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zäxÜ
“Follow the vine to grasp the melon”

– Chinese folk saying

1 Introduction

Our knowledge of nature comes from samples, that is, a set of sampling units
(sometimes loosely called “samples”) taken from the sampling frame, which
is all possible units in the underlying population. On the basis of the sample
we make inferences about the population; e.g. we predict on a grid of many
thousands of locations based on a sample of a few hundred observations.

Sampling is expensive and time-consuming, so designing a good sampling
scheme (maximum information at minimum cost) is an important application
of geostatistics.

After completing this exercise you should be able to:

1. Design completely random, stratified random, and grid sampling schemes;

2. Find the “optimal” regular grid sample for a given variogram model.

A general reference relevant to this exercise is de Gruijter et al. [4]. Also of
interest is a US Forest Service technical report [13] and articles by Stein and
Ettema [14].

For sampling to determine the variogram, relevant papers are by Webster
et al. [19], Lark [7], Müller and Zimmerman [11], Warrick and Myers [18],
Russo [12], and van Groenigen et al. [15].

Sampling for kriging with external drift has been recently addressed by Hengl
et al. [6], Minasny et al. [10] and Brus and Heuvelink [2].

Sampling for spatial means with maximum efficiency has been discussed by
Walvoort et al. [17]; these authors have developed R package spcosa to
implement their scheme.

In this exercise we use the Jura soil sample area, i.e. the bounding box
of the prediction grid jura.grid introduced in Exercise 4. We will also
use a simulated field, as in Exercise 6 §5, to evaluate the success of the
various sampling schemes; this will be recreated from the calibration points
jura.cal and the fitted variogram model vmf.

Task 1 : Load the saved dataset from Exercise 4 §5. This should include:

1. Calibration points jura.cal

2. Evaluation points jura.val

3. Prediction grid jura.grid

as spatial objects. Also make sure the required packages are loaded. •

> load("JuraEx4.RData")

> ls()
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> require(sp)

> require(gstat)

> require(lattice)

We will make one simulated field, conditioned on the Jura point data, and
pretend that it is a perfect map of the population. We can then see how well
the various sampling schemes perform.

Task 2 : Compute and plot a single conditionally-simulated field from the
calibration points jura.cal and the fitted variogram model vmf. •

For a more accurate reproduction of the variogram than in Exercise 5 §6, we
use a larger number of neighbourhood points (function argument nmax). So
that we are looking at the same field, we set the random number generator
to the same starting point, with the set.seed method. The argument is an
arbitrary integer; as long as we all use the same one, we will get the same
results.

First we set the seed:

> set.seed(201302)

Then we compute the conditional simulation object. Warning! this will take
several minutes (or more on a slower machine).

> system.time(

+ k.sim <- krige(Co ~ 1, loc = jura.cal,

+ newdata = jura.grid,

+ model = vmf, nsim = 1,

+ nmax = 256)

+ )

drawing 1 GLS realisation of beta...

[using conditional Gaussian simulation]

user system elapsed

31.284 0.050 31.376

Here we display the sample points on which the simulation is conditioned
overlain on the simulated field by means of the sp.layout optional argument
to the spplot method. This takes a list of elements to be plotted, in this
case points. Using sp.layout can be a simpler alternative to using panel
functions.

> layout.2 <- list("sp.points", jura.cal, pch=21,

+ cex=1.2*jura.cal$Co/max(jura.cal$Co),

+ col="black", fill="darkgreen")

> print(spplot(k.sim, zcol=1, col.regions=bpy.colors(64),

+ main="Simulated population, Jura Co (ppm)",

+ sp.layout=list(layout.2)))

> rm(layout.2)
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Simulated population, Jura Co (ppm)
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We will evaluate various designs against this “known” reality:

1. How well can the sample estimate the mean and variance?

2. How well can the sample be used to develop a model of spatial de-
pendence (variogram)? Note that we know the true variogram; it was
used to simulate the field.

For reference, the mean and variance of the simulated field are:

> mean(k.sim$sim1)

[1] 9.2082

> var(k.sim$sim1)

[1] 11.877

2 Design-based sampling

Design-based sampling schemes refer to those where each sampling unit has
a known probability of being selected. Analysis can then ignore the spatial
distribution and use classical (non-spatial) inference. These have been shown
to give correct inferences [1], but are not optimal if there is any spatial
structure. These designs are extensively discussed in texts such as that by
Cochran [3].

2.1 Completely random spatial sampling

We start with a completely random design, where each location has an equal
probability of being included.
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Task 3 : Place 100 sample points randomly over the prediction grid’s
bounding box; plot their locations. •

It is easy to build the sample from two uniform distributions, one for each
axis; but the spsample method of the sp package already draws a sample
in as a spatial object, of class SpatialPoints. To get random locations, we
specify the type argument as "random". We extract the coördinates for the
scatterplot with the coordinates method:

> samp.rand <- spsample(jura.grid, n=100, type="random")

> str(samp.rand)

Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:96, 1:2] 3.65 3.87 3.16 1.42 2.4 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "Xloc" "Yloc"

..@ bbox : num [1:2, 1:2] 0.392 0.535 5.022 5.766

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "Xloc" "Yloc"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> plot(coordinates(samp.rand), asp=1, xlab="E", ylab="N",

+ xlim=c(0,5.5), ylim=c(0,6),

+ main="Completely random sample, 100 points")

> grid(lty=1, col="lightblue")
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Note: The n argument to sample specifies an approximate number of points;
it is only guaranteed to equal the specified size when sampling is done in a
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square window. Here we have a non-square rectangle, so the number may
not be exactly 100, although that is the expected value.

Q1 : Describe the spatial coverage of this sample. Is this relevant, given
the assumptions behind design-based sampling? Jump to A1 •

2.2 Evaluation: reproducing population statistics

There are several ways to evaluate the quality of a sampling scheme, if we
have a known population to compare it to, as in this case. The simplest is
to see how well the sample reproduces population statistics.

The first step is to find the attribute values at the sample points. Of course,
in reality we would have to go the field; but here we have an assumed com-
plete population (the simulated field).

Task 4 : Extract the simulated Co values at the sample points. •

The sample points do not usually fall directly on the centre of a grid cell; they
can be anywhere in the grid’s bounding box. Fortunately, the sp package
provides an over method that, among many other things, can overlay an
object of class SpatialPixelsDataFrame (here, the random field k.sim)
and an object of class SpatialPoints (here, the random sample samp.rand).
This method can return the overlaid points two ways:

� If the target object has attributes, as well as coördinates, the attributes
at the selection points are returned in a dataframe;

� If the target object has no attributes, only coördinates, the index in
the target object is returned.

In this case, the target object k.sim does have one attribute, the simulated
value:

> class(k.sim)

[1] "SpatialPixelsDataFrame"

attr(,"package")

[1] "sp"

> Co.rand <- over(samp.rand, k.sim)

> str(Co.rand)

'data.frame': 96 obs. of 1 variable:

$ sim1: num 7.92 9.54 10.92 12.88 10.54 ...

This result can also be obtained by first extracting the indices and then using
these row numbers to extract the data values; to do this the target object
with attributes must be stripped of them with the as method:

> ov <- over(samp.rand, as(k.sim, "SpatialPixels"))

> head(ov)
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[1] 4260 4594 3264 678 2029 1075

> Co.rand <- k.sim$sim1[ov]

> str(Co.rand)

num [1:96] 7.92 9.54 10.92 12.88 10.54 ...

Q2 : What is the grid cell number, and the value of the random field, at
the first sample point? Jump to A2 •

It is possible that one or more sample points fell outside the simulation area.
Since the simulation is random, your results may have zero or more of these.

Task 5 : Check for sample points with no data values (because they fell
outside the area with simulated values), and remove them. •

We check with the is.na “is not defined” function, and locate their positions
in the vector with the which function; if any are found (checked with length

of the result vector), we remove them from both the original sample set and
the list of values, using the - matrix selection notation.

> (ix <- which(is.na(Co.rand)))

integer(0)

> if (length(ix) > 0) {

+ Co.rand <- Co.rand[-ix]

+ samp.rand <- samp.rand[-ix]

+ }

Q3 : How well does this sample reproduce the population mean, variance,
extremes, and quartiles? Jump to A3 •

> summary(Co.rand)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.676 8.100 10.400 10.000 12.400 16.100

> summary(k.sim$sim1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.48 6.83 9.49 9.21 11.70 19.60

> var(Co.rand)

[1] 13.157

> var(k.sim$sim1)

[1] 11.877

6



Task 6 : Display the distribution of the sample, alongside that of the full
distribution, as a side-by-side frequency histogram. •

We use the hist method to determine the histogram frequencies for specified
bins; then we join these into a data structure that can be used by the barplot
method to produce the side-by-side plot.

> hist.rand <- hist(Co.rand, breaks = seq(-4, 24, by = 2),

+ plot = F)

> str(hist.rand)

List of 6

$ breaks : num [1:15] -4 -2 0 2 4 6 8 10 12 14 ...

$ counts : int [1:14] 0 0 3 3 7 10 21 23 15 12 ...

$ density : num [1:14] 0 0 0.0156 0.0156 0.0365 ...

$ mids : num [1:14] -3 -1 1 3 5 7 9 11 13 15 ...

$ xname : chr "Co.rand"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

> hist.sim <- hist(k.sim$sim1, breaks = seq(-4, 24, by = 2),

+ plot = F)

> str(hist.sim)

List of 6

$ breaks : num [1:15] -4 -2 0 2 4 6 8 10 12 14 ...

$ counts : int [1:14] 3 14 100 366 674 924 1250 1288 920 330 ...

$ density : num [1:14] 0.000252 0.001175 0.008393 0.03072 0.056572 ...

$ mids : num [1:14] -3 -1 1 3 5 7 9 11 13 15 ...

$ xname : chr "k.sim$sim1"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

Note that the structure is the same: both histogram objects have the same
number of midpoints and densities, and the midpoint values are the same.
So we make one structure:

> to.plot <- rbind(samp = hist.rand$density, pop = hist.sim$density)

Q4 : Why do we use the histogram density (proportion of the total) rather
than the histogram frequency (actual counts)? Jump to A4 •

> barplot(to.plot, beside=T, col=c("lavender", "cornsilk"),

+ main="Histogram of Co frequency",

+ sub="random sample (left), population (right)")
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Histogram of Co frequency
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Q5 : Which histogram is more regular? Why? Jump to A5 •

Clean up:

> rm(hist.rand, hist.sim, to.plot)

2.3 Evaluation: reproducing the variogram

We know there is strong spatial structure in this field; could we have discov-
ered this from this sample?

Task 7 : Compute the experimental variogram for Co at the sample points.
Plot it with the known model. •

We first make a data frame of just the Co values, with the data.frame

method, and then add coördinates to it with the coordinates method. Note
that we use coordinates on both the right side (to extract from samp.rand

and left side (to add to Co.rand).

> Co.rand <- data.frame(Co = Co.rand)

> str(Co.rand)

'data.frame': 96 obs. of 1 variable:

$ Co: num 7.92 9.54 10.92 12.88 10.54 ...

> coordinates(Co.rand) <- coordinates(samp.rand)

> str(Co.rand)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 96 obs. of 1 variable:

.. ..$ Co: num [1:96] 7.92 9.54 10.92 12.88 10.54 ...

..@ coords.nrs : num(0)

..@ coords : num [1:96, 1:2] 3.65 3.87 3.16 1.42 2.4 ...

.. ..- attr(*, "dimnames")=List of 2
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.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "Xloc" "Yloc"

..@ bbox : num [1:2, 1:2] 0.392 0.535 5.022 5.766

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "Xloc" "Yloc"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> v <- variogram(Co ~ 1, loc=Co.rand)

> print(plot(v, pl=T,

+ model=vmf,

+ main="Variogram of Co ppm^2, from random sample"))

Variogram of Co ppm^2, from random sample
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Q6 : How well is the experimental variogram computed from the sample
fitted by the known model? Would another model form appear more appro-
priate? Can this experimental variogram be modelled? Jump to A6
•

Task 8 : Model the variogram and compare this model with the known
model. •

We could make the tentative model by eye, but the fit will be the same if
we start from any “reasonable” model; we already have one of these, namely
the “true” model vmf:

> (vf <- fit.variogram(v, vmf))

model psill range

1 Nug 1.3298 0.0000

2 Pen 11.6259 1.0377

> print(vmf)
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model psill range

1 Nug 1.3712 0.0000

2 Pen 12.9322 1.5239

> print(plot(v, pl=T, model=vf,

+ main="Variogram of Co ppm^2, fitted from random sample"))

Variogram of Co ppm^2, fitted from random sample

distance

se
m

iv
ar

ia
nc

e

5

10

15

0.5 1.0 1.5 2.0

●

●

●

●

●

●

●

●
●

● ●

●

● ●

●

18

66

112
127

160

164

227

181
254

251 243
256

278 259

250

Q7 : How close are the two models? Jump to A7 •

Q8 : Why was it easy to model this variogram even with only 100 points?
Jump to A8 •

2.4 Answers

A1 : Spatial coverage is uneven; there are tight clusters, isolated points, large
holes without any points nearby. For design-based sampling this is no problem; all
sampling units are equally-likely. Return to Q1 •

A2 : The grid cell number is the first element of the overlay vector ov, here 4260
The value of the simulated field at this grid cell position is the first element of the
sim1 field of the data frame, here 7.92. This can be seen directly from the results
of str(k.sim$sim1[ov]) or extracted with k.sim$sim1[ov][1]. Return to Q2 •

A3 : The answer depends on the actual random sample. Typically a sample has a
narrower range, since with only 100 points it is unlikely that we’ll hit the extremes
of 10 272 cells. The mean usually fairly close; but the inter-quartile range and
variance may be wider or narrower. With this random sample, compared to the
full grid (population) the range is indeed quite a bit narrower, although the IQR is
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wider. The mean and median are higher, and as expected the variance is higher.
Return to Q3 •

A4 : The two sample sizes are different: 100 vs. 10272, so they must be compared
by their relative proportions. Return to Q4 •

A5 : The population histogram shows an almost perfect normal distribution; the
sample is erratic. This is because of the sample size. Return to Q5 •

A6 : Again, this depends on the sample. In general, the model form (pentas-
pherical) seems adequate; there is no strong indication for another form (although
perhaps spherical would fit well also). This experimental variogram is easy to model.

Return to Q6 •

A7 : Quite close, especially considering the small number of sample points. Return
to Q7 •

A8 : Because of the random sample, there are point-pairs at all distance ranges,
so that all the experimental variogram bins have enough point-pairs for a good
estimate of the semivariance at that separation range. Return to Q8 •

3 Grid sampling

Regular grids have the advantage of equal coverage, so that no predicted
point will be very far from a known point. Thus if the spatial structure is
known, perhaps from a previous sampling in a test area, they are the most
efficient for mapping. They are also quite suitable for estimating a trend
surface, since they represent the whole area equally-well. However, as we
will see, they may have difficulty providing a good sample for variogram
estimation.

In a pure grid scheme, the only random element is the location of the first
point; the others are at regular intervals.

The spsample method of the sp package can also draw a grid sample; to do
this we specify the type argument as "regular".

Task 9 : Place 100 sample points as a square grid over the prediction grid’s
bounding box; plot their locations. •

Unless the optional offset argument is specified, the first point of the square
grid (say, the lower-leftmost) is placed randomly within the area it is to
represent, and the rest of the grid is regular from that point. So that your
grid looks the same as the one here, we specify the centre of each area, as
offset=c(0.5, 0.5).
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Note: You would specify a random offset with a call to the runif method,
specifying the maximum dimensions of the offset, e.g. offset=runif(2, -

.99, .99) to draw two random offsets (for the two dimensions), each on
[−0.99 . . .+ 0.99], i.e. almost the corners of the cell.

> samp.grid <- spsample(jura.grid, n = 100, type = "regular",

+ offset = c(0.5, 0.5))

> str(samp.grid)

Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:101, 1:2] 2.01 1.24 1.62 2.01 2.39 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "x1" "x2"

..@ bbox : num [1:2, 1:2] 0.468 0.268 5.093 5.664

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x1" "x2"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> plot(coordinates(samp.grid), asp=1, xlab="E", ylab="N",

+ xlim=c(0,5.5), ylim=c(0,6))

> grid(lty=1, col="lightblue")
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3.1 * Grid sampling with jitter

A variant of this method is to add a small random “jitter” to each grid point.
This ensures that we don’t accidentally allign the grid with a systematic
effect. Strictly speaking this violates the “known probability” requirement
of design-based sampling.
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Task 10 : Add a normally-distributed “jitter” with standard deviation 20 m
to each grid point from the regular grid just computed; plot the sample
locations. •

We extract the coördinates, add the jitter, and replace the grid coördinates
with the perturbed ones. The manipulation of the coördinates must be
done on columns of a data frame, so we first convert from a spatial object
to a data frame with the as.data.frame method, then after the jitter is
computed with the rnorm method and added to the original coordinates,
convert back to a spatial object with the coordinates method.

> samp.grid <- as.data.frame(samp.grid)

> samp.grid$x1 <- samp.grid$x1 + rnorm(n = length(samp.grid$x1),

+ mean = 0, sd = 0.03)

> samp.grid$x2 <- samp.grid$x2 + rnorm(n = length(samp.grid$x2),

+ mean = 0, sd = 0.03)

3.2 * Removing points outside the sample area

The jitter may have placed some points outside the simulation grid. We
can identify these with the which method, which (!) returns the indices
(positions in the vector) of the points which (!) meet a given logical criterion.
We use the | (“or”) operator to identify any coördinate outside the bounding
box of the grid, which we extract with the bbox method:

> (pts.outside <- which((samp.grid$x1 < bbox(k.sim)[1,

+ "min"]) | (samp.grid$x1 > bbox(k.sim)[1, "max"]) |

+ (samp.grid$x2 < bbox(k.sim)[2, "min"]) | (samp.grid$x2 >

+ bbox(k.sim)[2, "max"])))

[1] 27

Depending on the random noise with added to jitter the points, there may
be no or several points in the list. If there are any such points we remove
them, by selecting the rows in the set of row numbers, without the identified
points; for this we use the setdiff “set difference” method.

> samp.grid <- samp.grid[setdiff(1:length(samp.grid$x1),

+ pts.outside), ]

> str(samp.grid)

'data.frame': 100 obs. of 2 variables:

$ x1: num 2 1.29 1.6 2.03 2.38 ...

$ x2: num 0.297 0.683 0.662 0.654 0.679 ...

> rm(pts.outside)

Now the grid can be converted to a spatial object and plotted:

> coordinates(samp.grid) <- ~x1 + x2

> plot(coordinates(samp.grid), asp = 1, xlab = "E", ylab = "N")

> grid(lty = 1, col = "lightblue")
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Q9 : Describe the spatial pattern of the perturbed grid sample. Jump to
A9 •

3.3 * Overlaying with a bounding box

This optional section repeats the actions of the previous §3.3, i.e. removing
jittered points outside the study area, but using a more ‘spatial’ method:
polygon overlay. This GIS operation is included in the sp package. This
section will be interesting to you if you intend to work with polygon coverages
in sp, otherwise the simpler approach taken in the previous § should be
sufficient.

There are three steps:

1. Make a spatial polygon object from the bounding box of the study
area;

2. Identify the points outside this polygon.

3. Clip the point set to this polygon by removing those points.

Note: In most applications you will have a polygon object of your study
area, perhaps imported from a shapefile with readOGR.

Task 11 : Make a spatial polygon from the bounding box of the jura.grid

study area. •

Spatial polygon objects in sp are polygon maps, i.e. they may contain many
polygons, as in a GIS layer. They are of class SpatialPolygons and are
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created with the SpatialPolygons method, which requires a list of polygon
lists and the order in which they should be plotted.

In turn, each of these polygon lists is of class Polygons (note the “s”), which
themselves are each a list of one or more polygons with a unique identifier.
The primitive polygons are of class Polygon.

All this complexity is not needed for the simple case of a single polygon made
from the bounding box! But the general structure allows complex polygon
coverages to be created.

With that background, we build up the spatial polygon object step-by-step,
to make the three levels clear.

First, a Polygon object, i.e. a single polygon, in this case of the bounding
box. The polygon is defined by a matrix of coördinates (extracted with the
bbox method), columnwise. So, we build up two lists, one for the East and
one for the North, with two calls to the c method, and then bind the two
vectors together columnwise with the cbind “column bind” method.

> poly.1 <- Polygon(cbind(c(bbox(jura.grid)[1, "min"],

+ bbox(jura.grid)[1, "min"], bbox(jura.grid)[1, "max"],

+ bbox(jura.grid)[1, "max"], bbox(jura.grid)[1, "min"]),

+ c(bbox(jura.grid)[2, "min"], bbox(jura.grid)[2, "max"],

+ bbox(jura.grid)[2, "max"], bbox(jura.grid)[2,

+ "min"], bbox(jura.grid)[2, "min"])))

> str(poly.1)

Formal class 'Polygon' [package "sp"] with 5 slots

..@ labpt : num [1:2] 2.7 3

..@ area : num 28.4

..@ hole : logi FALSE

..@ ringDir: int 1

..@ coords : num [1:5, 1:2] 0.275 0.275 5.125 5.125 0.275 ...

Second, a Polygons object, as a list of polygons with an identifier for the
set; in this case just the one polygon:

> polys <- Polygons(list(poly.1), "boundary")

> str(polys)

Formal class 'Polygons' [package "sp"] with 5 slots

..@ Polygons :List of 1

.. ..$ :Formal class 'Polygon' [package "sp"] with 5 slots

.. .. .. ..@ labpt : num [1:2] 2.7 3

.. .. .. ..@ area : num 28.4

.. .. .. ..@ hole : logi FALSE

.. .. .. ..@ ringDir: int 1

.. .. .. ..@ coords : num [1:5, 1:2] 0.275 0.275 5.125 5.125 0.275 ...

..@ plotOrder: int 1

..@ labpt : num [1:2] 2.7 3

..@ ID : chr "boundary"

..@ area : num 28.4

Third and finally, the SpatialPolygons object, as a list of Polygons objects
with a plot order (here not relevant, so omitted):
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> bboxPoly <- SpatialPolygons(list(polys))

> str(bboxPoly)

Formal class 'SpatialPolygons' [package "sp"] with 4 slots

..@ polygons :List of 1

.. ..$ :Formal class 'Polygons' [package "sp"] with 5 slots

.. .. .. ..@ Polygons :List of 1

.. .. .. .. ..$ :Formal class 'Polygon' [package "sp"] with 5 slots

.. .. .. .. .. .. ..@ labpt : num [1:2] 2.7 3

.. .. .. .. .. .. ..@ area : num 28.4

.. .. .. .. .. .. ..@ hole : logi FALSE

.. .. .. .. .. .. ..@ ringDir: int 1

.. .. .. .. .. .. ..@ coords : num [1:5, 1:2] 0.275 0.275 5.125 5.125 0.275 ...

.. .. .. ..@ plotOrder: int 1

.. .. .. ..@ labpt : num [1:2] 2.7 3

.. .. .. ..@ ID : chr "boundary"

.. .. .. ..@ area : num 28.4

..@ plotOrder : int 1

..@ bbox : num [1:2, 1:2] 0.275 0.075 5.125 5.925

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

This now has full topology. As you can see, the data structures get more
complex as we build up from single polygons, to polygon lists, to a polygon
layer.

The point of all this was to make a polygon that can clip the jittered points.
Recall that we used the over method in §2.2 to overlay points and pixels;
this generic method can also handle points and polygons.

Task 12 : Draw a completely random sample of 100 points from the
jura.grid area, jitter them, and identify the points outside the study area.

•

We first select the sample points as in §3.1 and then jitter them as in §, and
then apply the over method.

Note: We use the set.seed function to ensure your results match the ones
shown here; in practice you would not use this.

> set.seed(316)

> samp.grid <- spsample(jura.grid, n = 100, type = "regular",

+ offset = c(0.5, 0.5))

> samp.grid <- as.data.frame(samp.grid)

> samp.grid$x1 <- samp.grid$x1 + rnorm(n = length(samp.grid$x1),

+ mean = 0, sd = 0.1)

> samp.grid$x2 <- samp.grid$x2 + rnorm(n = length(samp.grid$x2),

+ mean = 0, sd = 0.1)

> coordinates(samp.grid) <- ~x1 + x2

When applied to points inside polygons, over returns a vector of the same
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length as the point set, containing the polygon number in which it falls, or
NA if none. In this case there’s only one polygon (the bounding box), and
all points identified with NA are outside of it. We count these with the sum

method applied to the logical vector created by the is.na method:

> ov <- over(samp.grid, bboxPoly)

> sum(is.na(ov))

[1] 1

> samp.grid[is.na(ov)]

SpatialPoints:

x1 x2

[1,] 5.2144 1.6347

Coordinate Reference System (CRS) arguments: NA

> bbox(jura.grid)

min max

Xloc 0.275 5.125

Yloc 0.075 5.925

Q10 : How many jittered points are outside the study area? How can you
confirm this from the bounding box? Jump to A10 •

We can see this visually by plotting the jittered sample points, their bounding
box, and the bounding box of the study area, with rejected points coloured
red:

> print(plot(bboxPoly, col = "lightgray"))

NULL

> points(samp.grid, col = ifelse(is.na(ov), "red", "green"),

+ pch = 20, cex = 2)
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Task 13 : Remove the points outside the study area from the sample set. •

We again use the is.na method to find the index numbers of the rejected
points, but then invert the logical sense with the ! (“not”) logical operator:

> samp.grid <- samp.grid[!is.na(ov)]

> summary(samp.grid)

Object of class SpatialPoints

Coordinates:

min max

x1 0.54233 4.8022

x2 0.16151 5.6910

Is projected: NA

proj4string : [NA]

Number of points: 100

Task 14 : Clean up from this section, leaving the (jittered) sample grid
object. •

> rm(poly.1, polys, bboxPoly, ov)

3.4 Evaluation: reproducing population statistics

We repeat the evaluation of the sample, first with the population statistics:

Task 15 : Extract the simulated Co values at the sample points. •

> Co.grid <- over(samp.grid, k.sim)$sim1
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Q11 : How well does this sample reproduce the population mean, variance,
extremes, and quartiles? Jump to A11 •

> summary(Co.grid)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

0.942 7.260 9.850 9.360 11.900 15.800 7

> summary(k.sim$sim1)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.48 6.83 9.49 9.21 11.70 19.60

> var(Co.grid, na.rm = TRUE)

[1] 10.557

> var(k.sim$sim1)

[1] 11.877

Task 16 : Display the distribution of the sample, alongside that of the full
distribution, as a side-by-side frequency histogram. •

> hist.grid <- hist(Co.grid, breaks=seq(-4,24,by=2),

+ plot=F)

> hist.sim <- hist(k.sim$sim1, breaks=seq(-4,24,by=2),

+ plot=F)

> to.plot <- rbind(samp=hist.grid$density,

+ pop=hist.sim$density)

> barplot(to.plot, beside=T, col=c("lavender", "cornsilk"),

+ main="Histogram of Co frequency",

+ sub="grid sample (left), population (right)")

> rm(hist.grid, hist.sim, to.plot)

Histogram of Co frequency

grid sample (left), population (right)
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3.5 Evaluation: reproducing the variogram

We repeat the evaluation of the sample, second with the experimental vari-
ogram:

Task 17 : Compute the experimental variogram for Co at the sample points.
Plot it with the known model. •

Note that there may some points outside the simulated area, i.e., NA values;
these must be removed before computing the variogram.

> Co.grid <- data.frame(Co = Co.grid)

> coordinates(Co.grid) <- coordinates(samp.grid)

> (ix <- which(is.na(Co.grid$Co)))

[1] 1 3 6 7 38 50 94

> if (length(ix) > 0) {

+ Co.grid <- Co.grid[-ix, ]

+ samp.grid <- samp.grid[-ix, ]

+ }

> str(Co.grid)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 93 obs. of 1 variable:

.. ..$ Co: num [1:93] 11.94 12.25 9.32 5.52 5.16 ...

..@ coords.nrs : num(0)

..@ coords : num [1:93, 1:2] 1.18 1.91 2.47 1.81 2.04 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "x1" "x2"

..@ bbox : num [1:2, 1:2] 0.542 0.612 4.802 5.691

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x1" "x2"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> v <- variogram(Co ~ 1, location=Co.grid)

> print(plot(v, pl=T, model=vf,

+ main="Variogram of Co ppm^2, grid sample"))

20



Variogram of Co ppm^2, grid sample
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Q12 : How well is the experimental variogram computed from the sample
fitted by the known model? Would another model form appear more appro-
priate? Can this experimental variogram be modelled? Jump to A12
•

3.6 Answers

A9 : The points cover the area fairly evenly; there are no large holes and no
clusters. Return to Q9 •

A10 : This depends on your random sample (you can try it several times to
compare); with this much jitter about 1% to 20% of the points will be outside.
Confirm this by comparing to the corner values of the bounding box. Return to
Q10 •

A11 : Quite similar results to the 100 random points (see §2.2): With this random
sample, compared to the full grid (population) the range is indeed quite a bit
narrower, although the IQR is wider. The mean and median are higher; but by
chance, and contrary to expectation, the variance of the sample is lower. Return
to Q11 •

A12 : The model fits the variogram fairly well, but there are no variogram points
closer than 0.5 km. Thus the estimate of a model form and nugget are wild spec-
ulation. It is not appropriate to use this experimental variogram as the basis of a
model. Return to Q12 •
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4 Optimal grid sampling

We saw in the previous section that a grid sample is not a good way to esti-
mate a variogram. However, if the variogram model is known from previous
studies, or assumed from literature or even an educated guess, a grid sample
is provably the most efficient for mapping an area, as shown by McBratney
and Webster [9, 8]. Their method is known as OSSFIM: “optimal sampling
scheme for isarithmic mapping” and is implemented by the ossfim method
of gstat.

Note: There is a simple web-based interactive version of OSSFIM1.

For any “optimal” method we need to define an objective function; here
it is to minimize the maximum kriging variance of any prediction point.
These are of course the points at the centres of the square (or triangular)
tesselation.

Three aspects of kriging affect the kriging variance at a point:

1. Sample configuration; here we have decided for a square grid of un-
known side;

2. Model of spatial dependence; here we have a known variogram model;

3. Block size; the larger the block average, the lower the kriging variance.

OSSFIM allows us to trade off block size and sample spacing.

Task 18 : Compute the kriging variance for sample spacings of 100 m,
150 m, . . . 400 m, and for block sizes of (0 m)2(i.e. punctual kriging), (20 m)2,
. . . (100 m)2. •

To match the model we express the distances in kilometers:

> err.grid <- ossfim(seq(0.1, 0.4, 0.05), seq(0, 0.1, 0.02),

+ vmf)

> str(err.grid)

'data.frame': 42 obs. of 3 variables:

$ spacing : num 0.1 0.1 0.1 0.1 0.1 0.1 0.15 0.15 0.15 0.15 ...

$ block.size: num 0 0.02 0.04 0.06 0.08 0.1 0 0.02 0.04 0.06 ...

$ kriging.se: num 1.601 1.016 0.943 0.871 0.8 ...

Task 19 : Plot the kriging variance as a function of spacing and block size.
•

Both the levelplot and contourplot methods give useful views:

> plot.1 <- levelplot(kriging.se ~ spacing + block.size,

+ err.grid, col.regions = bpy.colors(64))

> plot.2 <- contourplot(kriging.se ~ spacing + block.size,

+ err.grid)

1 http://www.gstat.org/ossfim.html

22

http://www.gstat.org/ossfim.html


> print(plot.1, split = c(1, 1, 2, 1), more = T)

> print(plot.2, split = c(2, 1, 2, 1), more = F)

> rm(plot.1, plot.2)
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Q13 : What happens to the kriging variance at the central point of a grid
cell as the sample spacing increases? As the block size increases? Which of
these effects is greater, with the spacings and sizes we’ve chosen? Jump to
A13 •

We can see this numerically as well as graphically. First, the effect of in-
creasing spacing:

> err.grid[err.grid$block.size == 0, ]

spacing block.size kriging.se

1 0.10 0 1.6006

7 0.15 0 1.7417

13 0.20 0 1.8704

19 0.25 0 1.9905

25 0.30 0 2.1044

31 0.35 0 2.2135

37 0.40 0 2.3192

Second, the effect of increasing block size:

> err.grid[err.grid$spacing == 0.1, ]

spacing block.size kriging.se

1 0.1 0.00 1.60061

2 0.1 0.02 1.01647

3 0.1 0.04 0.94285

4 0.1 0.06 0.87051

5 0.1 0.08 0.79960

6 0.1 0.10 0.73055

Suppose we have a target maximum kriging prediction standard error (per-
haps from a project specification). Then we can see the trade-off between
spacing and block size that allows us to reach that target.
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Task 20 : Find all combinations of spacings and block sizes that reduce
the kriging prediction standard error below 1.5 mg kg-1, and sort them in
decreasing order of standard error. •

> tmp <- err.grid[err.grid$kriging.se < 1.5, ]

> tmp[order(tmp$kriging.se), ]

spacing block.size kriging.se

6 0.10 0.10 0.73055

5 0.10 0.08 0.79960

4 0.10 0.06 0.87051

3 0.10 0.04 0.94285

12 0.15 0.10 0.97758

2 0.10 0.02 1.01647

11 0.15 0.08 1.03874

10 0.15 0.06 1.10054

9 0.15 0.04 1.16295

18 0.20 0.10 1.18034

8 0.15 0.02 1.22591

17 0.20 0.08 1.23535

16 0.20 0.06 1.29069

15 0.20 0.04 1.34634

24 0.25 0.10 1.35632

14 0.20 0.02 1.40227

23 0.25 0.08 1.40665

22 0.25 0.06 1.45716

> rm(tmp)

Q14 : What is the widest spacing we can use and still achieve the target?
What is the minimum block size we can use at this spacing? Jump to A14
•

Task 21 : Clean up from this section. •

> rm(samp.rand, samp.grid, Co.rand, Co.grid, v, vf, err.grid,

+ ix)

4.1 Answers

A13 : Increasing spacing: increases; increasing block size: decreases; the second
effect is more dramatic; i.e. if block averages are sufficient information the spacing
can be much wider with the same uncertainty. Return to Q13 •

A14 : The widest spacing is 0.25 km, i.e. 250 m; at this spacing the smallest block
is (0.06 km)2, i.e. (60 m)2. Return to Q14 •
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5 * Spatial coverage sampling

The optimal grid sampling is fine when the study area is a regular, equally-
accessible rectangle. But in practice these conditions are not always met:

� there may be some inaccessible areas, e.g., restricted areas, enclosures,
areas not part of the target population but inside the boundary;

� the target area may have an irregular shape (e.g., a natural unit such
as a flood plain, or a political unit);

� there may be some existing samples.

If the regular grid is not feasible, one alternative is a so-called spatial cov-
erage sample. The idea is to fill the available space “uniformly”, considering
both new and existing points. The “uniformity” is in practice measured by
some quality measure based on distances to all points of interest (e.g., a fine
grid placed over the area), which is then minimized mathematically.

In a separate exercise we introduce Spatial Simulated Annealing (SSA) using
a variogram, here we propose a simpler apporach which relies on purely
geometric considerations.

This is explained briefly by Walvoort et al. [16] and more completely by
de Gruijter et al. [4, §8.3.3]. These authors have prepared an R package
spcosa [17].

The simplest method is to minimize the mean squared shortest distance
(MSSD) from the sample to the grid nodes. Considering N points indexed
by i, and the grid as a set of points indexed by j:

1
N

N∑
i

min
j (D2

ij) (1)

This can be minimized by k-means algorithm on the discretization grid,
resulting in a set of cluster centroids. All we need to do is to specify the
number of points and their coordinates. Note that the resulting centroid is
not restricted to the study area; it may be that the maximum information
is found by sampling outside. This is not a problem if the grid is a convex
hull.

A simple approach is to use the kmeans function, and specify the (default)
Hartigan-Wong value of the algorithm argument [5]. This partitions the
points into a user-specified number (referred to as “k”) groups, to mimimize
the sum of squares from points to the assigned cluster centres. This is best-
known in feature (multivariate) space, but there is no reason it can’t be
applied in geographic space, with the coordinates as the multi-variables. In
this case the points are centroids of a Theissen polygon.

6 Self-test

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
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knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

Task 1 : Draw two different samples of size 50 either of a completely random
or a grid design from the simulated field of §1, and compare the summary
statistics, histograms and variograms for Co concentration.

(If you are ambitious you can compare both the completely random and grid
samples.) •

Q1 : How different are the two samples from each other? Comment on the
statistics, histograms, and how well they reproduce the known variogram.

•

Task 2 : Repeat for size 500. •

Q2 : How different are the two samples from each other? Comment on the
statistics, histograms, and how well they reproduce the known variogrqam.

•

Q3 : Are the 500-unit samples more or less consistent than the 50-unit
samples? Why or why not? •
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| operator, 13
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length, 6
levelplot (package:lattice), 22

n argument (spsample function), 4
nmax argument (krige function), 2
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