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FARIN, BRRET

“If you do not enter the tiger’s cave, how can you expect to
catch the tiger cub?”
— Chinese proverb

1 introduction

In this exercise you will learn two ways to model spatial structure: as regional
trend surfaces and as realizations of locally-autocorrelated random fields.

After completing this exercise you should be able to:

1. compute and evaluate the goodness-of-fit of polynomial trend surfaces;

2. divide a dataset into calibration and evaluation (also called “valida-
tion”) subsets;

3. fit authorized models to experimental variograms;

4. (optionally) compute trend surfaces with generalized least squares.

In exercises 5 §4 and ba we will see how to combine regional and local
structures in one prediction, but for now we consider them separately.

This exercise includes several sections (marked with a *) with topics that
are optional and not covered in the self-test. You should at least read the
first paragraph of these sections to know their topic, since you may want to
work through them later.

Task 1 : If R is not already running, start it. If you haven’t already done
so, load the gstat and sp libraries, as shown in the previous exercise. .

> require(lattice)
> require(sp)
> require(gstat)

2 Fitting trend surfaces

In Exercise 2 we used the Cameroon soil properties dataset to compute and
visualize a trend surface. However, we did not investigate the linear model
underlying it, that is, we did not evaluate the validity of the model. In
this Exercise we are concerned with the modelling process; in the following
Exercise 4 we will see how to predict at unsampled points from a fitted trend
surface.

We continue with the Cameroon soil proprties dataset. This is supplied
on the course CD, in directory datasets\tcp, as an R data file named
tcp.RData; it is also on the course website.

Task 2 : Load the R data file tcp.RData into your working directory. o



> load("tcp.RData")
> 1s(O)

[1] "th"
> str(tcp)

'data.frame': 147 obs. of 4 variables:

$ UTM_E : num 702638 701659 703488 703421 703358 ...
$ UTM_N : num 326959 326772 322133 322508 322846 ...
$ clay35: num 78 80 66 61 53 57 70 72 70 62 ...

$ pH35 : num 4.8 4.4 4.2 4.54 4.4 ...

There are four fields:
UTM_E : Easting
UTM_N : Northing
clay35 : clay content of the fine earth, % by weight, 30-50 cm layer
pH35 :  reaction of the soil in 1:1 (by volume) water, 30-50 cm layer

2.1 Fitting a first-order surface

In the previous Exercise 2 (§6) we converted the tcp dataset to a spatial
(sp) object so that we could use the krige method of the gstat package to
interpolate using a trend surface. However in this section we want to use the
standard R 1m (“fit linear models”) method, and this is easiest if we use the
original data frame, i.e. where the coordinates are just fields without special
status.

To compare various modelling approaches, we begin with the simplest trend,
i.e. a plane.

Task 3 : Compute the first-order trend surface of subsoil clay content,
modelled by the two metric coérdinates, using ordinary least squares and
summarize the model. .

We use the 1m method:

> tsl <- 1lm(clay35 ~ UTM_E + UTM_N, data = tcp)
> summary (tsl)

Call:
Im(formula = clay35 ~ UTM_E + UTM_N, data = tcp)

Residuals:
Min 1Q Median 3Q Max
-31.601 -5.106 -0.363 3.607 20.467

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -2.50e+02 5.19e+01 -4.83 3.5e-06 **x
UTM_E 6.51e-04 5.97e-05 10.91 < 2e-16 *x*x



UTM_N -4.50e-04  9.24e-05 -4.88 2.8e-06 *x*x*

Signif. codes: O 'xxx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 9.11 on 144 degrees of freedom
Multiple R-squared: 0.506, Adjusted R-squared: 0.499
F-statistic: 73.7 on 2 and 144 DF, p-value: <2e-16

Q1 : What is the equation which predicts subsoil clay content from the
coordinates? Jump to Al e

Q2 : How much of the variation in clay content is explained by this regional
trend? Jump to A2 e

After fitting a model, the next step is always to see its diagnostics, to see
how well it fits the assumptions underlying the modelling.

The key information in model diagnostics are the residuals, i.e. the observed
(actual) value less the fitted (predicted) value.

Task 4: Compute the residual for the first observation directly, and compare
it with the recorded residual in the model summary. .

We use the fitted access method to extract the value predicted by the fitted
model, and the residuals access method to extract the residuals.

> tcp$clay3s[1]
[11 78
> fitted(ts1) [1]

1
60.087

> tcp$clay35[1] - fitted(tsl) [1]

1
17.913

> residuals(tsi) [1]

1
17.913

Q3 : What are the actual and modelled values of clay content for the first
observation? What is the residual? Does the model over- or under-predict
the actual value? Jump to A3 e

First we examine the performance of the model in feature (attribute) space,
ignoring for the moment that these are geographic data.



The residuals should be approximately normally-distributed to fulfill the
assumptions of the linear model.

Task 5 : Display a histogram and normal quantile plot of the residuals. e

> hist(residuals(tsl), main = "Residuls, first-order trend surface",
+ xlab = "(Actual - Modelled), clay %")

Residuls, first-order trend surface
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> qqnorm(residuals(tsl), main = "Residuls, first-order trend surface",
+ xlab = "Theoretical quantiles, standardized normal distribution",
+ ylab = "(Actual - Modelled), clay %")

> qqline(residuals(ts1))



Residuls, first-order trend surface

(Actual — Modelled), clay %
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Theoretical quantiles, standardized normal distribution

Q4 : Do the residuals appear to be approximately normally-distributed?
Jump to A4 e

As in Exercise 1, we can see four diagnostic plots, including the QQ-plot of
the residuals, in one figure:

> par(mfrow = c(2, 2))
> plot(tsl)
> par(mfrow = c(1, 1))
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Q5 : Which two points are quite poorly-fit by the plane?  Jump to A5 e

Now we examine the residuals in geographic space.

Task 6 : Display a post-plot of the residuals. o

The bubble method of the sp package does just this; but it requires a spatial
object. We use the pch (printing character) optional graphics argument;
bubble defaults to pch=20 (a filled circle); since we have points so close
together we specify pch=1 (an open circle) to see overlapping circles more
clearly:

tmp <- data.frame(e = tcp$UTM_E, n = tcp$UTM_N,
residuals = residuals(tsl))
coordinates(tmp) <- c("e", "n")
print (bubble(tmp, zcol="residuals",
main="Residuals from first-order trend surface",
sub="Clay %, 30-50 cm layer",

xlab="UTM E", ylab="UTM N", pch=1))

>
+
>
>
+
+
+



Residuals from first-order trend surface
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Q6 : Do the positive and negative residuals appear to be evenly distributed
in geographic space? Does there appear to be any pattern to them? Jump
to A6 e

2.2 Fitting a second-order surface

We saw that the first-order surface only explains half of the variation; per-
haps a second-order surface is better. This allows for an oriented bowl or
dome shape, whereas the first surface only allows an oriented plane.

Task 7 : Compute a full second-order trend surface. o

Note: The “full” surface includes an interaction term, which allows the
principal axis of the second-order surface to be oriented obliquely to the
coordinate axes. This is a special case of polynomial regression in two di-
mensions.

We fit the model and summarize it:

> ts2 <- 1lm(clay35 ~ I(UTM_E"2) + I(UTM_N"2) + I(UTM_E *
+ UTM_N) + UTM_E + UTM_N, data = tcp)
> summary (ts2)

Call:
lm(formula = clay35 ~ I(UTM_E"2) + I(UTM_N"2) + I(UTM_E * UTM_N) +
UTM_E + UTM_N, data = tcp)

Residuals:
Min 1Q Median 3Q Max
-29.48 -5.00 -0.56 4.21 20.83



Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 1.18e+04  6.74e+03 1.76 0.0822 .
I(UTM_E"2) 1.27e-08 8.44e-09 1.50 0.1349
I(UTM_N"2) 3.58e-08 1.26e-08 2.83 0.0063 *x*
I(UTM_E * UTM_N) 1.02e-08 1.33e-08 0.77 0.4425

UTM_E -2.00e-02 1.48e-02 -1.35 0.1777

UTM_N -3.10e-02 1.24e-02 -2.50 0.0135 =*
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 8.94 on 141 degrees of freedom
Multiple R-squared: 0.534, Adjusted R-squared: 0.518
F-statistic: 32.3 on 5 and 141 DF, p-value: <2e-16

Q7 :  How much of the variation in clay content is explained by the full
second-order regional trend? Jump to A7 e

Q8 :  Are all terms in the regression equation significantly different from
zero (the null hypothesis of no effect)? Jump to A8 e

2.3 Simplifying the higher-order surface

The equation can likely be simplified without loss of fit. The interaction
term and both E codrdinate terms seem not to be significant. We try re-
moving these and compare the fit. We are looking for the most parsimonious
equation as measured by the Akaike Information Criterion (AIC); in general
(but not always) this will also result in the highest adjusted R?.

Task 8 : Simplify the second-order trend surface by removing the interaction
term, and compare the AIC and adjusted R?. .

Note: Removing the interaction term says that any trend (first or second
order) is alligned with the codrdinate axes. A significant interaction term
rejects this null hypothesis. In general a full second-order surface is fitted,
but in this geographic setting it may be that the cotrdinate axes are alligned
with the axes of the best-fit elipsoid.

We use the update method, a shorthand for changing a model formula. Note
the use of the dot (.) formula operator to represent the existing left-hand
and right-hand sides of the formula being updated. Here we update the ts2
model by removing a named term; the removal is symbolized by the minus
(=) formula operator.

> ts2.step <- update(ts2, . = . - I(UTM_E * UTM_N))
> summary (ts2.step)

Call:
Im(formula = clay35 ~ I(UTM_E"2) + I(UTM_N"2) + UTM_E + UTM_N,



data = tcp)

Residuals:
Min 1Q Median 3Q Max
-29.725 -4.762 -0.222 3.912 20.190

Coefficients:
Estimate Std. Error t value Pr(>|tl)

(Intercept) 7.49e+03  3.76e+03 2.00 0.0479 *

I(UTM_E"2) 8.41e-09 6.34e-09 1.33 0.1870

I(UTM_N"2) 3.57e-08 1.26e-08 2.83 0.0054 *x*

UTM_E -1.08e-02 8.64e-03 -1.25 0.2138

UTM_N -2.39e-02 8.30e-03 -2.88 0.0046 *x

Signif. codes: O '*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.92 on 142 degrees of freedom
Multiple R-squared: 0.532, Adjusted R-squared: 0.519
F-statistic: 40.4 on 4 and 142 DF, p-value: <2e-16

> AIC(ts2, ts2.step)

df AIC
ts2 7 1068.9
ts2.step 6 1067.6

Q9 : Is the model improved by removing the interaction term?  Jump to
A9 e

In the E direction, there are both linear and quadratic terms, both marginally
significant. This indicates that the quadratic is not improving the linear in
this coodrdinate direction. If we remove the quadratic, the linear may well be
significant, and thus be included in the model.

Note: It is not adviseable to remove the linear term and leave the quadratic
in a polynomial regression model, even if the linear term is not statistically
significant. Removal of the linear term corresponds to the hypothesis that
the surface is centred on 0; in general this is clearly not true. The linear
term effectively centres the surface in that direction (given the intercept); it
allows for additive translation, e.g., adding a fixed amount to the codrdinate
(i.e., change of codrdinate system) without affecting the significance of the
linear term.

Task 9 : Simplify this equation by removing the quadratic term for E, i.e.,
E~2; compare the AIC and adjusted R?. .

> ts2.step2 <- update(ts2.step, . ~ . - I(UTM_E"2))
> summary (ts2.step2)

Call:
lm(formula = clay35 ~ I(UTM_N"2) + UTM_E + UTM_N, data = tcp)

Residuals:



Min 1Q Median 3Q Max
-29.86 -4.87 -1.03 3.88 22.02

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 2.78e+03  1.22e+03 2.28 0.024 *
I(UTM_N"2) 2.82e-08 1.13e-08 2.49 0.014 x*

UTM_E 6.66e-04 5.89e-05 11.29 <2e-16 **x*
UTM_N -1.90e-02 7.44e-03 -2.55 0.012 *
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 8.95 on 143 degrees of freedom
Multiple R-squared: 0.526, Adjusted R-squared: 0.516
F-statistic: 53 on 3 and 143 DF, p-value: <2e-16

> AIC(ts2.step, ts2.step2)

df AIC
ts2.step 6 1067.6
ts2.step2 5 1067.4

Q10 : Is the model improved by removing the quadratic term for East?
Is the linear term for E now significantly different from zero (i.e., no E-W
trend)? Jump to A10 e

Task 10 : Plot the regression diagnostics for the fitted second-order surface,
in both feature and geographic space. .

> par(mfrow = c(2, 2))
> plot(ts2.step2)
> par(mfrow = c(1, 1))

10
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tmp <- data.frame(e = tcp$UTM_E,

n = tcp$UTM_N, residuals =

residuals(ts2.step2))

coordinates(tmp) <- c("e", "n")

print (bubble(tmp, zcol="residuals",
main="Residuals from second-order trend surface",
sub="Clay %, 30-50 cm layer",
xlab="UTM E", ylab="UTM N", pch=1))

11
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2.4 * Comparing first- and higher-order surfaces

Task 11 : Compare the diagnostics from the second- and first-order surfaces.

Q11 : Is there much improvement with the higher-order surface? Consider:
(1) goodness-of-fit; (2) range of residuals; (3) normality of residuals; (4)
geographic distribution of residuals. Jump to All e

We compare the residuals with the summary method, show their range with
the diff method, and display the two histograms side-by-side with the
barplot method. For the latter, we compute the two histograms with the
hist method, specifying plot as FALSE, the same break points, and saving
the results; we then build a matrix as required by barplot wit the matrix
method:

> summary (residuals(tsl))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-31.600 -5.110 -0.363 0.000 3.610 20.500

> summary (residuals(ts2.step2))

Min. 1st Qu. Median Mean 3rd Qu. Max.
-29.90 -4.87 -1.03 0.00 3.88 22.00

> diff (range(residuals(tsl)))
[1] 52.067

> diff (range(residuals(ts2.step2)))

12



[1] 51.88

> hl <- hist(residuals(tsl), breaks = seq(-35, +35, 5),
+ plot = F)
> str(hl)

List of 6

$ breaks : num [1:15] -35 -30 -25 -20 -15 -10 -5 0 5 10 ...

$ counts : int [1:14] 1 1 1 5 8 22 40 36 9 14 ...

$ density : num [1:14] 0.00136 0.00136 0.00136 0.0068 0.01088 ...

$ mids : num [1:14] -32.5 -27.5 -22.5 -17.5 -12.5 -7.5 -2.5 2.5 7.5 12.5 ...

$ xname : chr "residuals(ts1)"
$ equidist: logi TRUE
- attr(x, "class")= chr "histogram"

> h2 <- hist(residuals(ts2.step2), breaks = seq(-35, +35,

+ 5), plot = F)

> tmp <- matrix(rbind(hi$counts, h2$counts), nrow = 2)

> barplot(tmp, beside = T, col = c("lavender", "cornsilk"),

+ main = "Paired histograms, residuals from trend surfaces",

+ xlab = "clay %", names.arg = hl$mids, sub = "Purple: 1st-order; Yellow:

Paired histograms, residuals from trend surfaces

40
|
]

30
|

20
|

10
|

TR LR

-325 -225 -125 -25 7.5 17.5 27.5

clay %
Purple: 1st-order; Yellow: 2nd-order

Task 12 : Compare the regression residuals from the reduced second- and
first-order surfaces in geographic space. .

To do this, we make side-by-side post-plots on a common scale. We first
make a spatial points dataframe with codordinates and the residuals from
the first-order surface, second-order surface, and the difference:

> tmp <- data.frame(e = tcp$UTM_E, n = tcp$UTM_N, residl = residuals(tsl))
> coordinates(tmp) <- c("e", "n")

> tmp$resid2 <- residuals(ts2.step2)

> tmp$resid.diff <- tmp$resid2 - tmp$residi

> str(tmp)

13
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Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..Q@ data :'data.frame': 147 obs. of 3 variables:
..$ residi : num [1:147] 17.91 20.47 3.19 -1.6 -9.41
..$ resid2 : num [1:147] 19.47 22.02 3.62 -1.03 -8.72 ...

..$ resid.diff: num [1:147] 1.559 1.555 0.435 0.569 0.684 ...
..0@ coords.nrs : int [1:2] 1 2
..Q@ coords : num [1:147, 1:2] 702638 701659 703488 703421 703358 ...
.— attr(*, "dimnames")=List of 2
..$ : chr [1:147] "qm ngn ngn ngn
e «. ..$ : chr [1:2] "e" "n"
..@ bbox : num [1:2, 1:2] 659401 310897 703488 342379
.— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "e" "n"
.. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

Now plot them on the same scale; note the use of the range function to
evaluate the range of a list of vectors, the abs function to compute the
absolute value of the extremes, and of course the max function to obtain the
maximum of a vector.

> extreme <- max(abs(range(tmp$residl, tmp$resid2)))

> print(bubble(tmp, zcol = "resid2", main = "Residuals from 2nd-order trend",
+ pch = 1, maxsize = 3 * max(abs(range (tmp$resid2)))/extreme,
+ key.entries = seq(-extreme, extreme, length = 8)),
+ split = c(1, 1, 2, 1), more = T)
> print (bubble(tmp, zcol = "residl", main = "Residuals from lst-order trend",
+ pch = 1, maxsize = 3 * max(abs(range(tmp$residl)))/extreme,
+ key.entries = seq(-extreme, extreme, length = 8)),
+ split = ¢c(2, 1, 2, 1), more = F)
> rm(extreme)
Residuals from 2nd-order trend Residuals from 1st-order trend
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Note: As explained in Exercise 2, the print method here is actually the
print.trellis method, i.e. a specialization of the generic print method,
which is automatically called by print when the argument (here, the results
of the bubble function of the lattice package) is a trellis object.

The print.trellis method is the default print method for objects of class

14



trellis which are produced by calls to lattice functions like xyplot or
bubble; the spplot method of the sp package also uses lattice graphics and
hence print.trellis. In interactive use it is called automatically when a
trellis object is produced. However, here we call it explicitly in order to
specify the split optional argument, which specifies the layout of multiple
trellis graphs on one page.

In this example split=c(1,1,2,1) means: place this trellis plot at column
1 (x-position), row 1 (y-position) in an array of 2 columns and 1 row. The
optional more argument tells whether more graphs are to follow or not. For
more details see help(print.trellis).

And we can plot the difference of differences, i.e. how much the fit changed
at each point:

> print(bubble(tmp, zcol="resid.diff",
+ main="2nd-order less lst-order residuals",
+ pch=1, col=c("blued","redd")))

2nd-order less 1st—order residuals
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Q12 : Where are the largest changes (both positive and negative) in the
trend surface, between the two fits? Explain this spatial pattern of changes.
Jump to A12 e

Task 13 : Clean up the workspace from this section. .

> rm(hl, h2, tmp)

2.5 * Linear models on sp objects

Linear modelling can also be done on cotrdinates of sp objects. In this
optional subsection, we repeat much of the above analysis, first converting

15



the tcp dataset to a spatial (sp) object, as we did in Exercise 2 §6. The
purpose of this optional subsection is to show the syntax of the R code; no
new ideas are introduced. Steps from §2 that are not repeated here have
identical code in both cases.

Task 14 : Convert the tcp data frame to a spatial object. .

> coordinates(tcp) <- c("UTM_E", "UTM_N")
> str(tcp)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..Q@ data :'data.frame': 147 obs. of 2 variables:
..$ clay35: num [1:147] 78 80 66 61 53 57 70 72 70 62 ...
..$ pH35 : num [1:147] 4.8 4.4 4.2 4.54 4.4 ...
..@ coords.nrs : int [1:2] 1 2

..Q@ coords : num [1:147, 1:2] 702638 701659 703488 703421 703358 ...

..— attr(x, "dimnames")=List of 2
..$ : chr [1:147] "1" n2w n3n vg
.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"
..@ bbox : num [1:2, 1:2] 659401 310897 703488 342379
..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "UTM_E" "UTM_N"
.. ..$ : chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..0 projargs: chr NA

Task 15 : Compute the first-order trend surface of subsoil clay content,
modelled by the two metric coérdinates, using ordinary least squares and
summarize the model. .

The right-hand side of the formula operator is simply the coordinates ex-
tractor; there are two coordinates and they are assumed to be linear additive
factors in the 1m model:

> tsl <- 1lm(clay35 ~ coordinates(tcp), data = tcp)
> summary (tsl)

Call:
Im(formula = clay35 ~ coordinates(tcp), data = tcp)

Residuals:
Min 1Q Median 3Q Max
-31.601 -5.106 -0.363 3.607 20.467

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -2.50e+02 5.19e+01 -4.83 3.5e-06 **x
coordinates(tcp)UTM_E 6.51e-04 5.97e-05 10.91 < 2e-16 **x
coordinates (tcp)UTM_N -4.50e-04 9.24e-05 -4.88 2.8e-06 ***

Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '.' 0.1 ' ' 1

Residual standard error: 9.11 on 144 degrees of freedom
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Multiple R-squared: 0.506, Adjusted R-squared: 0.499
F-statistic: 73.7 on 2 and 144 DF, p-value: <2e-16

The results of this model are identical to the one where we specified the
coordinates directly.

Task 16 : Display a poost-plot of the residuals. o
The bubble method of the sp package requires a spatial object.

> tmp <- data.frame(coordinates(tcp), residuals = residuals(tsl))
> coordinates(tmp) <- c("UTM_E", "UTM_N")

> print(

+ bubble (tmp, zcol="residuals",

+ main="Residuals from first-order trend surface",
+ sub="Clay %, 30-50 cm layer",

+ xlab="UTM E", ylab="UTM N", pch=1)

+ )

Residuals from first-order trend surface
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Clay %, 30-50 cm layer
Task 17 : Compute a full second-order trend surface. .

To specify the square of the codrdinates, we first extract them with the
coordinates method, then square them within the I “as is” method, so
that the ~2 is not interpreted as a formula operator. The cross-product of
the coordinates is tricker; each codrdinate must be extracted separately, then
they can be multiplied.

> ts2 <- 1lm(clay35 ~ I(coordinates(tcp)”2) + I(coordinates(tcp)[,
+ 1] * coordinates(tcp) [, 2]) + coordinates(tcp), data = tcp)
> summary (ts2)
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2.6 Answers

Call:
Im(formula = clay35 ~ I(coordinates(tcp)~2) + I(coordinates(tcp) [,
1] * coordinates(tcp) [, 2]) + coordinates(tcp), data = tcp)

Residuals:
Min 1Q Median 3Q Max
-29.48 -5.00 -0.56 4.21 20.83

Coefficients:

Estimate Std. Error
(Intercept) 1.18e+04  6.74e+03
I(coordinates(tcp) "2)UTM_E 1.27e-08  8.44e-09
I(coordinates(tcp) "2)UTM_N 3.58e-08 1.26e-08
I(coordinates(tcp) [, 1] * coordinates(tcp) [, 2]) 1.02e-08 1.33e-08
coordinates (tcp)UTM_E -2.00e-02  1.48e-02
coordinates (tcp)UTM_N -3.10e-02 1.24e-02

t value Pr(>[tl)
(Intercept) 1.75 0.0822 .
I(coordinates(tcp) "2)UTM_E 1.50 0.1349
I(coordinates(tcp) "2)UTM_N 2.83 0.0053 *x
I(coordinates(tcp) [, 1] * coordinates(tcp) [, 2]1) 0.77 0.4425
coordinates (tcp)UTM_E -1.35  0.1777
coordinates (tcp)UTM_N -2.50 0.0135 =
Signif. codes: O '*xx' 0.001 'x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 8.94 on 141 degrees of freedom
Multiple R-squared: 0.534, Adjusted R-squared: 0.518
F-statistic: 32.3 on 5 and 141 DF, p-value: <2e-16

The results of this model are identical to the one where we specified the
coordinates directly.

A1 : Clay = —250.3 + 0.00065 - UTM_E + —0.00045 - UTM_N  Return to QI e

A2 : 49.9% (see adjusted R?). Return to Q2

A3 : Actual: 78% clay; modelled: 60.1% clay; residual 78 — 60.1 = 17.9% clay.
The model under-predicts this point. Return to Q3 e

A4 : No; the histogram shows left-skew (longer negative than positive tail); the
QQ-plot shows that both tails (beyond —1 and +1 standardized residuals) are “too
extreme”. That is, the negative tail is below the expected residuals, so that there
are residuals from —20 to —30, none of which would be expected if the residuals
are from a normal distribution; similarly the positive tail is “too positive”, above
the line. Return to Q4 e
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A5 : Points 84 and 145 have especially high negative residuals, i.e. the predictions
are far too high. Return to Q5 e

A6 : Theresiduals seem to be fairly evenly distributed. Large negative and positive
residuals occur near to each other in no apparent pattern. This suggests that there
would be little benefit in attempting to model a higher-order surface.  Return to
Q6 o

A7 : 51.8% (see adjusted R?). Return to Q7 e

A8 : No, only the quadratic and linear N terms and the intercept are significant
at p < 0.1. Both quadratic and linear E terms are marginal. The interaction term
I(UTM_N * UTM_E) is almost surely not significant. Return to Q8 e

A9 : Yes, it is slightly improved: the adjusted R? is 0.001 higher and the AIC 1.4
lower. Return to Q9 e

A10: This is a close call. The adjusted R? is 0.003 lower (slightly worse), but the
AIC is 0.2 lower, i.e., slightly better. The E term is now highly significant. Return
to Q10 e

A11 : (1) Slightly better goodness-of-fit (adjusted R*> = 51.6% vs. 49.9%) and
lower (better) AIC; (2) slightly narrower range of residuals; however the maximum
residual is larger; (3) slightly closer fit to the QQ-plot; (4) the residuals are some-
what more evenly distributed in geographic space.

In summary, there is not much improvement over the first-order trend surface.
In this study area the trend is not so strong, but does explain about half of the
variability. Return to Q11 e

A12: The largest positive changes (second-order residual larger than first-order)
is on a NNW-SSE axis through the middle of the map. These are never larger
than about 2% clay; the second-order is a worse fit. However, there are some large
negative changes, up to almost -7% (first-order residual larger than second-order);
these are at the N and S, where the second-order could adjust (by curvature) to
these values that did not fit the first-order plane, dipping NNW. Return to Q12 e

3 Calibration and evaluation datasets

For the rest of the exercise we continue with the Jura soil samples introduced
in Exercise 2, §2. We saved this as an R object in Exercise 2, §3.2.

Task 18 : If the jura.all spatial object is not already in the workspace,
load it from the saved image. .

> load("Jura.RData")
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In geostatistical modelling based on random fields we make assumptions
about the nature of the spatial process; we then fit the assumed model.
However since there is only one realization of the random field, i.e. only one
reality, we need to find some way to evaluate the assumptions — are they
justified?

A common approach is to split the dataset into two:
Calibration : to model the spatial structure;
Evaluation : of the model’s success.

We prefer the term evaluation to the more common term validation, because
the latter term implies the model is completely valid.

A typical split is approximately 2/3 calibration, 1/3 evaluation. The Jura
data set contains 359 observations; in previous studies with this same dataset
the last 100 of these have been held out for evaluation, while the first 259
have been used for calibration. The dataset has been organized in this way
by Goovaerts [3], from whom we obtained it.

Task 19 : Divide the Jura dataset into a calibration set jura.cal, made up
of the first 259 observations from the full set, and a evaluation set jura.val,
made up of the remaining 100 observations from the full set. o

This is just row selection from a matrix using the [] operator, which also
works with the @data slot sp object:

> jura.cal <- jura.all[1:259, ]
> jura.val <- jura.all[260:359, ]

Task 20 : Plot the locations of the two sets, showing them with different

colours. .
> plot(coordinates(jura.cal), col = "blue", asp = 1, pch = 20,
+ xlab = "UTM E", ylab = "UTM N", main = "Jura soil samples",
+ sub = "Calibration: blue; Evaluation: red")
> points(coordinates(jura.val), col = "red", pch = 1, cex = 1.2)
> grid(1ty = 1, col = "black")
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Q13 :  What is the spatial distribution of the calibration and evaluation
points? Do they equally represent the study area? Jump to Al3 e

3.1 * Random selection of evaluation points

This optional subsection discusses selection of evaluation points in the case
that a dataset is not nicely ordered for this purpose. In the case of the Jura
set, the author had already placed the 100 evaluation samples at the end of
the set, gridded and covering the whole area. In general this will not be the
case, and we have to draw a random sample from the data frame.

Task 21 : Select 100 observations at random from the Jura dataset. .
The first step is to identify which observations will be in the sample.

For this we use the sample “random sample” method, which draws a com-
pletely random sample with or (by default) without replacement from a
vector, here the row number in the data frame. We get the number of rows
as the first dimension of the data frame, extracted with the dim “dimensions”
method.

Note: Of course we know the number of rows from examining the data set,
but it is more elegant to compute it.

> dim(jura.all@data)

[1] 359 9
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> dim(jura.all@data) [1]
[1] 359

> valid.id <- sample(l:dim(jura.all@data)[1], 100)
> sort(valid.id)

[1] 3 13 19 21 22 23 27 32 34 37 42 43 48 49 52 58
[17] 60 63 67 68 79 81 82 85 87 93 106 108 111 115 116 121
[33] 125 130 137 138 141 142 144 147 154 156 158 159 162 165 167 168
[49] 174 182 186 193 194 196 198 199 203 205 206 207 221 229 230 231
[65] 232 233 237 238 240 241 246 249 257 258 262 263 267 270 272 276
[81] 279 288 301 303 305 310 314 319 325 333 334 335 339 340 341 346
[97] 347 352 356 357

Q14 :  Your list of selected observations will be different; why?  Jump to
Al4 e

Now we can extract these observations, by selecting the relevant rows of the
data frame. The spatial information is implicitly extracted as well.

> jura.val.rand <- jura.all[valid.id, ]
> str(jura.val.rand)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..Q data :'data.frame': 100 obs. of 9 variables:
..$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 1 213 31 3 2 2

..$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3132333234 ...
..$Cd : num [1:100] 0.24 2.566 4.495 0.685 1.12 ...
..$ Cu : num [1:100] 20.72 7.88 10.24 10.92 20.72 ...
..$ Pb : num [1:100] 22.4 55.2 32.9 30.8 41.2
..$ Co : num [1:100] 3.76 10.6 10.32 11.72 11.92 ...
..$Cr : num [1:100] 18.9 32.8 39.2 31.9 34.8 ...
..$ Ni : num [1:100] 5.2 23.6 22.6 13.1 20 ...
.. ..$Zn : num [1:100] 32.2 59.2 101.7 49.3 83.2 ...
..0@ coords.nrs : int [1:2] 1 2
..Q coords : num [1:100, 1:2] 2.5 4.13 2.9 3.87 1.71
..— attr(x, "dimnames")=List of 2
..$ : NULL
e «. ..$ : chr [1:2] "x" "y"
..Q@ bbox : num [1:2, 1:2] 0.701 0.58 4.92 5.13

..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "X" "y"
.. ..$ : chr [1:2] "min" "max"
..0 proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..0 projargs: chr NA

Finally, the calibration set is the complement of the evaluation set. We
determine this with the is.element set operator'; we select the complement
of the set with the ! “not” logical operator.

! The other set operators are union, intersection. setdiff and setequal
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> jura.cal.rand <- jura.all[!is.element(l:dim(jura.all@data)[1],
+ valid.id), ]
> str(jura.cal.rand)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..0@ data :'data.frame': 259 obs. of 9 variables:
..$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 2 2 55 5 1 1 G
..$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3233333333 ...
..$CAd : num [1:259] 1.74 1.33 2.15 1.56 1.15 ...
..$ Cu : num [1:259] 25.7 24.8 22.7 34.3 31.3 ...
..$ Pb : num [1:259] 77.4 77.9 56.4 66.4 72.4 ...
..$ Co : num [1:259] 9.32 10 11.92 16.32 3.5 ...
..$ Cr : num [1:259] 38.3 40.2 43.5 38.5 40.4 ...
.8 N1 : num [1:259] 21.3 29.7 29.7 26.2 22 ...
.$ Zn : num [1:259] 92.6 73.6 90 88.4 75.2 ...

..Q@ coords.nrs : int [1:2] 1 2

..Q@ coords : num [1:259, 1:2] 2.39 2.54 4.31 4.38 3.24 ...
..— attr(*, "dimnames")=List of 2
..$ : NULL
.. .. ..%$ : chr [1:2] "X» n»y"
..Q@ bbox : num [1:2, 1:2] 0.491 0.524 4.788 5.69

..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "x" "y"
.. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

Q15 : Do the two sets cover the same area? Jump to Al5 e

We can answer this with the bbox “bounding box” spatial method, and by
visual evaluation. To visualize the bounding box, we write a small function
with the function method. This plots the bounding box, using the lines
base graphics method, after extracting the corners of the bounding box with
bbox:

> plot.bbox <- function(sp.object, colour = "black", line.type = 2) {
+ b <- bbox(sp.object)

+ 1lneS(C(b [IIXH s llminll] s b [llxll , "maX"] , b[llel s llmaxll] s

+ b[llel’ |Imin||] s b[llel, Ilminll]) s C(b["Y", l|minl|] s

+ b [IIYII s |Imin||] s b [Il'YlI , Ilmaxll] , b[lIYII s llmaX"] s

+ b["Y", "min"]), col = colour, 1lty = line.type)

+ 3}

Now we plot the points and use the function to plot the bounding boxes:
> bbox(jura.val.rand)

min max
X 0.701 4.92
Y 0.580 5.13

> bbox(jura.cal.rand)
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min max
X 0.491 4.788
Y 0.524 5.690

> plot(coordinates(jura.cal.rand), col = "black", asp = 1,

+ pch = 20, xlab = "UTM E", ylab = "UTM N", main = "Jura soil samples",
+ sub = "Calibration: blue; Evaluation: red (random selection)")

> points(coordinates(jura.val.rand), col = "green", pch = 1,

+ cex = 1.2)

> grid(lty = 1, col = "black")

> plot.bbox(jura.cal.rand)

> plot.bbox(jura.val.rand, colour = "green")

Jura soil samples
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For the remainder of the exercise we will use the gridded evaluation sample;
this section was just to illustrate how a random selection can be made.

Task 22 : Remove the temporary objects from the workspace. o

> rm(valid.id, jura.cal.rand, jura.val.rand, plot.bbox)

3.2 Answers

A13: The evaluation points appear to be on a regular grid; the calibration points
are at alternate points on the grid but also have some clusters; this is good because
it helps estimate the variogram. Both sets cover the area. Return to Q13 e
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A14 : It is a random sample. Return to Q14 e

A15 : This depends on the random sample, but in general the evaluation set
will be contained in a somewhat smaller bounding box. They both cover the area;
because of the random selection of the smaller evaluation set it may be some spatial
clusters and holes. Return to Q15 e

4 Fitting variogram models

In the previous exercise we learned how to compute empirical variograms
from observations. There we used them to qualitatively evaluate local spatial
dependence. Now we are in a position to model this dependence, i.e. fit a
theoretical variogram model to the empirical variogram.

We now repeat the computation of the empirical variogram from Exercise 2,
§7.2, but with the calibration set only.

There are seven metals which were measured; we begin with one that is fairly
simple to model, namely Cobalt (Co).

Task 23 : Evaluate the feature-space distribution of Co in the calibration
dataset and decide if it needs to be transformed prior to variogram analysis.

The hist method shows a histogram, which can be used to evaluate the

distribution:
> hist(jura.cal$Co, breaks = 0:20, main = "Jura calibration data set",
+ xlab = "Co, mg kg-1", col = "lightblue")

> rug(jura.cal$Co)

Jura calibration data set

Frequency
20 25 30
| |

15
1

10
1

NEEREAN
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Note the use of the : operator to specify a sequence of integers from 0 to
20; the seq method can be used for more general sequences.

Q16 :  Describe the feature-space distribution of Co in the calibration
dataset. Would a transformation make this more symmetrically-distributed?
Jump to A16 e

So we compute the empirical variogram of the untransformed variable Co.

Task 24 : Compute the default empirical variogram of the Co values in the
calibration dataset; and plot it. .

We use the variogram method of the gstat package. Note the use of the
loc (“location”) argument to specify the dataset from which the codrdinates
should be extracted; by default this is also where the attribute values are to
be found.

> v <- variogram(Co ~ 1, loc = jura.cal)
> print(plot(v, plot.numbers = T, pch = 20, col = "darkblue"))
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4.1 Selecting a variogram model

The first question to ask when modelling an empirical variogram is whether
it shows the full range of local spatial variability, in other words whether it
reaches or approaches a sill.

Q17 : Does this variogram approach or reach a sill? Approximately what
value? At approximately what range? Jump to A17 e

The second question is whether the variogram shows point-pairs with more
separation than the local spatial dependence; if so the variogram should be
re-computed with a shorter cutoff.
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Q18 :

Does this variogram show point-pairs with more separation than the

local spatial dependence? l.e. is the range shorter than the maximum sepa-
ration shown in the variogram? What would be an appropriate maximum?
Jump to Al8 e

Task 25 :
cutoff; and plot

it.

Compute the empirical variogram of the Co values with a shorter

The cutoff argument to variogram is used to specify the maximum sepa-

ration:

> v <- variogram(Co

> plot(v, plot.numbers

1

>

loc = jura.cal, cutoff
T, pch = 20, col = "darkblue")
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The model name as used by gstat is shown above each panel; we an see the
full names with the vgm method with no arguments:

> vgm()

short long
1 Nug Nug (nugget)
2 Exp Exp (exponential)
3 Sph Sph (spherical)
4 Gau Gau (gaussian)
5 Exc Exclass (Exponential class)
6 Mat Mat (Matern)
7 Ste Mat (Matern, M. Stein's parameterization)
8 Cir Cir (circular)
9 Lin Lin (linear)
10 Bes Bes (bessel)
11 Pen Pen (pentaspherical)
12 Per Per (periodic)
13 Wav Wav (wave)
14  Hol Hol (hole)
15 Log Log (logarithmic)
16  Pow Pow (power)
17  Spl Spl (spline)
18 Leg Leg (Legendre)
19 Err Err (Measurement error)
20 Int Int (Intercept)

Note: The mathematical form of these models is given in the gstat User’s
Manual [5] Table 4.1 and in many texts. The Exc (“Exponential class”)
and Mat (Matérn) models are classes of models that require an additional
parameter kappa to adjust their shape. The Matérn model can be viewed
as a generalization of the Exponential, Power, Logarithmic and Gaussian
models [4]. These model classes require sophisticated techniques to fit them
properly, as well as good theoretical understanding of what they represent.
The beginning is advised to use the common models that do not have a shape
parameter.

Q19 : Which model forms match this empirical variogram? Jump to
Al19 e

The three possibilities are quite similar, differing only in the shape of the
“shoulder” transition to the sill. We can compare them in more detail, with
approximate values for range, sill and nugget.

Q20 : What are approximate values for range, total sill and nugget? Jump
to A20 e

Note: In gstat models the sill is specified as a partial sill, that is, the
difference between the total sill and the nugget. This is also known as the
structural sill.
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Task 26 : Compare the shapes of the spherical, circular, and pentaspherical
models with the approximate parameters for this empirical variogram. .

> print(show.vgms(models = c("Sph", "Cir", "Pen"), sill = 12.5,

+ nugget = 1.5, range = 1.2, max = 1.6))
0.0 05 1.0 1.5
L 1 1 1 1 1 1
vgm(12.5,"Sph",1.2,nugget=1.5) vgm(12.5,"Cir",1.2,nugget=1.5)
10 L
5 L
04 © o -

vgm(12.5,"Pen",1.2,nugget=1.5)

semivariance

0.0 05 1.0 15
distance

Q21 : Which of these three best matches the empirical variogram? Jump
to A21 e
4.2 Fitting a variogram model

Once a model form has been selected, we can adjusted the model parameters
to best match the empirical variogram.

Task 27 : Plot the empirical variogram with the model, fitted by eye,
superimposed. o

For this we use the vgm method to create a variogram model object, and
then the model optional argument to the plot.gstatVariogram method;
this method is automatically called by R’s plot method if the object to be
plotted is of class gstatVariogram.

> vm <- vgm(12.5, "Pen", 1.2, 1.5)
> print(vm)

model psill range
1 Nug 1.5 0.0
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2 Pen 12.5 1.2
> class(vm)

[1] "variogramModel" "data.frame"

> print(plot(v, plot.numbers = T, pch = 20, col = "darkblue",
+ model = wvm))

4171

4243

semivariance

distance

Q22 : How well does this model, estimated by eye, fit the empirical vari-
ogram? Jump to A22

This result is typical; the first “eyeball” estimate is often not so good. There
are two strategies:

1. Adjust the range, sill and nugget by eye to get a better fit;
2. Automatically adjust the parameters, e.g. by some form of weighted

least-squares.

Note: If you wish, you can try to improve the estimate by eye before
proceeding to the next step (automatic fitting).

If the variogram is fairly regular, as in this case, the automatic fit usually
works well, even starting from an estimate that is not too good.

Task 28 : Fit the variogram model to the empirical variogram, starting
from the original estimate; compare the fit to the estimate. o

We use the fit.variogram method of gstat:

> vmf <- fit.variogram(v, wvm)
> print (vm)
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model psill range
1 Nug 1.5 0.0
2 Pen 12.5 1.2

> print (vmf)

model psill range
1 Nug 1.3712 0.0000
2 Pen 12.9322 1.5239

> vmf$range - vm$range

[1] 0.0000 0.3239

> vmf$psill - vm$psill

[1] -0.12882 0.43220

> sum(vmf$psill) - sum(vm$psill)

[1] 0.30338

Note: The fit.variogram method has an optional argument fit.method,
which specified how the points of the empirical variogram are to be weighted
for the least-squares fit. The default method fit.method=7 gives weights
proportional to the number of point-pairs and inversely proportional to the
separation distance squared; this criterion is not supported by any theory,
but has proven sucessful in practice.

Q23 : How much did the automatic fit change the estimated fit? Jump to

A23 e

Task 29 : Plot the empirical variogram with the fitted model superimposed.

> print(plot(v, plot.numbers = T, pch = 20, col = "darkblue",
+ model = vmf))
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Q24 : How well does the fitted model match the empirical variogram?
Jump to A24 e

The ratio of the nugget to the total sill gives the proportion of the total
variance that is not explained by the variogram model even at the closest
separation; its converse is the proportion of total variance explained by the
spatial model.

Q25 : What proportion of the total variance in Co is explained by the fitted
variogram model? Jump to A25 e

> 1 - vmf$psill[1]/sum(vmf$psill)

[1] 0.90414

4.3 * Visual comparison of several variogram fits

This optional section explains how to visualize different variogram model fits
on the same empirical variogram.

Task 30 : Plot emprical variogram with both the estimated and fitted
variogram models superimposed, to visualise the effect of the automatic fit.

The model optional argument to the plot.gstatVariogram can only show
one model; so we have to build the variogram plot with base graphics.
The semivariances vs. separation scatterplot can be displayed with the base
graphics plot method; the continous plots of the variogram functions are
computed with the variogramLine method of gstat and added to the plot
with the 1ines method:
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> plot(v$gamma ~ v$dist, xlim = c(0, max(v$dist) * 1.05),
+ ylim = c(0, max(v$gamma) * 1.2), pch = 20, col = "blue",
+ cex = 1.2, xlab = "Separation distance", ylab = "Semivariance",
+ main = "Variogram models", sub = "Red: estimated; Green: fitted")
> text(v$dist, v$gamma, v$np, pos = 4)
> lines(variogramLine(vm, maxdist = max(v$dist)), col = "red",
+ 1ty = 2)
> lines(variogramLine(vmf, maxdist = max(v$dist)), col = "green")
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We can extend this approach to visually compare different model forms.

Task 31 : Plot emprical variogram with the fitted variogram models of
different classes superimposed, to visualise the effect of the automatic fit. e

We use the same basic plot, but then compute different model fits and plot
them. The fits all begin with the same parameters; the fitting method
fit.variogram will adjust them all with no problem, as long as the starting
point is reasonable and the variogram is well-structured, as is here the case.

Notice the use of the text method to add text to the plot, and the pos
argument to this method to position the text, in this case to the right of the
given position.

> plot(v$gamma ~ v$dist, xlim = c(0, max(v$dist) * 1.05),

+ ylim = c(0, max(v$gamma) * 1.2), pch = 20, col = "blue",
+ cex = 1.2, xlab = "Separation distance", ylab = "Semivariance",
+ main = "Variogram model forms", sub = "Fitted to Jura Cobalt")

> text(v$dist, v$gamma, v$np, pos = 4)
> lines(variogramLine(fit.variogram(v, vgm(12.5, "Cir",
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+ 1.2, 1.5)), maxdist = max(v$dist)), col = "red")
> lines(variogramLine(fit.variogram(v, vgm(12.5, "Sph",
+ 1.2, 1.5)), maxdist = max(v$dist)), col = "green")
> lines(variogramLine(fit.variogram(v, vgm(12.5, "Pen",
+ 1.2, 1.5)), maxdist = max(v$dist)), col = "blue")
> lines(variogramLine(fit.variogram(v, vgm(12.5, "Exp",
+ 1.2/3, 1.5)), maxdist = max(v$dist)), col = "magenta")
> lines(variogramLine(fit.variogram(v, vgm(12.5, "Gau",
+ 1.2/sqrt(3), 1.5)), maxdist = max(v$dist)), col = "brown")
> text(l, 5, col = "red", "Circular", pos = 4)
> text(l, 4, col = "green", "Spherical", pos = 4)
> text(l, 3, col = "blue", "Pentaspherical", pos = 4)
> text(l, 2, col = "magenta", "Exponential", pos = 4)
> text(1, 1, col = "brown", "Gaussian", pos = 4)
Variogram model forms
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Note that the approximate range, here set to 1.2 km, must be divided by 3
for the Exponential model, and /3 for the Gaussian model, to obtain the
range parameter.

Q26 : What are the similarities and differences in these model forms, for
the models fitted to this empirical variogram? Jump to A26 e

4.4 * Goodness-of-fit

This optional section explains how to quantify how well the variogram model
fits the empirical variogram.

A variogram model fitted by fit.variogram method receives an attribute
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that reports how closely the method was able to fit the empricial variogram;
this is called internal goodness-of-fit.

Task 32 : Determine the goodness-of-fit of this automatic fit. o

We use the very general attributes method to extract the attributes of an
object; these are metadata about the object which are created by various
methods:

> str(attributes(vmf))

List of 5

$ names : chr [1:9] "model" "psill" "range" "kappa"
$ row.names: int [1:2] 1 2

$ class : chr [1:2] "variogramModel" "data.frame"

$ singular : logi FALSE

$ SSErr : num 4804

The goodness-of-fit is attribute SSErr; we extract it as a field:
> attributes(vmf)$SSErr

[1] 4803.9

This is the residual sum of squares, weighted as in the model fitting method,
from the model fit. The lower the better, of course.

It is possible to fit several models and compare their goodness-of-fit; however
this is a poor substitute for understanding the process that generated the
realization of the spatial field sampled by the empirical variogram. Also,
the goodness-of-fit depends on the cutoff and number of bins, as we can see
by re-fitting this same model with a different empirical variogram from the
same data, but using a cutoff of 1 km insteaf of 1.6 km. In this case we can
start with the automatic fit from the previous fit:

> v2 <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1)
> vmf2 <- fit.variogram(v2, vmf)
> print (vmf)

model psill range
1  Nug 1.3712 0.0000
Pen 12.9322 1.5239

> print (vmf2)

model psill range
Nug 1.3696 0.0000
2 Pen 12.7581 1.4774

[ae

> attributes (vmf)$SSErr
[1] 4803.9
> attributes(vmf2)$SSErr

[1] 20569
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> print(plot(v2, plot.numbers = T, pch = 20, col = "darkgreen",
+

model =

vmf2))

semivariance

0.4 0.6 0.8
distance

We can visualize the two fits together, also showing the two nugget and sill
values as horizontal lines:

>
+
+
+
>
>
>
>
>
>
>
>
>

plot(v2$gamma ~ v2$dist, xlim = c(0, max(v2$dist) * 1.05),

ylim = c(0, max(v2$gamma) * 1.2), pch = 20, col = "blue",
cex = 1.2, xlab = "Separation distance", ylab = "Semivariance",
main = "Fiited variogram models", sub = "Fitted to Jura Cobalt")
text (v2$dist, v2$gamma, v2$np, pos = 4)
lines(variogramLine(vmf, maxdist = 1), col = "red")
lines(variogramLine (vmf2, maxdist = 1), col = "green")
text(l, 5, col = "red", "medium-range fit", pos = 2)
text(l, 4, col = "green", "short-range fit", pos = 2)
abline(h = vmf$psill[1], col = "red", 1lty = 2)
abline(h = sum(vmf$psill), col = "red", 1ty = 2)
abline(h = vmf2$psill[1], col = "green", 1ty = 2)
abline(h = sum(vmf2$psill), col = "green", lty = 2)

36



Fiited variogram models

15

e 470

10

Semivariance

medium-range fit

218

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Separation distance
Fitted to Jura Cobalt

Q27 :  How much did the fitted model change, when the automatic fit
considered only the short-range variogram (1 km), compared to the medium-
range variogram (1.6 km)? Jump to A27

Q28 : How did the fitting error change? Explain why. Does a larger error
in this case mean that the model is not suitable? Jump to A28 e

We are done with the short-range variogram and its model, so clean up:

> rm(v2, vmf2)

We can also compare the fit of different model forms on the same empirical
variogram.

> attributes(fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5)))$SSErr
[1] 4803.9
> attributes(fit.variogram(v, vgm(12.5, "Cir", 1.2, 1.5)))$SSErr
[1] 6161.7
> attributes(fit.variogram(v, vgm(12.5, "Sph", 1.2, 1.5)))$SSErr

[1] 5113.6
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> attributes(fit.variogram(v, vgm(12.5, "Exp", 1.2/3, 1.5)))$SSErr
[1] 7890

> attributes(fit.variogram(v, vgm(12.5, "Gau", 1.2/sqrt(3),
+ 1.5)))$SSErr

[1] 17114

Q29 :  Which of these models has the closest fit? Are there major differ-
ences? Jump to A29

Challenge: Display the empirical variogram with the different fitted models
on one graph.

Task 33 : Clean up the workspace from this section. .

> rm(v, vm, vmf)

4.5 * Fitting models with multiple structures

This optional section discusses variogram models with more than one struc-
tural component.

In the previous section we were able to model an empirical variogram with
one structural component and a nugget. This suggests that there is only
one local spatial process, plus noise that can not be modelled. However,
it may be that several spatial processes, with different spatial scales and
perhaps different forms, were responsible for the overall process which we
see reflected in the empirical variogram. In this case we may need to fit
several structures to one variogram.

In the Jura dataset, several of the metals exhibit an empirical variogram that
suggest multiple structures. One of these is lead (Pb). Since it is strongly
right-skewed, we log-transform it to an approximately symmetric form before
computing the variogram.

Task 34 : Plot the untransformed and log-transformed histograms of Pb. e

> hl <- histogram(jura.cal$Pb, col = "lavender")

> h2 <- histogram(loglO(jura.cal$Pb), col = "wheat")
> plot(hl, split = c(1, 1, 2, 1), more = T)

> plot(h2, split = c(2, 1, 2, 1), more = F)

> rm(hl, h2)
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Q30 : Describe the shapes of these two histograms. Which one should be
used to compute semi-variances? Jump to A30 e

Task 35 : Compute the empirical variogram of the logl0(Pb) values and
plot it. o

> v <- variogram(loglO(Pb) ~ 1, loc = jura.cal, cutoff = 3)
> plot(v, plot.numbers = T, pch = 20, col = "darkblue")
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Q31 : What is the evidence for two structures in this empirical variogram?
What are their approximate ranges? Jump to A31 e

We first try to fit this with one structure and a nugget.
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Task 36 : Estimate and fit a single-structure variogram model and nugget,
with priority to the short-range structure. J

We first model the steep rise with a spherical model with short range:
> (vm <- vgm(0.025, "Sph", 0.4, 0.01))

model psill range
1  Nug 0.010 0.0
2 Sph 0.025 0.4

> (vmf <- fit.variogram(v, vm))

model psill  range
1 Nug 0.011386 0.00000
2  Sph 0.020966 0.48408

Plot the estimated and fitted variogram models:

> pl <- plot(v, model = vm, pl = T, main = "loglO(Pb), estimated model")

> p2 <- plot(v, model
> plot(pl, split = c(1, 1, 2, 1), more = T)
> plot(p2, split = c(2, 1, 2, 1), more = F)
> rm(pl, p2)
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Q32 : Describe this fit. What is the range of the model? Does this match
the range of the variogram? Jump to A32 e

Q33 : What is the approximate difference between the total sill of the fitted
single-structure model and the total sill of the empirical variogram? Jump
to A33 e

Task 37 : Add a second structural component, to account for the long-range
structure. .

40
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Since we used a spherical model for the short-range structure, we also use it
for the long-range structure. Our first guess for the partial sill of the long-
range model is difference between the total sill of the fitted single-structure
model and the total sill of the empirical variogram (see previous question);
our first guess for the range is the empirical range.

The vgm method takes an optional add.to argument, which is the variogram
model to which we want to add a component. In this case we have a fitted
short-range model (vmf); we add another component to it, and then re-fit

both parts together:

> (vm <- vgm(0.003, "Sph", 2.5, add.to =

model psill  range

1 Nug 0.011386 0.00000

2  Sph 0.020966 0.48408

3  Sph 0.003000 2.50000

> (vmf2 <- fit.variogram(v, vm))
model psill range

1 Nug 0.0105050 0.0000

2 Sph 0.0175409 0.3702

3  Sph 0.0077225 2.4660

vmf))

We plot the estimated and fitted variogram models:

> pl <- plot(v, model
> p2 <- plot(v, model
> print(plot(pl, split =
> print(plot(p2, split =
> rm(pl, p2)

log10(Pb), estimated model

= vm, pl = T, main

"logl0(Pb), estimated model")

vmf2, pl = T, main = "loglO(Pb), fitted model")
c(1, 1, 2, 1), more =T))
c(2, 1, 2, 1), more = F))
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Q34 :

model imply about the spati

al processes?

Describe this fit. What are the two ranges? What does this fitted

Jump to A34 e
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4.6

Q35 : What are the relative proportions of spatial varability accounted for
by the three model components (two structures and nugget)? Jump to
A35 e

> paste("Nugget:", round(100 * vmf2$psill[1]/sum(vmf2$psill),
+ 0)’ u%u)

[1] "Nugget: 29 %"

> paste("Short range:", round(100 * vmf2$psill[2]/sum(vmf2$psill),
+ 0), ll%ll)

[1] "Short range: 49 %"

> paste("Long range:", round(100 * vmf2$psill[3]/sum(vmf2$psill),
+ 0) s ll%ll)

[1] "Long range: 22 %"

Task 38 : Clean up the workspace from this section. o

> rm(v, vm, vmf, vmf2)

* Fitting anisotropic variograms

In Exercise 2 §8 we saw how some variables exhibit anisotropy. In this op-
tional section we see how to fit a variogram model to an anisotropic empirical
variogram.

There are several kinds of anisotropy revealed in empirical variogram:

1. same model, same sill, but different ranges in different directions: ge-
ometric, also called affine, anisotropy;

2. same model, same range, but sill varies with direction: zonal anisotropy;
3. apparently different model in different directions.

The last case is theoretically very difficult to deal with, and would require
different types of processes in different directions.

The second case (zonal anisotropy) is also difficult because it assumes differ-
ent overall variance according to direction, i.e. the process was more variable
in one direction.

The simplest case, and the only one we will consider, is the first case of
geometric anisotropy. Essentially all we have to do is “stretch” the model in
one direction: same sill, but different ranges. This results in an anisotropy
elipse with a major axis of spatial structure in one direction and a minor
axis in the orthogonal direction, i.e. at right angles

The Jura data exhibits no anisotropy, so for this section we return to the
Meuse dataset used in Exercise 2 §8.
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Task 39 : Load the meuse sample dataset from the sp package and convert
it from a dataframe to a spatial object by specifying its cotrdinates. o

> data(meuse)
> coordinates(meuse) <- “x + y

Task 40 : Compute and display the directional variograms of the logarithm
of Zn content at 30° N and 120° N, i.e. the suspected major and minor axes
of the anisotropy elipse. .

> v.a <- variogram(log(zinc)~1, meuse, alpha=c(30,120), cutoff=1600)
> print(plot(v.a,

+ main="Directional Variograms, Meuse River, log(Zn)",
+ sub="Azimuth 30N (left), 120N (right)",
+ pl=T, pch=20, col="blue"))
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Q36 : What variogram model form do you suggest to fit the variogram of
the suspected major axis (30 ° N)? Jump to A36 e

Q37 : Does it appear that the sills are the same for the major and minor
axes? Jump to A37 e

Even though the anisotropy does not appear to be geometric, we will model
it that way because (1) the small sample size makes the variogram for the
minor axis not very reliable; (2) the dimension of the study area in the
direction of the minor axis is small, so that modelling longer ranges is not
important for interpolation. This is perhaps a questionable decision, but it
does allow us to illustrate the modelling procedure.

Note: Zonal anisotropy (i.e. anisotropy in the sill) can indeed be modelled,
by combining two models (§4.5), one for each of the orthogonal axes, and in
each case defining an affine (geometric) anisotropy structure with very small
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ratios. Then the “minor” axis in both cases will have almost no influence on
the predictions.

To model geometric (affine) anisotropy with the vgm method of the gstat
package, the two sills should be the same; all we need to specify is (1)
the azimuth of the major axis, in degrees from N, and (2) the anisotropy
ratio, i.e. the ratio of the minor range to the major range. These two are
combined with the ¢ method as one list in the optional anis “anisotropy”
argument to vgm, for example anis=c(30, 0.5). So we need to determine
two parameters:

1. The azimuth of the major axis; we do this by comparing various direc-
tional variograms as explained in Exercise 2 §8;

2. The ranges of the major and minor axes; the ratio of the minor to the
major is the anisotropy ratio (i.e. the elipse flattening).

Q38 : What is an appropriate anisotropy ratio? Note: since the two sills are
different, answer this by finding the range where the minor axis variogram
reaches the sill of the major axis variogram. Jump to A38 e

Task 41 : Fit a spherical variogram model, with geometric anisotropy, to
the directional variograms and display the fit. .

> (vmf.a <-
+ fit.variogram(v.a,
+ vgm(0.55, "Sph", 1100, 0.05, anis=c(30, 0.5))))

model psill range angl anisl
1 Nug 0.056095 0.0 0 1.0
2 Sph 0.587719 1208.7 30 0.5

> attributes(vmf.a)$SSErr
[1] 0.00039621

> print(plot(v.a,

+ main="Fitted Anisotropic Variogram Model, Meuse River, log(Zn)",
+ model=vmf.a,

+ sub="Azimuth 30N (left), 120N (right)",

+ pl=T, pch=20, col="blue"))
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Q39 : What variogram parameters did method fit.variogram alter?
Jump to A39 e

Task 42 : Compute the best omnidirectional spherical model for the same
variable and display the fitted model on the empirical variogram. o

> v <- variogram(log(zinc)~1, meuse, cutoff=1600)
> (vmf <- fit.variogram(v, vgm(0.55, "Sph", 1100, 0.05)))

model psill range
Nug 0.05097 0.0
Sph 0.59140 901.8

N =

> attributes(vmf)$SSErr
[1] 9.4538e-06
> print(plot (v,

+ main="Fitted Isotropic Variogram Model, Meuse River, log(Zn)",
+ model=vmf, pl=T, pch=20, col="blue"))
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Q40 : Compare the two models: parameters and fit (visual and numerical).
Jump to A40 e

Q41 :  Would you use the isotropic or anisotropic variogram models for
geostatistical prediction (kriging) in this study area? Jump to A4l e
Task 43 : Clean up the workspace from this section. .

> rm(v.a, vmf.a, v, vmf, meuse)

4.7 * The effect of sampling on variogram modelling

This optional section investigates the causes of uncertainty in variogram
modelling.

We must never forget that the empirical variogram is just that, not the “true”
variogram which, we assume (presume?) represents the spatially-correlated
random process that resulted in the realization. We would like to model the
true variogram (the process), but we only have an empirical variogram.

To review the sources of uncertainty in estimating a variogram model:
1. We only have one realization of the random process;
2. We only have a small sample of the realization;

3. We must specify empirical variogram parameters: cutoff distance and
number of bins (equivalently, bin width); this can have a large influence
especially on automated fits.

How can we estimate the effects of these?

1. It is impossible to generate another realization in the same sample
area, but in a “similar” sample area, where we can assume that the
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spatially-correlated random process is the same, we should (in theory)
determine the same variogram model;

2. With one sample in hand, we can estimate the “true” variogram model
from several sub-samples; if these are similar we can have confidence
in our estimate;

3. Even with just one sample and one empirical variogram, we can try
different cutoffs and bin widths; again, if the estimated “true” mod-
els are similar, we can have confidence in our estimate. We saw one
example of this in §4.4 when we compared the fit for the short- and
medium-range empirical variograms.

We first investigate the effect of sample size and sub-sampling. The calibra-
tion dataset jura.cal has 259 observations; we will simulate the case where
we have only 160 observations; but distributed differently on the landscape.

Task 44 : Draw four random samples of 160 observations from the calibra-
tion dataset. Plot the histograms of their Co concentrations side-by-side on
the same scale, and the default empirical variograms, also of Co concentra-
tions. o

We use the sample method (as in §3.1) to select rows (without replacement).
We build a list data structure with the four samples, using the for operator
to loop and the [[]1] operator to specify the list element. We must first
initialize the 4-element list with the vector “create a vector” method, then
we can add structures in the slots.

> jura.cal.sub <- vector("list", 4)

> for (i in 1:4) {

+ jura.cal.sub[[i]] <-

+ jura.cal[sample(1l:dim(jura.cal@data) [1], 160),] }

Task 45 : Compute the empirical variograms for each of the four samples o

> v.sub <- vector("list", 4)
> for (i in 1:4) {

+ v.sub[[i]] <-
+ variogram(Co ~ 1, loc=jura.cal.sub[[i]]) }
Task 46 : Display the four empirical variograms on the same graph. 0

We use the plot method to display the first scatterplot of semivariance
against separation, thereby setting up the plot (axes, labels, title etc.). We
then use the points method to add point sets to the scatterplot; this is
called once for each remaining sub-sample, inside a for loop.

Note: ~We show both the points (average semi-variance in the bin) and
lines to connect them, with the type="b" (“both” points and lines) optional
graphics parameter. This line is not a variogram model, it’s just to help us
visually separate the four empirical variograms.
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plot(v.sub[[1]]1$gamma ~ v.sub[[1]]$dist, xlim =
max(v.sub[[1]]$dist) * 1.05), ylim =

1.2), col =1, cex =

ylab = "Semivariance", main =

for (i in 2:4) {

c(0,
c(0, max(v.sub[[1]]$gamma) =*

1.2, xlab = "Separation distance",

"Empirical variograms from subsamples"

points(v.sub[[i]]$gamma ~ v.sub[[i]l]$dist, col = i,

cex = "o")

>
+
+
+
+ type = "b")
>
+
+ 1.2, type =
+

3

Empirical variograms from subsamples
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Your graph will differ from the one shown here, since each random sample

is different.

Q42 : How different are the four empirical variograms from each other?
Jump to A42 e
Task 47 : Fit a variogram model to each of the four sub-sample empirical

variograms, using as a starting point the initial estimate we used for the full

calibration set in §4.2.

vmf .sub <- vector("list", 4)
for (i in 1:4) {

"Pen", 1.2, 1.5))
}

print (vmf . sub)

[r111

model  psill range
1 Nug 1.2767 0.000
2  Pen 10.6702 1.425

[[211

model psill range

>
>
+ vmf.sub[[i]] <- fit.variogram(v.sub[[i]], vgm(12.5,
+
+
>
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1 Nug 1.6135 0.0000
Pen 12.7427 1.2817

[rs1l
model psill range
1 Nug 1.7286 0.0000
Pen 13.9969 1.5069

[[4]]
model psill range
1 Nug 1.0813 0.0000
Pen 13.2271 1.5232

Task 48 : Display the four fitted variogram models on the same graph,
along with their empirical variograms. o

> xlim.max <- max(v.sub[[1]]$dist)*1.05

> plot(v.sub[[1]]$gamma ~ v.sub[[1]]$dist,

+ x1lim=c(0, xlim.max), ylim=c(0, max(v.sub[[1]]$gamma)*1.2),
+ col=1, cex=1.2,

+ xlab="Separation distance", ylab="Semivariance",

+ main="Fitted variograms from subsamples")

> for (i in 2:4) {

+ points(v.sub[[i]]$gamma ~ v.sub[[i]]$dist,

+ col=i, cex=1.2) }

> for (i in 1:4) {

+ lines(variogramLine (vmf.sub[[i]], maxdist=xlim.max), col=i) }
> rm(xlim.max)

Fitted variograms from subsamples

15
|

Semivariance

Separation distance

Q43 : How different are the four fitted variograms? Where do they differ
most? Jump to A43 e

We can answer this question visually (looking at the figure) but also numer-
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ically. We collect the four values of each parameter into one vector for each,
then report the sorted values and a non-parametric indicator of the variation
(range divided by the median)?.

> nuggets <- NULL

> psills <- NULL

> ranges <- NULL

> for (i in 1:4) {

+ nuggets <- c(nuggets, vmf.sub[[i]]$psill[1])
+ psills <- c(psills, vmf.sub[[i]]$psill[2])

+ ranges <- c(ranges, vmf.sub[[i]]$range[2])

+ 3

> print(sort(nuggets))

[1] 1.0813 1.2767 1.6135 1.7286

> diff (range(nuggets))/median(nuggets)
[1] 0.44795

> print (sort(psills))

[1] 10.670 12.743 13.227 13.997

> diff (range(psills))/median(psills)
[1] 0.25619

> print(sort(ranges))

[1] 1.2817 1.4250 1.5069 1.5232

> diff (range(ranges))/median(ranges)
[1] 0.16475

> rm(nuggets, psills, ranges)

Challenge:  Repeat this exercise with smaller sub-samples (120, 80, 60
...). What is the effect of sample size on between-sample variability of the
empirical variogram and fitted variogram model?

Q44 : Which of these fits best models the spatial process? Jump to Ad4 e

Task 49 : Remove the temporary objects created in this section from the
workspace. o

> rm(jura.cal.sub, v.sub, vmf.sub, i)

2 This is similar to the well-known coefficient of variation, i.e. the standard deviation
divided by the mean. The non-parametric version doesn’t assume any distribution, it
just gives an idea of the normalized magnitude of the spread
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4.8 Answers

A16 : The distribution is more-or-less normal with a mode near 12 mg kg1,
but with a second mode near 3 mg kg-1. Transformation would not improve this.
There are no extreme values that would result in unreliable semivariances, so the
untransformed attribute is suitable for variogram estimation. Return to Q16 e

A17 : Yes, it does not keep increasing; it reaches a value of about 14 mg kg12
near 1 km and then is more-or-less constant past this range. Return to Q17

A18 : Yes, past about 1.6 km the semi-variances decrease slightly; this indicates
that this is past the range of local spatial dependence. Return to Q18 e

A19 : Spherical, circular, pentaspherical. Return to Q19 e

A20 : The total sill is about 14 ( mg kgl )2, of which the Nugget is about
1.5 ( mg kg1 )2, so the structural sill is about 14 - 1.5 = 12.5 ( mg kg1 )?; Range

1.2 km. Return to Q20 e
A21 : Because of the gradual transition “shoulder”, the pentaspherical model
appears best. Return to Q21 e
A22 : The form is more-or-less correct but the semivariances of the model are

greater than the empirical semivariances for most of the range. Return to Q22 e

A23 : The range was increased by 0.324 km; the nugget was decreased by 0.129
and the partial sill of the structural component was increased by 0.432; the total

sill was thus increased by 0.303. Return to Q23 e
A24: Very well. Return to Q24 e
A25: 90.4% Return to Q25

A26 : The three “spherical”-type models (Circular, Spherical, and Pentaspherical)
are very similar; only the width of the “shoulder” transition is somewhat different.
Their fitted sills are almost identical. The Exponential model agrees with these
three until about 0.5 km, when it is lower, and after 1.2 km higher, since it does not
reach its sill in the range of this plot. It suggest a longer-range dependence. The
Gaussian model fits quite poorly, because it models a continuity at the origin which
is not found. So it has to include an extra inflection point, causing an overestimation
in the 0.5 - 1.0 km range, and a lower sill. Return to Q26 e
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A27 : The fit has changed somewhat: the nugget is almost the same but the
partial sill and range somewhat lower. Return to Q27 e

A28 : The error is much larger. This is because the short-range empirical vari-
ogram, with the same number of bins (15), is more erratic, so the model does not
come so close to the empirical semivariances. Obviously, this can not mean that
the model is less suitable to the process. Return to Q28 e

A29 : The Pentaspherical model gives the best fit, but the Spherical is almost as
good, and the Circular also close. The Exponential model (asymptotic to the sill
and a rapid rise in semivariance near the origin) is much worse, and the Gaussian
(strong continuity at the origin) by far the worst; this model is not suited to the
form of this empirical variogram, nor to the process. Return to Q29 e

A30 : Untransformed: strongly right-skewed; log-transformed: nearly symmetric.
The log-transformed variable should be used, to avoid an erratic variogram. Return
to Q30 e

A31 : To about 600 m there is a very steep rise in semivariance; then to about
2 km there is a steady but slow increase. Return to Q31 e

A32 : The structure to about 400 m is well-fitted but then the slowly-increasing
semivariance out to 2.5 km is not at all modelled. The range of the model is about
500 m, much shorter than the actual overall range. Return to Q32

A33 : The total fitted sill is about 0.32; the empirical sill is about 0.35; so we
estimate the partial sill of the long-range structure to be 0.003. Return to Q33 e

A34 : There is a short-range structure to 370 m, with a very rapid decrease in
spatial dependence; then a long-range structure to 2.5 km, where spatial depen-
dence slowly decreases. This implies two separate spatial processess responsible for
the spatial dependence of Pb. The short-range could be from human activity or
depositional hot spots; the long-range from rock type or more diffuse deposition
(e.g. from dust). Return to Q34

A35 : The short-range component accounts for about half the total variation; the
long range about a fifth; and the nugget (unexplained) almost a third. Return to
Q35 e

A36 : There is a definite sill (so an exponential model is not indicated); the
transition from the more linear part at close separations is gradual; this suggests
that a spherical model is appropriate. Return to Q36

A37 : No it does not! There seems to be more variability on the minor axis, i.e.
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at azimuth 120°N. Return to Q37 e

A38 : The major axis variogram reaches a sill of about 0.6, at a range of about
1100 m; this same sill value is reached at about 550 m on the minor axis. The ratio
is therefore (550/1100) = 0.5. Return to Q38 e

A39 : The range of the major axis, the structural sill, and the nugget. The
anisotropy parameters (major axis and ratio) are not adjusted by the automatic fit.
Return to Q39 e

A40 : The partial sill and nugget are very close, but the range of the isotropic
model is considerably shorter (900 vs. 1200 m); this is because of the averaging effect
of the shorter-range (minor axis) and longer-range (major axis) ranges. The visual
and numeric fit is much better for the isotropic model, but again this is probably
due to averaging. Return to Q40 e

A41 : The anisotropic model should be used, because there is a large difference
in the strength of spatial dependence in the two directions. If an isotropic model is
used, points separated along or near the minor axis direction will be weighted too

much. Return to Q41 e
A42 : This varies each time the four sub-samples are drawn. In general, the
close-range structure is more consistent. Return to Q42 e

A43: Again, this varies each time the four sub-samples are drawn. In general, the
nuggets and ranges are similar, with more variation in partial sills of the structural
component. But, this may be different with your sub-samples. = Return to Q43 e

A44 : They are all equally-good estimates, there is no way to know which sub-
sample gives (by change) the closest match to the presumed “true” spatial process.
Return to Q44 e

5 * Fitting a trend surface with generalized least squares

This optional section discusses the difficulties with the naive trend surface
fit of §2, and explains how to compute a trend surface more correctly with
generalized least squares. It also illustrates stepwise regression and the use
of two additional packages: spatial and MASS.

For this part of the exercise we use the spatial package written by Ripley
and documented in his texts [6, 7]. This gives us a different perspective
on spatial data; in particular this package has efficient methods to compute
and plot trend surfaces using both OLS and GLS. We will also use some
functions from Venables & Ripley’s MASS (“Modern Applied Statistics with
S”) package, extensively documented in the text of the same name [7].
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5.1 Theoretical background

The problem with ordinary least squares (OLS) as implemented in the 1m
method is that the residuals may well be spatially-correlated. This violates a
major assumption underlying OLS, and may result in a substantially incor-
rect trend surface equation. In particular, a large number of close-by points
with similar values will “pull” a trend surface towards them. Furthermore,
the OLS R? may be over-optimistic.

The solution is to use Generalised Least Squares (GLS) to estimate the trend
surface. This allows a covariance structure between residuals to be included
directly in the least-squares solution of the regression equation. GLS is a
special case of Weighted Least Squares (WLS).

The GLS estimate of the regression coefficients is [1]:

ﬁgls =xT.ct.x)t.xTct.y
where X is the design matrix, C the covariance matrix of the (spatially-
correlated) residuals, and ' the observations.

Note that if there is no spatial dependence among the errors, C reduces to
Io? and the estimate to OLS:

Bots = (XT-Xx)" 1. xT .y

The covariance matrix C gives the covariance between the residuals at each
pair of points used to determine the Bgls- Clearly, there is no way to know
this, so we model the covariance as a function of the separation (e.g. distance)
between point pairs, similar to what we did in §4 to fit a variogram model.
However, we instead fit a spatial covariance model.

This leads us to a further difficulty: the covariance structure refers to the
residuals, but we can’t compute these until we fit the trend ...but we need
the covariance structure to fit the trend ... and so on. This is a classic “which
came first: the chicken or the egg?” problem.

In practice, it is usually sufficient to:

1. make a first estimate of the trend surface with OLS;
2. compute the residuals;

3. model the covariance structure of the OLS residuals as a function of
their separation;

4. use this covariance structure to determine the weights to compute the
GLS trend surface.

The GLS residuals could again be modelled to see if their covariance struc-
ture differs from that estimated from the OLS residuals; in practice, unless
the dataset is large it is not possible to see any such difference.

GLS trend surfaces can be computed in several R packages. The 1m method
itself can be used for weighted least squares (WLS), but the weights have to
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be computed from the spatial correlation structure. This is implemented in
the gls method of the nlme package, but we will use the somewhat simpler
formulation in the spatial package written by Ripley and documented in
his texts [6, 7]. This package is installed by default with the base R.

5.2 The ‘topo’ sample dataset

The Cameroon soil properties dataset used in §2 is not a good choice for
this demonstration, because the residuals from the OLS trend surface (either
first- or second-order) have very low spatial correlation, as can be appreciated
in the plots of §2: high positive and negative residuals are located near to
each other. It seems that what is not well-modelled by the trend surface is
noise, due to some non-geographic process.

The MASS package includes a nice sample dataset, topo, that will illustrate
the differences between OLS and GLS trend surfaces. This dataset is origi-
nally from Davis [2, Ch. 5], where it is called NOTREDAM. TXT?; it is a manual
topographic survey of a small area by a student surveying class. The chal-
lenge is to make a contour map or a gridded prediction of the heights in the
study area. Here we will only consider the trend surfaces; for a full treatment
see Venables and Ripley [7, Ch. 15].

Task 50 : Load the spatial and MASS packages, and the topo dataset;
examine the dataset structure. .

require(spatial)
require (MASS)
help(topo)
str(topo)
summary (topo)

V V V VvV V

Q45 : What do the three fields represent? Jump to A45 e

5.3 Step 1: OLS trend surface

We begin by fitting an OLS trend surface.

Task 51 : Make a postplot of the elevations. J

We use the with function to save some typing. This useful exposes the names
inside its first argument (here, data frame topo) for the second argument
(here, a compound command with plot and text functions). So we can
write y “x instead of topo$y ~topo$x, etc.

> with(topo, {
+ plot(y ~ x, cex = 3 * z/max(z), pch = 1, col "blue",
+ asp = 1, main = "Elevation (feet)", xlab = "E",

3 Also available from the author’s web site, http://www.kgs.ku.edu/Mathgeo/Books/
Stat/index.html
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+ ylab = "N")

+ text(x, y, 2z, pos = 2)
+ 1)

> grid(lty = 1)

Elevation (feet)
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Q46 : What seems to be the regional trend? Jump to A46 e

The form suggests a second-order surface.

Task 52 : Use the surf.1ls method to compute the second-order OLS trend
surface; display its analysis of variance and coefficients. .

The surf.ls method works on a data frame with two cotrdinates and one
value to be modelled. The first argument is the degree of the trend surface.

> ts2 <- surf.ls(2, topo$x, topo$y, topo$z)
> class(ts2)

[1] "trls"
> summary (ts2)

Analysis of Variance Table

Model: surf.ls(np = 2, x = topo$x, y = topo$y, z = topo$z)
Sum Sq Df Mean Sq F value Pr(>F)

Regression 156072 5 31214.31 35.934 8.44e-15

Deviation 39958 46  868.66

Total 196030 51
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Multiple R-Squared: 0.796, Adjusted R-squared: 0.774
AIC: (df = 6) 357.51

Fitted:
Min 1Q Median 3Q Max
736 775 826 870 942
Residuals:
Min 1Q Median 3Q Max

-63.25 -14.36 -4.87 15.00 97.75
> ts2$beta

[1] 801.2176 -11.0189 68.2291 -73.9930 3.3436  8.3427

We now visualize the computed surface.

Task 53 : Plot the 2nd-order OLS trend surfaces, with the sample points
superimposed. o

The trend surface to be displayed is computed with the trmat (“trend ma-
trix”) method of the spatial package. This just computes the prediction at
a regular grid; the number of divisions of the study area in each dimension
is given by the n argument:

> tmat2 <- trmat(ts2, 0, 6.5, 0, 6.5, n = 50)
> str(tmat?2)

List of 3

$ x: num [1:51] 0 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17
$ y: num [1:51] 0 0.13 0.26 0.39 0.52 0.65 0.78 0.91 1.04 1.17
$ z: num [1:51, 1:51] 976 970 963 957 951 .

We use the egscplot (“equal scale plot”) method of the MASS package, as
well as the contour base graphics method.

egscplot(tmat2, type = "n", main = "OLS 2nd-order trend surface",
sub = "elevation (feet)", xlab = "E", ylab = "N")
contour(tmat2, add = T, 1ty = 1, col = "blue")
grid(lty = 1)
points(topo$x, topo$y, cex = 3 * (topo$z/max(topo$z)),
pch = 23, bg = 3)

+ V V V + V
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OLS 2nd-order trend surface

elevation (feet)

Q47 .

5.4 Step 2: OLS residuals

We now visualize the goodness-of-fit with the residuals.

Describe the visual fit of this trend surface to the sample points.

Jump to A47 e

Task 54 :

imposed.

Plot the 2nd-order OLS trend surfaces, with the residuals super-

First, we repeat the contour plot with superimposed points, but show the
residuals as a colour-coded postplot. We colour-code the residuals by their
sign (positive or negative) using the ifelse method, and make the symbol
size proportional to their absolute value (computed with the abs method)
using the cex graphics argument:

>
+
>
>
>
>
+
>

eqscplot(tmat2, type = "n", main = "OLS 2nd-order trend surface",
sub = "elevation (feet)", xlab = "E", ylab = "N")

contour (tmat2, add = T, 1ty = 1, col = "blue")

grid(lty = 1)

r <- residuals(ts2)

points(topo$x, topo$y, cex = 3 * abs(r)/max(abs(r)),
pch = 23, bg = ifelse(r < 0, "red", "green"))

rm(r)
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OLS 2nd-order trend surface
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elevation (feet)

Q48 :

> plot(ts2)

Do the residuals appear to be spatially correlated?

Jump to A48 e

Second, the spatial package has a plot.trls method, which is automat-
ically called by the generic plot method, which shows the residuals as a
post-plot, and also highlights the ones with the most influence on the fit.
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To see what is going on here, we directly compute the influence measures
with the trls.influence method:

> infl.ts2 <- trls.influence(ts2)

> str(infl.ts2)

List of 4
$r : num
$ hii : num
$ stresid: num
$ Di : num

[1:52]
[1:52]
[1:52]
[1:52]

61.2 27.7 10.1 -45.6 26.6 ...
0.355 0.19 0.124 0.135 0.284 ...
2.586 1.043 0.366 -1.663 1.066 ...

0.61275 0.04259 0.00317 0.07189 0.07518 ...

The most interesting field here is stresid, which is the standardized residual
(i.e. = 1 for one standard deviation). We can extract the records with the
highest absolute values of the standardized residuals, say > 1.5:

> (cand <- as.data.frame(infl.ts2) [abs(infl.ts2$stresid) >

+ 1.5, 1)

r hii stresid Di
1 61.219 0.354768 2.5859 0.612751
4 -45.585 0.134933 -1.6629 0.071889
12 44.717 0.210223 1.7072 0.129304
31 52.056 0.071542 1.8330 0.043150
37 54.759 0.069748 1.9263 0.046371
48 97.755 0.085741 3.4688 0.188073
50 -63.251 0.275301 -2.5210 0.402378

> rm(infl.ts2)
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Now we can make this influence plot much more informative, showing the
high standardized residuals in colour and labelling them:

> eqgscplot(tmat2, type = "n")
> contour(tmat2, add = TRUE, col = "grey")
> plot.trls(ts2, add = TRUE, div = 2)
> cand.xy <- topol[as.integer(rownames(cand)), c("x", "y")]
> points(cand.xy, pch = 16, col = "orange")
> text(cand.xy, labels = rownames(cand.xy), pos = 4, offset = 0.5)
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> rm(cand, cand.xy)

Q49 :

spatial pattern to these?

Which points have the highest standardized residuals? Is there any
Jump to A49 e

5.5 Step 3: Determining the covariance structure

The question here is, are the residuals spatially-correlated? If so, the OLS
fit is not valid and we must re-fit with GLS.

In the previous subsection we suspected some correlation at short ranges.
In the next subsection (§5.6) we will use the surf.gls method to compute
the GLS trend surface; this is like surf.ls but also needs a correlation
structure. To determine this, we need to examine the correllogram, which is
a plot of the correlation coefficient versus separation between the residuals
at point-pairs.
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Task 55 : Compute and display the correlogram of the residuals. .

We use the correlogram method of the spatial package, also specifying
the number of bins with the nint argument. This method automatically
computes for the residuals, once a trend surface is fit, as it was for object
ts2, above:

> ¢ <- correlogram(ts2, nint = 16, plotit = T)
> as.data.frame(c)

yp

© 00N O WN -

X
.00000
.55172
.10345
.65517
.20690
. 75862
.31035
.86207
.41380
.96552
.51725
.06897
.62069

y

.923919
.302105
.165462
.230165
.1561937
.282654
.036221
.041093
.039679
.045055
.295976
.179504
.244652

cnt
65
73
107
137
137
145
155
148
139
108
85
52
19

0.0

The default plot shows spatial correlation on a [—1...+ 1] scale; in this
case the negative correlation never exceeds —0.4, so we should re-draw the
correlogram with a reduced scale and also emphasize the short range. Note
that after about 4 distance units the number of point-pairs decreases, so the
estimate is not reliable. Also, the short-range structure is most important
for computing the weights.

> plot(c, ylim = c(-0.4, 1), xlim = c(0, 4), col = "blue",

+ pch = 20, cex = 2)
> abline(h = 0)
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Q50 :  Describe the spatial correlation (strong, moderate, weak?). What
is the approximate range? What is the nugget effect as a proportion of the
maximum correlation (1)? Are there enough point-pairs to make a reliable
model? Jump to A50 e

Task 56 : Fit a covariance function to the correlogram. .

The spatial package provides only three models: exponential (expcov),
Gaussian (gaucov) and spherical (sphercov). Here there is no evidence of
a Gaussian structure (“halo” effect at short ranges). We try the exponential
model with an effective range of 1.5 units (i.e. range parameter d = 0.5) and
a nugget (parameter alpha) of 0.05, which seems to fit fairly well:

plot(c, ylim = c(-0.4, 1), xlim = c(0, 4), col = "blue",
pch = 20, cex = 2)

abline(h = 0)

d <- seq(0.1, 4, by = 0.1)

lines(d, expcov(d, d = 0.5, alpha = 0.05), col

vV V. V + V

"plue" )
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There is no automatic fitting in spatial, unlike the variogram model fitting
we saw above in gstat. However, the details of the model are not very
important; any reasonable model will give quite similar corrections to the
trend surface.

5.6 Step 4: Computing the GLS trend surface

Now that we have a model of spatial correlation we can compute the GLS
trend surface, using this covariance function.

Task 57 : Compute and the 2nd-order GLS trend surface and compare it
with the 2nd-order OLS trend surface. o

We use the surf.gls method of the spatial package:

> ts2.g <- surf.gls(2, expcov, d = 0.5, alpha = 0.05, topo$x,
+ topo$y, topo$z)

Q51 : How much did the internal goodness-of-fit (R?) change from the OLS
to the GLS surface? Jump to A51 e

> summary (ts2.g)

Analysis of Variance Table

Model: surf.gls(np = 2, covmod = expcov, X = topo$x, y = topo$y, z = topo$z,
Sum Sq Df Mean Sq F value Pr(>F)

Regression 154145 5 30829.01 33.858 2.44e-14

Deviation 41885 46 910.54

Total 196030 51
Multiple R-Squared: 0.786, Adjusted R-squared: 0.763
AIC: (af = 6) 359.95
Fitted:
Min 1Q Median 3Q Max
748 784 830 870 937
Residuals:

64



Min 1Q Median 3Q Max
-59.42 -18.31 -5.36 11.12 96.59

> summary (ts2)

Analysis of Variance Table

Model: surf.ls(np = 2, x = topo$x, y =

Sum Sq Df Mean Sq F value
Regression 156072 5 31214.31
Deviation 39958 46  868.66
Total 196030 51
Multiple R-Squared: 0.796,

AIC: (df = 6) 357.51
Fitted:
Min 1Q Median 3Q Max

736 775 826 870 942
Residuals:

Min 1Q Median 3Q Max
-63.25 -14.36 -4.87 15.00 97.75

topo$y, z = topo$z)
Pr (>F)

35.934 8.44e-15

Adjusted R-squared: 0.774

Q52

surface?

> ts2.g$beta

[1] 806.8856 -11.7446 62.0064 -67.8814

> ts2$beta

[1] 801.2176 -11.0189 68.2291 -73.9930

How much did the coefficients change from the OLS to the GLS

Jump to A52 e

1.5970 8.9836

3.3436  8.3427

> 100 * (ts2.g$beta - ts2$beta) /ts2$beta

[1] 0.70742 6.58628 -9.12039

-8.256967 -52.23816

7.68139

Q53 :

> summary (residuals(ts2.g))

How much did the residuals change from the OLS to the GLS surface?

Jump to A53 e

Min. 1st Qu. Median Mean 3rd Qu. Max.
-59.40 -18.30 -5.36 -3.81 11.10 96.60
> summary (residuals(ts2))
Min. 1st Qu. Median Mean 3rd Qu. Max.
-63.30 -14.40 -4.87 0.00 15.00 97.80
Task 58 : Plot the GLS and OLS trend surfaces together, to visualize the

difference.
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tmat2.g <- trmat(ts2.

egscplot(ts2, type

xlab = "E", ylab
contour (tmat2.g, level = seq(720, 960, 20), add = T)

contour (tmat2, level =

col = "blue")
grid(lty = 1)

g, 0, 6.5, 0, 6.5, n = 50)
"n", main = "OLS and GLS trend surfaces",
= "N", sub = "Black: GLS; Blue: 0OLS")

seq(720, 960, 20), add = T, 1ty =

points(topo$x, topo$y, cex = topo$z * 2.5/max(topo$z),

pch = 23, bg =

3)

text (topo$x, topo$y, topo$z, pos = 2)

OLS and GLS trend surfaces
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Q54 :  Describe the differences between the OLS and GLS surfaces. Jump
to A54 e

Now we see if the residuals from the GLS surface are spatially-independent.

Task 59 :

imposed.

Plot the 2nd-order GLS trend surfaces, with the residuals super-

We put the same plot for the OLS side-by-side, for comparaison.

>
>
>
>
>
+
>

par(mfrow = c(1, 2))

r <- residuals(ts2)

r.g <- residuals(ts2.g)
r.max <- max(abs(r),
egscplot(tmat2.g, type = "n", main = "GLS 2nd-order trend surface",

sub = "elevation (feet)", xlab = "E", ylab = "N")

contour(tmat2.g, add =

abs(r.g))

T, 1ty = 1, col = "blue")
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grid(lty = 1)

points(topo$x, topo$y, cex = 3 * abs(r.g)/r.max, pch = 23,
bg = ifelse(r < 0, "red", "green"))

eqscplot(tmat2, type = "n", main = "OLS 2nd-order trend surface",
sub = "elevation (feet)", xlab = "E", ylab = "N")

contour(tmat2, add = T, 1ty = 1, col = "blue")

grid(lty = 1)

points(topo$x, topo$y, cex = 3 * abs(r)/r.max, pch = 23,
bg = ifelse(r < 0, "red", "green"))

rm(r, r.g, r.max)

par(mfrow = c(1, 1))

GLS 2nd-order trend surface OLS 2nd-order trend surface
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Q55 :  How is the spatial distribution of the residuals affected by a GLS fit,
Jump to A55 e

rather than an OLS fit?

5.7 Step 5: Re-computing spatial correlation

We check to see if there is still spatial correlation among the residuals, and
if so, does it differ from that estimated from the OLS surface? If so, we have
to interatively re-fit the GLS surface with the revised correlation structure.

Task 60 :

Compute and plot the correlogram of the residuals from the

GLS surface, with the spatial correlation model from the OLS residuals

16, plotit = F)
xlim = c(0, 4), col = "blue",

alpha = 0.05), col = "blue")

superimposed.
> c.g <- correlogram(ts2.g, nint =
> plot(c.g, ylim = c(-0.4, 1),
+ pch = 20, cex = 2)
> abline(h = 0)
> d <- seq(0.1, 4, by = 0.1)
> lines(d, expcov(d, d = 0.5,
> rm(d)
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Q56 : Does the model from the OLS residuals appear to fit the GLS
residuals? Jump to A56 e

Task 61 : Plot the correlograms of the OLS and GLS residuals on one

graph, also showing their differences. .
> tmp <- as.data.frame(cbind(lag = c.g$x, gls.corr = c.g$y,
+ ols.corr = c$y, diff = c.g$y-c$y))
> plot(diff ~ lag, data=tmp, ylim=c(-.2, 1), pch=1,
+ main="Spatial correlation",
+ sub="GLS: blue; OLS: red; difference: black")
> points(tmp$lag, tmp$gls.corr, col="blue", pch=20, cex=2)
> points(tmp$lag, tmp$ols.corr, col="red", pch=20, cex=2)
> abline(h=0)
> rm(tmp)
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5.8 Answers
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Q57 : Is there much difference between the two correlograms?  Jump to
A57 e

Q58 : s it necessary to iteratively fit the GLS surface?  Jump to A58

Task 62 : Clean up the workspace from the previous three subsections. e

We also need to remove the spatial package from the search path, to avoid
naming conflicts with the gstat package.

Both the spatial and gstat packages contains a variogram method. This is
one of the disadvantages of open-source software — each package author picks
their own function names, and there can be conflicts. If several packages are
in memory, the last-loaded (here, spatial) takes precedence. We remove
it with the detach function, specifiying that the object to be removed is a
package.

> rm(topo, ts2, ts2.g, tmat2, tmat2.g, c, c.g)
> detach(package:spatial)

A45 : x and y are local survey codrdinates in units of 50 feet*; z is elevation above
an unspecified base in feet. Return to Q45

11 =0.3048 m
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A46 : The lowest elevation is at the centre-top and increases south and eastward.
It seems to be a bowl with the lowest point at centre-top. Return to Q46 e

A47 : The fit appears quite good. The bowl shape adjusts well to the sample

points. Return to Q47
A48 : There is clear spatial correlation: the negative residuals are mostly near
the bottom of the bowl! (top centre) and the positive residuals elsewhere; the larger
absolute values also seem to be clustered. Return to Q48 e

A49 :  The largest standardized residuals (points 1, 50, 48, 12) are towards the
outside of the bowl. Return to Q49 e

A50 : The spatial correlation is strong to about 1.5 50 foot units (the range); if
there is a nugget effect it is quite small, perhaps 0.05. There are not many point-
pairs, especially at short ranges. If we use fewer bins to get more point-pairs, we
lose resolution. Return to Q50

A51 :  The R? decreased (got worse), from 0.774 (OLS) to 0.763 (GLS). This
is fairly common, and means that the OLS estimate was too optimistic. Spatially-
correlated points pulled the surface towards the clusters. Once spatial correlation
is used for weighting, these are not so influential. Return to Q51

A52: The coefficients changed significantly, mostly by about 8% relative. Return
to Q52 e

A53: The GLS residuals have a somewhat narrower range (smaller extremes); the
mean residual is no longer =~ 0. Return to Q53 e

A54 : The “bowl” is not so deep: note the first contour line for the OLS fit is 740,
but for GLS this is not reached. The OLS surface looks more realistic near the top
centre, but the GLS surface is better over much of the centre of the map. Return
to Q54

A55 :  The GLS fit has higher residuals in the “bowl” near the top centre; the
spatial correlation appears to be as strong as for OLS. Return to Q55 e

A56 : Yes, the variogram model fitted to the OLS residuals fits the GLS residuals,
although not quite as well as it fits the OLS residuals. Return to Q56 e

A57 : There is very little difference in the correlograms. The GLS residuals have
slightly higheer spatial correlation to 2 distance units, mainly due to a reduced
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6 Self-test

Regional
spatial structure

nugget (short-range correlation closer to 1). Return to Q57 e

A58 : There is no reason to iteratively fit the surface, especially because changing
the nugget alone does not affect the weights derived from the covariance matrix.
Return to Q58 e

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

For this self-test we continue with the Jura dataset, which should already
be loaded from the exercise (§4).

Task 1 : Compute a first-order trend surface of the cobalt content of the
259 soil samples in the calibration dataset jura.cal. .

Note: The two codrdinates for the right-hand side of the 1m method can
be extracted from the spatial object with the coordinates method, i.e.
coordinates(jura.cal). You can use this as the right-hand side of the
linear model formula.

Q1 : How much of the spatial variation is explained by this trend surface?

Task 2 : Display feature-space diagnostics of the linear model. .

Q2 : Are the residuals approximately normally-distributed, as required by
the linear modelling assumption? .

Q3 : Are the residuals independent of the fitted value, as required by the
linear modelling assumption? .

Task 3 : Display a post-plot of the residuals. .

Note: The bubble method requires a spatial object. You will first have to
build a data frame with just the residuals from the trend surface object; then
convert this frame to a spatial object by assigning the coordinates with the
coordinates method, copying the codrdinates from jura.cal.

Q4 : Describe the spatial pattern of the residuals. J
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Local
spatial structure

Q5 :  Would a higher-order surface fit this attribute better than the first-
order surface? Why or why not? .

Task 4 : Compute and plot the experimental variogram for the base-10
logarithm (method log10) of the zinc (Zn) values in the calibration data
set; adjust the cutoff to the approximate range. .

Q6 : Does the variogram appear to reach a definite sill within this cutoff,
or is it asymptotic to a sill, or is it unbounded? .

Q7 : What is the approximate range, sill and nugget of the experimental
variogram? o

Task 5 : Select a model form and adjust the fit by eye; plot the experimental
variogram with your best fitted model. .

Q8 :  Which model form did you select, and why? o

Task 6 : Fit the model to the experimental variogram with the default fitting
method of gstat; plot the experimental variogram with the automatically-

fitted model. o
Q9 : What are the fitted parameters of the variogram model? o
Task 7 : Remove temporary objects from the workspace. .
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Index of R Concepts
I operator, 22

- formula operator, 8

. formula operator, 8

: operator, 26

[[1] operator, 47

[1 operator, 20

abs, 14, 58

add.to argument (vgm function), 41
anis argument (vgm function), 44
attributes, 35

barplot, 12

bbox (package:sp), 23

bubble (package:lattice), 14, 15
bubble (package:sp), 6, 17, 71

c, 44

cex graphics argument, 58

contour, 57

coordinates (package:sp), 16, 17, 71
correlogram (package:spatial), 62
cutoff argument (variogram function), 27

detach, 69
diff, 12
dim, 21

eqscplot (package:MASS), 57
expcov (package:spatial), 63

fit.method argument (fit.variogram func-
tion), 31

fit.variogram (package:gstat), 30, 31,
33, 34, 45

fitted, 3

for operator, 47

function, 23

gaucov (package:spatial), 63

gls, 55

gstat package, 1, 2, 26, 28, 30, 32, 44, 64
69

hist, 12, 25

I, 17

ifelse, 58

intersection, 22
is.element, 22

krige (package:gstat), 2

lattice package, 14, 15

lines, 23, 32

1m, 2, 16, 54, 71

loc argument (variogram function), 26
logl0, 72

MASS package, 53, 55, 57

matrix, 12

max, 14

meuse dataset, 43

model argument (plot.gstatVariogram func-
tion), 29, 32

more lattice graphics argument, 15

n function argument, 57
nlme package, 55

pch graphics argument, 6

plot, 29, 32, 47, 59

plot graphics argument, 12

plot.gstatVariogram (package:gstat), 29,
32

plot.trls (package:spatial), 59

points, 47

pos argument (plot function), 33

print (package:lattice), 14

print, 14

print.trellis (package:lattice), 14,15

range, 14
residuals, 3

sample, 21, 47

seq, 26

setdiff, 22

setequal, 22

sp package, 1, 2, 6, 15-17, 43

spatial package, 53, 55, 57, 59, 62-64, 69
sphercov (package:spatial), 63
split lattice graphics argument, 15
spplot (package:sp), 15

summary, 12

surf.gls (package:spatial), 61, 64
surf.ls (package:spatial), 56, 61

text, 33
topo dataset, 55
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trellis class, 14, 15

trls.influence (package:spatial), 60
trmat (package:spatial), 57

type graphics argument, 47

union, 22
update, 8

variogram (package:gstat), 206, 27
variogramLine (package:gstat), 32
vector, 47

vgm (package:gstat), 28, 29, 41, 44

with, 55

xyplot (package:lattice), 15
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