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��B/
“Seek truth from facts”

1 Introduction

After completing this exercise you should be able to:

1. Evaluate model predictions with an independent dataset;

2. Evaluate geostatistical models with cross-validation;

3. Simulate random fields as realizations of spatial structure, both un-
conditionally and conditioned on known points.

2 Model evaluation

This section is a continuation of Exercise 4, §4.2. Recall that we used 259
of the observations (the calibration dataset) to model the spatial structure
(i.e. fit a variogram model) and to predict at 100 points where we had also
sampled (the evaluation, sometimes called validation dataset).

Since we didn’t use the 100 points of the evaluation dataset either to make
the model or to predict, these are an independent test of the model. We can
compare the predictions to the actual values.

Task 1 : Locate your results from Exercise 4, §4.2:

1. Validation points jura.val

2. Calibration points jura.cal

3. Fitted variogram model vmf

4. Predictions k.val

•

There are two ways to compare actual vs. predicted values:

� Against a 1:1 line (§2.1)

� With a linear regression of actual vs. predicted (§2.2)

We now examine these in turn.

2.1 Actual vs. predicted values: 1:1 line

Now we compare the predictions with the actual values at the 100 evaluation
points. Conceptually, we are comparing them on a 1:1 line: intercept is 0
(no bias) and the slope is set at 1 (gain is equal).

Task 2 : Compare the predictions to the actual values: with a numerical
summary, a histogram of the differences, and a bubble plot of the differences.

•
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Note: In regression diagnostics it is customary to subtract the predictions
from the actual values; however we want to express this as prediction errors,
so we reverse the sign: predicted less actual.

We use the summary method for the numeric summaries; the hist method
for the histogram; the bubble method for the bubble plot. This last requires
a spatial object, so we first convert the prediction errors to a (one-field) data
frame with the as.data.frame method and then specify its coördinates with
the coordinates method; note that one form of this extracts the coördinates
of an existing spatial object (here, jura.val) and another form specifies the
coördinates of a new spatial object (here, pred.error).

> summary(k.val$var1.pred); summary(jura.val$Co)

Min. 1st Qu. Median Mean 3rd Qu. Max.

3.58 7.70 10.10 9.46 11.30 14.00

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.65 7.95 10.10 9.79 12.50 20.60

> pred.error <- k.val$var1.pred - jura.val$Co

> summary(pred.error)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.970 -1.710 -0.541 -0.331 1.260 5.640

> hist(pred.error,

+ main="Prediction errors: Predicted - Actual, OK, Jura",

+ xlab="Co (mg kg-1)", col="lightblue")

> pred.error <- as.data.frame(pred.error)

> coordinates(pred.error) <- coordinates(jura.val)

Prediction errors: Predicted − Actual, OK, Jura

Co (mg kg−1)

F
re

qu
en

cy

−10 −5 0 5

0
5

10
15

20
25

30

> print(bubble(pred.error,

+ main="Prediction Errors: Predicted by OK - Actual",

+ sub="Co (mg kg-1)"))
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Prediction Errors: Predicted by OK − Actual

Co (mg kg−1)
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Q1 : Is there any spatial pattern to the evaluation prediction errors? Jump
to A1 •

Task 3 : Compute the Mean Prediction Error (MPE), also called the
bias, and the Root Mean Squared Error (RMSE), also called the precision.
Compare to the mean and standard deviation of the target variable in the
calibration dataset; these are the relative MPE and RMSE. •

We can also compare to the inter-quartile range (the range from the 25%
to the 75% quantiles of the original variable, i.e. with the central half of the
values), with the IQR method.

> summary(k.val$var1.pred - jura.val$Co)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-8.970 -1.710 -0.541 -0.331 1.260 5.640

> (mpe <- mean(k.val$var1.pred - jura.val$Co))

[1] -0.33123

> (rmse <- sqrt(mean((jura.val$Co - k.val$var1.pred)^2)))

[1] 2.487

> summary(jura.cal$Co)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.55 6.52 9.76 9.30 12.00 17.70

> mpe/mean(jura.cal$Co)

[1] -0.035612
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> rmse/sd(jura.cal$Co)

[1] 0.69524

> rmse/IQR(jura.cal$Co)

[1] 0.45549

Q2 : What are the MPE (bias) and RMSE (precision)? How do these
compare with the range of the target variable? Jump to A2 •

2.2 * Predicted vs. actual values: linear regression

Another way to evaluate the prediction is with a linear regression between
actual and predicted values. Ideally, this would be a 1:1 line: intercept is 0
(no bias) and the slope is set at 1 (gain is equal). In the previous §2.1 we
assume that; here we test it.

The bivariate regression of two variables on each other depends on which
variables is considered the predictor and which the predictand. Here it
makes sense to use the actual (true) values as the dependent or predictand
variable and the predicted values as the independent or predictor variable;
the question is how well does the fitted model predict the actual? This is
the usual order in agricultural simulation models [e.g. 1].

Note: This is a bit confusing: the predictor in this regression, i.e. the inde-
pendent variable, is the predicted value from the model, and the predictand
is the actual value from observation. Thus the bias and gain refer to the
performance of the model in trying to predict the actual. For example, a
positive bias means that the actual is systematically higher than the model;
the model thus under-predicts.

Task 4 : Display a square feature-space scatterplot of the actual (abscissa)
vs. predicted (ordinate) Co concentrations at the 100 evaluation points, with
a 1:1 line superimposed. •

Note that the asp=1 argument to the plot.xy method makes the plot square.
To determine the axis limits, we use the min and max methods to determine
the minimum and maximum data values of both sets; then the floor and
ceiling (“ceiling”) methods to reach the next lowest and highest integers.

> plot.lims=c(floor(min(jura.val$Co, k.val$var1.pred)),

+ ceiling(max(jura.val$Co, k.val$var1.pred)))

> plot(jura.val$Co ~ k.val$var1.pred, asp=1, pch=20,

+ col="blue", ylab="Actual", xlab="Predicted",

+ xlim=plot.lims,

+ ylim=plot.lims, main="Jura Co, 100 evaluation points")

> abline(0,1, lty=2, col="red")

> grid()
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Q3 : Does the scatterplot appear to be well-fitted by the 1:1 line? Jump
to A3 •

Task 5 : Compute the linear regression of predicted cobalt concentrations
vs. the actual values, at the 100 evaluation locations. Summarize the model
and plot the regression diagnostics: fitted vs. residuals, and normal quantile
plot of the residuals. •

> lm.val <- lm(jura.val$Co ~ k.val$var1.pred)

> summary(lm.val)

Call:

lm(formula = jura.val$Co ~ k.val$var1.pred)

Residuals:

Min 1Q Median 3Q Max

-5.925 -1.533 0.241 1.368 8.598

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.141 0.986 0.14 0.89

k.val$var1.pred 1.020 0.101 10.12 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.49 on 98 degrees of freedom

Multiple R-squared: 0.511, Adjusted R-squared: 0.506

F-statistic: 102 on 1 and 98 DF, p-value: <2e-16

> par(mfrow = c(1, 2))

> plot(lm.val, which = 1:2)

> par(mfrow = c(1, 1))
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Q4 : What is the regression equation? Jump to A4 •

The bias is the intercept, and the gain is the slope.

Q5 : What is the bias and gain? What should these values be? Jump to
A5 •

Q6 : Does a linear relation appear to be justified from the diagnostics?
Jump to A6 •

Task 6 : Plot the regression line of predicted vs. actual on the scatterplot,
also with the 1:1 line. •

> plot(jura.val$Co ~ k.val$var1.pred, asp=1, pch=20,

+ col="blue", xlab="Predicted", ylab="Actual",

+ xlim=plot.lims, ylim=plot.lims,

+ main="Jura Co, 100 evaluation points",

+ sub="1:1 line red, regression green")

> abline(0,1, lty=2, col="red")

> abline(lm.val, col="green"); grid()
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We can test the bias against the null hypothesis of no bias, directly from the
t-test of the corresponding coefficient.

Q7 : What is the probability that rejecting the null hypothesis of no bias
is a Type I error? Jump to A7 •

The t-test for the slope is against zero slope, not one; so we test this seeing
if 1 is within a confidence interval for the slope.

Task 7 : Compute the 90% confidence interval for the slope of the evaluation
regression. •

The summary.lm method, called by the generic summary method for objects
of type lm, summarizes the model; in particular it computes the coefficients
and their standard errors. The coef generic method, applied to the results
of summary.lm. We can see its structure:

> coef(summary(lm.val))

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.14088 0.98581 0.14291 8.8665e-01

k.val$var1.pred 1.02012 0.10082 10.11848 6.6956e-17

From this it is clear that the second row is the slope; the first column is the
estimated coefficient, and the second is the standard error. The confidence
interval uses the t-value for the residual degrees of freedom, which is the df

field of the model object:

> lm.val$df

[1] 98
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This is just the number of data values less the number of parameters.

We use the qt method to extract the t-value:

> qt(0.95, lm.val$df)

[1] 1.6606

Note that this is a two-sided confidence interval, so we use half of the interval
for each tail. We have fixed the confidence level α = 0.10, so the required
quantile of the t-distribution is (1−α/2) = 0.95

With all this information, we can now compute the upper and lower confi-
dence intervals for the slope:

> t.val <- qt(0.95, lm.val$df)

> coef(summary(lm.val))[2, 1] - t.val * coef(summary(lm.val))[2,

+ 2]

[1] 0.85271

> coef(summary(lm.val))[2, 1] + t.val * coef(summary(lm.val))[2,

+ 2]

[1] 1.1875

Q8 : Does the computed confidence interval include 1? Should we reject
the null hypothesis of no gain? Jump to A8 •

In summary, this regression shows no evidence of bias or gain in the kriging
predictions at evaluation points. So, we can quantify how close the predic-
tions come to reality.

Q9 : Overall, how close are the model predictions to the actual values?
Jump to A9 •

Once we’ve established a linear relation, the goodness-of-fit can be measured
with the coefficient of determination; this is given by the adj.r.squared

field of the model summary:

> summary(lm.val)$adj.r.squared

[1] 0.50595

Task 8 : Clean up from this section. •

> rm(pred.error, rmse, mpe, plot.lims, lm.val, t.val)
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2.3 Answers

A1 : No, both positive and negative evaluation prediction errors are found ev-
erywhere, with no clustering; large and small prediction errors are likewise not
clustered. Thus there are no parts of the study area where OK is systematically
better or worse. Return to Q1 •

A2 : The MPE (bias) is -0.33 mg kg-1 Co; this is a small proportion of the mean:
-3.6% relative error.

The RMSE (precision) is 2.49 mg kg-1 Co; this is less than half of (0.46 times)
the IQR: (12.00− 6.52) = 5.48 and about two-thirds (0.70 times) the sample set
standard deviation. Thus the evaluation precision is higher than in the sample set.

Return to Q2 •

A3 : By eye it does not look 1:1; in particular, it appears that high actual values
are substantially under-predicted. But we will see this is not the case; so if you
thought it looked 1:1, your eye is better than mine. Return to Q3 •

A4 : Actual value = 0.141 + 1.02 · Predicted value; this should be Actual value
= Predicted value. Return to Q4 •

A5 : The bias is the intercept: 0.141; it should be zero. The gain is the slope:
1.02; it should be one. Return to Q5 •

A6 : There is one very poorly-modelled point (number 94); otherwise the QQ-
plot supports a normal distribution of the residuals, and there is no evidence of
heteroscedascity. Return to Q6 •

A7 : The probability that rejecting the null hypothesis of no bias is a Type I
error is given by the Pr(>|t|) column of the model summary, for the intercept; it
is 0.887. Thus the null hypothesis of no bias should not be rejected; the estimates
of 0.141 is likely different from zero only by chance. Return to Q7 •

A8 : The 90% confidence interval includes 1, so we can not reject the null hypoth-
esis of no gain, without running at least a 10% risk of being wrong. Return to Q8
•

A9 : The model explains only 50.6 % of the variation in actual values. This is not
very precise. Return to Q9 •

3 Cross-validation of geostatistical models

With a geostatistical prediction, there are two steps:
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1. Modelling the spatial structure; e.g. estimating the variogram param-
eters;

2. Predicting at unsampled locations.

These can be separate processes; for example, the variogram may be known
from previous studies. Even if the same dataset is used for modelling and
predicting, each single point has little influence on the model (recall the large
number of point-pairs). So, it is possible to use the model to predict at each
observation point separately, using all the other observations. This is called
leave-one-out cross-validation (LOOCV).

Note: The observed value is left out, because kriging is an exact predictor
at known points, and so would predict the value itself, if that point were
included.

The gstat package supplies a krige.cv method for this.

Task 9 : Compute the leave-one-out cross-validation of OK of the Co value,
for the calibration dataset. •

> k.cv <- krige.cv(Co ~ 1, loc = jura.cal, model = vmf)

[using ordinary kriging]

[using ordinary kriging]

...

Task 10 : Make a bubble plot of the residuals. •

Object k.cv is already spatial, with coördinates:

> print(bubble(k.cv, zcol="residual",

+ main="OK Cross-validation prediction errors",

+ sub="Co (mg kg-1)"))
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Q10 : Is there any spatial pattern to the cross-validation prediction errors?
Jump to A10 •

Task 11 : Compute the absolute and relative MPE and RMSE of the cross-
validation. •

The krige.cv method also computes the prediction errors; the MPE is their
mean, and the RMSE is the square root of the sum of squared prediction
errors:

> summary(k.cv)

Object of class SpatialPointsDataFrame

Coordinates:

min max

X 0.626 4.92

Y 0.580 5.69

Is projected: NA

proj4string : [NA]

Number of points: 259

Data attributes:

var1.pred var1.var observed residual

Min. : 3.24 Min. :1.93 Min. : 1.55 Min. :-9.3202

1st Qu.: 7.48 1st Qu.:2.08 1st Qu.: 6.52 1st Qu.:-0.9077

Median : 9.61 Median :2.66 Median : 9.76 Median :-0.0046

Mean : 9.37 Mean :3.68 Mean : 9.30 Mean :-0.0737

3rd Qu.:11.58 3rd Qu.:5.62 3rd Qu.:11.98 3rd Qu.: 0.9670

Max. :15.98 Max. :8.51 Max. :17.72 Max. : 5.1446

zscore fold

Min. :-4.2139 Min. : 1.0

1st Qu.:-0.5824 1st Qu.: 65.5

Median :-0.0019 Median :130.0
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Mean :-0.0203 Mean :130.0

3rd Qu.: 0.5315 3rd Qu.:194.5

Max. : 2.8312 Max. :259.0

> (mpe <- mean(k.cv$residual))

[1] -0.073707

> mpe/mean(jura.cal$Co)

[1] -0.0079247

> (rmse <- sqrt(mean(k.cv$residual^2)))

[1] 2.0904

> rmse/sd(jura.cal$Co)

[1] 0.58438

> rmse/IQR(jura.cal$Co)

[1] 0.38286

Q11 : What are the absolute and relative (to the mean) MPE (bias) of this
OK? What are the maximum errors? What are the absolute and relative (to
the standard deviation) RMSE (precision)? Jump to A11 •

Another measure of model quality is the Mean Squared Deviation Ratio
(MSDR) of prediction errors with kriging variance:

MSDR = 1
n

n∑
i=1

{z(xi)− ẑ(xi)}2
σ̂2(xi)

where σ̂2(xi) is the kriging variance at cross-validation point xi, obtained
during the kriging procedure (not the cross-validation).

The MSDR is a measure of the variability of the cross-validation vs. the
variability of the sample set. This ratio should be 1. If it’s higher, the
kriging prediction was too optimistic about the variability.

Task 12 : Compute the MSDR of the cross-validation. •

The squared deviations were stored in the kriging prediction object k.cv as
field residual; the kriging variance as field var1.var, so the MSDR is just
the mean of the pairwise ratios of these two vectors:

> mean(k.cv$residual^2/k.cv$var1.var)

[1] 1.1117

Q12 : What is the MSDR? Is the kriging prediction more or less variable
than the actual dataset? Is this a large difference? Jump to A12 •
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Q13 : What would happen to the MSDR if we removed the nugget compo-
nent from the model, i.e. specified a nugget of zero? Jump to A13
•

Task 13 : Remove temporary objects from the workspace; leave the k.cv

cross-validation kriging predictions, they will be used in the next section. •

> rm(mpe, rmse)

Task 14 : Optional: Repeat the analysis of §2.2 (evaluation by linear
regression) on the cross-validation predictions. •

First, the regression model, compared on a scatterplot with the 1:1 line:

> summary(lm.cv <- lm(jura.cal$Co ~ k.cv$var1.pred))

Call:

lm(formula = jura.cal$Co ~ k.cv$var1.pred)

Residuals:

Min 1Q Median 3Q Max

-9.120 -0.924 0.004 1.156 5.112

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.3553 0.4218 0.84 0.4

k.cv$var1.pred 0.9542 0.0428 22.29 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.09 on 257 degrees of freedom

Multiple R-squared: 0.659, Adjusted R-squared: 0.658

F-statistic: 497 on 1 and 257 DF, p-value: <2e-16

> plot.lims=c(floor(min(jura.cal$Co, k.cv$var1.pred)),

+ ceiling(max(jura.cal$Co, k.cv$var1.pred)))

> plot(jura.cal$Co ~ k.cv$var1.pred, asp=1, pch=20,

+ col="blue", xlab="Predicted", ylab="Actual",

+ xlim=plot.lims, ylim=plot.lims,

+ main="Jura Co, cross-validation points",

+ sub="1:1 line red, regression green")

> abline(0,1, lty=2, col="red")

> abline(lm.cv, col="green"); grid()
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Second, the regression diagnostic plots:

> par(mfrow = c(1, 2))

> plot(lm.cv, which = 1:2)

> par(mfrow = c(1, 1))
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The confidence interval on the slope:

> t.val <- qt(0.95, lm.cv$df)

> coef(summary(lm.cv))[2, 1] - t.val * coef(summary(lm.cv))[2,

+ 2]

[1] 0.88357

> coef(summary(lm.cv))[2, 1] + t.val * coef(summary(lm.cv))[2,

+ 2]

[1] 1.0249

> rm(t.val)
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The proportion of variability explained:

> summary(lm.cv)$adj.r.squared

[1] 0.65779

Repeating the questions of §2.2:

Q14 : What is the bias and gain? Jump to A14 •

Q15 : Does a linear relation appear to be justified from the diagnostics?
Jump to A15 •

Q16 : What is the probability that rejecting the null hypothesis of no bias
is a Type I error? Jump to A16 •

Q17 : Does the computed confidence interval include 1? Should we reject
the null hypothesis of no gain? Jump to A17 •

Q18 : Overall, how close are the model predictions to the actual values?
Jump to A18 •

> rm(lm.cv)

3.1 * LOOCV and the variogram

In this optional section we show that omitting one point does not substan-
tially affect the fitted variogram model. This implies that LOOCV with a
single variogram model, estimated from all points, is valid. We investigate
this heuristically with the Jura calibration dataset, by removing the highest
value (i.e., the one that should have the largest influence on the variogram),
and seeing what happens to the variogram estimation, variogram model fit-
ting, and cross-validation prediction.

Task 15 : Identify the point in the calibration data set with the highest Co
concentration. •

> jura.cal[ix <- which.max(jura.cal$Co), ]

coordinates Rock Land Cd Cu Pb Co Cr Ni

225 (4.412, 1.088) Quaternary Meadow 1.53 17.72 47.6 17.72 39.52 26.4

Zn

225 80.8
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Task 16 : Compute the empirical variogram with and without this point,
to the 1.6 km cutoff. •

> v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)

> vv <- variogram(Co ~ 1, loc = jura.cal[-ix, ], cutoff = 1.6)

Q19 : How many and what proportion of point-pairs have been removed
from the empirical variogram? Jump to A19 •

> (sv <- sum(v$np))

[1] 12632

> (svv <- sum(vv$np))

[1] 12572

> print(sv - svv)

[1] 60

> print(1 - svv/sv)

[1] 0.0047498

Task 17 : Fit a model to this empirical variogram, beginning with the model
found when using all point-pairs. Compare the fitted parameters to those
for the all point-pair model. •

> (vvmf <- fit.variogram(vv, vmf))

model psill range

1 Nug 1.294 0.0000

2 Pen 12.960 1.5322

> (diff.psill <- vvmf[2, "psill"] - vmf[2, "psill"])

[1] 0.028175

> (diff.range <- vvmf[2, "range"] - vmf[2, "range"])

[1] 0.0082585

> (diff.nugget <- vvmf[1, "psill"] - vmf[1, "psill"])

[1] -0.077183

> ((diff.psill/vmf[2, "psill"]) * 100)

[1] 0.21787

> ((diff.range/vmf[2, "range"]) * 100)

[1] 0.54193
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> ((diff.nugget/vmf[1, "psill"]) * 100)

[1] -5.6289

Q20 : How much did the variogram model parameters change? Jump to
A20 •

Task 18 : Display both empirical variograms and both models on the same
figure. •

We use the base graphics plot function, along with title, points, lines
and grid as with any scatterplot. The only trick here is the use of the
variogramLine function of gstat to compute semivariance values for the
fitted models.

> plot(v$gamma ~ v$dist, xlim = c(0, 1.3), ylim = c(0,

+ 16), pch = 20, cex = 1.5, xlab = "Separation (km)",

+ ylab = "Semivariance", type = "b", lty = 2)

> title(main = "Empirical variogram, Co concentration in soils",

+ sub = "black: all points; red: less largest value")

> points(vv$gamma ~ vv$dist, col = "red", pch = 1, cex = 1.5,

+ type = "b", lty = 2)

> grid()

> lines(variogramLine(vmf, maxdist = 1.3))

> lines(variogramLine(vvmf, maxdist = 1.3), col = "red")
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Q21 : Describe the differences between the two empirical semivariograms
and also between the two fitted models. Jump to A21 •
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Task 19 : Compute the cross-validation predictions with the two variograms
and compare the summary statistics of the residuals. •

We already have the cross-validation object from the original variogram
(k.cv), computed in §3 above; so we just need to compute a cross-validation
object, using krige.cv and the second variogram.

> kv.cv <- krige.cv(Co ~ 1, loc = jura.cal, model = vvmf)

Now compare the cross-validation residuals:

> summary(k.cv$residual - kv.cv$residual)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.038500 -0.005000 0.000238 0.001350 0.007850 0.043000

Q22 : Does the use of the second variogram bias the residuals? What is the
maximum difference, both absolutely and as a proportion? Jump to A22 •

Task 20 : Clean up from this section. •

> rm(ix, sv, svv, v, vv, vvmf, diff.psill, diff.range,

+ diff.nugget, kv.cv)

This should convince you that LOOCV with the variogram estimated from
all points is a valid measure of model quality.

3.2 Answers

A10 : There is no obvious trend; however the largest negative and positive predic-
tion errors (over-predictions) seem to be somewhat concentrated towards the SE.
Since the two extremes are near each other, adding a trend would probably not
improve the cross-validation. Return to Q10 •

A11 : MPE is 0.1 mg kg-1 Co; this is about 0.8% of the mean Co value. There
are a few large prediction errors: 9.32 mg kg-1 Co and -5.14 mg kg-1 Co.

The RMSE (precision) is 2.09 mg kg-1 Co, only 38% of the IQR of 5.46 mg kg-1 Co
and 58% of the sample set standard deviation. Return to Q11 •

A12 : The MSDR is about 1.11, so the actual data is a bit more variable than
what is predicted by kriging. This is not a large difference, so we can say that the
model captures the variability fairly well. Return to Q12 •

A13 : The MSDR would be higher, because with a lower nugget the kriging

18



variance would also be lower. This highlights the importance of a realistic nugget
to capture the true small-scale variability. Return to Q13 •

A14 : The bias is the intercept: 0.355; it should be zero. The gain is the slope:
0.954; it should be one; the value is substantially lower, that is, at higher values the
predictions tend to under-estimate the actual values, and vice-versa; this typical of
a smoothing predictor such as kriging. Return to Q14 •

A15 : The QQ-plot shows strong deviation from normality at both tails: the
residuals are more extreme than expected in both cases, especially the negative
residuals. This indicates both under- and over-prediction; typical of a smoothing
predictor such as kriging.

The residuals vs. fitted plots shows evidence of heteroscedascity: much lower vari-
ance at low fitted values.

Thus a linear regression to compare actual vs. predicted values is not appropriate.
Return to Q15 •

A16 : The probability that rejecting the null hypothesis of no bias is a Type I
error is given by the Pr(>|t|) column of the model summary, for the intercept; it
is 0.4. Thus the null hypothesis of no bias should not be rejected; the estimates of
0.355 is likely different from zero only by chance. Return to Q16 •

A17 : The 90% confidence interval includes 1, so we can not reject the null
hypothesis of no gain, without running at least a 10% risk of being wrong. But it
is quite close; almost all the confidence interval is below 1. Return to Q17 •

A18 : The model explains only 65.8 % of the variation in actual values. This is
not very precise. Return to Q18 •

A19 : 60 point-pairs were removed from the original 12632; this is 0.47%. Return
to Q19 •

A20 : The changes were minimal: the range was increased by 0.008 km from the
original value of 1.524 and the structural sill was increased by 0.22%. The only
appreciable difference was in the nugget: because we’d removed the most extreme
value, this did have an effect, lowering the nugget by 5.6%, but this was relative to
an already quite low value, 1.371. Return to Q20 •

A21 : Both the empirical variograms and the models are almost identical when
estimated with and without the extreme point. Return to Q21 •

A22 : Yes, there is a slight bias: the median cross-validation residual is 0.00024
lower when using the variogram estimated without the point with largest value.
The largest difference is one residual that is 0.043 lower.
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Both of these are very small relative to the cross-validation predictions; the smallest
of these is 3.24 mg kg-1 Co; so the largest difference is two orders of magnitude
smaller. Return to Q22 •

4 Kriging prediction variance

There is yet another way to evaluate the quality of a kriging prediction.
Recall that kriging also computes a kriging variance, i.e. the variance of the
prediction itself. This is a measure of uncertainty, which depends only on
the model and the point configuration.

Since we have an independent dataset, we can compare the kriging variance
at these points (which were not available during kriging) to the actual RMSE
of evaluation at these points.

Task 21 : You should still have object k.val in your workspace. If not,
repeat the task of Exercise 4 §4.2 “Prediction at known points”: use the
fitted variogram model to predict at the 100 evaluation points by Ordinary
Kriging (OK). •

Note the use of the objects method to return a list of the objects cur-
rently defined in the R workspace, the is.element set method to determine
whether a set has a certain member (here, the name k.val), and the condi-
tional if operator. So, we only re-compute the kriging if necessary.

> if (!is.element("k.val", objects())) {

+ k.val <- krige(Co ~ 1, loc = jura.cal, newdata = jura.val,

+ model = vmf)

+ }

Task 22 : Summarize the OK prediction standard deviations. •

To be comparable to RMSE the variances must be converted to standard
deviations:

> summary(sqrt(k.val$var1.var))

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.41 2.09 2.20 2.16 2.22 2.81

Q23 : What are the mean and maximum OK prediction standard deviation?
Jump to A23 •

Q24 : We have evaluated the quality of the OK predictions in three ways:

1. Validation;

2. Cross-validation;

3. Kriging variance (or standard deviation) at evaluation points.
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Which of these is (are) internal to the calibration data set, i.e. use only the
calibration set, and which is (are) external, i.e. use new evidence? Jump
to A24 •

Q25 : Compare the RMSE (estimates of prediction error) for both evalu-
ation and cross-validation to the mean kriging variance from OK. Do they
differ? Why? Which of these three gives the most reliable estimate of the
quality of the predictions? Jump to A25 •

4.1 Answers

A23 : The mean is 2.17, the maximum 2.81 mg kg-1 Co. Return to Q23 •

A24 : Validation with a separate evaluation dataset is external, cross-validation
is wholly internal, kriging variance at independent points is internal to OK but the
selection of points to summarize is external. Return to Q24 •

A25 : The mean OK prediction standard deviation is 2.17 mg kg-1 Co, compared
to the evaluation precision of 2.49 mg kg-1 Co and the cross-validation precision of
2.09 mg kg-1 Co. These are of similar magnitude, although the RMSE for evaluation
is indeed somewhat higher (perhaps more realistic); both OK and its cross-validation
have no independent evaluation. Return to Q25 •

5 Conditional simulation

There are several obvious problems with kriging predictions over an area,
with respect to uncertainty:

1. Kriging is an exact predictor at known points, because all the weight
is given to the known point; this is mathematically necessary but not
realistic, since just away from the point the predictions are weighted;

2. Kriging prediction maps are by definition smooth, even if there is a
nugget component to the model; the actual spatial field is usually
much rougher.

Both of these problems are serious issues for spatially-distributed models. An
example is the soil hydraulic conductivity in models of groundwater flow: the
actual erratic nature of this attribute leads to much different model outputs
than a smoothly-varying field.

So, a map produced by kriging gives an unrealistic view of the fine-scale
spatial variability. We can recover this with conditional simulation: this
shows one (or many) possible realizations of the spatial field:

� as defined by the covariance structure (variogram); and

� as constrained by the known data values.
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There are various geostatistical simulation algorithms; that used in gstat is
described by Pebesma [2].

Many simulated fields can be created, each equally valid, and used as model
inputs.

Task 23 : Make four realizations of a conditional simulation of the Co
concentration in Jura soils over the prediction grid jura.grid, using the
OK model. •

The krige method can also do conditional simulations. It requires one
optional argument:

� nsim, the number of conditional simulations

Large simulations are quite time-consuming, so the nmax and/or maxdist! →
optional arguments are often specified as well.

For each set of simulations in this section we use set.seed here so your
results will look the same as ours; in practice you would only do this if you
want to make sure to have the same starting point.

> set.seed = 621

> k.sim.4 <- krige(Co ~ 1, loc = jura.cal, newdata = jura.grid,

+ model = vmf, nsim = 4, nmax = 128)

Q26 : Compare the means, medians, IQR and ranges of the four simulations,
also with the calibration data set on which the simulation was based. Jump
to A26 •

> summary(k.sim.4)

Object of class SpatialPointsDataFrame

Coordinates:

min max

s1 0.325 5.075

s2 0.425 5.725

Is projected: NA

proj4string : [NA]

Number of points: 10272

Data attributes:

sim1 sim2 sim3 sim4

Min. :-2.59 Min. :-1.84 Min. :-3.34 Min. :-2.02

1st Qu.: 6.91 1st Qu.: 7.56 1st Qu.: 7.86 1st Qu.: 7.48

Median : 9.38 Median :10.03 Median :10.29 Median :10.06

Mean : 9.12 Mean : 9.99 Mean :10.24 Mean : 9.76

3rd Qu.:11.51 3rd Qu.:12.41 3rd Qu.:12.60 3rd Qu.:12.27

Max. :19.44 Max. :23.59 Max. :23.36 Max. :20.98

> summary(jura.cal$Co)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.55 6.52 9.76 9.30 12.00 17.70

22



Note: Your results from the four simulations will be different from those
shown here. This is because it is a random simulation.

Task 24 : Display the four conditional simulations in one plot, with the
locations of the the observation points over-printed. •

The spplot method can show several variables at once; in this case we ask
for all four fields, which are the four simulations. We also use the optional
sp.layout argument to specify ‘layout items’ within each plot; in this case
the observation points.

For complete grids such as this prediction, spplot produces better output
when the object to be printed is of class SpatialPixelsDataFrame, so we
convert by specifying the full grid with gridded:1

> class(k.sim.4)

[1] "SpatialPointsDataFrame"

attr(,"package")

[1] "sp"

> gridded(k.sim.4) <- TRUE

> class(k.sim.4)

[1] "SpatialPixelsDataFrame"

attr(,"package")

[1] "sp"

Note: For correct visualization, when several maps purporting to show the
same prediction are shown together, they should have the same scales, in this
case a colour ramp. Fortunately, spplot does this automatically if several
grids are plotted together

> layout.2 <- list("sp.points", jura.cal, pch = 1, cex = 1.4 *

+ jura.cal$Co/max(jura.cal$Co), col = "white")

> print(spplot(k.sim.4, zcol = 1:4, col.regions = bpy.colors(64),

+ main = "Conditional simulations, Jura Co (ppm), OK",

+ sp.layout = list(layout.2)))

1 This may not be necessary in updated versions of gstat
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Conditional simulations, Jura Co (ppm), OK
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Q27 : Are the four simulations the same? Do they have similar spatial
structure? Are they more similar near the observation points or away from
them? What are the differences? Jump to A27 •

Task 25 : Compare the simulations to the “best single” prediction, i.e., OK.
•

To compare the simulations with OK, we re-create the OK prediction and
display this best point-wise prediction:

> k.ok <- krige(Co ~ 1, loc = jura.cal, newdata = jura.grid,

+ model = vmf)

[using ordinary kriging]

> print(spplot(k.ok, zcol = "var1.pred", col.regions = bpy.colors(64),

+ main = "OK prediction, Jura Co (ppm)", sp.layout = list(layout.2)))

> rm(layout.2)
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OK prediction, Jura Co (ppm)
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Q28 : To what extent do the conditional simulations resemble the OK
prediction? What is the major difference? Jump to A28 •

Simulation is supposed to respect the spatial structure; that is, the simulated
field should have the same structure as the variogram model. Let’s see how
well it was reproduced.

Task 26 : Compute the empirical variograms of the four simulations, and
plot them, each with the fitted model vmf. •

Note: For correct visualization, when several graphs purporting to show
the same thing are shown together, they should have the same scales. So we
first compute all four, then find the maximum of all four, as well as the total
sill of the variogram model which this is supposed to simulate (using max),
round this to the next highest integer (using ceiling), and use this for the
vertical scale; the horizontal is already the same.

We do not ask for plot.numbers=T because there are so many in this complete
field.

> vs.1 <- variogram(sim1 ~ 1, loc = k.sim.4)

> vs.2 <- variogram(sim2 ~ 1, loc = k.sim.4)

> vs.3 <- variogram(sim3 ~ 1, loc = k.sim.4)

> vs.4 <- variogram(sim4 ~ 1, loc = k.sim.4)

> gamma.max = ceiling(max(vs.1$gamma, vs.2$gamma, vs.3$gamma,

+ vs.4$gamma, sum(vmf[, "psill"])))

> p.1 <- plot(vs.1, model = vmf, ylim = c(0, gamma.max),

+ main = "Simulation 1")

> p.2 <- plot(vs.2, model = vmf, ylim = c(0, gamma.max),

+ main = "Simulation 2")

> p.3 <- plot(vs.3, model = vmf, ylim = c(0, gamma.max),

+ main = "Simulation 3")
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> p.4 <- plot(vs.4, model = vmf, ylim = c(0, gamma.max),

+ main = "Simulation 4")

> print(p.1, split = c(1, 1, 2, 2), more = T)

> print(p.2, split = c(1, 2, 2, 2), more = T)

> print(p.3, split = c(2, 1, 2, 2), more = T)

> print(p.4, split = c(2, 2, 2, 2), more = F)
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> rm(vs.1, vs.2, vs.3, vs.4, p.1, p.2, p.3, p.4, gamma.max)

Q29 : Do the empirical variograms of the four simulations match the vari-
ogram model? What are the differences? Why? Jump to A29
•

5.1 Answers

A26 : The values of all of these vary considerably, although they are similar. Note
that it is possible to get values outside the original range of samples, in this case
even negative (unphysical) values; in this sense kriging is not a convex predictor.
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Return to Q26 •

A27 : They are not the same, they differ quite a bit from each other. However,
near the observation points they are similar; the largest differences are in the corners
away from the observations. Return to Q27 •

A28 : The overall pattern of “hot” and “cold” spots is the same within the convex
hull of the observation points; for example the “cold” spot in the SW. Away from
the points there is no resemblance: the OK prediction is the spatial mean, whereas
the simulation reproduces a spatial field with the covariance structure given by
the variogram model (see §6 below). The OK prediction is smooth whereas the
simulation is noisy, due to the nugget variance and near-linear short-range rise to
the (high) partial sill.. Return to Q28 •

A29 : It fits almost exactly up to about 0.5 km, and then varies, depending on
the exact simulation. This is because of the use of the nmax optional argument;
approximately 0.5 km is the distance at which this maximum is reached. Recall the
grid spacing is 50 m; so that in a square of 0.5 km2 there are 10 x 10 =100 cells.

Return to Q29 •

6 * Unconditional simulation

In some situations we would like to simulate a random field defined by an
assumed spatial covariance structure (e.g., as represented by a variogram
model), without considering any data points. For example, for designing a
sampling scheme, if we have an idea of the field structure, we can create many
realizations by unconditional simulation, and see how well our proposed
scheme would capture the known structure.

Task 27 : Make four realizations of a unconditional simulation of the Co
concentration in Jura soils over the prediction grid jura.grid, using the OK
model. •

This is as the previous §5, using the krige method. However, for uncondi-
tional simulation we specify:

1. that the data locations are missing, by setting the loc argument to
NULL;

2. that there is no data, by setting the dummy argument to TRUE;

3. the value of the trend surface coefficients, by setting the beta argument
to the presumed mean; for OK this is the mean, so that OK becomes
Simple Kriging (SK).

As with conditional simulation, the nmax and/or maxdist optional argu-
ments are often specified as well.

The beta argument gives the expected value of the stationary field; here it
is most reasonably set to the non-spatial mean of the Co concentration at
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the sample points.

Note: More properly, the spatial mean could be used.

> set.seed(621)

> k.sim.4.u <- krige(z ~ 1, loc = NULL, newdata = jura.grid,

+ model = vmf, nsim = 4, nmax = 128, beta = mean(jura.cal$Co),

+ dummy = T)

Task 28 : Compare the means, medians, IQR and ranges of the four simu-
lations. •

> summary(k.sim.4.u)

Object of class SpatialGridDataFrame

Coordinates:

min max

[1,] 0.3 5.10

[2,] 0.4 5.75

Is projected: NA

proj4string : [NA]

Grid attributes:

cellcentre.offset cellsize cells.dim

1 0.325 0.05 96

2 0.425 0.05 107

Data attributes:

sim1 sim2 sim3 sim4

Min. :-3.94 Min. :-3.77 Min. :-1.28 Min. :-4.07

1st Qu.: 7.27 1st Qu.: 7.11 1st Qu.: 8.12 1st Qu.: 6.61

Median : 9.68 Median : 9.53 Median :10.38 Median : 8.92

Mean : 9.61 Mean : 9.53 Mean :10.34 Mean : 8.94

3rd Qu.:12.01 3rd Qu.:11.90 3rd Qu.:12.60 3rd Qu.:11.27

Max. :20.39 Max. :23.61 Max. :22.72 Max. :20.76

> print(spplot(k.sim.4.u, zcol = 1:4, col.regions = bpy.colors(64),

+ main = "Unconditional simulations, Co variogram model"))
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Unconditional simulations, Co variogram model
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Q30 : Describe the similarities and differences among the four simulations.
Jump to A30 •

Q31 : How do these differ from the conditional simulations with the same
variogram model and same interpolation grid? Jump to A31 •

One use of unconditional simulation is to visualize different random fields.

We begin by comparing random fields with the same variogram parameters
but different forms.

Task 29 : Simulate random fields on the Jura grid for spherical, pentaspher-
ical, exponential, Gaussian models, all with the same effective range, partial
sill and nugget as the fitted model for Jura cobalt. •

Recall that the effective range of the exponential model is 3x the range
parameter, and for the Gaussian model it is

√
3 times.

> c0 <- vmf[1,"psill"]; c1 <- vmf[2,"psill"]; a <- vmf[2,"range"]
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> set.seed(621)

> k.sim.u.sph <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c1,"Sph",a,c0), nsim=1, nmax=128,

+ beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.pen <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c1,"Pen",a,c0), nsim=1, nmax=128,

+ beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.exp <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c1,"Exp",a/3,c0), nsim=1, nmax=128,

+ beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.gau <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c1,"Gau",a/sqrt(3),c0), nsim=1,

+ nmax=128, beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

Task 30 : Display the simulated fields in one figure; also display the vari-
ograms that produced them. •

The range parameter for the Gaussian and exponential models must be
adjusted in the same way as for the simulations just above.

> p.1 <- show.vgms(max = round(a * 1.4, 2), sill = round(c1,

+ 2), range = round(a, 2), nugget = round(c0, 2), models = "Sph")

> p.2 <- show.vgms(max = round(a * 1.4, 2), sill = round(c1,

+ 2), range = round(a, 2), nugget = round(c0, 2), models = "Pen")

> p.3 <- show.vgms(max = round(a * 1.4, 2), sill = round(c1,

+ 2), range = round(a/3, 2), nugget = round(c0, 2),

+ models = "Exp")

> p.4 <- show.vgms(max = round(a * 1.4, 2), sill = round(c1,

+ 2), range = round(a/sqrt(3), 2), nugget = round(c0,

+ 2), models = "Gau")

> print(p.1, split = c(1, 1, 2, 2), more = T)

> print(p.2, split = c(2, 1, 2, 2), more = T)

> print(p.3, split = c(1, 2, 2, 2), more = T)

> print(p.4, split = c(2, 2, 2, 2), more = F)
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> k.sim.u <- k.sim.u.sph

> names(k.sim.u) <- "sim.sph"

> k.sim.u$sim.pen <- k.sim.u.pen$sim1

> k.sim.u$sim.exp <- k.sim.u.exp$sim1

> k.sim.u$sim.gau <- k.sim.u.gau$sim1

> spplot(k.sim.u, zcol = c(3, 4, 1, 2), col.regions = bpy.colors(64))
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Q32 : Describe the differences between the fields simulated from the four
models. Jump to A32 •

Another interesting visualization is the same model but with increasing pro-
portion of nugget variance.

Task 31 : Simulate random fields on the Jura grid for a spherical model
with a single range and total sill as the fitted model for Jura cobalt, but
with four different nugget-to-total sill ratios: 0,0.2,0.4,0.6. •

We use the same variogram model, specifying different proportions of the
total sill for the structural (partial) sill and the nugget:

> c.total <- sum(vmf[,"psill"]); a <- vmf[2,"range"]

> set.seed(621)

> k.sim.u.sph.0 <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c.total,"Sph",a,0), nsim=1,

+ nmax=128, beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.sph.2 <- krige(z ~ 1, loc=NULL, newdata=jura.grid,
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+ model=vgm(c.total*.8,"Sph",a,c.total*.2), nsim=1,

+ nmax=128, beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.sph.4 <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c.total*.6,"Sph",a,c.total*.4), nsim=1,

+ nmax=128, beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

> k.sim.u.sph.6 <- krige(z ~ 1, loc=NULL, newdata=jura.grid,

+ model=vgm(c.total*.4,"Sph",a,c.total*.6), nsim=1,

+ nmax=128, beta=mean(jura.cal$Co), dummy=T)

[using unconditional Gaussian simulation]

Task 32 : Display the simulated fields in one figure; also display the vari-
ograms that produced them. •

> p.1 <- show.vgms(max = round(a * 1.2), sill = round(c.total,

+ 2), range = round(a, 2), models = "Sph")

> p.2 <- show.vgms(max = round(a * 1.2), sill = round(c.total *

+ 0.8, 2), nugget = round(c.total * 0.2, 2), range = round(a,

+ 2), models = "Sph")

> p.3 <- show.vgms(max = round(a * 1.2), sill = round(c.total *

+ 0.6, 2), nugget = round(c.total * 0.4, 4), range = round(a,

+ 2), models = "Sph")

> p.4 <- show.vgms(max = round(a * 1.2), sill = round(c.total *

+ 0.4, 2), nugget = round(c.total * 0.6, 2), range = round(a,

+ 2), models = "Sph")

> print(p.1, split = c(1, 1, 2, 2), more = T)

> print(p.2, split = c(2, 1, 2, 2), more = T)

> print(p.3, split = c(1, 2, 2, 2), more = T)

> print(p.4, split = c(2, 2, 2, 2), more = F)
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> k.sim.u <- k.sim.u.sph.0

> names(k.sim.u) <- "sim.sph.0"

> k.sim.u$sim.sph.20 <- k.sim.u.sph.2$sim1

> k.sim.u$sim.sph.40 <- k.sim.u.sph.4$sim1

> k.sim.u$sim.sph.60 <- k.sim.u.sph.6$sim1

> spplot(k.sim.u, zcol = c(3, 4, 1, 2), col.regions = bpy.colors(64))
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Q33 : Describe the differences between the fields simulated the four model
with the same range and total sill, but different proportions of nugget vari-
ances. Jump to A33
•

Task 33 : Clean up from this section. •

> rm(k.sim.4.u, k.sim.u, k.sim.u.sph, k.sim.u.pen, k.sim.u.exp,

+ k.sim.u.gau, k.sim.u.sph.0, k.sim.u.sph.2, k.sim.u.sph.4,

+ k.sim.u.sph.6, c0, c1, c.total, a)

> rm(p.1, p.2, p.3, p.4)

6.1 Answers

A30 : The four simulations have the same spatial structure, i.e., size, shape and
continuity of patches; however they differ in where different patches are located,
and in details within each patch. Return to Q30 •
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A31 : The unconditional simulations have no relation to the data values at the
known points. High or low values can occur anywhere. Return to Q31 •

A32 : The Gaussian model has the largest patches, with strong spatial continuity.
The exponential model shows the least continuity, with no clear edges to patches.
The spherical and pentaspherical models are quite similar; the latter should have
slightly wider transition zones between patches, due to the more gradual “shoulder”
in the variogram model. Return to Q32 •

A33 : Increasing the nugget variance increases the noise in the simulated field.
When the nugget is 60% of the total sill the pattern is strongly masked by the noise..
When there is no nugget, the patches are quite clear. The others are intermediate.

Return to Q33 •
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7 Self-test

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

Task 1 : Repeat the conditional simulation of the Jura cobalt concentration,
but with the 100 evaluation points in place of the 259 calibration points as
observations. •

Q1 : Compare this simulation with the simulation using the calibration
points. Which one is more spatially variable among the four realizations? In
other words, in which simulation set do the four realizations look more like
each other? Why is this? •

Task 2 : If you completed optional §6, simulate a random field with one
model but either: (1) four different ranges; (2) four different partial (struc-
tural) sills; or (3) four different nugget variances. Summarize the statistics
and display the simulated fields. •

Q2 : Describe the differences that varying your chosen parameter makes on
the simulated field. Describe how that fits with the theory of random fields.

•
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