Applied geostatistics
Exercise 1: Using the R Environment for Statistical Computing

Contents

D G Rossiter
University of Twente, Faculty of Geo-Information Science & Earth
Observation (ITC)

January 3, 2014

1 Introduction 1
2 R basics 2
3 First interaction with R 3
3.1 Answers. e e 9

4 Loading additional packages 10
5 Loading and examining an example dataset 11
Bl ADNSWEIS . . . o o vt e 13

6 Descriptive statistics 14
6.1 Summarizing one variable 0. 14
6.2 Finding a specific record in a dataframe 15
6.3 Selecting part of a dataframe 16
6.4 Logical expressions 18

6.4.1 Using logical expressions to select records in a data

frame 20

6.5 ANSWEIS. o v i e 22

7 Exploratory graphics 22
7.1 Univariate exploratory graphics 23

Version 2.0. Copyright (©) 2007-2010, 2012, 2014 University of Twente,
Faculty ITC All rights reserved. Reproduction and dissemination of the
work as a whole (not parts) freely permitted if this original copyright notice
is included. Sale or placement on a web site where payment must be made
to access this document is strictly prohibited. To adapt or translate please
contact the author (http://www.itc.nl/personal/rossiter).

http://www.itc.nl/personal/rossiter

7.1.1 * A classified boxplot
7.1.2 * An enhanced histogram
7.2 Answers for univariate exploratory graphics
7.3 Bivariate exploratory graphics
7.4 Answers for bivariate exploratory graphics.

8 Linear modelling

8.1 Answers for linear modelling

9 * User-defined functions

10 Quitting R

10.1 Saving your work — RStudio

10.2 Saving your work — R GUI
11 Self-test
References

Index of R concepts

33
35

36

37
38
38

39

41

43

ii

1 Introduction

BIIZRETEZR WNEZGETR L, TRZITHTET

- (ER) . HATHE

“A tree so big that one person can not embrace it begins as a
tiny shoot; a platform nine stories high is built from many
layers of earth; a journey of a thousand miles begins with one
step.”

— the Dé Jmg, Chapter 64

In this exercise you will learn the basics of the statistical computing envi-
ronment that we will use for geostatistical computing. This environment is
the powerful, flexible, programmable and almost limitless R environment for
statistical computing and visualisation [3, 6].

The R environment can be somewhat intimidating at first. Don’t worry; with
each lesson you will learn more and feel more comfortable. The purpose of
this first exercise is to familizatize you with the R way of doing some familiar
data organization and analysis tasks.

After completing this exercise you should be able to:

1. Start, interact with, and stop the R program;

Give commands to the R program and view the results;
Get on-line help for R commands.

Load an optional package;

Load and examine a dataset provided with R;
Compute descriptive statistics;

Display some common exploratory graphics;

®© N o Tt N

Compute and evaluate a simple linear model.

Beginning with the next exercise we will apply R to geostatistics.

The exercise is organized as a set of tasks followed by R code to accomplish
the task and the resulting output. The output you see on your system should
be the same (except when random numbers are generated). If not, go back
and check your work.

FEach task ends with a set of questions to check your understanding; answers
and explanations of them are given at the end of each section. You can
navigate between questions and answers with hyperlinks. You should answer
the questions for yourself, then click the hyperlink to check the model answer.
If your answer and the model agree, keep on going. If not, discover the cause
of the discrepency and re-do the task.

At the end of the guided exercise you will be given a self-test task and ques-
tions (§11), with neither code nor answers. You should be able to complete
the task and answer the questions with the knowledge you have gained from

2 R basics

the exercise. You should submit your answers to the instructor for grading
and sample answers.

Task 1 : Start R, preferably in an integrated development environment
(IDE) for R, such as RStudio. .

After starting R or the IDE, you will be looking at a console where you
interact with R. In RStudio, this is the CONSOLE window, usually on the
lower left.

The simplest way to use R is by typing commands in response to a command
prompt, which usually looks like this:

>

This > is a prompt symbol displayed by R, not typed by you. This is R’s
way of telling you it’s waiting for you to enter a command.

Type your command and press the Enter or Return keys; R will execute
(carry out) your command.

This method of interacting with R is called a command line interface (CLI).
There are several ways to enter R commands at the prompt:
1. Type them directly at the command prompt > as just explained;

2. Cut-and-paste from a document such as this one; make sure not to
include the prompt > or continuation prompt + in the text to paste;

3. Cut-and-paste from a text file with R code; all the code in these ex-
ercises is provided on the CD in directory Rcode; these files have the
name of the exercise or part of it, e.g. ex11, and extension .R. You can
open these files in any plain-text editor or an IDE, see next.

4. Prepare or load scripts in a code editor, e.g., the editor in the RStudio
IDE, and send them to the R console from within the editor environ-
ment.

Sometimes the command will result in numerical output listed in the same
console window under your command. Other command result in a graph
displayed in a separate window. And some commands just cause R to do
what you requested without any feedback.

R will accept the command once it is syntactically complete; in particular
any parentheses must balance. If you try to submit a command to R that
is not a complete, R will prompt you to complete it with the continuation
prompt symbol:

+

If you decide you don’t really want to submit a partially-entered command,
press the Esc key to cancel.

GUIs for R There are several groups developing graphical user interfaces (GUTI’s) for R;
these are listed at http://www.sciviews.org/_rgui/. Probably the most
used is the R Commander [2] written by John Fox; this is described at
http://socserv.mcmaster.ca/jfox/Misc/Remdr/. This is provided as an
optional package, which must be installed and loaded, as explained in §4,
below. We will not use the R Commander in these exercises, but you are
welcome to experiment with it.

Note: The code in these exercises was compiled with the Sweave func-
tion, running on R version 3.0.2 (2013-09-25), sp package Version: 1.0-14,
gstat package Package: gstat, and lattice package Version: 0.20-24 run-
ning on Mac OS X 10.7.5. So, the text and graphical output you see here
was automatically generated and incorporated into I#TEX by running the
code through R and its packages. Then the ITEX document was compiled
into the PDF version you are now reading. Your output may be slightly
different on different versions and on different platforms.

3 First interaction with R
At this point you should be looking at R’s prompt in a console window:

>

R is waiting for your command.

Using RStudio If you are using RStudio, the console window is as shown in 1; the prompt
is circled in red.

~/tmp/test - RStudio

A test~

” 5 | Environment History =0
% [| (#Import Dataset~ | 3 Clear | (& List~
R version 3.0.2 (2013-09-25) -- "Frisbee Sailing"
Copyright (C) 2013 The R Foundation for Statistical Computing
Platform: x86_64-apple-darwin10.8.0 (64-bit)

) Global Environment ~

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale Files | Plots | Packages | Help | Viewer =
= Export -
R is a collaborative project with many contributors.
Type 'contributors()’ for more information and
"citation()’ on how to cite R or R packages in publications.

Type 'demo()’ for some demos, 'help()' for on-line help, or
"help.start()’ for an HTML browser interface to help.
Type 'q()" to quit R.

<o

Figure 1: RStudio console window

If using RStudio you have the choice to work directly at the command
prompt or via a script window. The advantage of the latter approach is

http://www.sciviews.org/_rgui/
http://socserv.mcmaster.ca/jfox/Misc/Rcmdr/

that you can easily find the commands you’ve issued, edit them, and re-run
as necessary.

To start a new script, choose the File | New File ... | R Script menu
item, see Figure 2(a); this should open a script window, see Figure 2(b).

® Rstudio IO Edit Code View Plots Session Build Debug Tool

00 v]
e New FIIe > “URScript 0N oo
Q- 2~ New Project...
. Text File
Console Open FI|.e... #0 C++ File ~/tmp/t
Recent Files > TP =
R version 3.1 " R Sweave 2 5 -l B2
X . Open Project... R Markdown —
Copyright (C 0 Proi in New Wind @7 Untitled1 =
Platform: x8i pen Project in New Wincow. .. R HTML =
Recent Projects > R Presentation : [[JSourceonsave | Q /'~ ~#Run | 59 | [9 Source ~
R is free so
You are welc Rd File
Type 'licens: letails.
Natural lal sh locale
R is a collal s,
Type 'contril
‘citation()’ lications.
Close Project
Type 'demo() help, or
‘help.startC. Quit RStudio... lp.
Type 'qQ)' to yure e
>
11 | € (Top Level) * R Script +

Figure 2: RStudio script: (a) creating a new script; (b) empty script

Using RStudio

Using R GUI

What can we do here? For a start, we can use R as an interactive calculator
which returns the value of any mathematical expression:

Task 2 : Compute the number of radians in one degree of a circle. .

If you have just created a blank RStudio script, type' the following line in
the script window, without the prompt character:

2 x pi / 360

Then, press the “Run” button (circled in red in Figure 3); you will then see
the results in the console, as shown in the figure.

If you are not using RStudio scripts, type’ the following expression at the
console prompt, and press Enter:

> 2 % pi/360
You should then see the following output:

[1] 0.017453

Lor, cut-and-paste
2 or, cut-and-paste

~/tmp/t¢

@ Untitled1* =

& Osourceonsave | Q '~ 5% | % Source ~

2 * pi/360

N

2:1 | B (Top Level) R Script *

Console =
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
‘citation()’ on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

> 2 * pi/360
[1] ©.01745329

>

Figure 3: RStudio script: after entering and running a command from the script

As this example shows, R has a few built-in constants, among them pi for
the mathematical constant.?

However, we almost always use R functions, which are (roughly speaking)
commands to R. Let’s see a simple example of some useful functions and
how to put them together.

Suppose we have laid out a transect of 1000 m length across a study area,
and we want to sample at 10 random positions on this transect, to a precision
of 10 cm. We need to determine the positions of the samples with respect
to the start of the transect, to which we assign cotrdinate 0.

Q1 : What is the codrdinate of the other end of this transect? Jump to
Al e

Task 3 : Select a random sample of ten positions along the transect. Round
these to the nearest 0.1 m, and present them in order from the beginning to
the end of the transect. .

We will first do this one step at a time:
1. Select the random sample;
2. Round each position to one decimal place;
3. Sort the sample in ascending order

After this step-by-step approach, we will see how to do it in one command.

3 The Euler constant e can be calculated with the exp function as exp(1)

On-line help

Task 4 : Draw a random sample of ten positions along the transect and
print it. .

Note: You should enter commands with the RStudio script or the R console,
as you prefer; by using the RStudio scripts you have easy reference to the
commands already entered.

A random sample from the uniform distribution (each value equally likely)
is drawn with the runif function:

> runif (10, 0, 1000)

[1] 743.40 570.81 923.20 235.90 936.08 243.09 841.10 191.00 717.35
[10] 163.78

The result is a 10-element vector of uniformly-distributed random numbers
in the range [0...1000]; this result is printed below the command.

Q2 : Your results will be different from the ones printed in this note; why?
Jump to A2 e

This first example of an R function illustrates several important points:

1. R includes a large number of functions; in this case: runif to generate
random numbers from the uniform distribution;

2. R functions have arguments that specify the exact behaviour of the
function. The runif function has three arguments:

(a) The number of random numbers to produce (here 10, i.e. the
number of observations in the transect);

(b) The mimum value of the uniform range (here 0, i.e. the start of
the transect);

(¢) The maximum value of the uniform range (here 1000, i.e. the end
of the transect);

3. R has a rich set of functions for simulation of random processes; in
this case we simulated a uniform random process along a line.

How do we know how many arguments each function has and their meaning?
There is a printed manual, which lists each function with its arguments,
function, usage, and examples; this is reproduced as an on-line help system
within R. You can access this system with the help function, which can also
be written as ?.

Task 5 : Display the help for the runif function. .
> help(runif)

This can also be written as:

Listing
the objects in
the workspace

> 7runif

The help text for this function opens in another window or a browser window,
depending on how your R is configured.

Q3 : What are the three arguments to the runif function? Are they all
required? Does the order matter? Jump to A3 e

The call to the runif function, above, drew the sample and printed it for
us to view. But we can’t do anything more with it until we save the results
of a function in a local variable in the workspace. Then it is available to be
used as an argument to other functions.

Note: You can access the entire R help system with the help.start func-
tion; this will open an index page in your browser showing all the installed
packages.

We save the results of any command using the <- (assignment) operator.
This is written with two characters: < followed by -, with no space. This
looks like an arrow pointing to the left; you can easily remember that the R
command on the right-hand side of the assignment operator <- is “pointing
at” the left-hand side, which is the name of the workspace object into which
the results will be stored.

> sample <- runif(10, 0, 1000)

The sample has been stored in the workspace; we can check the contents of
the workspace with the 1s (“list”) function with an empty argument:

> 1s(O)
[1] "sample"

The 1s function is an example of a function with only optional arguments;
if no arguments are given, the default is to list the names of all the objects
in the workspace.

The objects in the workspace are also shown in the “Environment” tab of
the “Environment, History, Build” pane of RStudio.

So, we see that the sample object is in the workspace, but what is its value?
When R stores the results of a command in a workspace object it does not
also print the results on the console. We can see the value of any workspace
object with the print function:

> print (sample)

[1] 43.603 971.777 178.028 354.486 269.382 442.856 572.852 929.782
[9] 425.747 840.075

Q4 : This sample is different from the previous one. Why? Jump to A4 e

Now we have the positions, but they are too precise for us to locate in the
field; we are satisfied with 0.1 m precision.

Task 6 : Round each position along the transect to one decimal place, store
the results in the same variable, and print them. .

We use the round function:

> sample <- round(sample, 1)
> sample

[1] 43.6 971.8 178.0 354.5 269.4 442.9 572.9 929.8 425.7 840.1

The second line of this example shows that simply typing the object name
implicitly calls the print function; this is then another way of showing the
contents of an object in the workspace.

This command illustrates two other important feature of R:

e Many functions are vectorized: they can work on vectors (including
matrices) as well as scalars. Here the round function is modifying the
results of the runif function, which is a 10-element vector;

e An assignment can overwrite an object in the workspace; in this case
the previous value of sample (unrounded) is replaced by the rounded
value.

Now we have the positions to the right precision, but of course we want them
in order so we can visit them in order as we walk along the transect:

Task 7 : Sort the positions along the transect and print them. .
We use the sort function:
> (sample <- sort(sample))

[1] 43.6 178.0 269.4 354.5 425.7 442.9 572.9 840.1 929.8 971.8

Note that the sample is sorted in ascending order, i.e. from small to large.

Q5 : How do you tell R to sort in descending order, i.e. from large to
small? Jump to A5 e

This example shows another way of printing the output of an R command
that stores its results in a workspace object: by enclosing the whole com-
mand, including the assignment in parenthesis (...); this forces another
evaluation, which prints its results.

Now, here are the previous tasks combined into one and carried out by one
R command:

Removing
objects from
the workspace

3.1 Answers

Task 8 : Select a random sample of ten positions along the transect. Round
these to the nearest 0.1 m, and present them in order from the beginning to
the end of the transect. .

> sort(round(runif (10, 0, 1000), 1))
[1] 18.6 116.6 124.9 291.4 297.3 472.9 671.8 733.3 904.3 929.9

Isn’t that easier?

This example illustrates another important feature of R:

e Values returned by a function can be immediately used as an argument
to another function. Here the results of runif is the vector to be
rounded by the round function; and these are then used by the sort
function. To understand a complex expression, read it from the inside
out.

We are done with the local variable sample, so we remove it from the
workspace with the rm (“remove”) function:

Task 9 : Remove the temporary variable sample from the workspace. .

We check the ‘before’ and ‘after’ contents of the workspace with the 1s
function:

> 1s0)
[1] "sample"

> rm(sample)
> 1s0)

character(0)

The result character (0) is R-speak for an empty vector of character strings,
i.e. there are no names of objects to list.

A1 : 1000 m Return to Q1 e

A2 : Random number generation gives a different result each time.*. Return to
Q2 e

A3 : There are three possible arguments: the number of samples n, the minimum
value min and the maximum max. The last two are not required and default to O

4 To start a simulation at the same point (e.g. for testing) use the set.seed function

and 1, respectively. If arguments are named directly, they can be put in any order.
If not, they have to follow the default order. Return to Q3 e

A4 : Same answer as above: random number generation gives a different result
each time. Return to Q4 e

A5 : Call sort with the optional argument decreasing=TRUE, e.g. (sample <-
sort (sample, decreasing=TRUE)). Note: This can be abbreviated to d=T.

If you couldn’t answer this question . ..did you look at the help text? Return to

Q5 o

4 Loading additional packages

When R starts, it loads a small set of basic packages which are necessary to
support the S language, basic statistics, and base graphics.

Task 10 : Display the list of loaded packages. J
This is done with the search function with no arguments:

> search()

[1] ".GlobalEnv" "package:stats" "package:graphics"
[4] "package:grDevices" "ESSR" "package:utils"
[7] "package:datasets" "package:methods" "Autoloads"

[10] "package:Dbase"

Note: Your list will not look exactly like this; the displayed example shows
the packages loaded when this exercise was compiled.

There are a large number of optional packages for specific statistical pro-
cedures which must be loaded during each session before they can be used.
Some of these are quite common, e.g. lattice for Trellis graphics [9]. Others
are more specialised, e.g. for geostatistics, time-series analysis, neural net-
works, and non-linar models. We will use the gstat geostatistical package
[5] extensively in this module. The gstat package imports functions from
the sp “classes for spatial data” package.

Task 11 : Display the list of installed packages and find gstat in the list. o
This is done with the library function with no argument:

> library()

This function will open a window with a list of all available packages; scroll
down to find gstat.

Note: If gstat and sp are not in the list, you must first install them from
the on-line R package archive known as CRAN:

10

1. Make sure your computer is connected to the Internet;
2. Select menu item Packages | Install Package(s) from CRAN ...;

3. You will be asked to select a mirror; this is a computer near you that
stores all the materials from CRAN so we don’t depend on on server;

4. From the long list, select the package(s) you want, here gstat and sp,
and confirm.

5. R will install them, and they are now ready to load and use.

Task 12 : Load the gstat and sp packages into the R workspace. o

To load an installed package, use the require function, which first checks
whether the library is already loaded, and only if not, loads it.

> require(sp)
> require(gstat)

Task 13 : Confirm that the two packages were loaded. .
As before, the search function shows all loaded libraries:

> search()

[1] ".GlobalEnv" "package:gstat" "package:sp"

[4] "package:stats" "package:graphics" "package:grDevices"

[7] "ESSR" "package:utils" "package:datasets"
[10] "package:methods" "Autoloads" "package :base"

You should now see gstat, as well as sp, in the list of packages in the search
path.

5 Loading and examining an example dataset

R comes with many example datasets (part of the default datasets package)
and most add-in packages also include example datasets. These are used
to test statistical functions, and are a good example of the ‘open source’
collaborative attitude to collective scientific knowledge exemplified by the R
project.

Note: Of course, there are many ways to get your own data into R; we will
see some of them in later lessons.

Task 14 : Display the list of installed datasets. .
This is done with the data function with no argument:

> data()

This function will open a window with a list of all available datasets, orga-
nized by package. The dataset we will use for this exercises is provided with
the sp package, which was just loaded along with gstat.

11

Task 15 : Scroll down to the list of datasets for the sp package. .

Q6 : Three of the listed datasets refer to the Meuse river. What are the
names of the datasets? Jump to A6 e

Datasets are also documented in the help system.

Task 16 : Display the help for the meuse dataset. .

> help(meuse)

Q7 : According to the help text, where can you find more information
about this dataset? Jump to A7 e
Task 17 : Load the Meuse data set. .

To load a dataset, use the data function, naming the dataset you want to
load:

> data(meuse)

Task 18 : Verify that the objects from the meuse dataset have been loaded.

Remember (§3), to list the objects in the workspace, we can use the 1s
function:

> 1s()

[1] "meuse"

Task 19 : Examine the structure of the meuse object. 0

To examine the structure, use the str function:

> str(meuse)

'data.frame': 155 obs. of 14 variables:

$ x : num 181072 181025 181165 181298 181307 ...

$y : num 333611 333558 333537 333484 333330 ...

$ cadmium: num 11.7 8.6 6.5 2.6 2.8 3 3.2 2.8 2.4 1.6 ...
$ copper : num 85 81 68 81 48 61 31 29 37 24 ...

$ lead : num 299 277 199 116 117 137 132 150 133 80 ...
$ zinc : num 1022 1141 640 257 269 ...

$ elev :num 7.91 6.98 7.8 7.66 7.48 ...

$ dist : num 0.00136 0.01222 0.10303 0.19009 0.27709 ...
$ om : num 13.6 14 13 8 8.7 7.8 9.2 9.5 10.6 6.3 ...

12

$ ffreq : Factor w/ 3 levels "1","2","3": 1111111111 ...

$ soil : Factor w/ 3 levels "1","2","3": 1 112222112 ...

$ lime : Factor w/ 2 levels "O","1": 2221111111 ...

$ landuse: Factor w/ 15 levels "Aa","Ab","Ag",..: 44 4 11 4 11 42 2 15 ...

$ dist.m : num 50 30 150 270 380 470 240 120 240 420 ...

The first line of output tells us that meuse is a data frame, which the class
of object used to hold most data sets.

The following lines show the fields (attributes, variables); here we see:
e two coordinates (here named x and y);
e four categorical variables (fields ffreq, soil, lime and landuse);

e four continuous variables, representing element concentrations from
soil samples measured in mg kg-1: fields cadmium, copper, zinc and
lead);

e another continuous variable for the organic matter concentration in
weight percent (om);

e three more continuous variable for (1) the elevation in meters above
a local base level (elev) and (2) the distance from the river, both
absolute (dist.m) and normalized (dist).

Q8 : How can you find the above information on-line? Jump to A8 e

Each field then has a a set of values, one per observation.

Q9 : How many variables are there in this dataset? How many observations?
Jump to A9 e

5.1 Answers

A6 : (1) meuse, the Meuse river data set; (2) meuse.grid, a prediction grid for
this area; (3) meuse.riv, an outline of the River Meuse in the area. Return to Q6

A7 : The on-line help text cites the textbook by Burrough and McDonnell [1];
however (if you have this book you can check) it doesn’t give too much more infor-
mation. The dataset is fully described in the field report by Rikken and Van Rijn
[7]. Return to Q7 e

A8 : From the information in the help text (?meuse) and the reference mentioned
in the help text. Return to Q8 e

A9 : 14 variables (fields), each with 155 observations (cases). Return to Q9

13

6 Descriptive statistics

In this section we see how to do some simple data description with R.

6.1 Summarizing one variable

Let’s first look at one attribute, the lead (Pb) content. This metal is a serious
human health hazard. It can be inhaled as dust from disturbed soil or taken
up by plants and ingested by humans and animals as they eat the plants.
The critical value for Pb in agricultural soils, according to the Berlin Digital
Environmental Atlas®, is 600 mg kg-1 for agricultural fields: above this level
grain crops can not be grown for human consumption. Above 300 mg kg-!
crops must be tested; above 100 mg kg-! consumption of leafy vegetables
should be avoided. Levels below 200 mg kg-! are required for sports fields
or parks where soil may become bare from over-use. Natural levels in most
unpolluted soils are on the order of 30 mg kg-1.

Task 20 : Summarize the lead content of the 155 soil samples. o

For almost all R objects, the summary function will provide a simple sum-
mary:

> summary (meuse$lead)

Min. 1st Qu. Median Mean 3rd Qu. Max.
37.0 72.5 123.0 153.0 207.0 654.0

This example shows that fields in the data frame are commonly referred to
by their name, using the syntax frame$field. You can think of the $ sign as
an extraction function: extract the named field, here lead, from the named
frame.

Note: The vector lead is not an object in the workspace; the only object
is the meuse dataframe, of which lead is one field. This name is only visible
as a field of the dataframe, using the $ syntax.

Q10 : In the expression meuse$lead, what is the name of the data frame

and what is the name of the field (variable)? Jump to A10 e
Q11 : What are the minimum and maximum lead concentrations in this
sample? Jump to All e

There are many R functions to summarize a list of numbers; these have
obvious names: min, max, median, mean, range, var (sample variance), sd
(sample standard deviation), and quantile:

> min(meuse$lead)

Shttp://www.stadtentwicklung.berlin.de/umwelt/umveltatlas/ed103103.htm

14

http://www.stadtentwicklung.berlin.de/umwelt/umweltatlas/ed103103.htm

[1] 37

> max(meuse$lead)
[1] 654

> median(meuse$lead)
[1] 123

> mean (meuse$lead)
[1] 153.36

> range (meuse$lead)
[1] 37 654

> var (meuse$lead)
[1] 12392

> sd(meuse$lead)

[1] 111.32

> quantile(meuse$lead)

0% 25% B0% 75%

37.0 72.5 123.0 207.0 654.0

> quantile(meuse$lead, seq(0, 1, 0.1))

0% 10% 20% 30%

70% 80% 90% 100%

37.0 50.0 65.8 77.2 87.0 123.0 148.0 182.6 226.4 290.4 654.0

The quantile function is typical of R functions: it has a default second
argument for the quantiles to be computed, but this can be over-ridden if
we want a different list; here we used the seq function to specify the vector

0, 0.1 ... 0.9, 1 to get the deciles.

6.2 Finding a specific record in a dataframe

Let’s do some useful analysis:

Task 21 : Display the record for the most polluted observation. .

First we determine which of the 155 observations has the maximum value,

with the which.max function®:

> which.max(meuse$lead)

[1] 54

6 there is of course a which.min function

15

Viewing
a data frame
as a matrix

Q12 : Of the 155 rows of the data frame, representing the observations ,
which row contains the record for the most polluted observation? Jump to
Al2 e

To display this record, we introduce another way of looking at R data frames:
as a two-dimensional matrix, where the rows are the cases (observations) and
the columns are the fields (variables). The matrix is referred to in standard
mathematical notation with square brackets: [row, column J]; this is the
[] operator.

First, we look at the whole data frame in matrix form using the fix function,
which is also used to edit values in a data frame.

6.3 Selecting part of a dataframe

Now we see how to use matrix notation to select parts of the data frame.
We will see two notations: (1) specifying rows and columns directly, and (2)
by logical conditions for rows.

First, one row:

> meuse [which.max(meuse$lead),]

X y cadmium copper lead zinc elev dist om ffreq

55 179973 332255 12 117 654 1839 7.9 0.0054321 16.5 1
soil lime landuse dist.m
55 1 1 W 10

In this expression which.max (meuse$lead) returns the value 54, as we saw
before; so this expression is equivalent to:

> meuse[54,]

This shows us all fields (columns) of the 54th record, because the second
(column) subscript (after the comma) is left blank.

Q13 : How close is this observation to the river? Jump to Al3 e

Note: You might be confused about the number 55 that is printed at the
left of the output, before the field values. This is the row name of the 54th
record; this is a character string, not a number. We can get a clue to why
the 54th record has row name 55 by listing all the row names of the meuse
data frame with the row.names function:

> row.names (meuse)

[1] "1 m2m 3w ngno wptomgno wgno wgn o mgn o wgQn
[11] "11" "12" 13" "14" "15" 16" "17" "18" "19" "20"
[21] I1211| ll22|l I1231| ll24|l I125" l126|I Il27ll |128|I Il29’l lIBOH
[31] "31" "32" "33" *"34" 35" "37" "38" "39" "40" "41"
[41] "42" "43" "44" 45" "46" "47" 48" "49" "50" "51"
[51] "s2" "53" 54" BB "BE" "57" 58" "E9" "60" "61"
[61] "62" "63" 64" "65" "66" "67" "69" "7E" 76" "79"

16

[71]
[81]
[91]
[101]
[111]
[121]
[131]
[141]
[151]

Il80ll
|l90l|
I195"
Il105ll
Il116|l
Il127|l
|l161|l
I1146Il
Il156ll

"81"

n 123"
ll96ll

n 106"
n 117"
n 128"
n 162"
n 147"
n 157"

Il82ll

|l160|l
I197ll

Il108|l
Il118|l
Il129|l
|l137|l
I1148Il
Il158ll

"83"

n 163"
l|98ll

n 109"
n 119"
n 130"
n 138"
n 149"
n 159"

|l84ll
|l70l|
I199"
Il110|l
Il120|l
Il131|l
|l140|l
I1150Il
Il164ll

l185ll

||71I|

] 100"
n 111"
n 121"
n 132"
n 141”
n 151"

Il86ll

|l91ll

IllOlll
Il112|l
Il122|l
Il133|l
n 142"
Il152ll

|I87II

||92|l

n 102"
n 113"
n 124"
n 134”
n 143"
n 153!1

Il88ll

|l93ll

I1103Il
Il114ll
Il125|l
Il135|l
n 144"
Il154ll

Here we can see that the names range from "1" to "164"; these are most
likely the original sample numbers from the soil pollution study. Nine of
the original samples are not in this data frame, e.g. original sample "36" is
missing. This is explained in the help text for the meuse.all data set: “Eight
samples were left out because they were not indicative for the metal content
of the soil. They were taken in an old pit. One sample contains an outlying
zinc value, which was also discarded for the meuse (155) data set.”

|I89|I

||94|l

n 104"
n 115"
n 126"
n 136“
n 145"
n 155"

Let’s see some other ways to specify individual or groups of rows and columns;
the output should explain each format.

Task 22 : Display all columns (fields) of the first five rows (records).

> meuse[1:5,]

X

O W

y cadmium copper lead

181072 333611
181025 333558
181165 333537
181298 333484
181307 333330

11.7

8.6
6.5
2.6
2.8

soil lime landuse dis

1

O WN -
NN = =

1

O O - =

Ah
Ah
Ah
Ga
Ah

t.m
50
30

150

270

380

85 299
81 277
68 199
81 116
48 117

zinc
1022
1141
640
257
269

elev
7.909
6.983
7.800
7.655
7.480

dist

0.001358
0.012224
0.103029
0.190094
0.277090

=

e
0 00 W P W
~NO O OO,

om ffreq

N

Task 23 :
(records).

> meuse[1:5, 1:2]

X

Display the first two columns (fields) of the first five rows

y

1 181072 333611
2 181025 333558
3 181165 333537
4 181298 333484
5 181307 333330

Task 24 : Display columns (fields) 3 through 6 and 9 of the 20th observation

(record).

17

> meuse[20, c(3:6, 9)]

cadmium copper lead zinc om
20 12.9 95 284 1052 14.8

Task 25 : Display the organic matter content for the first five observations.

L]
> meuse[1:5, "om"]

[1] 13.6 14.0 13.0 8.0 8.7

Task 26 : Display the contents of the other three metals, for the site that
is least polluted with lead. .

For this we need to use the which.min function to select the observations
that match the selection criterion:

> meuse[which.min(meuse$lead), c("cadmium", "copper", "zinc")]

cadmium copper zinc
161 0.8 18 126

6.4 Logical expressions

Now we move to another analysis, namely to determine the level of pollution
in the whole sample. We use this analysis to illustrate the use of logical
expressions in R. We begin with an example.

Task 27 : Determine the proportion of samples that are above the critical
values of 600, 300, 200 and 100 mg kg-1. .

First we do this one at a time, using the sum function to count the number
of cases when a logical expression is TRUE.

Start with the highest threshold, 600 mg kg-1:

> round(sum(meuse$lead > 600)/length(meuse$lead) * 100,
+ 1)

[1] 0.6

The logical expression here is (meuse$lead > 600). This is either TRUE or
FALSE for each. When we sum these, the TRUE are counted as 1 and the FALSE
as 0. We compare this to the length of the vector to get the proportion:

Note: R defines the usual logical operators for arithmetical comparison, i.e.
>, <, >= (greater than or equal), <=, ==, and != (not equal to). Note that
“equal to” must be written with two equals signs: ==.

> meuse$lead > 600

18

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[41] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[51] FALSE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[71] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[81] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[101] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[131] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[141] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[151] FALSE FALSE FALSE FALSE FALSE

> sum(meuse$lead > 600)

(11 1

> length(meuse$lead)

[1] 155

> sum(meuse$lead > 600)/length(meuse$lead)

[1] 0.0064516

Then we multiplied by 100 to get a percentage and rounded to one decimal
place.

Q14 : How many of the 155 observations are above the 600 mg kg-!
threshold? What is this as a percentage? Jump to Al4 e

Now for the other thresholds:

> round (sum(meuse$lead > 300)/length(meuse$lead) * 100,
+ 1)

[1] 8.4

> round(sum(meuse$lead > 200)/length(meuse$lead) * 100,
+ 1)

[1] 27.1

> round(sum(meuse$lead > 100)/length(meuse$lead) * 100,
+ 1)

[1] 54.8

> round(sum(meuse$lead > 30)/length(meuse$lead) * 100,
+ 1)

[1] 100

19

Q15 : What proportion of the observations are above the natural (back-
ground) level of 30 mg kg-17 Above the safe limit for sports fields, 200 mg kg-1?
Jump to Al5 e

6.4.1 Using logical expressions to select records in a data frame

Logical expressions provide another way to select rows (records, fields) from
data frames, i.e. rows that meet some logical condition; this continues the
discussion of §6.3.

Task 28 : Select the observations from the rarely-flooded soils. .

The on-line documentation in this case doesn’t help so much; but reference
to the original field report [7] reveals that in field ffreq, the rarely-flooded
soils are indicated by code 3. We use this in a logical condition in the row
position of the matrix notation:

We build this up piece-by-piece so that you can see what is going on “behind
the scenes”; this should give a better understanding when you attempt to
write your own selection expressions.

First, we compute a vector with the same length as the number of rows
(records) in the data frame, showing whether the row meets the condition:

> summary (meuse$ffreq)

1 2 3
84 48 23

> meuse$ffreq == "3"

[1] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[11] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[21] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[31] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[41] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[51] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[61] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[71] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[81] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[91] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE

[101] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[111] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[121] FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE FALSE
[131] FALSE FALSE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[141] TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE TRUE
[151] TRUE TRUE TRUE TRUE TRUE

> summary (meuse$ffreq == "3")

Mode FALSE TRUE NA's
logical 132 23 0

20

Q16 : How many records meet the condition (rarely flooded)? How many
do not? What is the meaning of the third category in the summary? Jump

to A16 e

The logical vector of T and F values can then be used in the row position of
the selection; only the rows where the logical vector is T will be selected:

> meuse.flood3 <- meuse[meuse$ffreq == "3",]
> str(meuse.flood3)

'data.frame':

20 14 46 29 19 31 27 29 22 20 ...
80 49 42 48 41 73 146 95 72 51 ...

23 obs. of

14 variables:
180923 180467 179917 179822 179991 ...
332874 331694 331325 331242 331069 ...
0.2 0.20.810.81.221.51.10.8 ...

220 133 141 158 129 206 451 296 189 154 ...

9.
0.
4.

$ x : num
$y ! num

$ cadmium: num

$ copper : num

$ lead : num

$ zinc : num

$ elev : num

$ dist : num

$ om : num

$ ffreq : Factor
$ soil : Factor
$ lime : Factor
$ landuse: Factor
$

228 0.598 0.
4 4.4 4.55.

w/ 3 levels
w/ 3 levels
w/ 2 levels

w/ 15 levels "Aa","Ab","Ag",..:
dist.m : num 290 680 540 480 720 380 310 430 370 290 ...

15 10.08 9.97 10.14 10.32 ...
446 0.397 0.581 ...

24.66.975.46.25 ...

rar,m2n,m3": 3333333333 ...
mr,r2nm3t: 1222311111
"o","1": 1111111111 ..

15551515 154 4 10 ...

Q17 : How many records are in this subset? How many fields? Jump to

Al7 e

We can ask the same questions about the subset (i.e. only rarely-flooded
soils) as we did about the whole set. We repeat the task and questions from

§6.1:

Task 29 : Summarize the lead content of the soil samples from the rarely-
flooded soils; compare these to the summary statistics for the whole sample.

> summary (meuse.flood3$lead)

Min. 1st Qu.
41 51

Median

80

> summary (meuse$lead)

Min. 1st Qu.
37.0 72.5

Median

123.0

Mean
103

Mean
153.0

3rd Qu.
141

3rd Qu.
207.0

Max.
258

Max.
654.0

Q18 : How do the lead concentrations of the rarely-flooded soils compare
the the lead concentrations of the full sample?

Jump to A18 e

21

6.5 Answers

We are finished with the dataframe containing the subsample, so we remove
it from the workspace with the rm function:

> rm(meuse.flood3)

A10 : The data frame is meuse, the field is lead. Return to Q10 e

A11: Minimum 37.0, maximum 654.0. Return to Q11 e

A12 : The 54th row; this is the vector index given as output by which.max.
Return to Q12

A13: 10 m (see field dist.m). Return to Q13 e
A14 : 1 observation; this is 0.6%. Return to Q14 e
A15: All of them; 27 .1%. Return to Q15

A16 : 23 yes, 132 no. The third category, marked NA's, is the number of “not
available”, i.e. observations with missing values. In this case there are none. Return
to Q16 e

A17 : Twenty-three (23) records (observations); all 14 fields were selected, same
as the original dataframe. Return to Q17

A18: Quite a bit lower. Return to Q18

7 Exploratory graphics

R provides a rich environment for statistical visualisation [4]. There are sev-
eral graphics systems, including the base system (in the graphics package,
loaded by default when R starts), the Trellis system (implemented in R by
the lattice package [10]), the“Grammar of Graphics” system [11] (imple-
mented in R by the ggplot2 package); we will use the base graphics in this
exercise.

Before beginning a data analysis, it is helpful to visualize the dataset. R is
an excellent environment for visualisation; it can produce simple plots but
also plots of unlimited sophistication, information and beauty. We look first
at single variables and then at the relation between two variables.

22

7.1 Univariate exploratory graphics

Saving graphic
output

Enhancing
graphics

Task 30 : Visualise the frequency distribution of lead content in the soil
samples with a frequency histogram. .

A histogram, displayed by the hist function, shows the distribution:

> hist(meuse$lead)

Histogram of meuse$lead

40

30
|

Frequency

0 100 200 300 400 500 600 700

meuse$lead

In the RStudio IDE, the graphic will be displayed in the “Plots” tab of
the “Files, Plots, Packages, Help, Viewer” pane; you can bring the graphics
window to the front with CTRL46.

Q19 : What are the two axes of the default histogram? Jump to A19 e

Q20 : Describe the distribution: is it symmetric or skewed? What is
the modal (most common) range of values? Does there appear to be one

population or several? Jump to A20 e

You can save the graphics window to any common graphics format.

In the RStudio IDE, click the “Export” button on the graphics display win-
dow.

Note:
click on its title bar), select menu command File | Save as ...
one of the formats.

In the Windows GUI, bring the graphics window to the front (e.g.
and then

All R graphics, including histograms, can be enhanced. Here we change the
break points with the breaks argument, the colour of the bars with the col
argument, the colour of the border with the border argument, and supply

23

a title with the main argument; we then add a rug plot (with, what else?,
the rug function) along the x-axis to show the actual observations.

Note: R graphics are very customizable; for a good introduction to the
possibilities, including how to specify colours, see §5 of Rossiter [8]. For now
you should just follow along with the examples in this tutorial.

The rug function is an example of a graphics function that adds to an existing
plot; whereas hist creates a new plot. Which does which? Consult the help.

> hist(meuse$lead, breaks = seq(0, 700, by = 40), col = "lightblue",
+ border = "red", main = "Lead concentration by weight, ppm")
> rug(meuse$lead)

Lead concentration by weight, ppm

Frequency
30 40
|

20

10

© - T LI T | |
T I T T 1

0 100 200 300 400 500 600 700

meuse$lead

Note the use of the seq (“sequence”) function to make a list of break points.
The main= argument is used to specify the main title; there is also a sub=
argument for a subtitle.

Note: To see the list of named colours, use the colors command with no
argument: colors(). There are many other ways to specify colours; see
Rossiter [8, §5.5] and ?colors.

Q21 : How do you find out about the various options for the histogram?
Jump to A21 e

Task 31 : Visualise the frequency distribution of lead concentration with a

stem plot. .
Stem-and-leaf A stem-and-leaf plot, displayed by the stem function, shows the numerical
plots values themselves, to some precision:

> stem(meuse$lead)

24

Boxplots

The decimal point is 2 digit(s) to the right of the |

4444
55555555555555555566666677777777TTTT7T7888888888888888899999999
000001122222233333344444

555555666667777888899

000011111222334444

55667888899

001233

0113
668
4

DO O WWNNRER, R~ OO

Q22 : What is the advantage of the stem plot over the histogram? Jump
to A22 e

The stem plot can be difficult to interpret if you are seeing it for the first
time. There are two parts: the stem (to the left of the |) and the leaf (to
the right). Notice the text that says The decimal point is 2 digits to
the right of the |. So the first stem 0 and the first leaf |4| mean that
the minimum value is approximately 040, i.e. 40.

Q23 : How many observations have a value of approximately 407 Jump
to A23 e

We can check this with the head function applied to the sorted list:
> head(sort(meuse$lead), 10)

[1] 37 39 41 42 45 48 48 48 48 48

Q24 : What are the lead values of the observations that were reported as
approximately 40 in the stem plot? Jump to A24 e

Q25 : According to the stem plot, what is the approximate maximum lead
value? Jump to A25 e

Another useful univariate plot is the boxplot, which gives a rough idea of
the shape of a unimodal distribution.

Task 32 : Visualise the quantiles of distribution of the lead concentration
with a box plot; repeat for the base-10 log of the lead concentration. o

> boxplot (meuse$lead, boxwex = 0.5, ylab = "Pb, mg/kg")

25

600
|

500
|

Pb, mg/kg

300
|

200
|

100
|

\'4

boxplot(logl0(meuse$lead), horizontal = T, boxwex = 0.4,
xlab = "Pb concentration, loglO(mg/kg)", main = "Meuse soils",
col = "gray80")

+ +

Meuse soils

T T T T T T T
16 18 20 22 2.4 26 2.8

Pb concentration, log10(mg/kg)

7.1.1 * A classified boxplot

Note: Sections marked with * are optional; they show some advanced fea-
tures but can be skipped without loss of continuity.

The data displayed in a boxplot can be split by some classifying factor; this
shows the distribution for each level of the factor separately, and allows us
to see if the levels differ for the variable being plotted.

Q26 : Look again at the structure of the meuse dataframe. Which variables
are listed as classified factors? Jump to A26 e

It is suspected that floodwater is carrying the metals from upstream indus-
tries; so the classified factor ffreq (flood frequency) might well show some
differences.

26

Task 33 : Display the different flood frequency classes. o
The classes of a factor can be listed with the levels function:
> levels(meuse$ffreq)

[1] Illll IIQII I13ll

Q27 : How many flood frequency classes are there in the study area? What
are their names? Jump to A27 e

Task 34 : Display a boxplot of lead concentration, classified by flood fre-
quency. .

To show the “dependency”, we use the formula operator ~, which can roughly
be read as “is described by”. So the expression lead ~ ffreq in the follwing
command can be read “please show the lead content, separately for each
flood frequency class”.

We also take this opportunity to specify some optional arguments to make
a nice graph.

> boxplot(lead ~ ffreq, horizontal=T, boxwex=.4,

+ col=c("skyblue", "steelblue", "gray"),
+ main="Meuse soils", ylab="Flood frequency class",
+ xlab="lead, ppm", data=meuse)

Meuse soils

Flood frequency class
2
l
8
°

100 200 300 400 500 600

lead, ppm

Note the use of the data argument to the boxplot function; this tells the
function to look for variable names, in this case 1lead and zinc, in the named
dataframe, here meuse. This command could also have been written like:

> boxplot (meuse$lead ~ meuse$ffreq)

27

Q28 : How does the distribution of lead concentration differ by flood fre-
quency? Jump to A28

7.1.2 * An enhanced histogram

This is a nice illustration of the power of R graphics. It is included here just
to impress you with the possibilities.

Task 35 : Display a histogram of the lead concentration with break points
every 50 mg kg-l., with the count in each histogram bin printed on the
appropriate bar. Shade the bars according to their count, in a colour ramp
with low counts whiter and high counts redder. .

The solution to this task depends on the fact that the hist function not only
plots a histogram graph, it can also return an object which can be assigned
to an object in the workspace; we can then examine the object to find the
counts, breakpoints etc.

We first compute the histogram but don’t plot it (plot=F argument), then
draw it with the plot command, specifying a colour ramp, which uses the
computed counts, and a title. Then the text command adds text to the
plot at (x, y) positions computed from the class mid-points and counts;
the pos=3 argument puts the text on top of the bar.

> h <- hist(meuse$lead, breaks = seq(0, 700, by = 50),
+ plot = F)
> str(h)

List of 6
$ breaks : num [1:15] O 50 100 150 200 250 300 350 400 450 ...

equidist: logi TRUE
attr(*, "class")= chr "histogram"

$ counts : int [1:14] 17 53 26 17 17 12 41 3 3 ...

$ density : num [1:14] 0.00219 0.00684 0.00335 0.00219 0.00219 ...
$ mids : num [1:14] 25 75 125 175 225 275 325 375 425 475 ...

$ xname : chr "meuse$lead"

$

> plot(h, col = heat.colors(length(h$mids)) [length(h$count) -

+ rank (h$count) + 1], ylim = c(0, max(h$count) + 5),

+ main = "Frequency histogram, Meuse lead concentration",

+ sub = "Counts shown above bar, actual values shown with rug plot",
+ xlab = "lead concentration, mg kg-1")

> rug(meuse$lead)
> text (h$mids, h$count, h$count, pos = 3)
> rm(h)

28

Frequency histogram, Meuse lead concentration

Frequency
20 40 50 60
| |

10
|

'_UUMIIIWJUUMUMUHL’MU\HHH\IMH |
T I T 1

0 100 200 300 400 500 600 700

lead concentration, mg kg-1
Counts shown above bar, actual values shown with rug plot

Do you think you can reproduce this with Excel?

7.2 Answers for univariate exploratory graphics

A19 : The horizontal axis is the value of the variable being summarized (in
this case, lead concentration). It is divided into sections (“histogram bins”) whose
limits are shown by the vertical vars. The vertical axis is the count (frequency) of
observations in each bin. Return to Q19 e

A20 : The distribution is strongly right-skewed: high values are increasingly rare.
The modal value is in the 50 to 100 mg kg1 range. This is one population. Return
to Q20 e

A21 : From the help text: 7hist. Return to Q21 e

A22: The stem plot shows the actual values (to some number of significant digits).

This allows us to see if there is any pattern to the digits. Return to Q22
A23: 4: there are four 4 digits following the 0 stem. Return to Q23 e
A24 : 37, 39, 41, 42; these were all rounded to 40. Return to Q24 e
A25 : 650 (actual value is 654). Return to Q25 e

29

A26 : ffreq, soil, lime, and landuse. Return to Q26 e

A27 : Three classes, named by the strings "1", "2", and "3". The help text
(?meuse) does not give any further information; but from the original report [7] we
learn that these correspond to annual, 2-5 year, and infrequent flooding. Return
to Q27 e

A28 : The more frequently flooded, the more metal. This is especially true for the
highest concentrations (extremely polluted sites). Return to Q28

7.3 Bivariate exploratory graphics

Interacting
with plots

When several variables have been collected, it is natural to compare them.

Task 36 : Display a scatterplot of lead vs. zinc concentation .

We again use plot, but in this case there are two variables, so a scatterplot
is produced. That is, plot is an example of a generic function: its behaviour
changes according to the class of object it is asked to work on,

> plot(meuse$lead, meuse$zinc, log = "xy")
o
o
Q °
o co °
° o
o
g | o B e°
S w ©
0 °°° Oo °o:°°
° . &
> °
g LR
S) 8%
Py o - o oo
S ETs} .%o
% 0087
£ R oaé’
Jo °.
o o & 8
o ¥ ;gh
& 7 LA TE
@, %
3
o
oo & °
o °%®
T T T T
50 100 200 500
meuse$lead

Note that we specify the optional argument log="xy" to display both of
these right-skewed variables on a logarithmic scale.

Q29 : What is the relation between the two metals? Jump to A29 e

Some R graphics allow interaction: we first display the graph and then query
it with the mouse.

30

Task 37 : Identify the observations which do not fit the general pattern of
a very close relation between lead and zinc. .

For this we use the identify function, specifying the same plot codrdinates
as the previous plot command (i.e. from the plot that is currently displayed):

> (pts <- identify(meuse$lead, meuse$zinc))

After identify is called, switch to the graphics window, left-click with the
mouse on points to identify them.

In RStudio, press the “Escape” key when done identifying points; in the R
GUI, right-click with the mouse when done identifying points.

The plot will now show the row names of the selected points, and these row
names are also shown in the console:

[1] 44 121
8
&
o %
o _| ° o
S .
. o e
%“ &°
) o gt
g 87 L%
N 0oo08°”
° ¢
4, B ’
o B
g X8
&
@, %
®p o 121
Q’n o °
¢
0%
T T T I
50 100 200 500
lead
Q30 : Which are the unusual observations? Jump to A30 e

Remove the temporary variable:
> rm(pts)

Let’s look at another bivariate relation, between the metal lead and the
soil organic matter (SOM). Studies have often shown that SOM can bind
metals, so that we would expect soils with high SOM to have high metal
concentrations. Is this true?

31

Task 38 : Display a scatterplot of lead vs. SOM. .

~ = N n
> plot(meuse$lead ~ meuse$om, log = "y")
.
o o
g
D 0 °© °
o
oo o
. o
o .
e . oo
° o & .
o
o oo o
B oS -4 £ o o . o o °°
o « ° o, °
@ ° ° 0° S °
2 o e
%] ° ° o 4 ° ° ©
q:J Doo ooo ® ° °
£ e %00 o0
o o
4 .
3 ° o o O oo °©
o
o o® ° ® o8 " °
o ©o &°®
o o %0 o o
° 9 °
o
O %0°° 8% o
o
?
o
.
T T T
5 10 15
meuse$om

This example shows another way of specifying the variables in a scatterplot:
with the ~ formula operator, which we saw above in the classified boxplot
and will meet many times again. It can be translated roughly as “(left side)
depends on, or is explained by, (right side)”. So in this case the lead content
is explained by SOM, so by convention the dependent variable (lead) is shown
on the vertical (“y”) axis.

Note that since the univariate distribution lead is skewed, we specify a log
scale on its axis, using the log argument to plot (which here specializes to
plot.xy).

Q31 : What is the relation between lead and SOM? Does this plot suggest
that SOM could be used to predict lead content? Jump to A31 e

7.4 Answers for bivariate exploratory graphics

A29 : They are strongly and positively related: the pollution level with lead is
similar to that with zinc. Return to Q29 e

A30 : There are no really far-out observations, but point 44 has lower lead than
would be expected from its zinc content, and point 121 has much lower zinc than
would be expected from its lead content. The other points fit the pattern very well.

Return to Q30 e

32

A31 : They are positively but weakly related: the points form a diffuse “cloud”.
This suggests that SOM would be a poor predictor of lead concentration. Return
to Q31 e

8 Linear modelling

Modelling in R is a vast subject; here we just introduce the basic model
formula syntax, model output, and diagnostic graphics.

In §7.3 we saw that Pb and Zn concentrations were closely related. We may
wish to build a linear model to summarize this relation.

Task 39 : Build a linear model of Zn concentration as explained (modelled)
by Pb concentration in the Meuse soil samples. .

Since both variables were strongly right-skewed, we should use the log-
transform for both. We use the 1og10 function for easy interpretation.

The model itself is computed with the 1m “linear models” function, and
summarized with the generic summary function. The model formula has the
form:

LHS ~ RHS

where the LHS or “left-hand side” is the variable to be modelled, and the RHS
or “right-hand side” is a formula with one or more explanatory variables. In
this simple case we only specify one variable in the RHS.

> Im.zn.pb <- 1m(loglO(zinc) ~ loglO(lead), data = meuse)
> summary (lm.zn.pb)

Call:
Im(formula = loglO(zinc) ~ loglO(lead), data = meuse)

Residuals:
Min 1Q Median 3Q Max
-0.2527 -0.0528 -0.0182 0.0499 0.2092

Coefficients:
Estimate Std. Error t value Pr(>|tl|)
(Intercept) 0.3691 0.0469 7.87 6.1e-13 *x*x
logl10(lead) 1.0476 0.0223 47.07 < 2e-16 xxx
Signif. codes: O 'xxx' 0.001 'xx' 0.01 'x' 0.056 '."' 0.1 ' ' 1

Residual standard error: 0.0799 on 153 degrees of freedom
Multiple R-squared: 0.935, Adjusted R-squared: 0.935
F-statistic: 2.22e+03 on 1 and 153 DF, p-value: <2e-16

The summary shows the most important features of the model.

Q32: What are the largest positive and negative residuals, i.e. unexplained
variation in a single observation? Jump to A32 e

33

Q33 : How much logl0 Zn is there predicted to be in the case that log10 Pb
is zero? (i.e. Pb=1) (hint: see the (Intercept) model coefficient). Jump
to A33 e

Q34 : For each logl0 unit of Pb increase, what is the increase of logl0 Zn
(hint: see the 1og10(lead) model coefficient). Jump to A34 e

Q35 : How much of the variance in Zn concentration is explained by the
model, according to the adjusted R2? Jump to A35 e

The results of a modelling exercise should always be checked to see if the
modelling assumptions were met. Here we show some standard diagnostic
plots provided by R with the generic plot function, which specializes to the
plot.1lm function.

> par(mfrow = c(2, 2))

> plot(lm.zn.pb)
> par(mfrow = c(1, 1))

Residuals vs Fitted Normal Q-Q

02

01
%,

00

Standardized residual
0

-03

20 22 24 26 28 30 32 -2 -1 o 1 2

Fitted values Theoretical Quantiles

Scale-Location Residuals vs Leverage

10
8

05

There are four standard plots:

34

1. Residuals vs. fitted values: there should be no pattern (e.g. “bow
shape”) or change in variability across the range (“heteroscedascity”);

2. Normal Q-Q plot of the residuals: they should be normally-distributed
(all on the 1:1 line, dense in the middle and increasingly-sparse for
larger absolute residuals);

3. Scale-location: another way to look for heteroscedascity;

4. Residuals vs. leverage: shows which observations most influence the
model fit.

In this case all the diagnostic plots look good; the only problem is a few
poorly-fit observations, which are identified in the plots.

Q36 : According to the diagnostics, which observations are poorly-fit?
Which of these appears to be really outside the model? Jump to A36 e

8.1 Answers for linear modelling

A32: Residuals are (Actual-Predicted), so the largest over-prediction is 0.2527,
largest under-prediction is 0.2092 log10 units. Return to Q32 e

A33: At zero logl0 Pb there is predicted to be 0.3691 logl0 units of Zn Return
to Q33 e

A34 : For each logl0 unit of Pb increase, logl0 of Zn increases by 1.0476, i.e. a
bit more than 1:1. Return to Q34

A35: 93.5% Return to Q35 e

A36 : 18, 63, and 127 are identified; 127 has an extreme standardized residual
(< —3) and much higher predicted Zn than actual. Return to Q36 e

We can see this with the fitted and residuals model access functions:
> logl0(meuse["127", "zinc"])
[1] 2.143
> fitted(1m.zn.pb) ["127"]

127
2.3957

> residuals(lm.zn.pb) ["127"]

127
-0.25268

35

We are finished with this model, so we remove it from the workspace with
the rm function:

> rm(1m.zn.pb)

9 * User-defined functions

This optional section introduces user-defined functions, which are typical of
R and very useful. However, if your head is already spinning from what
we’ve already covered in this exercise, you can come back to this later. In
that case skip ahead to the final section, §10.

If you have any programming experience, the way we solved the task in §6.4
probably bothered you, because we repeated the exact same command five
times, just changing the threshold. Can R do this in a more systematic way?
Of course!

Warning! If you have never done any computer programming, this will most
likely be confusing the first time through. Read through and try to get the
general idea; we will see many more examples in later exercises.

First, we define our own function (roughly speaking, our own command)
with the function function:

> p.high <- function(level) {
+ round (100 * sum(meuse$lead > level)/length(meuse$lead),
+ 1)
+ 3

> 1s()

[1] "meuse" "p.high"

Note: The above output shows the function being entered on several lines,
as indicated by the continuation prompt +. You can also enter the command
all on one line:

> p.high <- function(level) {round(100*sum(meuse$lead > level)/length(meuse$lead),1)}

Notice that p.high (the function we just defined) is now an object in the
workspace, because we put it there with the <- assignment operator.

The function has one argument (the part that varies each time the function
is called). Here it is named level. The rest of the function is the same
command we repeated five times, but instead of directly naming the critical
level (e.g. 600) it uses the function argument level.

Now we’ve got our own function; let’s use it. Make a list of the levels, using
the ¢ (“catenate”, from Latin for “make a chain”) function:

> 1lvls <- c(600, 300, 200, 100, 30)

Now build a list of the proportions, applying the p.high function to each
element of the list 1vls in turn, using the for operator.

> p <- NULL
> for (1 in lvls) p <- c(p, p.high(1))

36

10 Quitting R

The for operator assigns each value in the list 1vls to the loop variable 1,
which is then the argument to p.high.

So now we have p, with the percentages:
> P
[11 0.6 8.4 27.1 54.8 100.0

We can make a nice table from the levels and percentages, using the data.frame
(“make a data frame”) function to make a temporary data frame, which will
be printed out as a table with the data frame’s field names, which we name
as arguments to the data.frame function:

> (data.frame(level = 1lvls, percent.higher = p))

level percent.higher

1 600 0.6
2 300 8.4
3 200 27.1
4 100 54.8
5 30 100.0

It’s good practice to remove objects we no longer need from the workspace,
using the rm function:

> rm(p, 1, lvls, p.high)
> 1s0)

[1] "meuse"

Wasn’t that fun?

When you stop an R session, R gives you the opportunity to save your current
workspace in the file .RData. If you start R again in the same directory (e.g.
by double-clicking on the .RData file in Windows Explorer), the workspace
will be loaded again.

In preparation for this, it’s good practice to remove objects that you no
longer need from the workspace.

Task 40 : Remove un-needed objects from the workspace. .

In the present case, we have one data object, the Meuse dataset meuse and
(if all the steps were followed correctly) no temporary variables:

> 1s()

[1] "meuse"

We can re-load the Meuse dataset any time, and any temporary variables
were only used in this session. So they all can be deleted, using the rm
(“remove”) function.

37

> rm(meuse)
> 1s0)

character(0)

Note: If you are sure you want to clear the entire workspace, you can use
this form:

> rm(list = 1s())

This makes a list of all the objects (using the 1s function) and then passes
it to the rm function, so that everything is erased.

10.1 Saving your work — RStudio

If you set up an RStudio project (see ex0.pdf, §“Setting up an RStudio
project”), it will be saved automatically as you quit R.

The RStudio IDE has no command to save the console log. If you wish, you
can select all the text in the log, cut it, and paste into a plain-text document,
saving it with a meaningful name, as in the previous paragraph.

Another approach is to create an RStudio notebook, which is an HTML file
containing all the commands in the script window, along with the results of
running them (both text and graphics). To do this you first need to install
the knitr R package as explained in §4. Then click the “Create a notebook”
button, shown in a red circle in Figure 4. You will first have to save the R
script as a .R file.

@7 Untitled1* =

= Source on Save Q 7~ ~#Run | %% | 9 Source v

2 * pi / 360
runif(10, 0, 1000)
(sample <- runif(10, 0, 1000))
(sample <- round(sample, 1))
(sample <- sort(sample))
sort(round(runif(10, @, 1000), 1))
require(sp)
require(gstat)

9 | data(meuse)

10 | str(meuse)

11 | summary(meuseS$lead)
9:12 3 (Top Level) = R Script +

CONO WUV A WN =

Figure 4: RStudio script window — requesting a notebook

The results are shown in a preview window, see Figure 5; this can be saved,
printed, or published to the web.

10.2 Saving your work — R GUI

Before leaving R, or indeed at any time, we may well want to save the console
log, that is, all the commands we issued and the results that R printed in
the console window. We can then review this document, edit it to remove

38

RStudio: Preview HTML

Preview:)] Log | [Save As | &M Publish

My first script
rossiter — Jan 3, 2014, 9:00 AM

2 * pi / 360
[1] @.01745
runif(1e, 0, 1000)
[1] 462.09 98.31 528.67 507.14 902.93 129.21 795.45 430.62 651.91 441.70
(sample <- runif(10, 0, 1000))
[1] 302.5 210.3 610.3 728.4 192.8 277.7 790.4 158.4 769.7 142.3
(sample <- round(sample, 1))
[1] 302.5 210.3 610.3 728.4 192.8 277.7 790.4 158.4 769.7 142.3
(sample <- sort(sample))

[1] 142.3 158.4 192.8 210.3 277.7 302.5 610.3 728.4 769.7 790.4

Figure 5: RStudio notebook preview

11 Self-test

unimportant or erroneous commands and output, add our own commentary,
review our processing steps, etc.

Task 41 : Save the console log to a text file. .

In the Windows GUI, bring the console window to the front (e.g. click on
its title bar) and select menu command File | Save as ...; the default
file name is lastsave.txt. It is good practice to change this name to the
current date, e.g. 19Feb071og.txt.

Now we can leave R.

Task 42 : Stop R. .

RStudio can be stopped in the same way as any MS-Windows or Mac OS X
program; however it can also be stopped with the console q (“quit”) function:

> q0)

You are asked if you want to save workspace image. Generally you answer
Yes; this creates or modifies the special file .RData in the current working
directory.

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the

39

knowledge you have gained from the exercise. Please submit your answers
(including graphs) to the instructor for grading and sample answers.

Task 1 : Load the example dataset pcb which is provided with the gstat

package and summarize it. .
Q1 : How many variables and observations does this dataset have? .
Q2 : What is the meaning of variable PCB1387 .

Note: PCB 138 is an organic chemical, 2,2°,3,4,4’,5-Hexachlorbiphenol that
is a seriously toxic compound to many forms of animal life. It was used in
many industrial products, especially transformers. It often accumulates in
marine muds.

Q3 : What are the minimum, maximum, and median values of PCB1387 e

Task 2 : Make a histogram of PCB138. Save the plot as a graphics file (PDF,
PNG or JPEG). .

Q4 : Describe the shape of the distribution of PCB138. o

Task 3 : Make a scatterplot of the PCB concentration vs. distance from the
coast. Save the plot as a graphics file. o

Q5 : What is the relation, if any, between PCB concentration and distance
from the coast? .

Task 4 : Make a data frame with just the observations that are further than
100 km from the coast and summarize their PCB concentrations. .

Q6 : How many observations are further than 100 km from the coast? e

Q7 : How do their PCB concentrations compare to the full data set? o

Task 5 : Remove the two objects you created from the workspace. o

Note: There is a lot more analysis that can be done on this dataset!

40

References

1]

2]

P A Burrough and R A McDonnell. Principles of geographical informa-
tion systems. Oxford University Press, Oxford, 1998. 13

J Fox. The R Commander: a basic-statistics graphical user interface

for R. Journal of Statistical Software, 14(9):42, 2005. URL http:
//www. jstatsoft.org/v14/109/. 3

R Thaka and R Gentleman. R: A language for data analysis and graphics.
Journal of Computational and Graphical Statistics, 5(3):299-314, 1996.
1

P Murrell. R Graphics. Chapman & Hall/CRC, Boca Raton, FL, 2005.
ISBN 1-584-88486-X. 22

E J Pebesma. Multivariable geostatistics in S: the gstat package. Com-
puters & Geosciences, 30(7):683-691, 2004. 10

R Development Core Team. R: A language and environment for sta-
tistical computing. R Foundation for Statistical Computing, Vienna,
Austria, 2004. URL http://www.R-project.org. ISBN 3-900051-07-
0.1

M G J Rikken and R P G Van Rijn. Soil pollution with heavy metals -
an inquiry into spatial variation, cost of mapping and the risk evaluation
of copper, cadmium, lead and zinc in the floodplains of the Meuse west
of Stein, the Netherlands. Doctoraalveldwerkverslag, Dept. of Physical
Geography, Utrecht University, 1993. 13, 20, 30

D G Rossiter. Introduction to the R Project for Statistical Computing
for use at ITC. International Institute for Geo-information Science &
Earth Observation (ITC), Enschede (NL), 3.7 edition, 2009. URL http:
//www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf. 24

Deepayan Sarkar. Lattice. R News, 2(2):19-23, June 2002. URL http:
//CRAN.R-project.org/doc/Rnews/. 10

Deepayan Sarkar. Lattice : multivariate data visualization with R.
Springer, New York, 2008. 22

Leland Wilkinson. The grammar of graphics. Statistics and computing.
Springer, New York, 2nd ed edition, 2005. ISBN 9780387286952. 22

41

http://www.jstatsoft.org/v14/i09/
http://www.jstatsoft.org/v14/i09/
http://www.R-project.org
http://www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf
http://www.itc.nl/personal/rossiter/teach/R/RIntro_ITC.pdf
http://CRAN.R-project.org/doc/Rnews/
http://CRAN.R-project.org/doc/Rnews/

Index of R Concepts

< operator, 18 main graphics argument, 24
<- operator, 7 max, 14

<= operator, 18 mean, 14

== operator, 18 median, 14

> operator, 18 meuse dataset, 12, 37

>= operator, 18 min, 14

[1 operator, 16
pcb dataset, 40

border graphics argument, 23 pi, 5
boxplot, 27 plot, 28, 30-32, 34
breaks graphics argument, 23 plot.1lm, 34
plot.xy, 32
¢, 36 print, 7, 8
col graphics argument, 23
colors, 24 q, 39
quantile, 14, 15
data, 11, 12
data argument (boxplot function), 27 range, 14
data.frame, 37 require, 11
datasets package, 11 residuals, 35
rm, 9, 22, 36-38
exp; 5 round, 8, 9
fitted, 35 row.names, 16
. . rug, 24
fix, 16 £ 6.9
for operator, 36, 37 TunLL
function, 36 sd, 14
ggplot2 package, 22 searcE,lO,ll
. seq, 15, 24
graphics package, 22
stat package, 3, 10, 11, 40 set.seed, 9
g p g)))) Sort’ 8710
head, 25 sp package, 3, 10-12
help, 6 stem, 24
help.start, 7 str, 12
hist, 23, 24, 28 sum, 18
summary, 14, 33
identify, 31 Sweave, 3
knitr package, 38 text, 28
lattice package, 3, 10, 22 var, 14
length, 18
levels, 27 which.max, 15, 22
library, 10 which.min, 15, 18
1m, 33
log argument (plot.xy function), 32
logi0, 33

1s, 7, 9, 12, 38

43

	1 Introduction
	2 R basics
	3 First interaction with R
	3.1 Answers

	4 Loading additional packages
	5 Loading and examining an example dataset
	5.1 Answers

	6 Descriptive statistics
	6.1 Summarizing one variable
	6.2 Finding a specific record in a dataframe
	6.3 Selecting part of a dataframe
	6.4 Logical expressions
	6.4.1 Using logical expressions to select records in a data frame

	6.5 Answers

	7 Exploratory graphics
	7.1 Univariate exploratory graphics
	7.1.1 * A classified boxplot
	7.1.2 * An enhanced histogram

	7.2 Answers for univariate exploratory graphics
	7.3 Bivariate exploratory graphics
	7.4 Answers for bivariate exploratory graphics

	8 Linear modelling
	8.1 Answers for linear modelling

	9 * User-defined functions
	10 Quitting R
	10.1 Saving your work – RStudio
	10.2 Saving your work – R GUI

	11 Self-test
	References
	Index of R concepts

