; that is 56% of the
original. The total sill has been reduced from 14.3 mg kg-12to 9.3 mg kg-12; that
is a 35% reduction in variability. Return to Q11 e

A12: The spatial dependence is more local (about half the range) and lower overall

13



(about 1/3 lower). The rest of the apparent spatial structure has been accounted
for in feature space. Return to Q12 e

5 The interpolation grid

Now we want to predict by KED; but first we need an interpolation grid.
We already have one which covers a rectangle enclosing the sample points,
created in FExercise 4 §4.4. But, this only has point locations where we
want to predict. For KED we also need to know the feature-space values of
the categorical predictor (e.g. rock type and land use) at every point to be
predicted.

Fortunately, such a grid has been prepared by Pierre Goovaerts, author of
a well-known geostatistics text [2] which uses the dataset as its running
example. He has kindly provided us this grid, which he created by manually
overlaying a 50 m grid (at each intersection of a grid centred every 0.05 km
in both directions) of prediction points over printed rock type and land use
maps on a light table, and manually recording the category. To save you
work, I have prepared this as an R spatial object, as file Jura50.RData which
can be loaded with the load method as workspace object jura50.

Note: Since these notes were first written, the same grid has been added to
the sample jura dataset of the gstat package, as object jura.grid. This is
now automatically loaded, along with the calibration and validation points,
by the data(jura) command.

Task 10 : Load the file Jura50.RData and summarize the newly-created
workspace object jurab0. .

> load("Jurab0.RData")
> summary (jura50)

Object of class SpatialGridDataFrame
Coordinates:

min max
X 0.275 5.125
Y 0.075 5.925
Is projected: NA
proj4string : [NA]
Grid attributes:

cellcentre.offset cellsize cells.dim

X 0.3 0.05 97
Y 0.1 0.05 117
Data attributes:

Land Rock
Forest : 986  Argovian 11185

Pasture:1553 Kimmeridgian:2036
Meadow :3247  Sequanian 11628
Tillage: 171  Portlandian : 316
NA's :56392  Quaternary : 792

NA's :5392
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Q13 : What is the data type of the jurab0 object? What are the dimen-
sions? Jump to Al13

Q14 : Do the proportions of rock types in the grid match those in the
calibration data set? Jump to Al4 e

To answer this, we summarize the counts of each class with the table
method; for an easy-to-interpret table we bind the two results together with
the rbind “row bind” function:

> round(rbind(grid = table(jura50%Rock)/length(jurab0$Rock),
points = table(jura.cal$Rock)/length(jura.cal$Rock)),

3)
Argovian Kimmeridgian Sequanian Portlandian
grid 0.104 0.179 0.143 0.028
points 0.205 0.328 0.243 0.012
Quaternary
grid 0.070
points 0.212

Task 11 : Display the distribution of rock types and land uses as maps. e

We use the spplot method, saving the two maps as lattice graphics objects
for later use.

First the rock type:

> map.rock <- spplot(jurab50, zcol = "Rock", col.regions = topo.colors(5),
key.space = "right", main = "Jura 50m prediction grid, Rock type")

> class(map.rock)

> print(map.rock)
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Jura 50m prediction grid, Rock type

Quaternary
Portlandian
Sequanian
Kimmeridgian

Argovian

Q15 :  What is the spatial pattern of the rock types? Is there a spatial
relation between the two rock types merged in the analysis of the previous
section §3.1 (i.e., the under-sampled Portlandian and the Kimmeridgian)?

Jump to Al5 e

Now the land use:
> map.land <- spplot(jura50, zcol = "Land", col.regions = bpy.colors(4),

key.space = "right", main = "Jura 50m prediction grid, Land use")
> print (map.land)

16



Jura 50m prediction grid, Land use

Tillage
Meadow

Pasture

Forest

okt

Q16 : What is the spatial pattern of the land uses? Jump to A16 e

5.1 Answers for Creating the interpolation grid

A13 : It is a SpatialGridDataFrame, with 97 columns (X-dimension) and 117
rows (Y-dimension). Return to Q13 e

A14 : Quaternary rocks are substantially over-represented in the calibration set
(21% vs. 14%); Portlandian rocks are substantially under-represented (1% vs. 5%);
proportions of the other classes are about equal between the grid and calibration
set. Return to Q14 e

A15: Rock types are generally outcropping following a SW-NE strike. The Port-
landian are always adjacent to the Kimmeridgian, as expected from the stratigraphic
sequence. Return to Q15 e

A16 : Land uses form local patches of varying sizes. Most of the area is meadow;
there are larger patches of pasture and smaller patches of forest and especially
tillage. So most of the area is used for animal production (either natural meadows
or managed pasture). Return to Q16 e

6 Kriging with external drift

We now have a model of spatial dependence of the residuals from rock type
(model vrmf), and a prediction grid with the rock type known at each loca-
tion (grid jurab0). This is what is necessary for KED.
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However, the prediction grid still has five rock types, whereas we have merged
two of the rock types in the observation points dataset jura.cal. Clearly,
we have to add a field to the prediction grid to match this merged rock type.

Task 12 : Create a new field in the jura50 grid for rock type, with the
same names, factor levels, and merging the same classes as was done for the
observation points in §3.1, above. .

Note: The new field is created as a string variable, so the as.factor function
must be applied to it, to convert to a factor (categorical variable), to match
the data type of the observations.

> jurab0$Rock4d <- ifelse(jurabO$Rock == "Argovian",
"Argo", ifelse(jurab0$Rock == "Sequanian",
"Seq", ifelse(jurab0$Rock == "Quaternary",
"Quat", "KimmPort")))
> jurabO$Rock4d <- as.factor(jura50$Rock4)
> table(jura50$Rock)
Argovian Kimmeridgian Sequanian Portlandian
1185 2036 1628 316
Quaternary
792
> table(jura50$Rock4)
Argo KimmPort Quat Seq
1185 2352 792 1628

Task 13 : Predict the Co concentration over the 50 m grid, using kriging
with external drift (KED), with rock type as the feature-space predictor. e

The krige method will do this, again with a formula Co ~ Rock that shows
the feature-space dependence:

> kr.50 <- krige(Co ~ Rock4, loc = jura.cal, newdata = jurabO,
model = vrmf)

[using universal kriging]

! - Note carefully the use of the residual variogram model: model=vrmf.

Note: You may have noticed that the krige method gives the message
[using universal kriging] as it works; this is because the form of the
kriging equations is exactly the same for KED as for what we have called
UK in Exercise 5 §4. We have reserved the term “universal kriging” for the
case where the co-predictors are the coordinates; other authors also include
feature-space predictors in this term, so they do not use the term “kriging
with external drift” at all.

Task 14 : View the kriging predictions and their variances. .
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> plot.ked <- spplot(kr.50, zcol="varl.pred",
at=seq(0, ceiling(max(kr.50$varil.pred, na.rm=T)),
by=1),
col.regions=bpy.colors(64), key.space="right",
main="KED predictions",
sub="Co (ppm)")
> plot.ked.v <- spplot(kr.50, zcol="varl.var",
at=seq(0, ceiling(max(kr.50$varl.var, na.rm=T)),
by=1),
col.regions=topo.colors(64), key.space="right",
main="KED prediction variances",
sub="Co (ppm~2)")
> print(plot.ked, split=c(1,1,2,1), more=T)
> print(plot.ked.v, split=c(2,1,2,1), more=F)

KED predictions KED prediction variances

Co (ppm) Co (ppm*2)

Q17 :  Can you see any evidence of the rock type map in the prediction
map? If so, what? Jump to A17

It might be easier to answer the preceding question by showing the KED
predictions and the rock types side-by-side:

> print(plot.ked, split = c(1, 1, 2, 1), more = T)

> map.rock4 <- spplot(jurab50, zcol = "Rock4", col.regions = topo.colors(4),
key.space = "right", main = "Rock type")

> print(map.rock4, split = c(2, 1, 2, 1), more = F)
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Task 15 : Compare the KED predictions to the OK predictions, on the
same scale. .

First we compute the OK predictions for this grid:

> k.50 <- krige(Co ~ 1, loc = jura.cal, newdata = jurabO0,
model = vmf)

[using ordinary kriging]

Then we prepare a plot, using a common colour ramp and limits with KED.
To compare side-by-side, both maps must have the same stretch; we set
up a sequence with seq from 0 to the next greater integer, computed with
ceiling, to the combined maximum of the predictions, computed with max.
We then use that sequence in both maps.

> stretch <- seq(0, ceiling(max(k.50$varl.pred,
kr.50$varl.pred, na.rm = T)), by = 1)

> plot.ked <- spplot(kr.50, zcol = "varl.pred",
at = stretch, col.regions = bpy.colors(64),
main = "KED predictions, Rock type covariable",
sub = "Co (ppm)")

> plot.ok <- spplot(k.50, zcol = "varl.pred", at = stretch,
col.regions = bpy.colors(64), main = "OK predictions",
sub = "Co (ppm)")

> print(plot.ked, split = c(1, 1, 2, 1), more = T)

> print(plot.ok, split = c(2, 1, 2, 1), more = F)
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KED predictions, Rock type covariable OK predictions
16 16

12

Co (ppm) Co (ppm)

Q18 : What are the principal differences between the spatial pattern of
the two predictions? Jump to A8 e

6.1 KED prediction variance

KED has produced a kriging prediction variance, which is a combination of
the prediction variance of the linear model and the (simple) kriging predic-
tion variance of the residuals from that model. However, they are solved
together in the Universal Kriging system (see formulation of UK). These
variances can be lower than OK variances, if the linear model explains a
large amount of the variance; however, they can be higher if extrapolating
into a part of feature space not covered by the observations. Also, the linear
model can give different prediction variances for different classes, and these
are included in the overall KED prediction variance.

Task 16 : Compare the kriging variances on the same scale. .
Again we set up a common scale:

> stretch <- seq(0, ceiling(max(k.50$varl.var, kr.50$varl.var,
na.rm = T)), by = 1)

> plot.ok.v <- spplot(k.50, zcol = "varl.var", at = stretch,
col.regions = topo.colors(64), key.space = FALSE,
main = "OK variances", sub = "Co (ppm~2)")

> plot.ked.v <- spplot(kr.50, zcol = "varl.var",
at = stretch, col.regions = topo.colors(64),

key.space = "right", main = "KED variances",
sub = "Co (ppm~2)")
> rm(stretch)

\"

print(plot.ok.v, split = c(1, 1, 2, 1), more = T)
print(plot.ked.v, split = c(2, 1, 2, 1), more = F)

v
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OK variances KED variances

Co (ppm"2) Co (ppm”2)

Q19 : Is there any difference in the spatial pattern of the two kriging
variances? In the values? Explain why in both cases. Jump to A19 e

A useful way to visualize the differences is with a difference map.

Task 17 : Build a spatial data structure with the coordinates of the pre-
diction grid, the differences in prediction and kriging variance between KED
and OK, and the covariable (here, rock type). .

We use the data.frame method to build a data frame, and then convert this
back to a spatial object with the coordinates method:

> diff <- data.frame(d.pred = kr.50$varl.pred -
k.50%varl.pred, d.var = kr.50$varl.var - k.50$varl.var,
Rock4 = jurab50$Rock4)

> summary(diff)

d.pred d.var Rock4
Min. :-3.5 Min. :-4.2  Argo 11185
1st Qu.:-0.4 1st Qu.: 1.0 KimmPort:2352
Median :-0.1 Median : 1.1 Quat : 792
Mean :-0.1 Mean : 1.0 Seq 11628
3rd Qu.: 0.2 3rd Qu.: 1.2 NA's 15392
Max. : 3.3 Max. : 1.9

NA's 16392 NA's 15392

> coordinates(diff) <- coordinates(k.50)
> gridded(diff) <- TRUE
> fullgrid(diff) <- TRUE

We can visualize these differences both in feature and geographic space.

Task 18 : Display histograms of the differences in prediction for each rock
type separately. .
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We use the histogram method of the lattice package; like the hist method
of the base package, this produces a histogram; but histogram has a formula
interface to specify multiple plots. The so-called conditioning variable, which
tells which categorical variable(s) to separate the plot by, is written to the
right of a vertical bar |, and the variable to be plotted after the tilde ~, to
show this is not an x-y plot:

> print(histogram(~diff$d.pred | diff$Rock4, col = "lightblue"))

-4 -2 0 2
| | | | | | | |
Quat Seq
B ~ 50
B ~ 40
B ] ~ 30
B ~ 20
g | —|_DL N
2 S
] 3
= Argo KimmPort
g . — L
IS
& 50+ =
40 -
30 -
20 o
10 —I -
0 — —
T T T T T T T T
-4 -2 0 2
diff$d.pred

Pay close attention to the bin labels, especially the position of the zero point
(i.e. zero residual). Note the differences are for KED — OK.

Q20 : What are the differences in the distribution of the differences for the
different rock types? Jump to A20 e

Of course we want to visualize the locations of the differences in geographic
space.

Task 19 : Display a map of the prediction differences, along with the map
of rock types to aid interpretation. .

Note: Since this is a different graphic variable from the other maps (kriging
predictions, their variances, rock type) we use another graphic scale, the heat
map, produced by the heat.colors function.

> plot.diff <- spplot(diff,
zcol="d.pred", by=seq(-3.5, 3.5, by=0.5),
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col.regions=heat.colors(64), key.space="right",
main="Difference KED-0K", sub="Co (ppm)")

> print(plot.diff, split=c(1,1,2,1), more=T)

> print (map.rock4, split=c(2,1,2,1), more=F)

Difference KED-OK Rock type

L

Seq

Quat
KimmPort
Argo

-2

™

Co (ppm)

Q21 :  Where are the greatest differences (positive and negative) in the
predictions? What accounts for these? Jump to A21 e

Finally, we examine the differences in kriging variance.

Task 20 : Summarize the differences in kriging variance. .
> summary(diff$d.var)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-4.2 1.0 1.1 1.0 1.2 1.9 5392

Task 21 : Display a map of the differences in kriging variance, along with
the map of rock types to aid interpretation. .

After some experimentation, the bpy.colors colour ramp is chosen for vi-
sualization:

> plot.diff.v <- spplot(diff, zcol = "d.var", at = seq(-4.5,
4.5, by = 0.25), col.regions = heat.colors(64),
key.space = "right", main = "Variance difference KED-0OK",
sub = "Co (ppm~2)")

> print(plot.diff.v, split = c(1, 1, 2, 1), more = T)

> print(map.rock4, split = c(2, 1, 2, 1), more = F)
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Q22: Where are the largest differences (positive and negative) in the kriging
variance? What accounts for these? Jump to A22 e

6.2 Answers for Kriging with external drift

A17 : There are clear traces of the rock type, especially Argovian, which has
substantially lower values than the others. Return to Q17 e

A18 : The OK maps is quite smooth (continuous); the KED map shows discon-
tinuities at boundaries between rock types (especially the Argovian with others).
Return to Q18 e

A19 : The spatial pattern in both is clearly related to the distribution of the ob-
servations, because all of the OK, and part of the KED, variance depends only on
sample point configuration. However, for KED there is also the effect of the covari-
able, here the rock type. In §3.4 we saw that the mean of the Sequanian/Portlandian
rock type values. The variances are lower for KED in areas with no observations,
because the linear model explains much of the variability by the rock type. How-
ever, in the interior of the prediction area, with many points, the OK variances are
lower. Return to Q19

A20: The differences are minimal and symmetric in the Kimmeridgian/Portlandian;
OK and KED agree closely. The Argovian has consistently negative differences, i.e
OK > KED. This is because the class mean for Argovian is much lower than for
the others, and KED takes this into account. The opposite is the case for the Qua-
ternary. Return to Q20

A21 : The biggest negative differences (i.e., OK gives higher predictions than
KED) are associated with the Argovian rocks. This is because of the different mean
concentrations of the rock types. Recall from the linear model mr that the other rock
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7 Validation

8 Cleaning up

types all had much higher estimates than Argovian. The largest positive differences
(i.e., KED gives higher predictions than OK) can be found in all the other rock
types, where they border the Argovian rocks. This is because only the residuals
from the nearby Argovian observations are used to (partially) adjust the rock type
mean, rather than the low-valued original Argovian observations. Return to Q21
[ ]

A22: The KED variances tend to be higher overall, i.e., the difference KED-OK
tends to be positive, over much of the area about 1 to 1.5 mg kg-12. This is because
the standard errors of the linear model coefficients introduce some uncertainty. But,
towards the edges OK has higher variance, especially in the area of Argovian rocks
at the extreme W, because the standard errors of the linear model coefficients used
in KED are small, and the residual variogram has a lower sill (i.e., maximum semi-
variance) than the ordinary variogram. Although this edge is far from observations,
the lower sill keeps the prediction variance lower, and this is only partly offset by
the linear model prediction variance. At a few interior locations KED is much less
precise than OK (see yellow spots); these mostly correspond to the Quaternary
rocks, with high standard error of the linear model coefficients.  Return to Q22 e

Both OK and KED can be validated with the 100 extra points in jura.val
and cross-validated with the 259 points in the sample set jura.cal, just as
we did for OK; these techniques will be introduced in Exercise 6 §2 and §3,
respectively. You can then try them on the KED prediction to assess its
quality.

Task 22 : Remove the temporary variables from the workspace, leaving the

kriged objects (OK, KED) for the next section. .
> rm(map.rock, map.land)
> rm(plot.ok, plot.ked, plot.ok.v, plot.ked.v)
> rm(plot.diff, plot.diff.v)
> 1s0)
[1] "diff" "jura.all" "jura.cal" "jura.raster"
[5] "jura.val" "jurab0" "k.50" "k.grid"
[9] "k.val" "kr.50" "map.rock4" "ml"
[13] Ilmrll l|mr1|| Ilmrlill II-VII
[17] "ymf" "yr" "vrm" "vrmf"
Task 23 : Save the workspace from this exercise; it will be used in the
self-test. .
> save.image(file = "JuraExb5a.RData")
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9

*Stratified kriging

As shown in §3, different strata may have different mean levels of a target
variable. In §4 we showed how to remove this mean feature-space effect from
a spatially-distributed variable and model the residuals; in §6 we showed how
to then use this variogram model, along with the feature-space linear model
of means separation, to predict the target variable as a combination of the
feature-space effect (strata) and residual spatial structure; this is Kriging
with External Drift (KED).

However, there is no inherent reason that the structure of spatial variability
within different strata should be the same, whether or not the means are
different. For example, on a steep hillslope the depth to a root-restricting
layer may be not only less (shallower soils), but also variable at shorter
ranges, and perhaps more variable overall (higher sill) than the depth on a
gently-sloping area. Even the variogram form may differ between strata. If
these contrasting areas are delineated as strata, it may be profitable to model
their spatial variability separately, use these models to map by ordinary
kriging, and finally combine the maps of each stratum into a single map.
This process is called stratified kriging (StK) [3].

A further consideration is the size and shape of individual polygons of the
strata. In StK, each point to be predicted is only kriged from points in the
same stratum. Since kriging is a local predictor, points in the stratum but
in scattered polygons will typically not get much kriging weight (of course,
that depends on the variogram range). So the larger each polygon, the more
nearby known points there will be for a point to be predicted.

This approach is not much used (one example is [3]), mainly because of the
requirement to model per-stratum variograms. If the number of points is
limited, reducing them further by stratification makes variogram model esti-
mation difficult. However, this is a useful approach to keep in the geostatis-
tician’s toolkit for those situations where (1) the spatial structure differs
between strata, (2) there are enough points to estimate per-stratum vari-
ograms, (3) the individual polygons of the strata are large enough to cover
most of the range of the per-stratum variogram.

This optional section shows how to implement StK using the Jura dataset.
This dataset is not ideal for StK, as we will see, but does allow us to illustrate
the method and some of its difficulties.

9.1 Determining the stratification

There are two categorical variables which could be used for stratification:
rock type and land use. Both of these were simplified for feature-space
modelling (§3) and Kriging with External Drift (§6)

We now decide which factor to use for stratification.

Q23 : What are the possible stratifying factors? How many levels does
each have? Which one showed the largest difference in mean values of the
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Co concentration (see §3)7 Which one showed the largest difference in spread
(as an indicator of variability)? Jump to A23 e

We use the by function to apply a function (here, length, mean and var)
to a data frame split by factors. This computes the function for each level.
We then use the cbind “bind by columns” function to make a nice table for
display.

> levels(jura.cal$Land3)

[1] "Forest" "Meadow" "PasTill"

> levels(jura.cal$Rock4)

[1] "Argo" "KimmPort" "Quat" "Seq"

> tmp <- cbind(by(jura.cal$Co, jura.cal$Rock4, length),
by(jura.cal$Co, jura.cal$Rock4, mean), by(jura.cal$Co,
jura.cal$Rock4, var))
> colnames (tmp) <- c("n", "mean", "variance")
> print (tmp)

n mean variance
Argo 53 5.3932 4.2762
KimmPort 88 10.9876 7.8654
Quat 55 9.5955 18.5529
Seq 63 9.9752 4.8344

> tmp <- cbind(by(jura.cal$Co, jura.cal$Land3, length),
by(jura.cal$Co, jura.cal$Land3, mean), by(jura.cal$Co,
jura.cal$lLand3, var))
> colnames(tmp) <- c("n", "mean", "variance")
> print (tmp)

n mean variance
Forest 33 7.6833 10.5194
Meadow 165 9.3935 14.8521
PasTill 61 9.9256 6.9569

Task 24 : Decide on a stratifying factor. .

We choose to use the rock type to define strata, because, although it has one
more class, it promises to have different variogram sills (i.e., total variabil-
ity). We do not yet know if the variogram model, range, or nuggets will be
different.

Q24 : Explain how a different sedimentary rock type might have different
spatial structure for a trace metal such as Co. Jump to A24 e

A second problem is the spatial continuity and size of individual polygons.

Task 25 : Examine the prediction grid of rock types, which was created in
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§5.1 and simplified in §6. .
> print(spplot(jurab50, zcol="Rock4", col.regions=topo.colors(4),
key.space="right",
main="Jura 50m prediction grid, Rock type"))

Jura 50m prediction grid, Rock type

)

Seq
Quat
KimmPort

Argo

T

Q25 : Which classes have reasonably large and compact polygons? Jump
to A25 e

Although the Quaternary has scattered small polygons, its spatial structure
promises to be different from the others, so we do not eliminate it.

9.2 Per-stratum variograms

The first step in Stratified Kriging is to model the spatial structure within
each stratum.

Task 26 : Compute the empirical variogram for each of the four strata. e

Recall the the fitted model of the ordinary variogram (all strata, original val-
ues) in a previous exercise was pentaspherical with a range of about 1.5 km.
This range could be the cutoff for computing the stratified variogram. How-
ever, the polygons of the strata are smaller, as can be appreciated from
the map of rock types above; thus much of the longer-range dependence
comes from the inter-polygon similarity. When kriging within a polygon the
short-range structure is most important; therefore we limit the cutoff of the
empirical variogram.

For efficiency and clarity, we will do the variogram computation, variogram
modelling, kriging, and printing in parallel for the four strata, using R lists.
These are arbitrary collections of R objects, joined together by the list
function.
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Note: They are also the result of many R functions which return hybrid
data structures; see for example objects of class 1m, returned by the 1m and
some other functions.

The first step is to split the dataset into the four strata, using the split
function and the just-created Rock4 field as the factor on which to split.
This function only works on dataframes with a factor field; since we have a
SpatialPointsDataFrame object, we must first convert to a dataframe with
the as.data.frame function, split that dataframe with split, and recover
the coordinates with the coordinates method, to finally have a list of four
SpatialPointsDataFrame objects:

> jura.cal.split <- split(as.data.frame(jura.cal),
jura.cal$Rock4)

> for (i in 1:4) coordinates(jura.cal.split[[i]]) <- c("X",
IlYlI)

Now compute the four variograms, and display them on one graph, with the
number of point-pairs per bin:

> v <- NULL; for (i in 1:4) {
> v[[i]] <- variogram(Co ~ 1, loc=jura.cal.split[[i]],
cutoff=0.7, width=0.1) };
> ylim <- c(0, max(unlist(lapply(v, function(x) max(x$gamma)))))
plot(v[[1]]1$gamma ~ v[[1]]1$dist, type="n", ylim=ylim,
xlab="separation", ylab="semivariance",
main="Empirical variogram, Co, per stratum")
for (i in 1:4) lines(v[[il]l$dist, v[[i]l]$gamma, type="b", col=i)
grid()
for (i in 1:4) text(v[[i]l$dist, v[[i]l]l$gamma, v[[i]]l$np, pos=4)
names (jura.cal$Rock4)

\4

vV V V V

NULL

> legend("topleft", levels(jura.cal$Rock4), pch=1, col=1:4)
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Empirical variogram, Co, per stratum

N o Argo o 94
o KimmPort
o Quat
S | ° Seq o 4
0 - / 292-77%
3 / \
C
.g o 37 \\\o 5 éL\\\
> O — o] 56
g \ o 18
2 o Bl \

separation

Note: The unlist function is used to return the results of the lapppy “apply
a function to a list” function as a vector, suitable for the max function.

Q26 : Do the four variograms have the same shape, total sill, nugget, and
range? If not, describe the differences. Jump to A26

With few point-pairs per variogram bin, and irregular shape, the automatic
fit of fit.variogram may not be reliable. We first model the short-range
structure by eye and then compare the automatic fit. This shows a weakness
of stratified kriging: modelling variograms in each stratum, often with not
much evidence.

Task 27 : Fit the short-range part of each variogram with a reasonable
model. .

We first define a list of starting models from visual inspection of the empirical
variograms on the above plot:

> start.model <- list(vgm(2.5, "Gau", 0.55/sqrt(3), 0.5),
vgm(6, "Pen", 0.35, 2),
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vgm(6, "Pen", 0.35, 1),
vgm(7, "Sph", 0.35, 1))

We then display these starting models on the empirical variograms, using
the print method of the lattice package; recall we can place several lattice
plots on one page with the split and more arguments:

semivariance

semivariance

> p <- NULL
> for (i in 1:4)

{

pLlil] <- plot(v[[il], plot.numbers=T, pch=20,

> print(p[[1]],
> print(p[[2]],
> print(p[[3]],

model=start.model[[i]],

main=levels(jura.cal$Rock4) [i], ylim=c(0,13)) }

split=c(1,1,2,2),
split=c(2,1,2,2),
split=c(1,2,2,2),

> print(p[[4]], split=c(2,2,2,2),
Argo
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8 - L
41
5
6 L
4 — L
5 28 L
56 75 26
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We then fit them with fit.variogram’s default weighted least squares fit:

> for (i in 1:4) {

vmf [[1]] <- fit.variogram(v[[i]], start.model[[i]])

print (vmf [[i]

model psill

D

range
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semivariance

semivariance

1 Nug 0.60884 0.0000
Gau 1385.65454 8.1018
model psill range
1 Nug 2.1661 0.00000
Pen 7.2267 0.56527
model psill range
1 Nug 0.2798 0.00000
2 Pen 8.6325 0.65518
model psill range
1 Nug 1.9853 0.000
2  Sph 3.1207 0.669

> p <- NULL
> for (i in 1:4) {
pl[il] <- plot(v[[il], plot.numbers=T, pch=20,
model=vmf [[i]], main=levels(jura.cal$Rock4) [i],
ylim=c(0,13)) }

VvV V V V

print(pl[1]], split=c(1,1,2,2), more=T)
print(pl[2]], split=c(2,1,2,2), more=T)
print (p[[3]], split=c(1,2,2,2), more=T)
print(pl[[4]], split=c(2,2,2,2), more=F)
Argo KimmPort
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Q27 : Comment on the fitted variograms. Are they reasonable to use for
kriging? Jump to A27 e

Task 28 : Predict by kriging within each stratum, each with its own model:

Note how each stratum’s points are selected as the known points (the loc
argument) and the same stratum’s grid cells are selected to be predicted (the
newdata argument). Thus, each grid cell is predicted from only points in its
same stratum, ignoring even close-by known points in other strata.

> (k <- list(NULL, NULL, NULL, NULL))
> for (i in 1:4) {

k[[i]] <- krige(Co ~ 1,
loc=jura.cal[as.numeric(jura.cal$Rock4) ==
newdata=jurab0[as.numeric(jura50$Rock4) ==
model=vmf [[i]], nmax=36) ;

gridded (k[[i]]) <- T

}

Task 29 : Display the per-stratum kriging predictions side-by-side, on the
same scale .

> zlim <- ceiling(max(unlist(lapply(k, function(x) max(x$varl.pred,
na.rm = T)))))
> p <- NULL
> for (i in 1:4) {
pts <- jura.callas.numeric(jura.cal$Rock4) ==
i, ]
layout.1l <- list("sp.points", pts, pch = 1,
col = "black", cex = 2 * pts$Co/max(pts$Co))
pl[il] <- spplot(k[[il], zcol = "varl.pred",
col.regions = bpy.colors(64), at = seq(O,
zlim, by = 0.5), main = levels(jura.cal$Rock4) [i],
xlim = bbox(jurab0) ["X", ], ylim = bbox(jurab0) ["Y",
1, sp.layout = list(layout.1))
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> print(p[[1]], split=c(1,1,2,2), more=T);
> print(p[[2]], split=c(2,1,2,2), more=T);
> print(p[[3]], split=c(1,2,2,2), more=T)
> print(p[[4]], split=c(2,2,2,2), more=F)

Argo KimmPort
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ot' B 6 :o 6

B - :, 4 ‘
_ - 5 2 . - 2
0 0

Task 30 : Display the per-stratum kriging prediction variances side-by-side,
on the same scale. .

> zlim <- ceiling(max(unlist(lapply(k, function(x) max(x$varl.var,
na.rm = T)))))
> p <- NULL
> for (i in 1:4) {
pts <- jura.cal[as.numeric(jura.cal$Rock4) ==
i, ]
layout.2 <- list("sp.points", pts, pch = 20,
col = "black", cex = 0.5)
pl[[il] <- spplot(k[[il], zcol = "varl.var",
col.regions = topo.colors(64), at = seq(O0,
zlim, by = 0.5), main = levels(jura.cal$Rock4) [i],
xlim = bbox(jurab0) ["X", ], ylim = bbox(jura50) ["Y",
1, sp.layout = list(layout.2))
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> print(p[[1]], split=c(1,1,2,2),
> print(p[[2]], split=c(2,1,2,2),
> print (p[[3]], split=c(1,2,2,2),
> print(p[[4]], split=c(2,2,2,2),

Argo

Quat

0

more=T) ;
more=T) ;
more=T)
more=F)
KimmPort
-
. l'-'
.’ = " T w

Task 31 : Combine the four prediction grids into one. J

We use the rbind method to catenate the four maps; however, this works
on dataframes, so we first convert the SpatialGridDataFrame objects into
SpatialPointsDataFrame objects, using the generic as function. We then
combine them, and convert back to SpatialGridDataFrame.

> for (i in 1:4) k[[i]] <- as(k[[i]], "SpatialPointsDataFrame")
> k.st <- rbind(k[[1]], k[[2]1], k[[31], k[[4]11)

> gridded(k.st) <- T
> fullgrid(k.st) <- T

Task 32 : Print the combined predictions.
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> plot.stk <- spplot(k.st, zcol="varl.pred",
col.regions=bpy.colors(64),
at=seq(0, ceiling(max(k.st$varl.pred, na.rm=T)),
by=0.5),
main="StK prediction", sub="Co (ppm)"
)
> print(plot.stk)

StK prediction

16

14

12

10

Co (ppm)

Q28 : Describe and explain the features of the StK predictions. Jump to

A28 @

Task 33 : Print the combined prediction variances.

> plot.stk.v <- spplot(k.st, zcol="varl.var",
col.regions=topo.colors(64),
at=seq(0, ceiling(max(k.st$varl.var, na.rm=T)),

by=0.5),

key.space="right",
main="StK prediction variance", sub="Co (ppm~2)"
)

> print(plot.stk.v)
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StK prediction variance

Co (ppm”2)

Q29 : Describe and explain the features of the StK prediction variances.
Jump to A29 e

Task 34 : Compare the OK, KED, and StK predictions side-by-side. .

To compare the different predictions visually, they must be on the same
visual scale (“stretch”), so we compute the common scale and then repeat
the plotting commands.

> stretch <- seq(0, ceiling(max(k.50$varl.pred,
kr.50$varl.pred,
k.st$varl.pred, na.rm=T)),
by=1)
> plot.ok <- spplot(k.50, zcol="varl.pred", at=stretch,
col.regions=bpy.colors(64),
main="0K predictions",
sub="Co (ppm)")
> plot.ked <- spplot(kr.50, zcol="varl.pred", at=stretch,
col.regions=bpy.colors(64),
main="KED predictions, Rock type covariable",
sub="Co (ppm)")
> plot.stk <- spplot(k.st, zcol="varl.pred", at=stretch,
col.regions=bpy.colors(64),
main="StK prediction, Rock type strata",
sub="Co (ppm)"
)
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> print(plot.ok, split = c(1, 1, 3, 1), more = T)
> print(plot.ked, split = c(2, 1, 3, 1), more = T)
> print(plot.stk, split = c(3, 1, 3, 1), more = F)

OK predictions KED predictions, Rock type covariable StK prediction, Rock type strata
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Task 35 : Compare the OK, KED, and StK prediction variances side-by-
side. .

Again we compute the visual scale and display the variances on that scale:

> stretch <- seq(0, ceiling(max(k.50$varl.var, kr.50$varl.var,
k.st$varl.var, na.rm=T)),
by=1)
> plot.ok.v <- spplot(k.50, zcol="varl.var", at=stretch,
col.regions=topo.colors(64),
main="0K variance",
sub="Co (ppm)")
> plot.ked.v <- spplot(kr.50, zcol="varl.var", at=stretch,
col.regions=topo.colors(64),
main="KED variance, Rock type covariable",
sub="Co (ppm)")
> plot.stk.v <- spplot(k.st, zcol="varl.var",
col.regions=topo.colors(64), at=stretch,
main="StK variance, Rock type strata",
sub="Co (ppm)"
)
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> print(plot.ok.v, split = c(1, 1, 3, 1), more = T)
> print(plot.ked.v, split = c(2, 1, 3, 1), more = T)
> print(plot.stk.v, split = c(3, 1, 3, 1), more = F)
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9.3

Challenge: Attempt stratified kriging with land use as a stratifying factor.

Task 36 : Remove the temporary variables from the workspace. o

> rm(plot.ok, plot.ked, plot.ok.v, plot.ked.v, plot.stk,
plot.stk.v, stretch)

> rm(k.st, k, p, v, start.model, vmf, jura.cal.split,
ylim, zlim, layout.l, layout.2)

* Answers for Stratified Kriging

A23 : The two stratifying factors are (simplified) land use (field Land3), with
three levels, and (simplified) rock type (field Rock), with four. In §3 we showed
that rock type explained much more variation in Co concentration than land use,
0.32 vs. 0.03. The boxplot in that section shows that the difference in spreads is
also wider in rock type: Quaternary has a much wider spread than the other rock
types; whereas for land uses the spreads are similar, although the pasture/tillage
land use has about half the variance of the other land uses. Return to Q23

A24 : The depositional environments in which the sedimentary layers were formed
may have had different spatial structure. For example, a limestone may be from
very deep, still water, or from shallower, more turbid water; the former would have
longer-range spatial structure. In the present case the Quaternary geology is much
more recent than the four late Jurassic limestones (approximately 150 Mya), and
may result from a shorter-range process, or one with more nugget variance. Return
to Q24 e

A25 : No rock type has large, compact polygons; the closest to that ideal are
Kimmeridgian/Portlandian and Sequanian, but these both have some SW-NW
elongated polygons. The same directional trend is clear in the Argovian. The
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Portlandian and Quaternary both have only small, scattered polygons. Return to
Q25

A26 : The shapes differ substantially: a Gaussian shape seems best for Argo-
vian (strong spatial continuity at the origin), whereas the other three have similar
variograms, which could be approximated by a pentaspherical model. The few
point-pairs per bin makes for erratic empirical variograms.

The total sill for the Kimmeridgian/Portlandian and Quaternary are the highest;
Sequanian and Argovian reach similar sills but with different model forms.

The nuggets also differ, with that for Argovian lower than the others, about 0.5 (mg kg-1)2
vs. 1 to 3 (mg kg1)2.

The ranges are roughly similar, about 0.35 km, except for Argovian which appears
longer-range, about 0.55 km. Return to Q26 e

A27 : Given the small number of points and the irregular variograms, these fits
look reasonable. The extremely high sill and long range of the Gaussian model fit
are due to the bin at about 0.55 km separation. Return to Q27 e

A28 : The Argovian areas have the lowest values; the strata are quite recognisable,
e.g., the Quaternary within the Argovian in the SW corner. Return to Q28 e

A29 : The Argovian areas have very low prediction variances, because of (1)
the low nugget and (2) the strong spatial continuity of the Gaussian model. The
Kimmeridgian/Portlandian areas have a bit lower variance, because of the somewhat
lower nugget; otherwise the variance is lowest near observation points. Return to
Q29 o

10 Self-test

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
SWETS.

Task 1: Compute the residual variogram using simplifed (3-class) land use
as the classifying factor. Plot the variogram, next to the ordinary variogram.

Task 2 : Model the residual variogram using land use as the classifying fac-
tor. Plot the modelled variogram. Compare its parameters to the ordinary
variogram from Exercise 4 §4.1. .

Q1 : How much and how does this differ from the ordinary variogram? e
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Q2 : How much does this differ from the residual variogram using rock type
as the classifying factor? .

Q3 : Explain why the residual variogram from land use does not differ very
much from the ordinary variogram, whereas that using rock type is quite
different. .

Task 3 : Predict the Co concentration over the 50 m grid, using kriging with
external drift (KED), with simplified land use as the feature-space predictor.
View the predictions and the kriging variances. .

Q4 : Can you see any evidence of the land use map in the prediction map?

If so, where and why? .
Q5 :  Can you see any evidence of the land use map in the prediction
variances map? If so, where and why? o

Task 4 : Compare the KED predictions to the OK predictions, on the same
scale. .

Q6 : What are the principal differences between the spatial pattern of
the two predictions? Is there a greater or lesser difference using land use as
the feature-space predictor vs. using rock type? Why? .

Task 5 : Compare the KED prediction variance to the OK prediction
variance, on the same scale. .

Q7 :  What are the principal differences between the spatial pattern of
the two prediction variances? Is there a greater or lesser difference using
land use as the feature-space predictor vs. using rock type? Why? .

Task 6 : Clean up the workspace. o
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Index of R Concepts
<- operator, 6

anova, 9

as, 36
as.data.frame, 30
as.factor, 4, 18

boxplot, 5
bpy.colors (sp package), 24
by, 28

car package, b

cbind, 28

ceiling, 11, 20

coordinates (sp package), 22, 30

data.frame, 22
fit.variogram (gstat package), 12, 31, 32
gstat package, 2, 11, 12, 14

heat.colors, 23
hist, 23
histogram (lattice package), 23

jura dataset, 14
krige (gstat package), 18

lapppy, 31

lattice package, 23, 32
length, 28

list, 29

1m, 6, 11, 30

1m class, 30

load, 2, 14

loc gstat argument, 34

max, 20, 31
mean, 28
more lattice graphics argument, 32

newdata gstat argument, 34
notch argument (boxplot function), 5

print (lattice package), 32

rbind, 15, 36
recode (car package), 5

seq, 20

setwd, 2

sp package, 2

SpatialGridDataFrame class, 17, 36
SpatialPointsDataFrame class, 30, 36
split, 30

split lattice graphics argument, 32
spplot (sp package), 15

summary, 6

summary.lm, 6

table, 3, 15
unlist, 31
var, 28

variogram (gstat package), 11

varwidth argument (boxplot function), 5

vgn (gstat package), 12
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