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“When you enter a village, follow its customs”

– Chinese proverb

1 Introduction

In this exercise you will learn some ways to visualize spatial data in R and
the spatial packages gstat and sp.

After completing this exercise you should be able to:

1. Generate scatterplots of point locations in space;

2. Generate postplots showing the relative value of some attribute in fea-
ture space by symbol size, colour, or both;

3. Generate a first- and second-order trend surface from a point set;

4. Generate variogram clouds and experimental variograms;

5. Generate variogram surfaces and directional variograms.

Task 1 : If R is not already running, start it. If you haven’t already done
so, load the gstat and sp libraries, as shown in the previous exercise. Also
load the lattice graphics library, which is used for many of the plots. •

Note that the require method checks whether a package is already loaded,
and only loads it if needed.

> require(sp)

> require(gstat)

> require(lattice)

2 Reading data from files

In the previous exercise we used example datasets that are supplied with R
or one of its add-in packages. Of course we usually want to work on our
own datasets, which are generally not supplied already in R format. In this
section we see how to read data from text files and store them in R format.

2.1 The Jura dataset

Our first dataset is a set of soil samples from the Swiss Jura, near the town La
Chaux-de-Fonds in the Neuchâtel canton. This dataset was supplied by J.-P.
Dubois of the Ecole Polytechnique Fèdérale in Lausanne (CH). The absolute
georeference was by me, based on a sketch in the original article describing
the dataset [1]. It is used as a running example in the well-known text of
Goovaerts [5]; there are also many research papers [1, 2, 18, 6, 4, 10, 9, 19]
that use it as a test case for geostatistical methods. The motivation for this
study was to determine the origin of heavy metals in topsoils [2, 1] since
these metals can be taken up in plants, perhaps at levels to cause health
problems to humans and other animals [13]. Certain limestones of the Jura
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are known for their high geogenic Cd and Zn concentrations [3, 8], but the
metals could also come from Pleistocene volcanic eruptions, industrial air
pollution, contaminants in fertilizers or manure. Their spatial distribution
can be complicated by soil erosion and deposition, as well as transformations
in the soil.

Note: Since these notes were first written, the Jura dataset has been made
available as example dataset jura in the gstat package. We continue with
the exercise of loading it from an external file, because it is a skill you will
need when working with your own datasets.

The built-in version is accessed with the data function: data(jura); see
?jura for more information on the contents.

This dataset should have been supplied as a text file named juraset.dat,
along with the present document.

2.2 Importing the Jura dataset

Task 2 :

1. Create a new working directory for the results of your exercises1.

2. Copy the file juraset.dat to this working directory.

3. Make this R’s working directory.

•

For the last part of the task, we use the setwd (“set working directory”)
method; we check the current directory with the getwd (“get [current] work-
ing directory”) method.

Note: Running R under RStudio, you can also use the Session| Set

working directory ... menu item. Running R under the MS-Windows
GUI, you can also change the working directory with the File | Change

dir ... menu item. Running R under the Mac OS/X GUI, this is Misc |

Change working directory ... or (Apple key)+D.

Your output from these commands will be different from what is shown here,
because you will be working in a different directory structure. I have chosen
to set up a directory named dgeostat (“distance geostatistics course”) in my
tmp (“temporary”) directory, in my home folder.

> getwd()

[1] "/Users/rossiter/data/edu/dgeostats/ex"

> setwd("/Users/rossiter/tmp/dgeostat")

> getwd()

[1] "/Users/rossiter/tmp/dgeostat"

1 In MS-Windows this is a new folder.
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Task 3 : Examine the contents of text file juraset.dat. •

You could view the file contents in a plain-text editor; e.g. on Windows you
could use Wordpad or Notepad, but we will use R’s file.show method,
which shows the file contents in a separate window.

> file.show("juraset.dat")

The JURA data set

Provided by J.-P. Dubois, IATE-P\'{e}dologie,

Ecole Polytechnique F\'{e}d\'{e}rale de Lausanne, 1015 Lausanne (CH)

Printed as Appendix C in: Goovaerts, P., 1997, Geostatistics for natural

resources evaluation, Oxford University Press.

X, Y are coordinates in km from an arbitrary origin

WGS84 long/lat coordinates inferred by DG Rossiter from ref. (1)

Rock Types: 1: Argovian, 2: Kimmeridgian, 3: Sequanian, 4: Portlandian,

5: Quaternary.

Land uses: 1: Forest, 2: Pasture (Weide(land), Wiese, Grasland),

3: Meadow (Wiese, Flur, Matte, Anger),

4: Tillage (Ackerland, bestelltes Land)

Cd, Co, Cr, Cu, Ni, Pb, Zn metal concentrations in topsoils, mg kg^{-1}

References:

Atteia, O., Dubois, J.-P., Webster, R., 1994, Geostatistical analysis of

soil contamination in the Swiss Jura. Environmental Pollution 86, 315-327;

Webster, R., Atteia, O., Dubois, J.-P., 1994, Coregionalization of trace metals

in the soil in the Swiss Jura. European Journal of Soil Science 45, 205-218

X Y long lat Land Rock Cd Co Cr Cu Ni Pb Zn

2.386 3.077 6.850413 47.13907 3 3 1.74 9.32 38.32 25.72 21.32 77.36 92.56

2.544 1.972 6.852674 47.12917 2 2 1.335 10 40.2 24.76 29.72 77.88 73.56

...

2.593 3.312 6.853086 47.14120 3 3 0.325 10.6 30 8.08 14 26.2 54.96

This text file contains three kinds of information:

1. A description of the dataset (metadata): 22 lines (count them!);

2. Names of the different variables (fields): one line;

3. The data themselves; one line (record) per observation;

Q1 : Which is the line with the variable names? Jump to A1 •

Q2 : How are the fields in each record separated from each other? Jump
to A2 •

To work on this dataset, we need to read it into R. Fortunately, R has good
facilities for importing and exporting in many formats; for details see the
R Data Import/Export manual supplied with R [16]; this is found in the
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doc/manual subdirectory of your R installation. Here we will use a simple
approach: read the data from a text file.

Task 4 : Read the contents of the file into a data frame; list the first and
last several lines to make sure it was read in correctly. •

We use the read.table method, which is a very flexible method for import-
ing text files. In the present case we have seen that the first 22 lines are
documentation; these must be skipped with the optional skip argument.
Then we have a header line giving the variable names; we ask R to use
this line to name the fields in the data frame by using the optional header
argument.

To check the first and last records we use the head and tail methods.

> jura.all <- read.table("juraset.dat", header = T, skip = 22)

> head(jura.all)

X Y long lat Land Rock Cd Co Cr Cu Ni Pb

1 2.386 3.077 6.850413 47.13907 3 3 1.740 9.320 38.32 25.72 21.32 77.36

2 2.544 1.972 6.852674 47.12918 2 2 1.335 10.000 40.20 24.76 29.72 77.88

3 2.807 3.347 6.855886 47.14154 2 3 1.610 10.600 47.00 8.88 21.40 30.80

4 4.308 1.933 6.875799 47.12899 3 2 2.150 11.920 43.52 22.70 29.72 56.40

5 4.383 1.081 6.876925 47.12136 3 5 1.565 16.320 38.52 34.32 26.20 66.40

6 3.244 4.519 6.861415 47.15209 3 5 1.145 3.508 40.40 31.28 22.04 72.40

Zn

1 92.56

2 73.56

3 64.80

4 90.00

5 88.40

6 75.20

> tail(jura.all, n = 2)

X Y long lat Land Rock Cd Co Cr Cu Ni Pb

358 3.859 4.022 6.869562 47.14769 3 3 1.433 13.32 47.6 43.60 29.12 60.8

359 2.593 3.312 6.853086 47.14120 3 3 0.325 10.60 30.0 8.08 14.00 26.2

Zn

358 87.20

359 54.96

Task 5 : Determine the number of records and fields in the data frame. •

Since the data frame is just a matrix with row and column names, we can
use the dim (“matrix dimension”) method:

> dim(jura.all)

[1] 359 13

Q3 : How many records (observations, rows) are there in this data frame?
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How many fields (variables, columns)? Jump to A3 •

2.3 Answers

A1 : The line with the field (variable) names is this one:

X Y long lat Rock Land Cd Cu Pb Co Cr Ni Zn

Return to Q1 •

A2 : By one or more spaces (blanks). Return to Q2 •

A3 : 359 records, each with 13 fields. Return to Q3 •

3 Data types

Task 6 : Examine the structure of the jura.all object. •

The str method gives the data structure:

> str(jura.all)

'data.frame': 359 obs. of 13 variables:

$ X : num 2.39 2.54 2.81 4.31 4.38 ...

$ Y : num 3.08 1.97 3.35 1.93 1.08 ...

$ long: num 6.85 6.85 6.86 6.88 6.88 ...

$ lat : num 47.1 47.1 47.1 47.1 47.1 ...

$ Land: int 3 2 2 3 3 3 3 3 3 3 ...

$ Rock: int 3 2 3 2 5 5 5 1 1 3 ...

$ Cd : num 1.74 1.33 1.61 2.15 1.56 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$ Ni : num 21.3 29.7 21.4 29.7 26.2 ...

$ Pb : num 77.4 77.9 30.8 56.4 66.4 ...

$ Zn : num 92.6 73.6 64.8 90 88.4 ...

Q4 : What are the data types of each field? Jump to A4 •

Q5 : Do these data types match the meaning of each field? Jump to A5 •

We see that the categorical variables Rock and Land are not really numbers,
they are numeric codes that refer to specific rock and land types. This is
because the read.table method tries to determine the data type of each
field; in these field there are only integers, so the field’s data type was set
to int. The import method had no way of knowing that these codes in fact
refer to categories. So, we have to inform R of this.
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We are told in the metadata what the codes refer to; for example code 1

represents forest lands. We can not use these arbitrary codes 1, 2 ... as
if they were numbers! For example, it would be a serious error to compute
a linear regression of one of the metals (say, Zn) on the land use.

R solves this problem by representing categorical variables as factors; this
name comes from their use in “factorial” analysis of variance.

Task 7 : Convert the two categorical variables to R factors, and assign
the correct names. Again check the data types of each field. •

R provides the factor method to specify factors; here we use the optional
labels argument to assign the names. Note the use of the c (‘catenate’,
which is Latin for ‘make a chain’) method to make a list of names, which
are then used as the labels.

> jura.all$Rock <- factor(jura.all$Rock, labels = c("Argovian",

+ "Kimmeridgian", "Sequanian", "Portlandian", "Quaternary"))

> jura.all$Land <- factor(jura.all$Land, labels = c("Forest", "Pasture",

+ "Meadow", "Tillage"))

> str(jura.all)

'data.frame': 359 obs. of 13 variables:

$ X : num 2.39 2.54 2.81 4.31 4.38 ...

$ Y : num 3.08 1.97 3.35 1.93 1.08 ...

$ long: num 6.85 6.85 6.86 6.88 6.88 ...

$ lat : num 47.1 47.1 47.1 47.1 47.1 ...

$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3 2 2 3 3 3 3 3 3 3 ...

$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 2 3 2 5 5 5 1 1 3 ...

$ Cd : num 1.74 1.33 1.61 2.15 1.56 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$ Ni : num 21.3 29.7 21.4 29.7 26.2 ...

$ Pb : num 77.4 77.9 30.8 56.4 66.4 ...

$ Zn : num 92.6 73.6 64.8 90 88.4 ...

3.1 Spatially-explicit objects

The data types for the X and Y fields in the data frame are num, i.e. numeric.
These are indeed numbers, but of a special kind: they are coördinates in
geographic space. The metadata (header of the text file, and the original
table in Goovaerts [5], states that these are km from an arbitrary origin,
presumed to be the SW corner of the grid.

It is certainly possible to do some visualization and analysis in R with the
data frame, but it is more elegant, and gives many more possibilities, if
geographic data is explicitly recognized as such. This was the motivation
behind the R Spatial Project, which resulted in the sp package [12] which
provides classes (data types and methods for these) for spatial data.

The sp package adds a number of spatial data types, i.e. new object classes;
these are then recognized by methods in other packages that are built on
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top of sp, most notably (for our purposes) the gstat package.

To take advantage of the power of an explicit spatial representation, we must
convert the data frame to the most appropriate sp class.

Task 8 : Convert the jura.all dataframe to class SpatialPointsDataFrame.
•

We do this by adding the computed coordinates to the data frame with the
coordinates method; this automatically converts to the spatial data type
defined by the sp package.

We have a choice of two coördinate systems, a local one from an arbitrary
origin, and geographic (longitude/latitude) coördinates on the WGS84 ellip-
soid. Since we will be working locally and on a metric grid, we choose to use
the local system2.

> class(jura.all)

[1] "data.frame"

> coordinates(jura.all) <- c("X", "Y")

> class(jura.all)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

Note the use of the c (‘catenate’) method to make a list of the names of the
two fields where the coördinates were stored, i.e. X and Y. These must be
quoted, otherwise they would refer to variables named X and Y. Then the list
is assigned to the coordinates method. This is a syntax we haven’t seen
before; the coordinates method can appear either on the right or the left
of the assignment operator.

Note: There are several other syntaxes for specifying the coördinates; it is
commonly written with the formula operator ~, which we haven’t met yet
(but will below, when we compute a trend surface):

coordinates(jura.all) <- ~ X + Y

Q6 : What is now the data type of the jura.all object? Jump to A6 •

Task 9 : View the structure and data summary of the spatial object. •

As usual, the structure is displayed by the str method; we then summarize
the object with the generic summary method and view the first few records
in the dataframe with the head method:

2 Exercise 9 shows how to use geographic coördinates to write KML files for visualization
in Google Earth.
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> str(jura.all)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 359 obs. of 11 variables:

.. ..$ long: num [1:359] 6.85 6.85 6.86 6.88 6.88 ...

.. ..$ lat : num [1:359] 47.1 47.1 47.1 47.1 47.1 ...

.. ..$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3 2 2 3 3 3 3 3 3 3 ...

.. ..$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 2 3 2 5 5 5 1 1 3 ...

.. ..$ Cd : num [1:359] 1.74 1.33 1.61 2.15 1.56 ...

.. ..$ Co : num [1:359] 9.32 10 10.6 11.92 16.32 ...

.. ..$ Cr : num [1:359] 38.3 40.2 47 43.5 38.5 ...

.. ..$ Cu : num [1:359] 25.72 24.76 8.88 22.7 34.32 ...

.. ..$ Ni : num [1:359] 21.3 29.7 21.4 29.7 26.2 ...

.. ..$ Pb : num [1:359] 77.4 77.9 30.8 56.4 66.4 ...

.. ..$ Zn : num [1:359] 92.6 73.6 64.8 90 88.4 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:359, 1:2] 2.39 2.54 2.81 4.31 4.38 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "X" "Y"

..@ bbox : num [1:2, 1:2] 0.491 0.524 4.92 5.69

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "X" "Y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

> head(jura.all@data, n = 3)

long lat Land Rock Cd Co Cr Cu Ni Pb

1 6.850413 47.13907 Meadow Sequanian 1.740 9.32 38.32 25.72 21.32 77.36

2 6.852674 47.12918 Pasture Kimmeridgian 1.335 10.00 40.20 24.76 29.72 77.88

3 6.855886 47.14154 Pasture Sequanian 1.610 10.60 47.00 8.88 21.40 30.80

Zn

1 92.56

2 73.56

3 64.80

> summary(jura.all@data)

long lat Land Rock

Min. :6.826 Min. :47.12 Forest : 51 Argovian : 76

1st Qu.:6.849 1st Qu.:47.12 Pasture: 82 Kimmeridgian:124

Median :6.859 Median :47.13 Meadow :218 Sequanian : 89

Mean :6.858 Mean :47.14 Tillage: 8 Portlandian : 6

3rd Qu.:6.867 3rd Qu.:47.14 Quaternary : 64

Max. :6.884 Max. :47.16

Cd Co Cr Cu

Min. :0.1350 Min. : 1.552 Min. : 3.32 Min. : 3.552

1st Qu.:0.6525 1st Qu.: 6.660 1st Qu.:27.64 1st Qu.: 10.470

Median :1.1000 Median : 9.840 Median :34.80 Median : 17.200

Mean :1.2882 Mean : 9.439 Mean :35.02 Mean : 23.585

3rd Qu.:1.6800 3rd Qu.:12.100 3rd Qu.:41.46 3rd Qu.: 26.920

Max. :5.1290 Max. :20.600 Max. :70.00 Max. :166.400

Ni Pb Zn

Min. : 1.98 Min. : 18.68 Min. : 25.00
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1st Qu.:14.60 1st Qu.: 36.32 1st Qu.: 54.60

Median :20.68 Median : 46.80 Median : 73.56

Mean :20.02 Mean : 54.63 Mean : 75.88

3rd Qu.:25.38 3rd Qu.: 60.20 3rd Qu.: 90.00

Max. :53.20 Max. :300.00 Max. :259.84

The spatial object now has several slots, marked with the @ symbol in the
structure listing. These include:

� @data: the attributes data frame, without coördinates; methods such
as head that work on dataframes now must name this slot;

� @coords: the coördinates;

� @bbox: the bounding box (i.e. rectangle enclosing the area).

Q7 : What is the spatial information for this object? Jump to A7 •

Although we also know the geographic coördinates, which of course are spa-
tial, we will not further use them in this set of exercises. Therefore we remove
them from the dataframe.

Task 10 : Remove the two fields with the geographic coördinates from the
dataframe. •

The syntax for removing fields is to use the - operator on a single field
number, or a list of them. In this case we know the geographic coördinates
are the first two in the remaining data frame (after removing the local co-
ördinates by conversion to a spatial object). We can see the effect of this
with the names “show field names” function.

> names(jura.all)

[1] "long" "lat" "Land" "Rock" "Cd" "Co" "Cr" "Cu" "Ni" "Pb"

[11] "Zn"

> jura.all@data <- jura.all@data[, -c(1, 2)]

> names(jura.all)

[1] "Land" "Rock" "Cd" "Co" "Cr" "Cu" "Ni" "Pb" "Zn"

Q8 : What is the non-spatial information for this object? Jump to A8 •

Let’s see one example of a spatial operation which requires an sp object, the
bbox method.

Task 11 : Determine the bounding box of the observations, i.e. the coördi-
nates inside which all the observations are found. •

> bbox(jura.all)
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min max

X 0.491 4.92

Y 0.524 5.69

Q9 : What do these coördinate represent? (Hint: review the header infor-
mation in the text file.) Jump to A9
•

3.2 Saving R objects

We have done quite a bit of work to get the Jura dataset into the proper
form. We don’t want to have to repeat all this if we interrupt our session.

At the end of the session we can save our entire workspace; however it is
possible to save one or more objects in their own files.

Task 12 : Save the jura.all object in a file, as an R object that can be
loaded in later sessions. •

We use the save method, naming the object(s) to save and the file in which
to save them. The file extension .RData is conventional for R data:

> save(jura.all, file = "Jura.RData")

There should now be a file named Jura.RData in your working directory.

3.3 Answers

A4 : X, Y, long, lat and Cd, Cu, Pb, Co, Cr, Ni, Zn are numeric (data
type num; Rock and Land are integers (data type int). Return to Q4 •

A5 : The metals (Cd etc.) are indeed numeric values; they are attributes in
feature space. The coördinates X Y, long and lat are also numbers, but they refer
to geographic space. However, Rock and Land are not really numbers, they are
numeric codes that refer to specific rock and land types. Return to Q5 •

A6 : The data type is now SpatialPointsDataFrame; this is defined in the sp

package. Return to Q6 •

A7 : Spatial information includes (1) a bounding box, i.e. limits of the the coör-
dinates; (2) the geographic projection, in this case marked as NA (“not applicable”)
because we haven’t informed R about it. Return to Q7 •

A8 : Non-spatial information is the data frame less the local coördinates, i.e. all the
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feature (attribute) space information: the two categorical variables and the seven
metal contents. Return to Q8 •

A9 : The coördinates are km from an arbitrary (0, 0) origin. Thus the points are
not georeferenced. Return to Q9 •

4 Spatial distribution of point observations

The first visualization of any spatial data set is the locations of the observa-
tions, i.e. their distribution in space.

Atteia et al. [1] Figure 1 shows the approximate geographic location, distri-
bution and sampling plan:
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I have converted these to geographic coördinates and plotted them in Google
Earth; the two sampling plans (which will be discussed later) are shown with
two colours.
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Task 13 : Plot the spatial locations of the observations in the study area. •

The plot base graphics method is used to make a scatterplot of the coördi-
nates, which are extracted with the coordinates method:

> plot(coordinates(jura.all))
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Note that R automatically scaled the axes to so that the plot is square; this
results in a distorted map.

We can easily make this plot more attractive, adding:

� a title with the main graphics argument;

� axis labels with the xlab and ylab graphics argument;;

� colouring the points with the col graphics argument;

� specifying a filled circle as the printing character with the pch graphics
argument;

� restoring the correct map aspect with the asp graphics argument;

� adding an overprinted grid with the grid method.

> plot(coordinates(jura.all), pch = 20, col = "darkblue", asp = 1,

+ main = "Location of Jura soil samples", xlab = "E (km)",

+ ylab = "N (km)")

> grid(lty = 1, col = "darkgray")
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This is a typical R base graphics customization; see Rossiter [14, § 5.1], the
online help for plot and plot.default, and Venables et al. [17, § 12.5]) for
details of the various optional base graphics parameters.

Note: Notice that the grid cells are 1 km by 1 km squares, and shown as
square in the plot. This is because we specified that the map aspect (ratio
of unit height to unit width) be unity, with the asp=1 optional graphics
argument. So, one km E is represented by the same plot distance as one km
N. Without this, the plot method stretches the two axes to make a square;
in this case the N dimensions are somewhat smaller than the E, so the map
is distorted, as we saw in the previous figure.

Q10 : Describe the spatial distribution of the Jura soil samples. Jump to
A10 •

Optional: An interesting variation is to show the observation numbers, which
are extracted from the data frame slot jura.all@data with the row.names

method. Note the type="n" optional argument to plot; this sets up the
plot frame (axes etc.) but doesn’t plot any points. This allows us to print
the numbers with the text graphics method.

> plot(coordinates(jura.all), type="n", asp=1,

+ main="Location of Jura soil samples",

+ xlab="E (km)", ylab="N (km)")

> grid(lty=1, col="darkgray")

> text(coordinates(jura.all), row.names(jura.all@data))
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We leave the jura.all object in the workspace.

4.1 Answers

A10 : Many are on the regular grid oriented approximately NE-SW; but there
are several clusters of observations near some of the grid points. Return to Q10 •

5 Postplots

The most basic visualization of spatial distribution in two dimensions is the
postplot. It shows the location of each observation point in geographic space,
with the value of the attribute in feature space shown by the symbol. For
continuous variables, this is generally by making the symbol size proportional
to the attribute value.

Task 14 : Make a postplot of the Pb values, showing the relative value by
size. •

We use the bubble method of the sp package to make a so-called “bubble”
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plot, which is another name for a postplot where the values are shown by
relative size. That is, there are different-sized “bubbles”:

> print(bubble(jura.all, "Pb", main = "Soil samples, Swiss Jura",

+ sub = "Pb (mg kg-1)", col = "darkblue", scales = list(draw = TRUE),

+ maxsize = 2, xlab = "E (km)", ylab = "N (km)", xlim = c(0,

+ 5), ylim = c(0, 6), aspect = "iso"))

Soil samples, Swiss Jura
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Note: The print method here is actually the print.trellis method, i.e.
a specialization of the generic print method, which is automatically called
by print when the argument (here, the results of the bubble function of the
lattice package) is a trellis object.

The print.trellis method is the default print method for objects of class
trellis which are produced by calls to lattice functions like xyplot or
bubble; the spplot method of the sp package also uses lattice graphics and
hence print.trellis.

In interactive use it is called automatically when a trellis object is produced,
so just using the bubble method should produce the output on your screen.
However, to prepare this document with Sweave, the print.trellis method
must be called explicitly.

Q11 : Do you get a clear impression of the spatial distribution of Pb values
from this plot? Jump to A11 •

As with all R graphics, there are a lot of optional arguments, giving you
control over the visualization. In the above example we use:

� main: graph title;
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� sub: graph subtitle (at bottom);

� xlab, ylab: axis text

� xlim, ylim: axis limits (lowest, highest values)

� maxsize: the character size of the largest symbol, relative to a default
1 computed to match the plot size;

� scales: instructions on how to draw tick marks and labels on the axes;
draw = TRUE says to draw the axis.

Note: Most of these are used throughout the lattice graphics package
and are explained (to some degree) in the help for the xyplot method. Th
explanations are not always so clear; experimentation is advised.

By default there are five symbol classes, with the breakpoints being the
quartiles. These can be specified explicitly with the key.entries optional
argument to bubble.

By default the“bubbles”are filled; they can be left open with the fill=FALSE
optional argument.

A useful option to exaggerate the differences in size is the do.sqrt=FALSE

optional argument. This scales the symbol size by the value, not its square
root.

Here is the adjusted postplot:

> print(

+ bubble(jura.all, "Pb",

+ main="Soil samples, Swiss Jura",

+ sub="Pb (mg kg-1); symbol size proportional to value",

+ col="darkblue",

+ scales = list(draw = TRUE),

+ maxsize=2,

+ fill=FALSE,

+ xlab="E (km)", ylab="N (km)",

+ xlim=c(0,5), ylim=c(0,6), aspect="iso",

+ do.sqrt=FALSE,

+ key.entries=quantile(jura.all$Pb, seq(0,1,by=.1))

+ )

+ )
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Q12 : What is the difference in visualization between the do.sqrt=TRUE

and do.sqrt=FALSE options? Jump to A12 •

Q13 : What is the visualization advantage of open circles (fill=FALSE),
compared to filled circles (fill=TRUE, the default)? Jump to A13 •

Q14 : Looking at the postplots, can you detect any regional trend, i.e.
systematic increase of attribute values in any direction across the whole
region? Jump to A14 •

5.1 * Panel functions

This optional section shows how to add several objects to the same lattice

graphics plot using panel functions. These are called within the function
which is an argument to the panel graphics argument.

In this case we have two things to plot together:

1. The bubble plot itself, with the panel.xyplot method; note that
bubble method of the sp package is just a wrapper around the un-
derlying xyplot method of the lattice graphics package;

2. An overprinted grid, with the panel.grid method.
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Note: There are many panel functions; see ?panel.functions or the help
for any one of them, e.g. ?panel.grid for details.

We’ll also change the break points to every 40 mg kg-1 from 0 to the
maximum, using the seq method to specify the sequence of values and the
key.entries graphics argument:

> print(bubble(jura.all, "Pb", main = "Soil samples, Swiss Jura",

+ sub = "Pb (mg kg-1); symbol size proportional to value",

+ col = "darkblue", scales = list(draw = TRUE), maxsize = 2,

+ fill = F, xlab = "E (km)", ylab = "N (km)", xlim = c(0, 5),

+ ylim = c(0, 6), aspect = "iso", panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.grid(h = -1, v = -1, col = "gray", lty = 1)

+ }, key.entries = seq(0, 320, by = 40)))

Soil samples, Swiss Jura
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The h=-1, v=-1 argument to panel.grid is shorthand for “place the grid
lines at the same locations as the axis ticks”. If these are positive numbers
they specify the number of grid lines in the two dimensions. Here we have a
5 by 6 km area, so to get grid lines every 500 m we specify 11 horizontally
(leaving out the top, which already is drawn as part of the box) and 9
vertically.

> print(bubble(jura.all, "Pb", main = "Soil samples, Swiss Jura",

+ sub = "Pb (mg kg-1); symbol size proportional to value",

+ col = "darkblue", scales = list(draw = TRUE), maxsize = 2.5,

+ fill = F, xlab = "E (km)", ylab = "N (km)", xlim = c(0, 5),

+ ylim = c(0, 6), aspect = "iso", panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)
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+ panel.grid(h = 11, v = 9, col = "magenta", lty = 2)

+ }, key.entries = quantile(jura.all$Pb, seq(0, 1, by = 0.1))))

Soil samples, Swiss Jura

Pb (mg kg−1); symbol size proportional to value
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5.2 Answers

A11 : Yes, the higher values in feature space are the larger circles. Return to
Q11 •

A12 : The do.sqrt=FALSE option exaggerates the extreme values; the do.sqrt=TRUE
shows a more even sequence. Return to Q12 •

A13 : With open symbols we can visualize all the values, if observations overlap or
even if a smaller-valued observation is completely within a larger-valued one. With
filled symbols the smaller-valued observation would be completely missed. Return
to Q13 •

A14 : The largest values are in the southern half of the region, but the trend, if
any, is very weak. Return to Q14 •

6 Visualizing regional trends

We use a different dataset to visualize geographic trends. This is a small part
of the dataset of Yemefack et al. [20]. This subset should have been supplied
along with the present document as an R data file named tcp.RData.
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Task 15 : Load the R data file tcp.RData into your working directory and
examine its structure. •

First you have to copy it to your working directory, and then use the load

method (the inverse of the save method we used above) to read in a file
that is already in R’s internal data format; we then use the ls method to
list the objects in the workspace and the str method to see the structure of
the new object.

> load("tcp.RData")

> ls()

[1] "jura.all" "tcp"

> str(tcp)

'data.frame': 147 obs. of 4 variables:

$ UTM_E : num 702638 701659 703488 703421 703358 ...

$ UTM_N : num 326959 326772 322133 322508 322846 ...

$ clay35: num 78 80 66 61 53 57 70 72 70 62 ...

$ pH35 : num 4.8 4.4 4.2 4.54 4.4 ...

There are four fields:

UTM E : Easting

UTM N : Northing

clay35 : clay content of the fine earth, % by weight, 30–50 cm layer

pH35 : reaction of the soil in 1:1 (by volume) water, 30–50 cm layer

We will look at the regional trend of the subsoil clay content.

Task 16 : Convert the tcp data frame to a spatial object. •

> coordinates(tcp) <- c("UTM_E", "UTM_N")

> str(tcp)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 147 obs. of 2 variables:

.. ..$ clay35: num [1:147] 78 80 66 61 53 57 70 72 70 62 ...

.. ..$ pH35 : num [1:147] 4.8 4.4 4.2 4.54 4.4 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:147, 1:2] 702638 701659 703488 703421 703358 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:147] "1" "2" "3" "4" ...

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

..@ bbox : num [1:2, 1:2] 659401 310897 703488 342379

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA
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Notice how we used the formula syntax to specify the coördinates.

Task 17 : Make a postplot of the clay content. •

> print(bubble(tcp, zcol = "clay35", pch = 20, col = "darkblue",

+ scales = list(draw = TRUE), aspect = "iso", maxsize = 2,

+ xlab = "UTM E", ylab = "UTM N", panel = function(x, y, ...) {

+ panel.xyplot(x, y, ...)

+ panel.grid(h = -1, v = -1, col = "gray", lty = 1)

+ }, main = "Clay percent, 30-50 cm layer"))

Clay percent, 30−50 cm layer
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Q15 : Describe the regional trend of clay content in the 30-50 cm layer.
Does it appear that a plane could fit this? A bowl? Jump to A15 •

In the next exercise we will see how to fit the trend and evaluate the
goodness-of-fit. Here we are just trying to visualize the trend and evalu-
ate the fit by eye.

Note: The fits in this exercise are all with Ordinary Least Squares (OLS);
this is not correct if there is spatial correlation among the trend residuals;
this is explained and solved in Exercise 3 §5 “Fitting a trend surface with
generalized least squares”. Since our aim here is only to visualize the trend,
OLS is an acceptable approximation to the GLS trend surface.

Task 18 : Compute a second-order trend surface of the clay content; display
it as a raster map with a resolution of 500×500m, with the postplot of the
point observations on top of the raster. •

There are several steps here:
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1. Create the raster;

2. Compute the trend surface on the raster;

3. Display the computed trend surface;

4. Superimpose the observations.

To create the grid, we first determine the bounding box:

> bbox(tcp)

min max

UTM_E 659401 703488

UTM_N 310897 342379

Then we make a grid with the expand.grid method, with limits somewhat
bigger than the bounding box. Note that we must name the coördinates the
same as the observation points:

> g <- expand.grid(UTM_E = seq(659000, 704000, by = 500), UTM_N = seq(310000,

+ 343000, by = 500), KEEP.OUT.ATTRS = F)

> str(g)

'data.frame': 6097 obs. of 2 variables:

$ UTM_E: num 659000 659500 660000 660500 661000 ...

$ UTM_N: num 310000 310000 310000 310000 310000 310000 310000 310000 310000 310000 ...

> coordinates(g) <- c("UTM_E", "UTM_N")

> str(g)

Formal class 'SpatialPoints' [package "sp"] with 3 slots

..@ coords : num [1:6097, 1:2] 659000 659500 660000 660500 661000 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

..@ bbox : num [1:2, 1:2] 659000 310000 704000 343000

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

Q16 : How many grid cells are there in this raster? Jump to A16 •

To compute a trend surface on a raster, we use the krige method of the
gstat package. Despite its name, krige not only interpolates by kriging (as
we will see in later exercises) but also can interpolate by inverse distance
weighting (IDW) and trend surfaces. The syntax of krige is somewhat
complicated, but you will get used to it as we go along

> ts2 <- krige(clay35 ~ I(UTM_E^2) + I(UTM_N^2) + UTM_E + UTM_N,

+ loc = tcp, newdata = g, model = NULL)

[ordinary or weighted least squares prediction]
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The arguments used for krige here are:

1. The formula showing the linear model of any trend surface; here it is
a second-order model. This is the same formula syntax as is used in
many other contexts, most notably the lm (“linear models”) method
we will meet in a later lesson;

(The formula operators are explained in Rossiter [14, § 4.17] and Ven-
ables et al. [17, § 11]);

2. loc (short for location), the object which stores the coördinates of
the point observations; here this is tcp;

3. data, the object with the attribute data; if this is not named (as in
this example) the data is in the same object as the location;

4. newdata, the object with coördinates of the locations where new data
should be computed; here it is the grid g;

5. model, the model of local spatial dependence; we will use this exten-
sively in kriging, but for a trend surface this is NULL, i.e. we do not
consider local dependence, only a regional trend.

(Note that local spatial dependence will be visualized in §7 later in this
exercise.)

The syntax of the formula, here clay35 ~ I(UTM_E^2) + I(UTM_N^2) +

UTM_E + UTM_N, needs some more comment:

� The tilde ~ separates the formula into a left-hand side and a right-hand
side; the formula can be read “left-hand side depends on (is modelled
by) right hand side”;

� The left-hand side is the attribute being modelled, in this case the clay
content clay35;

� The right-hand side is a formula combining the predictors, i.e. the
attributes or coördinates which model the left-hand side;

� Here the two predictors are the coördinates UTM_E and UTM_N;

� Since we are modelling the clay content as a second-order trend surface,
we have to include the predictors both in their linear form (e.g. UTM_E)
and in their quadratic form (e.g. I(UTM_E^2), where the caret ^ is the
operator for exponentiation;

� The quadratic form must be written inside the I (“as is”) method,
because inside formulas the ^ operator does not mean exponentiation,
it has another purpose.

Sorry for the complexity, but it is all needed for more sophisticated mod-
elling.

We examine the structure of the trend surface:

> str(ts2)
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Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 6097 obs. of 2 variables:

.. ..$ var1.pred: num [1:6097] 52 52.2 52.4 52.5 52.7 ...

.. ..$ var1.var : num [1:6097] 110 109 108 107 106 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:6097, 1:2] 659000 659500 660000 660500 661000 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : NULL

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

..@ bbox : num [1:2, 1:2] 659000 310000 704000 343000

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "UTM_E" "UTM_N"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

Q17 : Where in the computed trend surface ts2 is the predicted clay
content? Jump to A17 •

Now we can display the trend surface. For this we use the levelplot method
from the lattice package, which is an implementation of the Trellis graphics
system [15, 11].

Task 19 : Load the lattice package. •

Note: The require function only loads the package if it’s not already in the
search path.

> require(lattice)

This levelplot method display some attribute against coördinates specified
in a model formula as explained above. We also use the panel functions
explained above in §5.1. Here you can see there are three graphics objects
placed on the same panel:

1. The levelplot itself, with the panel.levelplot method;

2. An overprinted grid, with the panel.grid method;

3. The observation points, with the panel.points method.

All of these are called within the a function which is an argument to the
panel graphics argument.

> print(levelplot(var1.pred ~ UTM_E + UTM_N, as.data.frame(ts2),

+ col.regions=bpy.colors(64),

+ asp="iso", main="Subsoil clay %",

+ sub="Sample points overprinted as postplot",

+ xlab="UTM E", ylab="UTM N",

+ panel=function(x,y,z, ...) {

+ panel.levelplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)
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+ panel.points(coordinates(tcp),

+ cex=3*tcp$clay35/max(tcp$clay35),

+ pch=20, col="white")

+ }))

Subsoil clay %

Sample points overprinted as postplot
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Another way to visualize this is with the very similar contourplot method,
also from the lattice package. We use the at graphics argument to specify
the contour intervals. Note also the different graphics treatment of the over-
printed points: here black (col="black") diamonds (pch=23) with red fill
(fill="red"), rather than white filled circles as in the levelplot:

> print(contourplot(var1.pred ~ UTM_E + UTM_N, as.data.frame(ts2),

+ asp="iso", main="Subsoil clay %",

+ at = seq(0, 100, by=5),

+ sub="Sample points overprinted as postplot",

+ xlab="UTM E", ylab="UTM N",

+ panel=function(x,y,z, ...) {

+ panel.contourplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)

+ panel.points(coordinates(tcp),

+ cex=2.5*tcp$clay35/max(tcp$clay35),

+ pch=23, col="black", fill="red")

+ }))
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Sample points overprinted as postplot
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Q18 : Describe the shape of the second-order trend surface. Jump to A18
•

Q19 : How well does the second-order trend surface appear to match the
observations? Jump to A19 •

Task 20 : Remove the workspace objects created in this section. •

> rm(tcp, g, ts2)

6.1 Answers

A15 : The lowest values are in the NW; they increase both to the E and S. It
looks bowl-shaped. Return to Q15 •

28



A16 : 6097 Return to Q16 •

A17 : In the var1.pred (“variable number 1 prediction”) field of the @data slot.
Return to Q17 •

A18 : An elogated (stretched) bowl, lowest in the NW corner and increasing both
to the E and S; more rapid increase towards the S, hence the elongation towards
the E. Return to Q18 •

A19 : It fits the general pattern quite well; however in each of the clusters we can
see some exceptions to the general trend. Return to Q19 •

7 Visualizing local spatial dependence

A post-plot (§5) sometimes shows a trend, as seen in the previous section.
However, it sometimes shows a local spatial dependence, i.e. close-by points
in geographic space are also close-by in attribute space. So far we only
have had a subjective impression of this from looking at the post-plot, and
there was no way to determine the range or strength of the local spatial
dependence. For this we can use (semi-)variograms.

7.1 The variogram cloud

We begin with the variogram cloud, which shows the semivariances between
all point pairs. Recall that the semivariance is defined as:

γ(xi,xj) =
1
2
[z(xi)− z(xj)]2

where x is a geographic point and z(x) is its attribute value.

This pair of points is separated by a vector h; to begin with we just consider
this vector as the Euclidean distance between the points:

h = ||xi,xj|| =

√√√√√ n∑
k=1

(xi,k − xj,k)2

where n is the number of dimensions (in this example, 2).

Since the differences between values are squared, in a skewed distribution of
the attribute value, the few high values will have an excessive effect on the
variogram. It is common to transform such attributes to a more symmetric
form.

In Exercise 1, §7, we examined the distribution of Pb values in the Meuse
river data set; now we do the same for the Jura soil samples:

Task 21 : Visualise the distribution of Pb in the Jura soil samples. •
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We take this opportunity to introduce the lattice version of the histogram,
the histogram method. This is very much like the base graphics hist

method but has different options and can be used easily in multivariate
visualisation.

> print(histogram(jura.all$Pb, nint = 12))
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Q20 : Is this distribution symmetric or skewed? If skewed, in which direc-
tion? Jump to A20
•

This can be answered by inspecting the plot; however if you want a numeric
measure of the skewness, you can compute directly from the definition, or
use the skewness function of the e1071 “Miscellaneous functions of the De-
partment of Statistics, TU Wien” package.

g1 = m3/(m2)3/2 (1)

m2 = 1/n
n∑
i=1

(xi − x̄)2 (2)

m3 = 1/n
n∑
i=1

(xi − x̄)3 (3)

The expected value for a symmetric distribution is 0.

> require(e1071)

> skewness(jura.all$Pb)

[1] 3.32411
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A right-skewed distribution like this one can often be made more symmetric
with the logarithmic transformation.

Task 22 : Visualise the distribution of the base-10 logarithm Pb in the Jura
soil samples. •

The logarithm is computed with the log method; the base-10 logarithm
with the log10 method. The advantage of base-10 logarithms is that we can
back-transform easily, since the integer logarithms represent powers of 10.

> print(histogram(log10(jura.all$Pb), nint = 12))
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> skewness(log10(jura.all$Pb))

[1] 0.9268095

> kurtosis(log10(jura.all$Pb))

[1] 1.624837

Q21 : Is this distribution symmetric or skewed? If skewed, in which direc-
tion? Jump to A21
•

Now that we have a symmetric distribution, we can compute semivariances.

Task 23 : Compute the semivariance between the first two observations. •

We use the diff method as a shorthand for subtraction. Note how the ^

exponentiation operator is vectorized, i.e. applied to each of the two elements
of the vector jura.all$Pb[1:2] separately.
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> jura.all[1:2, ]

coordinates Rock Land Cd Cu Pb Co Cr Ni Zn

1 (2.386, 3.077) Sequanian Meadow 1.740 25.72 77.36 9.32 38.32 21.32 92.56

2 (2.544, 1.972) Kimmeridgian Pasture 1.335 24.76 77.88 10.00 40.20 29.72 73.56

> jura.all$Pb[1:2]

[1] 77.36 77.88

> log10(jura.all$Pb[1:2])

[1] 1.888516 1.891426

> diff(log10(jura.all$Pb[1:2]))

[1] 0.002909482

> diff(log10(jura.all$Pb[1:2])^2)

[1] 0.01099767

> 0.5 * (diff(log10(jura.all$Pb[1:2]))^2)

[1] 4.232542e-06

This last result is the semi-variance.

Q22 : What is the semi-variance between the base-10 logarithms of the Pb
values for the first two observations? Jump to A22 •

Task 24 : Compute the metric distance between the first two observations.
•

> coordinates(jura.all)[1:2,]

X Y

[1,] 2.386 3.077

[2,] 2.544 1.972

> diff(coordinates(jura.all)[1:2,"X"])

[1] 0.158

> diff(coordinates(jura.all)[1:2,"X"])^2

[1] 0.024964

> diff(coordinates(jura.all)[1:2,"Y"])

[1] -1.105

> diff(coordinates(jura.all)[1:2,"Y"])^2

[1] 1.221025
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> sqrt(diff(coordinates(jura.all)[1:2,"X"])^2 +

+ diff(coordinates(jura.all)[1:2,"Y"])^2)

[1] 1.116239

Q23 : How far apart are the first two observations? Jump to A23 •

We now want to repeat these calculations for all point-pairs in the data set,
and then graph them.

Task 25 : Compute the number of point-pairs in this dataset. •

We use the dim method to get the dimensions of the dataset; the first element
of this list is the number of rows, i.e. observations. Then the formula is:

[n · (n− 1)]/2

> (dim(jura.all)[1] * (dim(jura.all)[1] - 1))/2

[1] 64261

Q24 : How many point-pairs are there? Jump to A24 •

The variogram method of the gstat package, with optional argument cloud=T,
computes the semivariances and distances for all of these:

Task 26 : Compute the variogram cloud of the base-10 logarithm of the Pb
values and display the results for the first few point-pairs. •

> vc <- variogram(log10(Pb) ~ 1, loc = jura.all, cloud = T)

> head(vc)

dist gamma dir.hor dir.ver id left right

1 1.116239 4.232542e-06 0 0 var1 2 1

2 0.500141 7.998630e-02 0 0 var1 3 1

3 1.399926 8.115422e-02 0 0 var1 3 2

4 2.236698 9.417046e-03 0 0 var1 4 1

5 1.764431 9.820568e-03 0 0 var1 4 2

6 2.062134 3.451310e-02 0 0 var1 4 3

Note the formula log10(Pb) ~ 1 which specifies the form of the spatial
dependence. The right-hand side 1 means to model the left-hand side
log10(Pb) only as local spatial dependence, i.e. without any trend or other
explanatory factors. In a later exercise we will see situations where the
right-hand side models both local and regional dependence.

Q25 : What is the semi-variance and distance between observations 1 and
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2, as computed by the variogram method of the gstat package? Jump to
A25 •

Task 27 : Plot the variogram cloud cloud of the base-10 logarithm of the
Pb values. •

> plot(vc, main="Variogram cloud, log10(Pb)",

+ xlab="separation distance, km")

Q26 : Describe the overall pattern of semi-variances vs. separations. Jump
to A26 •

Q27 : There is some vertical“striping”of point pairs, e.g. at 0.25 km, 0.5 km,
≈ 0.707 km. Explain this from the spatial distribution of the observations.

Jump to A27 •

7.2 The empirical variogram

The variogram cloud shows all point-pairs, but is clearly far too detailed
to be useful for examining the general pattern of spatial dependence. For
that we use the empirical variogram, which organizes the cloud into bins,
like a histogram. And just like the histogram we have lots of options for
computation and display.
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Task 28 : Compute the default empirical variogram of the base-10 logarithm
of the Pb values and list it. •

We use the same variogram method of the gstat package, but without the
cloud=T optional argument:

> v <- variogram(log10(Pb) ~ 1, loc = jura.all)

> print(v)

np dist gamma dir.hor dir.ver id

1 442 0.06858614 0.01712261 0 0 var1

2 1074 0.24166617 0.02913305 0 0 var1

3 1355 0.37544172 0.03013999 0 0 var1

4 2240 0.53022267 0.03346742 0 0 var1

5 2044 0.69127580 0.03194744 0 0 var1

6 2810 0.83897259 0.03368914 0 0 var1

7 2555 0.99670147 0.03384736 0 0 var1

8 2841 1.12431363 0.03764913 0 0 var1

9 3836 1.28740067 0.03747613 0 0 var1

10 3051 1.44257451 0.03966834 0 0 var1

11 3447 1.57972054 0.04009496 0 0 var1

12 3732 1.74106828 0.03685473 0 0 var1

13 3101 1.88885618 0.03833100 0 0 var1

14 3231 2.03695613 0.03931936 0 0 var1

15 3286 2.19233377 0.03913418 0 0 var1

Q28 : For the first bin (closest separation), what is the number of point-
pairs, the average separation, and the average semi-variance? Jump
to A28 •

Q29 : Observations 1 and 2 are separated by 1.11624 km (see above); in
which bin does this point-pair fall? Jump to A29 •

Note: The default method to estimate the “average” semi-variance in a bin
is with the ordinary arithmetic mean. If optional argument cressie=T is
given, Cressie’s robust variogram estimate is computed; the help page for
variogram gives the reference.

Task 29 : Plot the empirical variogram, also showing the number of point-
pairs that contributed to each estimate. •

We call the plot graphics method to plot the variogram object v.

Note: Because of the object-oriented R class system, R can determine
that v has class gstatVariogram, and the call to the generic plot method
is automatically replaced with a call to the plot.gstatVariogram method.
This shows the power of object-oriented languages.

We can see the class of an object with the class function:

> class(v)
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[1] "gstatVariogram" "data.frame"

We use the optional plot.numbers=T argument to see the number of point-
pairs; we also add a title, change the symbol colour and x-axis label:

> print(plot(v, plot.numbers = T, main = "Empirical variogram, log10(Pb)",

+ xlab = "separation distance, km", col = "darkblue", pch = 20))

Empirical variogram, log10(Pb)
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Spatial dependence as revealed by the empirical variogram can be charac-
terized by three parameters:

total sill : the maximum semi-variance (along the “semivariance” axis in the var-
iogram plot) ; this represents variability in the absence of spatial de-
pendence;

range : the separation between point-pairs (along the “separation distance”
axis in the variogram plot) at which the total sill is reached; this is the
distance after which there is no evidence of spatial dependence;

nugget variance : the semi-variance as the separation approaches zero; this represents
variability at a point that can’t be explained by spatial structure.

In the next exercise we will see how to include these parameters in a math-
ematical model of spatial dependence; for now we just estimate them.

Q30 : Describe the overall pattern of semi-variances vs. separations. What
are the approximate total sill, range and nugget? Jump to A30 •

As with a histogram, there is a default computation of the bin width: 1/15
of the maximum separation. There is also a default maximum separation;
this is 1/3 of the diagonal across the bounding box of the data.
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Q31 : Looking at the spatial distribution of the samples (§4), what is the
approximate distance across the bounding box? What is then 1/3 of this?
And then what is the approximate bin width? Jump to A31 •

We can see the corners with the bbox function:

> bbox(jura.all)

min max

X 0.491 4.92

Y 0.524 5.69

And from that compute the range in the X and Y directions:

> diff(bbox(jura.all)["X", ])

max

4.429

> diff(bbox(jura.all)["Y", ])

max

5.166

A third of the diagonal is then:

> sqrt(diff(bbox(jura.all)[1, ])^2 + diff(bbox(jura.all)[2, ])^2)/3

max

2.268225

An easier way is to use the dist “distance between matrix rows” function
on the transpose (using the t “transpose” function) of the bounding box
matrix3:

> dist(t(bbox(jura.all)))/3

min

max 2.268225

In a later lesson we will see how to decide on an appropriate cutoff and
number of bins; here we just see how to specify them for visualization. Let’s
look at a finer resolution for the shorter separations:

Task 30 : Compute and plot the empirical variogram for the base-10 loga-
rithm of Pb with a cutoff 1 km and 80 m wide bins. •

The cutoff (maximum separation) is specified with the cutoff optional ar-
gument, the bin width with the width optional argument to the variogram

method:

> v.08 <- variogram(log10(Pb) ~ 1, loc = jura.all, cutoff = 1,

+ width = 0.08)

> print(v.08)

3 since the matrix has the two corner points in column-wise, not row-wise, order
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np dist gamma dir.hor dir.ver id

1 258 0.03279579 0.01457903 0 0 var1

2 215 0.12396008 0.02384385 0 0 var1

3 281 0.20043201 0.02676367 0 0 var1

4 873 0.26686488 0.02845056 0 0 var1

5 818 0.35745559 0.03263473 0 0 var1

6 695 0.44223047 0.02851387 0 0 var1

7 1596 0.52912581 0.03447061 0 0 var1

8 737 0.60134276 0.02948616 0 0 var1

9 1099 0.68570896 0.03205491 0 0 var1

10 1547 0.77017447 0.03369332 0 0 var1

11 1011 0.84011816 0.03287824 0 0 var1

12 1368 0.91286964 0.03561407 0 0 var1

13 549 0.98103729 0.02900076 0 0 var1

> print(plot(v.08, pl = T, main = "Empirical variogram, log10(Pb)",

+ xlab = "separation distance, km", col = "darkblue", pch = 20))

Empirical variogram, log10(Pb)
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Q32 : Describe the differences between this and the default variogram.
Jump to A32 •

We now remove the workspace objects created in this section:

> rm(v, v.08, vc)

7.3 Answers

A20 : Heavily right-skewed; the skewness coefficient is 3.32, strongly positive.
Return to Q20 •

A21 : Still slightly right-skewed but much more symmetric; ; the skewness coeffi-
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cient is 0.93, somewhat positive. Return to Q21
•

A22 : The semivariance is 4.23e-06 (log10 Pb)2. Return to Q22 •

A23 : The separation is 1.1162 km. Return to Q23 •

A24 : There are 64261 point-pairs. Return to Q24 •

A25 : The point-pairs are identified by the left and right fields. In this out-
put the first line has left = 2 and right = 1; this is then the first point-pair
which we computed above. The results are in fields dist (separation) and gamma

(semivariance), here 1.1162 and 4.2325e-06, respectively.

These answers are exactly the same as we computed directly from the two points.
Return to Q25 •

A26 : Semivariances generally increase with separation. Return to Q26 •

A27 : There are many point-pairs with the exact same separation; these are pairs
of points on the regular grid. Return to Q27 •

A28 : The number of point-pairs is shown in field np as 442. The average separation
is shown in field dist as 0.0686 km. The average semi-variance is shown in field
gamma as 0.0171 log10 Pb2. Return to Q28 •

A29 : The end points of the bins are not given, only the average separations. This
point-pair is likely in bin 8, with average separation 1.1243 km. Return to Q29 •

A30 : The average semi-variance increases with separation; this is abrupt at first
and then approaches a total sill. Estimated variogram parameters are: total sill =
0.04 (log10 Pb)2, range 1.5 km, nugget 0.012 (log10 Pb2). Return to Q30 •

A31 : The distance across the bounding box is 6.8 km; 1/3 of this is 2.27 km. So
the bin width of the default 15-bin empirical variogram is 0.23 km. Return to
Q31 •

A32 :

� There are fewer point-pairs in each bin of the shorter-range variogram;

� The shorter-range variogram is more erratic, due to the smaller number of
point-pairs in each estimate;

� The shorter-range variogram doesn’t quite reach a definite total sill;

39



� It is easier to estimate the nugget in the shorter-range variogram, since there
is a bin near the origin (zero separation).

Return to Q32 •

8 Visualizing anisotropy

In the previous sections we have assumed that the spatial dependence is the
same in all directions; this is called isotropic, from the Greek “iso-” (same)
+ “tropic” (direction). However, the autocorrelated spatial process that pro-
duced the dependence may be stronger in one direction than in others. This
type of spatial dependence is called anisotropic, from the Greek “an-” (not)
+ isotropic. In practice, we consider the case where there is one direction of
strongest spatial dependence, with the weakest spatial dependence at right
angles (orthogonal) to it.

We will use two visualization methods to detect anisotropy:

1. the variogram surface (also called “variogram map”);

2. directional variograms

To appreciate these visualization methods we need a dataset with strong
anisotropy; a good choice is the Meuse soil pollution dataset we saw in
Exercise 1.

Task 31 : Load the meuse sample dataset from the sp package and convert
it from a dataframe to a spatial object by specifying its coördinates. •

The data function is used to load built-in datasets from loaded packages;
the coordinates method specifies coördinates.

> data(meuse)

> coordinates(meuse) <- ~x + y

> str(meuse)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..@ data :'data.frame': 155 obs. of 12 variables:

.. ..$ cadmium: num [1:155] 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...

.. ..$ copper : num [1:155] 85 81 68 81 48 61 31 29 37 24 ...

.. ..$ lead : num [1:155] 299 277 199 116 117 137 132 150 133 80 ...

.. ..$ zinc : num [1:155] 1022 1141 640 257 269 ...

.. ..$ elev : num [1:155] 7.91 6.98 7.8 7.66 7.48 ...

.. ..$ dist : num [1:155] 0.00136 0.01222 0.10303 0.19009 0.27709 ...

.. ..$ om : num [1:155] 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...

.. ..$ ffreq : Factor w/ 3 levels "1","2","3": 1 1 1 1 1 1 1 1 1 1 ...

.. ..$ soil : Factor w/ 3 levels "1","2","3": 1 1 1 2 2 2 2 1 1 2 ...

.. ..$ lime : Factor w/ 2 levels "0","1": 2 2 2 1 1 1 1 1 1 1 ...

.. ..$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 4 4 4 11 4 11 4 2 2 15 ...

.. ..$ dist.m : num [1:155] 50 30 150 270 380 470 240 120 240 420 ...

..@ coords.nrs : int [1:2] 1 2

..@ coords : num [1:155, 1:2] 181072 181025 181165 181298 181307 ...

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:155] "1" "2" "3" "4" ...
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.. .. ..$ : chr [1:2] "x" "y"

..@ bbox : num [1:2, 1:2] 178605 329714 181390 333611

.. ..- attr(*, "dimnames")=List of 2

.. .. ..$ : chr [1:2] "x" "y"

.. .. ..$ : chr [1:2] "min" "max"

..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots

.. .. ..@ projargs: chr NA

We begin with the variogram surface.

Task 32 : Display a variogram surface of the natural logarithm of the Zn
(zinc) content in the Meuse data set, up to 800m and with a bin width of
100 m. •

Note: This variable is strongly right-skewed; the logarithmic transform
makes it much more symmetrical and thus easier to model. If you wish, you
can verify this with histograms of the original and transformed variables.

We use the variogram method with the optional map=TRUE argument; this
produces a variogram surface instead of an omnidirectional empirical var-
iogram. We then plot it with the generic plot method, which, for a var-
iogrqam surface object, specializes to plot.gstatVariogram, which uses
methods in the lattice graphics package.

Raster (grid) maps can be displayed with different colour ramp (series of
colours) from the lowest to the highest values, giving different visualizations.
For lattice graphics this is determined by the col.regions argument.
There are several pre-defined methods that create colour ramps:

� heat.colors: from red to white-hot;

� terrain.colors:

� topo.colors: as used in topographic maps;

� cm.colors: cyan through magenta (pastels);

� bpy.colors: blue-purple-yellow; looks good printed

� hsv: custom ramp specifying hue, saturation and value;

� rainbow: custom ramp from a given start to stop colour;

� gray: gray scale

You can experiment with these to see which visualization you prefer. We
start with bpy.colors:

> print(plot(variogram(log(zinc)~1, meuse, map=TRUE,

+ cutoff=800, width=100),

+ main="Variogram map, Meuse River, log(zinc)",

+ col.regions=bpy.colors(64)))
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Variogram map, Meuse River, log(zinc)
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Note: The cutoff (maximum separation), specified with the cutoff optional
argument, must be an integer multiple of the bin width, specified with the
width optional argument, in order to obtain a (correct) symmetric variogram
map. In the above example cutoff=800, which is exactly eight times the
width=100.

Q33 : In which direction from the origin (centre of the plot) do the colours
(representing the semi-variances) remain similar furthest from the origin?

Jump to A33 •

Not all datasets show anisotropy; before continuing with the anisotropic
example we show a counter-example from a different data set.

Task 33 : Display a variogram map of the Ni (nickel) content in the Jura
data set, up to 1.2 km and with a bin width of 200 m. •

For this display, we’ll use the terrain.colors method to produce a colour
ramp typical of old-style atlases: deep green for “sea level”, passing to light
brown and then white at the “mountaintops”:

> print(plot(variogram(Ni ~ 1, jura.all, map=TRUE,

+ cutoff=1.2, width=0.2),

+ main="Variogram map, Jura soil samples, Nickel",

+ col.regions=terrain.colors(64)))
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Variogram map, Jura soil samples, Nickel
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Q34 : In which direction from the origin (centre of the plot) do the colours
(representing the semi-variances) remain similar furthest from the origin?

Jump to A34 •

Returning to the anisotropic structure (zinc in the Meuse data set), we now
compute directional variograms with the variogram method, but using the
optional alpha argument to specify one or more angles.

Task 34 : Display the directional variograms of the logarithm of Zn con-
tent at 30° N and 120° N, i.e. the suspected major and minor axes of the
anisotropy elipse. •

> print(plot(variogram(log(zinc)~1, meuse,

+ alpha=c(30,120), cutoff=1600 ),

+ main="Directional Variograms, Meuse River, log(zinc)",

+ sub="Azimuth 30N (left), 120N (right)", plot.numbers=T,

+ pch=20, col="blue"))
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Directional Variograms, Meuse River, log(zinc)
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Q35 : Do the two directions have similar variograms? (Consider sill, range,
nugget) Jump to A35 •

Q36 : In which of the two perpendicular axes is the spatial dependence
stronger (longer range, lower nugget to sill ratio)? Jump to A36 •

8.1 * Optional: More on directional variograms

Directional variograms may be further controlled by the tol.hor optional
argument; this controls the angular range included in the bin. By default
it is 90° divided by the number of angles specified in the alpha optional
argument. So in this case since there are two angles the tolerance is 45° on
either side of each axis; i.e. all point-pairs are included either in the 30° N
or the 120° N bins. This has the effect of diluting any anisotropy, making it
harder to detect.

For finer resolution we can either specify more angles or a narrower tolerance.
The problem is that each bin now has fewer point-pairs, leading to erratic
variograms which are difficult to model.

Task 35 : Display the directional variograms of the logarithm of Zn content
at 30° intervals from 0° N through 150° N. •

> print(plot(variogram(log(zinc)~1, meuse,

+ alpha=seq(0, 150, by=30),

+ cutoff=1600 ),

+ main="Directional variograms, Meuse River, log(Zn)",

+ pl=T, pch=20, col="blue"))
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Directional variograms, Meuse River, log(Zn)
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Q37 : How many directional variograms are produced? What then is the
horizontal tolerance angle? Jump to A37 •

Q38 : Compare the 30° and 120° N directional variograms of this figure
(tolerance angle 15°) with those from the previous figure (tolerance angle
45°). What are the principal differences? Jump to A38 •

8.2 Answers

A33 : At an azimuth (angle from N) of approximately 30° N – 210° N the blue
colours do not change much; orthogonal to this there is a rapid change. The spatial
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dependence is anisotropic. Return to Q33 •

A34 : There is no apparent direction where the colours persist; the spatial depen-
dence is isotropic, also called omnidirectional. Return to Q34
•

A35 : They are quite different. The 30N variogram has a very regular form, with
almost zero nugget, range about 1100 m, and sill near 0.6. The 120N variogram
is irregular (partly because of the smaller number of point-pairs in that direction),
with a nugget near 0.1, a range that is quite difficult to estimate but which may be
placed near 800 m where the first sill of about 0.8 is reached. Return to Q35 •

A36 : 30N. Return to Q36 •

A37 : Six directions; so each has a tolerance of 90/6 = 15° on either side, i.e. a
total width of 30°. Return to Q37 •

A38 :

1. Fewer point-pairs in each bin with the narrower angle;

2. In the major axis (30° N) a lower sill (0.4 instead of 0.6) and longer range;
this due to less dilution of the anisotropic effect;

3. Very similar in the minor axis.

Return to Q38 •

9 Quitting R

We will use both the Meuse and Jura datasets again, so let’s leave them in
the workspace and save them in .RData.

Task 36 : Leave R, saving the workspace. •

10 Self-test

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

For this self-test we work with the famous Walker Lake dataset of Isaaks
and Srivastava [7]. This has coördinates X and Y, two attributes V and U

and a categorical attribute T; the meanings of these are not given, so we
concentrate purely on their spatial statistics with no prejudice.
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Task 1 : Load the example dataset walker which is provided with the gstat
package4. This dataset should already be formatted as a spatial object; check
this with class(walker).

If it is a dataframe, you must convert it to a SpatialPointsDataFrame by
specifying the coördinates. •

Q1 : What is the bounding box of this dataset? •

Task 2 : Plot the location of the sample points. •

Q2 : Describe the spatial distribution of the observation points in the
study area, i.e. the point-pattern. •

Task 3 : Make a histogram of attribute V. •

Q3 : Describe the feature-space distribution of attribute V. •

Task 4 : Make a histogram of the square root of attribute V, using the sqrt

method. •

Q4 : Describe the feature-space distribution of the square root of attribute
V. •

From here we work with the square root of attribute V. The simplest way to
proceed is to define it as a separate value in the data frame.

Task 5 : Add the square root of attribute V to the data frame of the walker
spatial object. •

Since we haven’t seen this syntax before, the solution is given here. We name
the new attribute sqrtV:

> walker$sqrtV <- sqrt(walker$V)

> str(walker@data)

Task 6 : Make two post-plots of the square root of attribute V: (1) rela-
tive attribute value shown by a colour ramp of your choosing; (2) relative
attribute value shown by size of the plotting symbol. •
4 Recall, the data function is used to load built-in datasets from any loaded package.
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Q5 : Describe the spatial structure of attribute V: (1) any regional trend?
if so, specify; (2) any local spatial dependence? if so, specify; (3) if there is
local structure, does it appear to be isotropic or anisotropic? •

Task 7 : Compute and display the empirical omnidirectional (isotropic)
variogram of the square root of attribute V. •

Q6 : Is this evidence of local spatial dependence? What are the approximate
sill, range and nugget? Please include the units of measure for these. (Hint:
see the on-line help for this dataset). •

Task 8 : Compute and display a variogram surface of the square root of
attribute V with a cutoff of 40 m and bin width of 8 m. •

Q7 : Is there any evidence for anisotropy in the spatial dependence of
attribute V? If so, what is the principal axis? •

Task 9 : Compute and display directional variograms at azimuths 0,30, . . .150°
N. •

Q8 : Are the variograms similar in all six directions? Describe any differ-
ences. •

Task 10 : Remove the walker dataset and any temporary variables from
the workspace. •
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[2] O. Atteia, Ph. Thélin, H. R. Pfeifer, J. P. Dubois, and J. C. Hunziker. A
search for the origin of cadmium in the soil of the Swiss Jura. Geoderma,
68(3):149–172, Oct 1995. doi: 10.1016/0016-7061(95)00037-O. 1

[3] J-P Dubois, F Okopnik, N Benitez, and J C Vedy. Origin and spa-
tial variability of cadmium in some soils of the Swiss Jura. 16th IUSS
Congress, Montpellier, 25:527, 1998. 2

[4] X Emery and J M Ortiz. Weighted sample variograms as a tool to
better assess the spatial variability of soil properties. Geoderma, 140:
81–89, 2007. 1

[5] P Goovaerts. Geostatistics for natural resources evaluation. Applied
Geostatistics. Oxford University Press, New York; Oxford, 1997. 1, 6

[6] P Goovaerts, R Webster, and J-P Dubois. Assessing the risk of soil
contamination in the Swiss Jura using indicator geostatistics. Environ-
mental and Ecological Statistics, 4(1):31–48, 1997. 1

[7] E H Isaaks and R M Srivastava. An introduction to applied geostatistics.
Oxford University Press, New York, 1990. 46

[8] O Jacquat, C Rambeau, A Voegelin, N Efimenko, A Villard, K B Föllmi,
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[13] R Quezada-Hinojosa, K B Föllmi, F Gillet, and V Matera. Cadmium
accumulation in six common plant species associated with soils contain-
ing high geogenic cadmium concentrations at Le Gurnigel, Swiss Jura
mountains. CATENA, 124:85–96, Jan 2015. doi: 10.1016/j.catena.2014.
09.007. 1

[14] D G Rossiter. Introduction to the R Project for Statistical Computing
for use at ITC. International Institute for Geo-information Science &

49

http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/


Earth Observation (ITC), Enschede (NL), 3.7 edition, 2009. URL http:

//www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf. 15, 25

[15] Deepayan Sarkar. Lattice. R News, 2(2):19–23, June 2002. URL http:

//CRAN.R-project.org/doc/Rnews/. 26

[16] R Development Core Team. R Data Import/Export. The R Foundation
for Statistical Computing, Vienna, version 2.7.2 (2007-08-25) edition,
2008. http://cran.r-project.org/doc/manuals/R-data.pdf. 3

[17] W N Venables, D M Smith, and R Development Core Team. An Intro-
duction to R; Notes on R: A Programming Environment for Data Anal-
ysis and Graphics. R Foundation for Statistical Computing, Vienna,
version 2.6.1 (2007-11-26) edition, 2007. URL http://www.R-project.

org. 15, 25

[18] R Webster, O Atteia, and J-P Dubois. Coregionalization of trace metals
in the soil in the Swiss Jura. European Journal of Soil Science, 45(2):
205–218, 1994. 1

[19] T Yao. Nonparametric cross-covariance modeling as exemplified by soil
heavy metal concentrations from the Swiss Jura. Geoderma, 88(1-2):
13–38, 1999. 1

[20] M Yemefack, D G Rossiter, and R Njomgang. Multi-scale characteriza-
tion of soil variability within an agricultural landscape mosaic system
in southern Cameroon. Geoderma, 125(1-2):117–143, 2005. 21

50

http://www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf
http://www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/
http://cran.r-project.org/doc/manuals/R-data.pdf
http://www.R-project.org
http://www.R-project.org


Index of R Concepts

- operator, 9
^ operator, 25, 31

asp graphics argument, 14
at graphics argument, 27

bbox (sp package), 9, 37
bpy.colors, 41
bpy.colors (sp package), 41
bubble (lattice package), 17
bubble (sp package), 16, 18, 19

c, 6, 7
class, 35
cm.colors, 41
col graphics argument, 14, 27
col.regions lattice graphics argument, 41
contourplot (lattice package), 27
coordinates (sp package), 7, 13, 40

data, 2, 40, 47
diff, 31
dim, 4, 33
dist, 37

e1071 package, 30
expand.grid, 24

factor, 6
file.show, 3
fill graphics argument, 27

getwd, 2
gray, 41
grid, 14
gstat package, 1, 2, 7, 24, 33–35, 47

head, 4, 7, 9
heat.colors, 41
hist, 30
histogram (lattice package), 30
hsv, 41

I, 25

jura dataset, 2

krige (gstat package), 24, 25

lattice package, 1, 17–19, 26, 27, 30, 41

levelplot (lattice package), 26
lm, 25
load, 22
log, 31
log10, 31
ls, 22

main graphics argument, 14
main lattice graphics argument, 17
meuse dataset, 40

names, 9

panel lattice graphics argument, 19, 26
panel.grid (lattice package), 19, 20, 26
panel.levelplot (lattice package), 26
panel.points (lattice package), 26
panel.xyplot (lattice package), 19
pch graphics argument, 14, 27
plot, 13, 15, 35, 41
plot.default, 15
plot.gstatVariogram (gstat package), 35,

41
print, 17
print (lattice package), 17
print.trellis (lattice package), 17

rainbow, 41
read.table, 4, 5
require, 1, 26
row.names, 15

save, 10, 22
scales lattice graphics argument, 18
seq, 20
setwd, 2
skewness (e1071 package), 30
sp package, 1, 6, 7, 9, 10, 16, 17, 19, 40
spplot (sp package), 17
sqrt, 47
str, 5, 7, 22
sub lattice graphics argument, 18
summary, 7

t, 37
tail, 4
terrain.colors, 41, 42
text, 15
topo.colors, 41
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trellis class, 17

variogram (gstat package), 33–35, 37, 41,
43

walker dataset, 47, 48

xlab graphics argument, 14
xlab lattice graphics argument, 18
xlim lattice graphics argument, 18
xyplot (lattice package), 17–19

ylab graphics argument, 14
ylab lattice graphics argument, 18
ylim lattice graphics argument, 18
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