Applied geostatistics
Exercise 4a: Normal-score transformation
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1 Introduction

Goovaerts [1, §7.2.2] explains the rationale behind the normal score tran-
form. Here we present some of that rationale and show how to implement
the transform in R with the gstat package.

Task 1 : If R is not already running, start it. If you haven’t already done
so, load the gstat and sp libraries, as shown in the previous exercises. e

> require(sp)
> require(gstat)
> require(lattice)

Task 2 : If the jura.cal spatial object is not already in the workspace,
load it from the saved image. .

> load("JuraEx4.RData")

2 Normal-score transformation

Multigaussian kriging requires that the variable to be modelled and kriged
be normally-distributed.

Task 3 : Display a histogram of the Co values, and three sample histogram
of the same number of random normal values with the empirical mean and
standard deviation. .

> par(mfrow = c(2, 2))

> hist(jura.cal$Co, col = "lightblue", breaks = 20,

+ main = "Co, Jura calibration samnple", xlab = "Co (ppm)")

> for (i in 1:3) hist(rnorm(length(jura.cal$Co), mean = mean(jura.cal$Co),
+ sd = sd(jura.cal$Co)), col = "lavender", breaks = 20,

+ main = "Random numbers, mean/sd as Jura Co",
+
>

xlab = "Co (ppm)", sub = paste("Sample", i))
par(mfrow = c(1, 1))
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Q1 : Is the empirical distribution approximately normal?  Jump to Al e

We can see this also in a cumulative probability plot.

Task 4 : Plot the Empirical Cumulative Distribution Function (ECDF) of
the Jura calibration sample Co concentrations. Superimpose the theoretical
ECDF for a normal distribution with the same mean and standard deviation.

For the empirical plot, we use the ecdf “Empirical Cumulative Distribution
Function” method. For the theoretical plot, we use the seq method to create
a vector of Co concentrations, and then the pnorm method to compute the
cumulative probability of achieving each value. Plotting the theoretical curve
with the points method adds to the existing plot; specifying type="s" gives
a step function.

> plot(ecdf(jura.cal$Co), do.points = F, verticals = T,

+ main = "Empirical Cumulative Distribution Function",

+ xlab = "Co (ppm), Jura soils", sub = "Theoretical ECDF: green")
> xvals <- seq(min(jura.cal$Co), max(jura.cal$Co),

+ by = 0.1)

> points(x = xvals, y = pnorm(xvals, mean = mean(jura.cal$Co),

+ sd = sd(jura.cal$Co)), col = "green", type = "s")
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Q2 : What are the principal differences between the actual and theoretical
(normal) ECDF? Jump to A2 e

Q3 : Would a monotonic function (such as logarithm or square root) trans-
form this empirical distribution to approximate normality? Jump to A3

Since no monotonic function will transform these, we use instead the normal
scores, i.e. the quantile of the normal distribution with the observed mean
and standard deviation.

Task 5 : Compute the normal scores for the Co values. .

We can see the correspondence between the original values and their normal
scores with the qgnorm method, which by default plots a normal QQ plot,
but also can return two vectors: the original values and their normal scores.

> gqCo <- qgunorm(jura.cal$Co, plot.it = F)
> str(qqCo)

List of 2
$ x: num [1:259] -0.1067 0.0581 0.2146 0.5946 2.1113 ...
$ y: num [1:259] 9.32 10 10.6 11.92 16.32 ...

The normal scores are in the x field, the original Co values in the y field.

We can compare this to a theoretical normal distribution by plotting the re-
sults of the ggnorm method; this is equivalent to calling qgnorm(jura.cal$Co)
directly. The theoretical line is superimposed with the qqline method.

> plot(gqCo)
> gqline(jura.cal$Co)
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Examine the correspondence between value and normal score numerically,
at both extremes:

> head(sort(qqCo$x))

[1] -2.8893 -2.5246 -2.3396 -2.2111 -2.1113 -2.0289
> head(sort(qqCo$y))

[1] 1.55 2.07 2.12 2.36 2.81 3.09

> tail(sort(qqCo$x))

[1] 2.0289 2.1113 2.2111 2.3396 2.5246 2.8893

> tail(sort(qqCo$y))

[1] 15.28 16.32 16.92 17.32 17.32 17.72

Task 6 : Make a data frame with the correspondence between Co concen-
tration and normal score, sorted from lowest to highest quantile. .

We use the order method to rank the scores (or, equivalently, the concen-
traitons), and then use this index to place the scores and concentrations in
sorted order in the dataframe:

> head (order (qqCo$x))

[1] 84 114 48 13 129 123

> head(order(qqCo$y))

[1] 84 114 48 13 129 123

> qqCo.s <- data.frame(score = qqCo$x[order (qqCo$y)],

+ Co = qqCo$yl[order(qqCo$y)])
> str(qqCo.s)



'data.frame':

$ score: num

$ Co

. num

259 obs. of 2 variables:

-2.89 -2.52 -2.34 -2.21 -2.11 ...
1.55 2.07 2.12 2.36 2.81 3.09 3.12 3.14 3.19 3.27 ...

Task 7 :

Add a field with the normal score transforms of Co to the calibra-
tion spatial object.

> jura.cal$Cd.norm <- qgnorm(jura.cal$Cd, plot.it = F)$x

3 Variogram modelling

Now we have a ‘new’ variable and can model its spatial structure.

Task 8 :

of Co.

Compute and model the variogram for the normal score transforms

We first compute and plot the variogram:

> v <- variogram(Cd.norm ~
> print(plot(v, pl = T, pch = 20))
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Then, we estimate a model and fit it automatically:

> (vmf <- fit.variogram(v, vgm(0.6, "Sph", 1, 0.4)))

model

1
2

psill

range

Nug 0.45230 0.0000
Sph 0.59161 1.0628

> print(plot(v, model = vmf, pl = T, pch = 20))
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The proportion of variance explained is the structural sill divided by the
total sill:

> vmf [2, "psill"]/sum(vmf[, "psill"])

[1] 0.56672

Task 9: Model the variogram and compute proportion of variance explained
for the untransformed variable. .

> v.c <- variogram(Co ~ 1, jura.cal)
> (vmf.c <- fit.variogram(v.c, vgm(10, "Sph", 1.2,
5)))

+

model psill range
Nug 1.5749 0.0000
2 Sph 12.3033 1.2175

[

> print(plot(v.c, pl = T, pch = 20, model = vmf.c))
> vmf.c[2, "range"]

[1] 1.2175
> vmf.c[2, "psill"]/sum(vmf.c[, "psill"])

[1] 0.88652
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Q4 : What is the fitted variogram model? How does the range and propor-
tion of variance explained compare to the variogram model of the untrans-
formed variable? Jump to A4

Q5 : Why is the proportion of variance explained by the variogram model
so much lower for the normal-score transformed variable?  Jump to A5 e

4 Simple Kriging

With a model, we can now predict.

Task 10 : Predict over the grid with the normal-score transform variable,
using Simple Kriging (SK). .

We can use SK because the mean is by definition 0 after normal-score trans-
formation.

> k <- krige(Cd.norm ~ 1, jura.cal, newdata = jura.grid,
+ model = vmf, beta = 0)

[using simple kriging]

> summary (k@data)

varl.pred varl.var
Min. :—-1.9332 Min. :0.534
1st Qu.:-0.1512 1st Qu.:0.645
Median : 0.1317 Median :0.680
Mean : 0.0712 Mean :0.692
3rd Qu.: 0.3998 3rd Qu.:0.709
Max. : 1.5042 Max. :1.039



> print(spplot(k, z = "varl.pred", contour = T, at = seq(-2.5,

+ +2.5, by = 0.2), col.regions = terrain.colors(64),
+ main = "SK, normal score transform, Co", xlab = "E",
+ ylab = "N"))

SK, normal score transform, Co

Q6 :  What does the value 0 (zero) on this map represent, in terms of Co
concentration? Jump to A6 e

We can also plot the kriging prediction variances:

print (spplot(k, z="varl.var", col.regions=topo.colors(64),
contour=T,
at=seq(0.4,1.1, by=0.05),
main="SK variance, normal score transform, Co",
xlab="E", ylab="N"))

+ 4+ 4+ + Vv
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5 Back-transformation

Of course, we want our predictions in terms of the actual element concen-
tration, not a normal score.

Task 11 : Back-transform the predictions to Co values; compare their
summary statistics and histogram to the sample’s. .

The result of the normal-score SK is a map of normal scores, where 0 repre-
sents the mean and other values represent the number of standard deviations
above or below that. If the original sample were normally-distributed, we
could recover the Co values in original units, we just multiply the deviations
by the sample standard deviation (thereby recovering the original units of
measure) and add these to the sample mean (thereby recovering the original
centre of the distribution location).

However, the whole point of this exercise was that the Co values in the origi-
nal sample was not normally-distributed, rather its histogram was irregular,
with several peaks. The discrepency can be appreciated in the following
matched histograms:

> par(mfrow = c(1, 2))

> hist(k$varl.pred, main "Predicted quantiles", breaks = seq(-2,
+ +2, by = 0.2), col = "lavender", freq = F)
>
+
>

hist(jura.cal$Co, main = "Sample values", sub = "Co (ppm)",
breaks = 0:18, col = "lightblue", freq = F)
par (mfrow = c(1, 1))
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To solve this problem, we use the correspondence betweeen quantiles and
Co concentrations established above, and saved in data frame qqCo.s, to
perform a linear interpolation of Co values, based on the predicted normal
scores, using the approx method. This takes a two-dimensional vector (here,
Co concentration vs. score) and, given a score, estimates the Co concentra-
tion by interpolating between the nearest two scores in the correspondence
vector. It returns a two-vector list: the abcissa as x and the ordinate as y.

Here is the structure of the approximation object:
> str(approx(qqCo.s$score, qqCo.s$Co, xout = k$varl.pred))

List of 2
$ x: num [1:5957] -0.343 -0.384 -0.35 -0.423 -0.383 ...
$ y: num [1:5957] 8.41 8.02 8.3 7.84 8.03 ...

Q7 :  What is the Co concentration corresponding to a normal score of
-1.577 Jump to A7 e

> approx(qqCo.s$score, qqCo.s$Co, xout = -1.57)

$x

[1] -1.57
$y

[1] 3.6024

We can visualize this by seeing one interpolation towards the low tail of the
-Q plot. We draw the sample point concentrations and scores, and show the
linear interpolation between them:

> plot(qqCo.s$Co ~ qqCo.s$score,

+ main="Co concentration (ppm) vs. normal score",
+ xlim=c(-1.8,-1.4), ylim=c(3,4), type="b",

+ xlab="score", ylab="Co (ppm)")

> abline(v=-1.57)

> abline(h=approx(qqCo.s$score, qqCo.s$Co, xout=-1.57))
> points(approx(qqCo.s$score, qqCo.s$Co, xout=-1.57),

+ cex=2, col="red", pch=20)

> text (approx(qqCo.s$score, qqCo.s$Co, xout=-1.57),

10



+ "Interpolated point for normal score -1.57",
+ adj=(c(0.7, -0.8)))
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Now that we have seen how the back-transformation can be implemented,
we interpolate all of the predictions and store them in the prediction frame:

> k$Co.pred <- approx(qqCo.s$score, qqCo.s$Co, xout = k$varl.pred)$y
> summary (k$Co.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.13 9.16 10.30 9.87 11.20 14.20

> summary (jura.cal$Co)

Min. 1st Qu. Median Mean 3rd Qu. Max.
1.55 6.52 9.76 9.30 12.00 17.70

Task 12 : Plot the predictions of Co concentration. .

> print(spplot(k, zcol="Co.pred", pretty=T, contour=T,
+ at=0:16, col.regions=bpy.colors(64),

+ main="Predicted values, Co (ppm)",

+ x1ab="UTM E", ylab="UTM N",

+ scales=list(draw=T)))

11
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6 Comparison with Ordinary Kriging

Task 13 : Compare with the OK predictions of the untransformed variable.

[ ]
We have the fitted variogram model from the comparison above.

> k.grid <- krige(Co ~ 1, loc = jura.cal, newdata = jura.grid,
+ model = vmf)

[using ordinary kriging]

> print(spplot(k.grid, zcol = "varl.pred", pretty = T,

+ contour = T, at = 0:16, col.regions = bpy.colors(64),
+ main = "Predicted values, Co (ppm)", xlab = "UIM E",
+ ylab = "UIM N", scales = list(draw = T)))

12



7 Answers
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Q8 : What are the major differences between the two predictions? Jump
to A8 e

> summary (k.grid$varl.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.77 8.28 10.10 9.60 11.10 14.60

> summary (k$Co.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.
3.13 9.16 10.30 9.87 11.20 14.20

Task 14 : Clean up from this exercise. .

> rm(xvals, v, vm, vmf, v.c, vmf.c, gqqCo, qqCo.s, k,
+ k.grid, i)

A1 : No; although the tails are shaped approximately as in a normal distribution,
there two clear modes (near 3 and 12 mg kg1 Co). The three samples from the
normal distribution vary considerably among themselves; this illustrates the effect
of small (259, in this case) sample size. Return to Q1 e

13



A2 : The theoretical ECDF has substanially lower probabilities for Co values from
about 3 to about 8; this corresponds to the first peak in the empirical histogram.
Return to Q2 e

A3 : No, because the empirical distribution is not monotonically increasing in
frequency (i.e. it is multi-modal). Return to Q3
A4 : For the normal-score variogram model: Range 1.06; structural sill 0.592;

nugget varance 0.452; proportion of variance explained 0.57.

This range is somewhat shorter than the model for the untransformed variable:
1.22; the proportion of variance explained is much lower than the untransformed
variable’s 0.89 Return to Q4 e

A5 : The normal scores are on a much narrower range of values: -2.89 to 2.89 for
the normal score; 1.55 to 17.72 for the original variable. So the sill must be lower.
The higher relative nugget is due to the stretching of the middle part of the range.

Return to Q5 e

A6 : A normal score of 0 (zero) represents the mean of the original variable; in
this case 9.3. Return to Q6 e

A7 : The Co concentration corresponding to a normal score of —1.57 is 3.602.
Return to Q7 e

A8 : The range of predictions is similar but the spatial pattern is quite different.
The centres of the “cold spots” are similar but the “hot spots” are not. Return to
Q8 o
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