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EAREA KR
“Jade that is not chiseled cannot become a gem”
— Chinese proverb

After completing this exercise you should be able to:

1. Understand how Ordinary Kriging (OK) weights are affected by point
configuration and variogram model;

2. Predict block averages for attributes using block Ordinary Kriging
(BOK);

3. Predict attributes over a region using Universal Kriging (UK).

A supplementary exercise, exba, continues with Kriging with External Drift
(KED), which is mathematically the same as Universal Kriging but uses one
or more feature-space predictors to model part of the variability.

1 Kriging weights

In this section we take a short detour from R to investigate the Ordinary
Kriging (OK) system in an interactive graphical program. This allows us to
see the effect of variogram model, model parameters, sample point distribu-
tion, and prediction point location on the predictions and their variances.

For this section you must have access to an MS-Windows system'. We will
use the E{Z}-Kriging program? written by Dennis J. J. Walvoort, Wagenin-
gen University, the Netherlands. Although this is (and will likely remain)
Version 0.2, it nicely illustrates how the kriging system works.

Note: We have also provided a spreadsheet in Microsoft Excel format named
OK_Explained.xls in folder datasets/x1ls with the course material.

Task 1: Extract the executable program E_Z_Kriging.exe from the “zip”
archive file E_Z_Kriging.zip to a convenient location on your system. e

Task 2 : Review sections 1 (“Introduction”) and 2 (“Graphical User Inter-
face”) of the the presentation E_Z_Kriging.pdf. This explains how to use
the program. .

Task 3 : Run the program E_Z_Kriging.exe. J

The default configuration shows one prediction point in the middle of a
circle of radius 100 with seven equally-spaced data points, a spherical semi-
variogram model with range 100, sill 100, and no nugget. The seven points
have various data values.

! This can be a virtual system, e.g., Wine, see http://www.winehq.org/
2https://wiki.52north.org/bin/view/AI_GEOSTATS/SWEZKriging
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Q1 : What is the prediction and its variance? Jump to Al e

Q2 : What are the absolute and relative weights of the sample points?
Jump to A2 e

Task 4: Keeping the point configuration the same, change some data values.

Q3 : What happens to the prediction and its variance? Explain. Jump to
A3 e

Task 5 : Move point 2 next to point 1. .

Q4 : What are now the weights? Explain. Jump to A4 e

Task 6 : Move point 2 half-way between point 1 and the prediction point,
i.e. so that it ‘masks’ point 1. .




1.1 Answers

Q5 : What are now the weights? Explain. Jump to A5 e

Task 7 : With the slider, reduce the range from 100 slowly towards 40. e

Q6 : What happens to the weights as the range is reduced? Explain. Jump

to AG e
Task 8 : Move point 2 back to point 1, to form a two-point cluster. o
Q7 : What are now the weights? Explain. Jump to A7 e

Task 9 :  Restore the original configuration (equally-spaced points). With
the slider increase and reduce the range parameter and observe the predic-
tions and their variances. .

Q8 :  What happens to the predictions and their variances as the range is
increased? reduced? Explain. Jump to A8 e

Task 10 : Restore the original configuration (equally-spaced points). With
the slider increase the nugget and observe the predictions and their variances.

Q9 : What happens to the predictions and their variance as the nugget is
increased? Explain. Jump to A9 e

This should give you some ideas on more experimentation; see also the sug-
gestions in section 3 (“Interesting features to explore”) of the presentation
E_Z _Kriging.pdf.

A1 : Prediction 33.4, variance 115 (remember, this is in squared units). Return
to Q1 e

A2 : All are equal, 1/7 = 0.142857. .. Return to Q2 e

A3 : The prediction changes, but the variance stays the same. This is because



the prediction depends on the data values, but the variance only on the point
configuration. Return to Q3 e

A4 : Points 3-7 have weights about 0.16, the weights of points 1 and 2 are reduced
to about 0.9 (depending on exact configuration of the two points). Together the
two points have only about 0.18 weight, this is the clustering effect. Return to Q4

A5 : Point 2 now has about half the total weight (0.5); points 3-7 almost equal
(about 0.1 each); point 1 now has a negative weight. The high weight for point 2
is explained by its proximity to the prediction point; the negative weight for point
1 because it is masked by point 2, i.e. in the same direction from the prediction
point. Return to Q5 e

A6 : They become more equal, until the range reaches the innermost point, at
which time they all have equal weight. When all sample points are outside the
range there is no longer any spatial dependence with the prediction point. Return
to Q6

A7 : Points 1 and 2 have reduced weights, each about 0.1 (combined 0.2); the
others have equal weights of about 0.15. Even though the range is short, there is
still spatial dependence between sample points if they are closer than the range,
so there is still a clustering effect in that case. Return to Q7 e

A8 : Predictions do not change in this case because of the isotropic point distribu-
tion. Increased range decreases the kriging variance, and vice-versa. This is because
the data values at sample points are more spatially-correlated with the prediction
point at longer ranges. Return to Q8 e

A9 : Predictions do not change, but the kriging variance is increased. There is
spatial uncertainty at the sample points as well as at the prediction point. Return
to Q9 e

2 Block kriging

This section introduces prediction on blocks, i.e. areas larger than the sample
support. This is an easy modification of punctual OK prediction. The
differences are:

1. the prediction is a block average, which smooths out local extremes;

2. the short-range variability (within a block) is removed, so the kriging
variances are lower than for punctual OK.

Block Kriging can be applied to any type of kriging; in this section we apply
it to OK.



2.1 Theory

2.2 Practice

Block kriging make estimates at blocks of a defined size, with unknown
mean (which must also be estimated) and no trend; centred at the coord-
inates specified in the prediction object. Each block B is estimated as the
weighted average of the values at all sample points X;, as with OK:

N
Z(B) = > Aiz(x;) (1)
i=1
As with OK, the weights A; sum to 1, so that the estimator is unbiased. The
predictions are on the same support of the data values, that is, they are the
average of all supports within the block.

The Block Kriging system is derived as for the OK system, producing these

equations:
N

> Ajy(xi,x;) + w(B) = y(x;,B), Vi
j=1
This equation implies that:

1. The semivariances are averages of the point semivariances between
sample points and all the points in the block to be predicted;

2. The semivariance with a block is written as y, the overline indicating
an average;

3. The left-hand side (semivariances between sample points) is the same
as in OK.

It is impossible to compute an infinite number of semivariances and then
average these, so in practice the block to be predicted is discretized by a
square grid of points.

The key benefit from block ordinary kriging (BK) is the factor by which the
estimation variance is reduced:

Y(B,B) = IBIZI J y(x,x") dxdx’ (2)

As the block size |B| approaches zero, the double integral also approaches
zero; in fact this is the limit. This shows that OK is a special case of BK.

In practice, the above integral is calculated by discretizing the block into n
points:

Y(B,B) =

||M:

1 n
Bi Z wjy (Xq,Xj) (3)

where >’; w; = 1; the weights are set by their position within the unit block.

We continue with the Jura dataset from Exercise 4.

Task 11 : To set up this exercise:



1. If R is not already running, start it. If you haven’t already done so,
load the gstat and sp libraries, as shown in the previous exercises.

2. If the calibration dataset jura.cal is not loaded as a spatial object,
do so. It was saved as part of R data file JuraEx4.RData in Exercise
4; this can be loaded into the workspace with the load function.

3. If the fitted variogram model vmf from Exercise 4 §4.1 is no longer in
the workspace, re-create it.

4. If the prediction grid jura.raster from Exercise 4 §4.4 is no longer
in the workspace, re-create it.

5. If the kriging prediction k.grid from Exercise 4 §4.4 is no longer in
the workspace, re-create it.

If you followed the instructions in Exercise 4, these should all have been saved
in file JuraEx4.RData, so they can be restored with the load function:

> load("JuraEx4.RData")

Note: If this file is not in the current directory, you either have to change
the directory with the setwd function, or add the full path to the argument
of the load function.

Block kriging with the krige function of gstat is exactly like OK, with one
additional argument: block, which gives the dimensions of the block as a
list. For the usual case of a 2D block (surface area), this is a list of two
dimensions (which are usually, but not necessarily the same). The list is
formed with the ¢ function.

Task 12 : Use the fitted variogram model to predict at all the grid points
by Ordinary Kriging (OK) with a block size of 50 x 50 m. .

The cotrdinates are in km, so the desired block size is expressed as 0.05 km.

> bk.grid <- krige(Co ~ 1, loc = jura.cal, newdata = jura.raster,
+ model = vmf, block = ¢(0.05, 0.05))

[using ordinary kriging]
> summary (bk.grid)

Object of class SpatialGridDataFrame
Coordinates:
min max

[1,] 0.3 5.10
[2,] 0.4 5.75
Is projected: NA
proj4string : [NA]
Grid attributes:

cellcentre.offset cellsize cells.dim
1 0.325 0.05 96



2 0.425 0.05 107
Data attributes:
varl.pred varl.var
Min. 1 2.92 Min. : 0.345
1st Qu.: 8.48 1st Qu.: 2.495
Median : 9.73 Median : 3.857

Mean : 9.54 Mean : 6.097
3rd Qu.:10.98 3rd Qu.:10.459
Max. :15.69 Max. :13.223

Q10 : What are the minimum, mean and maximum predictions? How do
these compare with the values for the OK predictions of Exercise 4 §4.47
Explain any differences. Jump to A10

Q11: What are the minimum, mean and maximum kriging variances? How
do these compare with the for the OK kriging variances of Exercise 4 §4.47
Explain any differences. Jump to All e

We can see the effect of blocking visually by side-by-side plots:

Task 13 : Plot the BK predictions and their variances, next to and with
the same scale as the OK predictions and variances. .

To specify a scale to spplot, we use the at optional argument. We want
to use the same scale, so we first compute the extremes of both prediction
grids together, once for the predictions and once for their variances, with
the range function:

> range(k.grid$varl.pred, bk.grid$varl.pred)
[1] 2.9057 15.8122
> range(k.grid$varl.var, bk.grid$varl.var)

[1] 0.3455 15.0050

We round these a bit down and up, and break at each integer; we can use
the : simple sequence operator for the integers, otherwise the seq function:

> (at.pred <- 2:16)

[1] 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
> (at.var <- seq(0, 15.5, by = 0.5))

[1] 0.0
[14] 6.5
[27] 13.0 1
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To plot several graphs together, we save each one as a Trellis graphics object,
and then use the split and more optional arguments to the print function



of the lattice package. (See [4, §5.4] for more on how to print several
graphs in one window, or open multiple windows.)

First the two predictions:

> plot.1 <- spplot(k.grid, zcol="varl.pred",

+ col.regions=bpy.colors(64),

+ main="Predicted values, Co (ppm) [OK]",
+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T),at=at.pred)

> #

> plot.2 <- spplot(bk.grid, zcol="varl.pred",

+ col.regions=bpy.colors(64),

+ main="Predicted values, Co (ppm) [BK]",
+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T), at=at.pred)

> #

> print(plot.1, split=c(1, 1, 2, 1), more=T)

> print(plot.2, split=c(2, 1, 2, 1), more=F)

Predicted values, Co (ppm) [OK] Predicted values, Co (ppm) [BK]
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Now the two kriging variances:

> plot.1 <- spplot(k.grid, zcol="varl.var",

+ col.regions=topo.colors(64),

+ main="Kriging variance, Co (ppm~2) [OK]",
+ xlab="UTM E", ylab="UTM N",

+ scales=1list (draw=T),

+ at=seq(0, 15.5, by=0.5))

> #

> plot.2 <- spplot(bk.grid, zcol="varl.var",
+ col.regions=topo.colors(64),

+ main="Kriging variance, Co (ppm~2) [BK]",
+ xlab="UTM E", ylab="UTM N",

+ scales=1list (draw=T),

+ at=seq(0, 15.5, by=0.5))

> #

> print(plot.1, split=c(1, 1, 2, 1), more=T)

> print(plot.2, split=c(2, 1, 2, 1), more=F)



Kriging variance, Co (ppm*2) [OK]

UTMN

UTMN

Kriging variance, Co (ppmA2) [BK]

We can also compare predictions and variances by computing their differ-

ences.

Task 14 : Compute and plot a difference map between BK and OK predic-

tions and variances.

First the computation: we make a new data frame, with two fields, which we
explicitly name pred and var. For easier interpretation of the numbers we
round the differences to a meaningful precision, consistent with the original

observations.

> diff.ok.bk <- data.frame(

+ pred = round(k.grid$varl.pred - bk.grid$varl.pred, 2),
+ var = round(k.grid$varl.var - bk.grid$varl.var,3))

> summary(diff.ok.bk)

pred var
Min. :-0.32000 Min.
1st Qu.: 0.00000 1st Qu.:
Median : 0.00000 Median :
Mean : 0.00001 Mean
3rd Qu.: 0.00000 3rd Qu.:
Max. 0.31000 Max.

= e =

.31
.76
77
77
.78
.78

> coordinates(diff.ok.bk) <- coordinates(bk.grid)

Then we plot the differences:

> print(spplot(diff.ok.bk, zcol="pred", cuts=8,

+ col.regions=cm.colors(8),

+ main="0K - BK 50x50 predictions, Co (ppm)",
+ key.space="right"))



OK - BK 50x50 predictions, Co (ppm)

> print(spplot(diff.ok.bk, zcol="var", cuts=8,

+ col.regions=terrain.colors(8),
+ main="0K - BK 50x50 kriging variances, Co (ppm~2)",
+ key.space="right"))

OK - BK 50x50 kriging variances, Co (ppm*2)

Q12 : Are there any differences in pattern or values of the predictions and
prediction variances between OK and BK? Jump to A12 e

Task 15 : Clean up the workspace from this section. .

We keep the interpolation grid jura.raster, the OK and BK predictions
k.grid and bk.grid, and the omnidirectional variogram model vmf for fu-
ture use.

10



2.3 Answers

> rm(at.pred, at.var, plot.1l, plot.2)

A10 : Predicted values are almost identical. Return to Q10 e

A11 : Kriging variances are substantially lower: the minimum is 0.346 for BK,
1.847 for OK. The mean is 6.097instead of 7.863. This reduction represents the
variance within each block and the reduced variance between sample points and the
prediction block. Return to Q11 e

A12 : For the predicted values the two maps appear identical; the difference map
shows very small absolute differences (both positive and negative). For the variances
all values are much lower with BK, but with less difference near observation points
and especially near point clusters. Return to Q12 e

3 Universal kriging

Universal Kriging (UK) models both a regional trend and a local spatial
dependence together. The trend is expressed as a function of the coordi-
nates. The idea is that some of observed variation is due to a trend, and the
variation in what is left over (the residuals) can be explained as a random
field.

The key point of UK is that it can account for random fields that are not 1st-
order stationary; that is, the expected value can change smoothly over the
field. Of course, even if the field is indeed 1st-order stationary the observed
values will vary over the field, with some spatial correlation structure; but in
that case the expected value (before observation) is the same everywhere. If
there is clear evidence that this is not true, e.g., a clear regional trend which
can be explained by physical or geographical principles, UK can be used to
implicitly remove the trend.

Note: Some examples of non-stationary processes are (1) the elevation of
an aquifer above some datum, when the rock stratum containing the aquifer
is tilted; (2) mean annual rainfall over a region which ranges from coast to
inland.

Note: The term “Universal Kriging” is used by some authors also to include
a trend in one or more feature-space predictors, i.e. co-variables. In this
course we call this Kriging with External Drift (KED); the mathematics are
the same but the predictors are not all in geographic space.

The steps in UK are:

1. Compute the regional trend;

2. Compute and model the variogram of the residuals from the regional
trend;

11



3.1 Theory

3. Use this variogram model and the trend to predict.

In UK the trend is implicit in the kriging equations; this is useful if we want
to restrict the kriging neighbourhood.

The trend is modelled as a linear combination of p known base functions
fj(s) and p unknown constants f;; these are the parameters of the base
functions:

p
Z(xi) = > Bjfi(xi) + e(x;) (4)

j=1
The base functions for linear drift (a plane) are:

Jox) =1, f1(x) = x1, fa(x) =x2 (5)

where X1 is one codrdinate (say, E) and x2 the other (say, N), and fo(x) = 1
estimates the global mean (as in OK).

For full quadratric drift (a possibly elonated bowl or hump) or we also include
second-order terms:

f3(x) = x{, fa(x) = x1x2, f5(X) = x5 (6)

A point is predicted as in OK:

N
Z(x0) = > Aiz(x7) (7)
i=1

However, in UK the weights A; for each sample point take into account both
the global trend (drift, violation of first-order stationarity) and local effects.
The unbiasedness condition is expressed with respect to the trend as well as
the overall mean (as in OK):

N
D Aifi(xi) = fi(x0), Vk (8)
i=1

That is, the expected value at each point of all the base functions must be

that predicted by that function. The first of these is the overall mean (as in
OK).

3.2 Looking for a trend

The first step, then, is to see if there is any regional trend. The R? of the
trend gives some idea of the potential improvement in predictions.

For this section we continue with the Jura data set, specifically the calibra-
tion set jura.cal. We keep working with the target variable Cobalt con-
centration (attribute Co). This does not show a dramatic regional trend, so

12



that UK does not differ too much from OK. Still, it illustrates the principles
and procedures.

Note: In this analysis we will use ordinary least squares (OLS) to compute
the trend. This is only approximately correct; since we have evidence of
spatial dependence between values, we should use generalized least squares
(GLS), weighting the points according to the covariance structure. But this
leads to a “chicken-and-egg” problem: we don’t know the covariance structure
of the residuals until we compute them, and for that we need the trend, and
for that we should know the covariance structure, etc. In practice, OLS trend
surfaces are used as a first approximation to the GLS surface, and the spatial
structure of the residuals is modelled from this. We examined this issue in
Exercise 3, optional §5.

Task 16 : Visualize the regional trend in Co concentration. o
We use spplot with a colour ramp:

> print(spplot(jura.cal, zcol="Co", col.regions=bpy.colors(64),

+ cuts=seq(1,19,by=2), key.space="right",
+ main="Co (ppm)", xlab="E", ylab="N",
+ pch=1, cex=1.5))
Co (ppm)
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Q13 :  Does there appear to be any regional trend in Co concentration?

(Hint: is there a trend from blue to yellow, via purple and orange?) In what
direction? How strong is it? Does it appear to be a plane or a higher-order
surface? Jump to Al3 e

Another way to visualize this is to compute a trend surface on the prediction
grid using the krige of the gstat package without a model, as we did in
Exercise 3 §2. However, before we can do this, we must ensure that the
names of the codrdinates within the prediction grid are the same in the

13



prediction and sample datasets. Otherwise, the formula Co ~ X + Y used
in the krige function will not find the named co6rdinates in the prediction
grid.

As it stands, the jura.raster object, of class SpatialGrid, does not have
any cootrdinate names, as we can see with the str function on the @bbox
slot:

> str(jura.raster@bbox)

num [1:2, 1:2] 0.3 0.4 5.1 5.75
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "X" "y"
..$ : chr [1:2] "min" "max"

> str(jura.cal@bbox)

num [1:2, 1:2] 0.626 0.58 4.92 5.69
- attr(*, "dimnames")=List of 2

..$ : chr [1:2] "X" "y"

..$ : chr [1:2] "min" "max"

We can specify the names with the coordnames function:

> coordnames (jura.raster) <- c("X", "Y")
> str(jura.raster@bbox)

num [1:2, 1:2] 0.3 0.4 5.1 5.75
- attr(*, "dimnames")=List of 2
..$ : chr [1:2] "X" "y"
..$ : chr [1:2] "min" "max"

Now we can compute and display the trend surface:

> tsl <- krige(Co ~ X + Y, loc=jura.cal,
+ newdata=jura.raster, model=NULL)

[ordinary or weighted least squares prediction]

> print(spplot(tsl, zcol="varl.pred", contour=T,
+ pretty=T, col.regions=terrain.colors(64),
+ main="1st-order trend surface, Co"))

14



1st-order trend surface, Co

Q14 : What is the approximate azimuth (direction) of this first-order trend
surface? Jump to Al4 e

Task 17 : Compute the regional trend. .
> (lm.co.xy <- 1m(Co ~ coordinates(jura.cal), data = jura.cal))

Call:
Im(formula = Co ~ coordinates(jura.cal), data = jura.cal)

Coefficients:
(Intercept) coordinates(jura.cal)X
7.142 1.297
coordinates(jura.cal)Y
-0.639

> summary(1lm.co.xy)

Call:
Im(formula = Co ~ coordinates(jura.cal), data = jura.cal)

Residuals:
Min 1Q Median 3Q Max
-9.200 -2.706 0.193 2.535 7.782

Coefficients:

Estimate Std. Error t value Pr(>|tl)
(Intercept) 7.142 0.732 9.75 < 2e-16 xx*x
coordinates(jura.cal)X 1.297 0.217 5.98 7.5e-09 x*x
coordinates(jura.cal)Y -0.639 0.163 -3.92 0.00011 **x
Signif. codes: O '"**x' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1

15



Residual standard error: 3.32 on 256 degrees of freedom
Multiple R-squared: 0.145, Adjusted R-squared: 0.139
F-statistic: 21.7 on 2 and 256 DF, p-value: 1.9e-09

Q15 :  How much of the variation in Co concentration is explained by the
trend? Jump to Al5 e

Task 18 : Compute the direction of the trend. J

The two slope coefficients in E and N determine the azimuth (angle from
N): the plane increases towards the angle determined by the ratio between
them. The atan2 function, in the form atan2(y, x), returns the angle (in
tadians) between the “x”-axis (as defined in the call) and the vector from
the origin to “(x, y)” (also as defined in the call). For the azimuth, we want
angle from N, so we call this in the form atan2(E, N) where E and N are
extracted from the model fit with the coefficients function. This must be

converted to degrees by the ratio 180/1r.
> coefficients(lm.co.xy)

(Intercept) coordinates(jura.cal)X coordinates(jura.cal)Y
7.1423 1.2968 -0.6393

> atan2(coefficients(lm.co.xy) [2], coefficients(lm.co.xy)[3]) =

+ (180/pi)
coordinates(jura.cal)X
116.24
Q16 : In which direction does the plane increase? Jump to A16 e

3.3 Fitting the residual variogram

The next step is to compute the residual variogram. The variogram function
of the gstat package computes the trend and, from that, the residuals, from
the model formula. Recall: for OK we used the model formula Co ~ 1,
meaning to model Co from itself only (local spatial dependence). Now we
use the formula Co ~ coordinates(jura.cal) to model the trend.

Note: This variogram is not strictly correct, since it is computed from the
OLS residuals. Since the residuals have not yet been computed, it’s impos-
sible to determine their spatial structure, which should be used to correctly
estimate the trend parameters using generalized least squares (GLS). If the
observation points are approximately regularly spaced this is not a problem.
But in the general case, the proper approach is to use residual maximum
likelihood (REML) to estimate trend and covariance parameters together;
see Lark et al. [3]. Here we continue with the naive approach, since (1) it is
much easier to explain; (2) the observations are mostly well-spaced.
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Task 19 : Compute the residual variogram of Co concentration, taking into
account a first-order regional trend; compare it with the original variogram
(no trend) both numerically and graphially. .

We will want to compare this variogram to that computed in Exercise 3,
§3.3, so we re-compute that one; recall we used a cutoff of 1.6 km.

> v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)
> vr <- variogram(Co ~ coordinates(jura.cal), loc = jura.cal,
+ cutoff = 1.6)

These have the same structure, the same distances, and the same numbers
of point-pairs in each bin. So we can build one frame to compare them:

> (compare.v <- data.frame(np = v$np, separation = v$dist,
+ gamma.ok = v$gamma, gamma.uk = vr$gamma, gamma.dif = v$gamma -

+ vr$gamma))

np separation gamma.ok gamma.uk gamma.dif

1 281 0.041378 2.0379 2.0569 -0.019034
2 209 0.164607 3.5373 3.5518 -0.014464
3 401 0.268811 5.6470 5.5585 0.088480
4 656 0.372567 7.5669 7.3306 0.226280
5 744 0.482890 8.5160 8.4170 0.098967
6 543 0.589803 9.7310 9.7087 0.022311
7 784 0.694563 10.7370 10.7946 -0.057611
8 966 0.800257 11.8357 11.2860 0.549710
9 749 0.902205 12.2191 12.3063 -0.087253
10 1115 1.017696 13.5181 12.1483 1.369825
11 1243 1.115531 14.4904 13.3057 1.184770
12 1170 1.238103 13.3056 12.4321 0.873472
13 1171 1.337529 15.2638 12.9918 2.272037
14 1266 1.441534 14.0793 13.3621 0.717197
15 1334 1.546090 13.9222 12.0425 1.879742

These can be plotted as two variograms on one graph, using the generic
plot function to set up the plot and display the first variogram, and then
using the points function to add the second variogram to the plot. Note
the use of the type optional argument with the value of "b" to plot both
the points and connecting lines; also the ylim optional argument to display
the variogram from y = 0, to visualize the nugget effect.

> plot(compare.v$gamma.ok ~ compare.v$separation, pch=20,

+ col="blue", type="b",

+ xlab="Separation", ylab="Semivariance",

+ ylim=c(0, max(compare.v$gamma.ok, compare.v$gamma.uk)),
+ main="Variogram, Jura Cobalt (ppm)",

+ sub="0K: blue, UK: green")

> points(compare.v$gamma.uk ~ compare.v$separation, pch=20,

+ col="green", type="b")

> abline(h=0, lty=1)
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Variogram, Jura Cobalt (ppm)

15

N S

10

Semivariance
.

0.0 0.5 1.5
Separation

OK: blue, UK: green

Q17 .

variograms? Why do they not differ very much?

What are the major differences between the original and residual
Jump to A17 e

The next step is to model the residual variogram.

Task 20 :
variogram.

Select a variogram model and fit parameters for the residual

In the absence of any evidence to the contrary, we should use the same model
form as for the original variogram, i.e. pentaspherical in this case. We first
fit by eye and then automatically.We already know the fitted model for OK;
it is a good starting point, with slightly reduced sill and range.

> vmf

model psill range
1 Nug 1.3712 0.0000
2 Pen 12.9322 1.5239

>

vrm <- vgm(12, "Pen", 1.2, 1.4)

plot.1 <- plot(vr, pl=T, model=vrm,
main="Jura Co;
sub="Eyeball model")

(vrmf <- fit.variogram(vr, vrm))

model psill range
Nug 1.3845 0.0000
Pen 11.4658 1.3469

attributes (vrmf) $SSErr

[1] 3173.6

residuals from 1st-order trend",
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main="Jura Co;

Jura Co; residuals from 1st-order trend

171
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plot.2 <- plot(vr, pl=T, model=vrmf,

residuals from 1st-order trend",
sub="gstat Fitted model")

print(plot.1, split=c(1,1,2,1), more=T)
print(plot.2, split=c(2,1,2,1), more=F)

Jura Co; residuals from 1st-order trend

4243

4115 1170

4266

3.

semivariance
N
semivariance

distance
Eyeball model

distance
gstat Fitted model

We compare the two parts of the model (nugget and structure); the first
reported result is the difference in the nugget parameters and the second in
the structural model parameters. The range difference of the nugget is of
course zero.

> vmf$range - vrmf$range
[1] 0.00000 0.17703

> vmf$psill - vrmf$psill
(1]

-0.013331 1.466441

Q18:

What are the differences between the original and residual variogram?
Jump to A18 e

3.3.1 * Fixing the sill

This last difference reveals a problem: the nugget of the fitted residual var-
iogram model is not the same as that for the original variogram model.

> vrmf$psill[1]

[1] 1.3845

> vmf$psill[1]

[1] 1.3712

> (vrmf$psill[1] - vmf$psill[1])/vmf$psill[1]

[1] 0.009722
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In this case the difference is quite small with respect to the total sill (about
1%), but still, in theory removing a long-range trend should have no effect
on the nugget.

One way to handle this problem, well-justified by theory, is to fix the nugget
from the original variogram surface and not allow it to change, specifying
the optional fit.sills argument to the fit.variogram function, to fix the
first sill (nugget) and allow the second (structural) to change. We take the
nugget from the fitted model of original values, extracted from the fitted
model object:

> (vrmf.2 <- fit.variogram(vr, vgm(12, "Pen", 1.2, vmf[1,
+ "psill"]), fit.sills = c(F, T)))

model psill range
1 Nug 1.3712 0.0000
2 Pen 11.4670 1.3406

> attributes(vrmf.2)$SSErr

[1] 3193.6

Note that the nugget remains the same as specified from the original model.
Comparing to the residual variogram fit without this restriction:

> print (vrmf)

model psill range
1 Nug 1.3845 0.0000
2 Pen 11.4658 1.3469

> attributes (vrmf)$SSErr
[1] 3173.6

> rm(vrmf.2)

In this case, fixing the nugget slightly increases the structural sill and de-
creases the range; these are minor adjustments which would have little prac-
tical consequences. However, this technique is useful if the automatically-
fitted nugget of a residual variogram is unrealistically low (see the self-test
for an example).

3.4 Predicting with UK

Now we are in a position to predict with UK.

Task 21 : Predict the Co concentration over the region using UK. 0

The krige command is almost the same as for OK; we just need to specify
the trend and the changed variogram model.

Note: The cotrdinate names of the prediction grid and the data frame with
the sample points must be the same; we did that at the beginning of §3.
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Finally we can compute the UK predictions; note the use of the formula X
+ Y to specify the trend; these variables refer both to the samples jura.cal
and the prediction points jura.raster.

> uk.grid <- krige(Co ~ X + Y, loc = jura.cal, newdata = jura.raster,
+ model = vrmf)

[using universal kriging]
> summary (uk.grid)

Object of class SpatialGridDataFrame
Coordinates:
min max
X 0.3 5.10
Y 0.4 5.75
Is projected: NA
proj4string : [NA]
Grid attributes:
cellcentre.offset cellsize cells.dim

X 0.325 0.05 96
Y 0.425 0.05 107
Data attributes:

varl.pred varl.var
Min. :2.93 Min. : 1.86

1st Qu.: 7.55 1st Qu.: 4.30
Median : 9.38 Median : 5.70

Mean :9.20 Mean : 8.28
3rd Qu.:11.01 3rd Qu.:12.74
Max. :15.82 Max. :19.85

We then plot the predictions:

> print(spplot(uk.grid, zcol="varl.pred",

+ col.regions=bpy.colors(64),

+ pretty=T, cuts=8,

+ main="UK predictions, Co (ppm)",

+ key.space="right",

+ panel=function(x,y,z, ...) {

+ panel.levelplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)
+ panel.points(coordinates(jura.cal),

+ cex=3*jura.cal$Co/max(jura.cal$Co),
+ pch=1, col="white")

+ 1))
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UK predictions, Co (ppm)

18

And then we plot the prediction variances:

> print(spplot(uk.grid, zcol="varl.var",

+ col.regions=topo.colors(64),

+ pretty=T, cuts=8,

+ main="UK predictions variances, Co (ppm~2)",
+ key.space="right",

+ panel=function(x,y,z, ...) {

+ panel.levelplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)
+ panel.points(coordinates(jura.cal),

+ pch=1, col="white")

+ M)

UK predictions variances, Co (ppm*2)
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Task 22 : Compute and plot a difference map between UK and OK predic-
tions and variances. .

First the computation: we make a new data frame, with two fields, which
we explicitly name pred and var:

> diff.ok.uk <- data.frame(pred = k.grid$varl.pred - uk.grid$varl.pred,
+ var = k.grid$varl.var - uk.grid$varl.var)
> str(diff.ok.uk)

'data.frame': 10272 obs. of 2 variables:
$ pred: num 2.96 2.92 2.88 2.85 2.81
$ var : num -4.84 -4.72 -4.59 -4.47 -4.35 ...

> coordinates(diff.ok.uk) <- coordinates(uk.grid)

Then we plot these differences; first the predictions:

> print(spplot(diff.ok.uk, zcol="pred", pretty=T, cuts=8,

+ col.regions=cm.colors(64),
+ main="0K - UK predictions, Co (ppm)",
+ key.space="right"))

OK - UK predictions, Co (ppm)

Then the variances:

> print(spplot(diff.ok.uk, zcol="var", pretty=T, cuts=8,

+ col.regions=terrain.colors(64),
+ main="0K - UK kriging variances, Co (ppm~2)",
+ key.space="right"))

23



OK - UK kriging variances, Co (ppm*2)

4

® [-4.845,-4.241
® (-4.241,-3.638
-3.638,-3.034
-3.034,-2.431

Q19 : What are the major differences? Explain. Jump to A19 e

Task 23 : Clean up from this section. .

> rm(diff.ok.uk)

3.5 * UK in a neighbourhood

In this optional section we see how to restrict the UK system to a local
neighbourhood. This allows local fitting of the trend surface, i.e. a non-
stationary trend. There is no theory for the selection of the neighbourhood
radius, but it often works well in practice if the radius is approximately the
variogram range, in this case about 1.3 km. Although the resulting map
is less smooth than the unrestricted UK map, the predictions are generally
quite similar, because the observation points within the range of the residual
process receive almost all of the kriging weight.

Task 24 : Compute UK predictions with a trend neighbourhood of 1.3 km;
compare with the UK predictions with a regional trend. o

The only modifications to the krige function call are the addition of two
optional arguments:

1. maxdist: the maximum distance from a prediction point to fit the
trend surface; this restricts the neighbourhood;

2. nmin: the minimum number of observations to use to make a predic-
tion; this ensures that a trend surface is not fitted with too few points.
We chose a minimum of 16 observations.
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> uk13.grid <- krige(Co ~ X + Y, loc = jura.cal,
+ newdata = jura.raster, model = vrmf,
+ maxdist=1.3, nmin=16)

[using universal kriging]

> print(spplot(uk13.grid, zcol="varl.pred",

+ col.regions=bpy.colors(64),

+ main="UK predictions, 1.3km radius, Co (ppm)",
+ xlab="E", ylab="N",

+ panel=function(x,y,z, ...) {

+ panel.levelplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)

+ panel.points(coordinates(jura.cal),

+ cex=3*jura.cal$Co/max(jura.cal$Co),
+ pch=1, col="white")

+ 19D

UK predictions, 1.3km radius, Co (ppm)

Q20 : What are the major differences between UK over the whole region
and with a restricted neighbourhood? Explain. Jump to A20 e

To help answer this, we summarize and plot the prediction differences:

> ukl13.grid$pred.diff <- uk13.grid$varl.pred - uk.grid$varl.pred
> summary(uk13.grid$pred.diff)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-6.23 -0.07 0.01 0.24 0.14 9.96 1720

> print(spplot(uk13.grid, zcol="pred.diff",

+ col.regions=cm.colors(64),

+ main="UK prediction differences, Co (ppm)",
+ sub="1.3km radius vs.\ all points",

+ xlab="E", ylab="N"))
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UK prediction differences, Co (ppm)

E
1.3km radius vs. all points

And we see how the predication variances differ:

> uk13.grid$var.diff <- uk.grid$varl.var - ukl3.grid$varl.var
> summary (uk13.grid$var.diff)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's
-91.00 -1.64 -0.01 -2.84 0.00 0.00 1720

> print(spplot(uk13.grid, zcol="var.diff",

+ pretty=T, cuts=8,

+ col.regions=terrain.colors(64),

+ main="UK prediction variance differences, Co (ppm~2)",
+ sub="all points vs. 1.3km radius",

+ xlab="E", ylab="N"))
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UK prediction variance differences, Co (ppm»2)

L Fo
[

L a0

-80

-100
E

all points vs. 1.3km radius

Q21 : What are the major differences between the prediction variances for
UK over the whole region and with a restricted neighbourhood? Explain.
Jump to A21 e

Challenge: Repeat this section with different neighbourhoods, and explore
the effect of changing neighbourhood size on the predictions and variances.

4 * Spurious patchiness with kriging in a neighbourhood

This optional section shows that using a neighbourhood for kriging can intro-
duce spurious patchiness in the result. This effect increases with increasing
nugget variance as a proportion of the total sill. To illustrate this, we create
a pure nugget variogram model for Co with the same total sill as the fitted
model, and then use it to predict by OK (1) using all points and (2) in a
neighbourhood.

Q22 : In theory, what should be the spatial pattern of the predictions and
their variances if kriging with a pure nugget variogram model? What should
be the predicted value? Jump to A22 e

> (vmn <- vgm(0O, "Pen", vmf[2, "range"], sum(vmf[,"psill"])))

model psill range
1 Nug 14.303 0.0000
2 Pen 0.000 1.5239

> ok.n <- krige(Co ~ 1, loc=jura.cal,
+ newdata=jura.raster, model=vmn)

[using ordinary kriging]
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> summary (ok.n@data)

varl.pred
Min. :9.
1st Qu.:9
Median :9
Mean :9.
3rd Qu.:9
Max. 19

W wwwww

> ok.n.w <- krige(Co ~ 1, loc=jura.cal,
newdata=jura.raster, model=vmn,
maxdist=1.3, nmin=16)

+
+

varl.va
Min. :14.
1st Qu.:14.
Median :14.
Mean :14.
3rd Qu.:14.
Max. :14.

[using ordinary kriging]

> summary (ok.n.w@data)

varl.pred
Min. 1 4.26
1st Qu.: 8.08
Median : 9.28

Mean :9.21
3rd Qu.:10.52
Max. :13.04
NA's 11720

varl.
Min.
1st Qu.:
Median
Mean
3rd Qu.:
Max .
NA's

> mean(jura.cal$Co)

[1] 9.3009

Here is a map of the OK predictions:

>
+
+
+
+
+
+
+
+
+
+
+

xlab="E",

1))

:14.

:14.
:14.

:15.
11720

NN NN NN NN NN

var

14.

14.

N N OO O

print (spplot(ok.n.w, zcol="varl.pred",
col.regions=bpy.colors(64),
main="0K predictions, 1.3km radius, Co (ppm)",
sub="pure nugget variogram model",
ylab="N",
panel=function(x,y,z,
panel.levelplot(x, y, z,
panel.grid(h=-1,v=-1, col="gray", 1lty=1)
panel.points(coordinates(jura.cal),
cex=3*jura.cal$Co/max(jura.cal$Co),
pch=1, col="white")
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OK predictions, 1.3km radius, Co (ppm)

pure nugget variogram model

And this is a map of the OK prediction variances:

> print(spplot(ok.n.w, zcol="varl.var",

+ col.regions=topo.colors(64),

+ main="0K prediction variances, 1.3km radius, Co (ppm~2)",
+ sub="pure nugget variogram model",

+ xlab="E", ylab="N",

+ panel=function(x,y,z, ...) {

+ panel.levelplot(x, y, z, ...)

+ panel.grid(h=-1,v=-1, col="gray", lty=1)
+ panel.points(coordinates(jura.cal),

+ pch=1, col="white")

+ M)
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4.1 Answers

OK prediction variances, 1.3km radius, Co (ppm*2)

r15.2

r15.1

r 15.0

r 14.9

14.8

14.7

14.6

14.5

14.4

pure nugget variogram model

Q23 : How do these maps differ from the map that would be produced
by using all observations for kriging from a pure nugget variogram model?
Jump to A23 e

Q24 : Which prediction is correct, the one produced by OK with all obser-
vations or that by OK in a neighbourhood? Jump to A24

Challenge: Repeat this section but with the fitted variogram model for Co.
Is there any spurious patchiness? Compare with the results of this section.
(Hint: consider the nugget’s proportion of the total sill.)

A13 : Yes; the lower values appear to be concentrated on the NW side and the
higher on the SE. The trend appears to run to the ENE (increasing); a plane seems
sufficient to model it. Return to Q13

A14 : The increase is towards the ESE, approximately 120° from North. Return
to Q14

A15: 13.9% is explained (see the adjusted R?). Return to Q15

A16 : Azimuth 116°. Return to Q16 e
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A17 : They are quite similar up till about 1 km separation; then the residual
variogram is significantly lower. This means that the trend has taken out some
of the long-range structure. The short-range dependence is almost the same. The
range of the residual variogram also appears to be a bit shorter. The small difference
reflects the low R? of the trend surface. Return to Q17 e

A18 : The residual variogram model has somewhat lower sill (about 1.5 lower)
and shorter range (about 0.18 km shorter). This reflects the variability taken out
by the trend. The nuggets are almost equal. Return to Q18 e

A19: The OK predictions are higher in the NW corner and lower in the SE corner
than the UK predictions This is because the global trend increases from NW to SE.

The OK kriging variances are much lower than for UK in the corners away from
sample points. This is because there is no error from the trend surface, which error
increases out from the centroid (centre of mass) of the sample points from which
the surface was calculated. Return to Q19 e

A20 : The UK with restricted neighbourhood is patchy; the slight regional trend
can not be seen; instead the trend surface conforms locally to observations in the
neighbourhood. The blank areas are those without at least 16 observations within
1.3 km. The differences are most marked near the edges, with few observations,
where the few nearby observations result in a local trend. Return to Q20 e

A21: The UK with restricted neighbourhood never has lower prediction variance,
because it is using less information. In the centre of the area the difference is effec-
tively zero, but at the edges, where fewer points are available within the radius, the
uncertainty increases dramatically. Recall, the grid cells on the edges are predicted
from just 16 observations. Return to Q21 e

A22 : The prediction and variance should be everywhere the same, because there
is no spatial dependence, hence no extra information from being nearer to known
observations. The predicted value is everywhere the arithmetic mean of all obser-
vations — this is at the same time the spatial mean, because there is no spatial
dependence to consider. The prediction variance is everywhere the total sill of the
variogram model. Return to Q22 e

A23: The predicted values vary greatly depending on the neighbourhood. Instead
of the single value 9.76 there are predictions over a wide range, from 4.265 to 13.042.
OK with a pure nugget variogram model in a neighbourhood is essentially a moving
average. Return to Q23 e

A24 : If the empirical variogram shows no evidence of spatial dependence, i.e.,
if a pure nugget variogram model is the best fit, OK over a neighbourhood shows
spurious patchiness and false “precision”. The correct prediction is everywhere the
mean, with a single prediction variance. Return to Q24 e

31



5 * Insight into the UK system

In this optional section we look at how gstat solves the universal kriging
system. This is an extension of what we saw for the OK system in the
previous exercise.

Because the size of the kriging matrix depends on the number of sample
points, we first reduce the size of the problem.

Task 25 :  Select the first six sample points of the prediction sample,
and their Co concentration. Define a one-point SpatialPoints object at
(3.0, 2.5) to be predicted.

> (jura.cal.6 <- jura.cal[1:6, "Co"])

coordinates Co
1 (2.386, 3.077) 9.32
2 (2.544, 1.972) 10.00
3 (2.807, 3.347) 10.60
4 (4.308, 1.933) 11.92
5 (4.383, 1.081) 16.32
6 (3.244, 4.519) 3.50

> (jura.pt <- SpatialPoints(data.frame(X = 3, Y = 2.5)))

SpatialPoints:
X Y
[1,] 3 2.5
Coordinate Reference System (CRS) arguments: NA

Task 26 : Predict at this point with UK with a first-order trend, showing the
kriging system, by using the optional debug.level argument to the krige
function. .

Note that the residual variogram model vrmf must be used for Universal
Kriging.

The optional debug. level argument is passed by krige to the predict.gstat
function which is what is actually doing the kriging, see ?predict.gstat for
various useful values. With debug.level=32 this prints the covariance ma-
trices, design matrices, solutions, and kriging weights.

> k.pt <- krige(Co ~ X + Y, locations = jura.cal.6, newdata = jura.pt,
+ model = vrmf, debug.level = 32)

[using universal kriging]
we're at location X: 3 Y: 2.5 Z: 0O

zero block size
we're at point X: 3 Y: 2.5 Z: O

# X:
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Matrix: 6 by 3

row O: 1 2.386
row 1: 1 2.544
row 2: 1 2.807
row 3: 1 4.308
row 4: 1 4.383
row 5: 1 3.244

.077
.972
.347
.933
.081
4.519

==, W e Ww

[using generalized covariances: max_val - semivariance()]

# Covariances (x_i, x_j) matrix C (lower triangle only):

Matrix: 6 by 6

row O: 12.8502702 0 0
0 0

row 1: 0.126071034 12.8502702 0
0 0

row 2: 4.18617845 0 12.8502702
0 0

row 3: 0 0 0
0 0

row 4: 0 0 0

12.8502702 0

row 5: 0 0 0.00984774609
0 12.8502702

# X'C-1 X:

Matrix: 3 by 3

row O: 0.415790555 1.37795277 1.09602191

row 1: 1.37795277 4.83623914 3.4492001

row 2: 1.09602191 3.4492001 3.45686012

# beta:

Vector: dim: 3

15.894892 0.599556878 -2.91373745

# Cov(beta), (X'C-1 X)-1:

Matrix: 3 by 3

row O: 96.9795145 -19.7729994 -11.0188553

row 1: -19.7729994 4.74849477 1.53119647

row 2: -11.0188553 1.53119647 2.25508225

# Corr(beta):

Matrix: 3 by 3

row O: 1 -0.921413494 -0.745101238

row 1: -0.921413494 1 0.467920145

row 2: -0.745101238 0.467920145

1

# X0 (X values at prediction location x0):

Matrix: 3 by 1

row O:

row 1:

row 2: 2.

g w =

# BLUE(mu), E(y(x0)) = XO'beta:
Vector: dim: 1

10.4092191
# Covariances (x_i, x_0), CO:
Matrix: 6 by 1

12.8502702

1.03997138
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row O: 1.11375274
row 1: 2.16156596
row 2: 0.965328826
row 3: 0
row 4: 0
row 5: 0
# C-1 CO:

Matrix: 6 by 1
row O: 0.0677451658

row 1 0.167547081
row 2 0.05305226
row 3: 0
row 4: 0
row 5: -4.06563582e-05

# [a] Cov_ij(B,B) or Cov_ij(0,0):
Matrix: 1 by 1
row O: 12.8502702

# [c] (x0-X'C-1 c0)'(X'C-1 X)-1(x0-X'C-1 c0):
Matrix: 1 by 1
row O: 1.30739838

# [b] c0'C-1 cO:
Matrix: 1 by 1
row O: 0.488828306

# Best Linear Unbiased Predictor:
Vector: dim: 1
10.3409813
# MSPE ([al-[bl+[c]):
Matrix: 1 by 1
row O: 13.6688402

# kriging weights:
Matrix: 6 by 1
row 0O: 0.199175674
0.353321362
row 2 0.147214249
row 3 0.0970322758
row 4: 0.118795406
5 0.0844610338

row

[ae

row

Working through this output, we see:
1. The prediction point and block size (here, zero);

2. The design matrix X with three columns: (1) a column of 1’s to predict
the spatial mean; (2) a column of the X coordinates of the sample
points; (3) a column of the Y coordinates of the sample points;

3. The covariance matrix C between sample points; this depends of course
on the variogram model;

4. The quadratic form X7 C~1X used in many of the subsequent calcula-
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tions; this accounts for the covariance between sample points;

5. The trend coefficients 3, estimated by GLS using the covariance ma-
trix; note that this replaces the spatial mean from the OK system; there
is a coefficient for the intercept and one each for each coordinate;

6. The covariance of the trend coefficients;
7. The correlation matrix of the trend coefficients;

8. The values of the basis functions at the prediction points, i.e. 1 and
the actual coordinates of the point;

9. The BLUE of the trend at the prediction point;

10. The covariance vector C, between the prediction point and each sample
point;

11. The product C~1Cp;

12. The within-block or at-point covariance, here just the total variogram
sill (estimating the overall variance);

13. A matrix product used in the BLUP;

14. A matrix product used in the BLUP;

15. The BLUP at the prediction point; this is the kriging prediction;
16. The kriging prediction variance at the prediction point;

17. The kriging weights, i.e. the weights given to each sample point when
their values are summed into the BLUP.

Q25 : In which direction is the trend? Jump to A25 e
The final result is in the kriging object:
> print(k.pt)

coordinates varl.pred varl.var
1 (3, 2.5) 10.341  13.669

Task 27 : Plot the sample points and their Co concentration, with the
prediction point and its predicted concentration and standard error of the
prediction. .

> plot(coordinates(jura.cal.6), col="blue",

+ pch=20, asp=1,

+ main="Sample and prediction points, UK",
+ sub="Co concentration")

> text(coordinates(jura.cal.6)[,"X"],

+ coordinates(jura.cal.6) [,"Y"],

+ col="blue", pos=2, jura.cal.6$Co)

> points(coordinates(jura.pt), col="red",

+ cex=1.2, pch=20)
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> text(coordinates(jura.pt), col="red", pos=4,
+ paste(round(k.pt$varl.pred,2),"+/-",
+ round (sqrt (k.pt$varl.var),3)))

Sample and prediction points, UK

- 35
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Note that the OK prediction (previous exercise) with this same system was
10.08 + 3.764. The extra information on the trend in the neighbourhood
of these six points has reduced the prediction variance somewhat, and the
trend itself has changd the prediction; it is slightly higher because the point
is a bit towards the SSE from the centroid of the six known points, which
have slightly higher values.

Task 28 : Display this plot but with the kriging weights, rather than the
predictions. Also display the OK weights for comparison. o

To find the weights, we capture the output into a workspace variable with
capture.output, and then search through it for the weights.

> tmp.uk <- capture.output(krige(Co ~ X + Y, locations = jura.cal.6,
+ newdata = jura.pt, model = vrmf, debug.level = 32))

> tmp.ok <- capture.output(krige(Co ~ 1, locations = jura.cal.6,

+ newdata = jura.pt, model = vmf, debug.level = 32))

Vv

str(tmp.uk)
chr [1:108] "[using universal kriging]" ...
> (ix <- which(tmp.uk == "# kriging weights:"))

[11 97
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> (n <- as.numeric(strsplit(tmp.uk[ix + 11, " ")[[1]1]1[2]))
[1] 6

> uk.wt <- NULL

> for (i in 1:n) uk.wt[i] <- as.numeric(strsplit(tmp.uk[ix +
+ 1+ i, ":")[[111[2])

> print(uk.wt)

[1] 0.199176 0.353321 0.147214 0.097032 0.118795 0.084461
> (ix <- which(tmp.ok == "# kriging weights:"))
(1] 89

> ok.wt <- NULL

> for (i in 1:n) ok.wt[i] <- as.numeric(strsplit(tmp.ok[ix +
+ 1+ i], ":")[[1]11[2])

> print (ok.wt)

[1] 0.17672 0.33760 0.17108 0.10144 0.10078 0.11239
> print(diff.wt <- round(uk.wt - ok.wt, 4))

[1] 0.0225 0.0157 -0.0239 -0.0044 0.0180 -0.0279

plot(coordinates(jura.cal.6), col="darkgreen",
pch=20, asp=1, ylim=c(0,5),
main="Kriging weights",
sub="0K: black; UK: dark green")

grid(

text (coordinates(jura.cal.6) [,"X"],
coordinates(jura.cal.6) [,"Y"],
col="darkgreen", pos=2, round(uk.wt, 3))

text (coordinates(jura.cal.6) [,"X"],
coordinates(jura.cal.6)[,"Y"],
col="black", pos=4, round(ok.wt, 3))

text (coordinates(jura.cal.6) [,"X"],
coordinates(jura.cal.6) [,"Y"],
col="blue", pos=3, 1:6)

points(coordinates(jura.pt), col="red",

cex=2, pch=20)

+ V 4+ 4+ V A+ +V++ VYV A+ o+ +V
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5.1 Answers

6 Self-test

Kriging weights

0 -
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OK: black; UK: dark green

Q26 : Which kriging weights changed the most from OK to UK? Explain
(hint: look at the previous answer). Jump to A26 e

Task 29 : Clean up from this section. .

> rm(ix, n, uk.wt, ok.wt, diff.wt)
> rm(jura.cal.6, jura.pt, k.pt)

A25: The trend is the plane defined by the six sample points, taking into account
the spatial correlation. It is given by the B coefficients: z =~ 15.9 + 0.6X — 2.9Y;
the trend is increasing to the SSE. Return to Q25 e

A26 : The largest increase in weight in the UK system is for point 1; point 2
also has a large increase. Points 3 and 6 have the largest decreases, i.e., their OK
weights are higher than their UK weights. An interesting change is in points 4 and
5: in OK they get the same weight but in UK the one that is more to the SSE
(point 5) has an increased weight, at the expense of point 4. Return to Q26

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the

38



knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

For this exercise we use a small dataset of soil samples from Oxfordshire,
UK, supplied as the example dataset oxford in the gstat package; this was
originally collected by Burrough et al. [2] and is also used as an example in
the text of Burrough and McDonnell [1].

Task 1: Load the Oxford dataset into the workspace, examine its structure,
and convert it to a spatial object by specifying the coordinates. o

Task 2 : Convert the oxford object from SpatialPointsDataFrame to
SpatialPixelsDataFrame by specifying that the points are on a grid, with
the gridded spatial method. .

Task 3 : Display a post-plot of attribute CEC1 (cation exchange capacity of
the topsoil). .

Q1 : Does there appear to be a trend in the CEC across the study area? If
so, in which direction? o

Task 4 : Optional: Compute first- and second-order trend surfaces as linear
models and summarize them. .

Q2 : Optional: How much of the variability is explained by the surfaces?

Q3 : Optional: What is the azimuth of the direction of maximum increase
for the first-order surface? o

Task 5 : Optional: Display these as contour plots. .

Task 6 : Compute the ordinary variogram and the residual variogram from

the suspected trends, and plot them on the same variogram graph. o
Q4 :  What are the differences between the ordinary and residual vari-
ograms? .
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Task 7 : Model the ordinary and residual variograms with the same model
form but different fitted parameters. .

Q5 :  What are the parameters of the fitted ordinary and residual vari-
ograms? By what proportion does the trend surface reduce the range and
sill? .

Task 8 : Predict the CEC by Block Ordinary and Block Universal Kriging,
on 100 x 100 m blocks centred at the sample points. Hint: you can use the
same object as both location and newdata. .

Task 9 : Display the prediction maps with the same colour scale. .

Q6 : Describe and explain the major spatial differences in the predictions.

Task 10 : Optional: Display the prediction variances with the same colour
scale. .

Q7 : Optional: Describe and explain the major spatial differences in the
prediction variances. .

Task 11 : Clean up the workspace. J
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nmin argument (krige function), 24
oxford dataset, 39

plot, 17
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predict.gstat (gstat package), 32
print (lattice package), 7
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round, 9

seq, 7

setwd, 6

sp package, 5

SpatialGrid (sp class), 14
SpatialPoints (sp package), 32
split argument (print function), 7
spplot (sp package), 7, 13

str, 14

type argument (plot function), 17
variogram (gstat package), 16

ylim argument (plot function), 17
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