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1 Introduction

Nothing in the formulation of kriging has made any assumptions about the
feature-space distribution of the variable to be kriged; the only assumptions
are about spatial stationarity. However, the kriging estimator is a weighted
average (sum) of nearby values. A distribution that is not symmetric may
present problems. For example, in a positively-skewed distribution (often
found in earth sciences) the few high values will overwhelm all the others,
both in variogram estimation and prediction. Theoretically this may be cor-
rect but in practice, with small sample sizes, this can lead to over-prediction
as well as empirical variograms that are difficult to model.

Therefore, non-symmetric distributions are often transformed prior to vari-
ogram analysis and kriging. The problem with transformations for kriging in
geographic space (as opposed to transformation for linear modelling in fea-
ture space) is that we may wants to back-transform not only the prediction,
but also the prediction variance, to the original measurement scale.

In this short exercise we will examine lognormal kriging. The mathematical
formulations were derived by Journel [3] and are also presented by Webster
and Oliver [4] and Goovaerts [2].

After completing this exercise you should be able to:

1. transform a skewed variable to its logarithm;

2. model the transformed variable’s spatial dependence, and predict at
unsampled locations by Ordinary Kriging;

3. back-transform the predictions.

2 Lognormal kriging

2.1 Setup

We continue with the Jura dataset from Exercise 4.

Task 1 : To set up this exercise:

1. If R is not already running, start it. If you haven’t already done so,
load the gstat and sp libraries, as shown in the previous exercises.

2. If the calibration dataset jura.cal is not loaded as a spatial object, do
so. Note: it was saved as part of R data file JuraEx4.RData in Exercise
4; this can be loaded into the workspace with the load method.

3. If the prediction grid jura.grid from Exercise 4 §4.4 is no longer in
the workspace, re-create it.

•

If you followed the instructions in Exercise 4, these should all have been
saved in file JuraEx4.RData, so they can be restored with the load method:
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> load("JuraEx4.RData")

Note: If this file is not in the current directory, you either have to change
the directory with the setwd method, or add the full path to the argument
of the load method.

2.2 Evaluating (log)normality

Lognormal kriging is often used when the target variable is strongly right-
skewed.

Task 2 : Display histograms of the metals’ distribution. •

First we recall which fields represent metal concentrations:

> str(jura.cal@data)

'data.frame': 259 obs. of 9 variables:

$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 2 3 2 5 5 5 1 1 3 ...

$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3 2 2 3 3 3 3 3 3 3 ...

$ Cd : num 1.74 1.33 1.61 2.15 1.56 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$ Pb : num 77.4 77.9 30.8 56.4 66.4 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Ni : num 21.3 29.7 21.4 29.7 26.2 ...

$ Zn : num 92.6 73.6 64.8 90 88.4 ...

Q1 : Which fields represent metals? Jump to A1 •

Now we display their seven histograms on a single plot (set up as a 4 row, 2
column grid), with rug and kernal densities superimposed:

> par(mfrow = c(4, 2))

> for (i in 3:9) {

+ hist(jura.cal@data[, i], freq = FALSE, breaks = 16,

+ col = "lightblue", main = names(jura.cal@data[i]),

+ xlab = "mg kg-1")

+ rug(jura.cal@data[, i])

+ lines(density(jura.cal@data[, i]), col = "red")

+ }

> par(mfrow = c(1, 1))
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Q2 : Which of the metals have a strongly right-skewed distribution, as
estimated graphically? Jump to A2 •

We can confirm this numerically. Package e1071 has skew and kurtosis

functions; however it’s simple enough to write our own function.

Task 3 : Write a function to compute the skewness of a numeric vector. •

Recall that skewness of a sample is defined as its third standardized moment:

g(x) = (
m3

m2
)3/2 (1)

where m3 and m2 are the third and second unstandardized moments, de-
fined as average deviations, to some power, of the n observations, from the
sample mean x̄:

mk = 1
n

n∑
i=1

(xi − x̄)k (2)

For a centrally-distributed variable the skew is zero; the cubed differences
preserve the sign, so that skew may be positive or negative.

Numerically, the third standardized moment is most easily calculated from
the second and third moments about the origin, m′2 and m′3 [1, p. 62]:

m3 = m′3 − 3m′2x̄ + 2x̄3 (3)

m′3 = 1
n

n∑
i=1

x3
i (4)

m′2 = 1
n

n∑
i=1

x2
i (5)

The second standardized moment is just the sample variance.

Putting this together, we can write the function:

> skew <- function(v) {

+ n <- length(v)

+ mp3 <- sum(v^3)/n

+ mp2 <- sum(v^2)/n

+ mu <- mean(v)

+ m3 <- mp3 - 3 * mp2 * mu + 2 * mu^3

+ return(m3/sd(v)^3)

+ }
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Note that sd(v)^3 is just a shorter way to write var(v)^(3/2). This func-
tion could have been written more compactly, but here you can see all the
steps more clearly.

Task 4 : Apply this function to the metals. •

> for (i in 3:9) {

+ print(paste(names(jura.cal@data[i]), ":", round(skew(jura.cal@data[,

+ i]), 3)))

+ }

[1] "Cd : 1.499"

[1] "Cu : 2.843"

[1] "Pb : 2.874"

[1] "Co : -0.176"

[1] "Cr : 0.287"

[1] "Ni : 0.158"

[1] "Zn : 1.022"

Q3 : Which of the metals have a strongly right-skewed distribution, as
estimated numerically? Jump to A3 •

Now we see whether a log-transformation results in an approximately normally-
distributed variable for the right-skewed variables Cd, Cu, Pb, and Zn.

Task 5 : Display the histograms of log-transformations of the selected
variables. •

> par(mfrow = c(2, 2))

> for (i in c(3:5, 9)) {

+ hist(log(jura.cal@data[, i]), freq = FALSE, breaks = 16,

+ col = "lavender", main = paste("Log-", names(jura.cal@data[i]),

+ sep = ""), xlab = "log(mg kg-1)")

+ rug(log(jura.cal@data[, i]))

+ lines(density(log(jura.cal@data[, i])), col = "red")

+ }

> par(mfrow = c(1, 1))
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Task 6 : Check the skewness of the transformed variables: •

> for (i in c(3:5, 9)) {

+ print(paste("log(", names(jura.cal@data[i]), ") : ",

+ round(skew(log(jura.cal@data[, i])), 3), sep = ""))

+ }

[1] "log(Cd) : -0.265"

[1] "log(Cu) : 0.323"

[1] "log(Pb) : 0.849"

[1] "log(Zn) : -0.189"

Q4 : Are the log-transformed variables approximately normally-distributed?
Which has the lowest skewness and most symmetric log-transformed his-
togram? Jump to A4
•

We will pick one of these log-transformed variables to work on. From the
histograms and skewness computation, it seem that log(Zn) is most suitable.

Task 7 : Add the transformed variable log(Zn) to the data frames. •

The assignment operator <- can create a new field in a data frame:

> jura.all@data$lZn <- log(jura.all@data$Zn)

> jura.cal@data$lZn <- log(jura.cal@data$Zn)
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> jura.val@data$lZn <- log(jura.val@data$Zn)

> str(jura.cal@data)

'data.frame': 259 obs. of 10 variables:

$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 3 2 3 2 5 5 5 1 1 3 ...

$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3 2 2 3 3 3 3 3 3 3 ...

$ Cd : num 1.74 1.33 1.61 2.15 1.56 ...

$ Cu : num 25.72 24.76 8.88 22.7 34.32 ...

$ Pb : num 77.4 77.9 30.8 56.4 66.4 ...

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ Cr : num 38.3 40.2 47 43.5 38.5 ...

$ Ni : num 21.3 29.7 21.4 29.7 26.2 ...

$ Zn : num 92.6 73.6 64.8 90 88.4 ...

$ lZn : num 4.53 4.3 4.17 4.5 4.48 ...

We proceed to model and interpolate one of the transformed variables,
log(Zn), with OK as in Exercise 4.

2.3 Variogram modelling

Now we are able to compute and model the local spatial dependence for the
transformed variable.

Task 8 : Compute the empirical variogram of log(Pb) in the calibration
dataset and fit a variogram model. •

> v <- variogram(lZn ~ 1, jura.cal, cutoff = 1.4)

> print(plot(v, pl = T))
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A double-spherical model is indicated from the strong “knick-point” near the
second variogram bin (about 150 m separation); this is a sign of two spatial
processes, one short- and one long-range.

> vm <- vgm(0.06, "Sph", 0.6, 0.01)

> vm <- vgm(0.09, "Sph", 1.2, add.to = vm)
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> print(plot(v, pl = T, model = vm))
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> (vmf <- fit.variogram(v, vm))

model psill range

1 Nug 0.021300 0.00000

2 Sph 0.070067 0.39013

3 Sph 0.104176 1.96131

> print(plot(v, pl = T, model = vmf))
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2.4 Ordinary Kriging

Now that the spatial dependence has been modelled, we can use it to predict
at unsampled locations.
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Task 9 : Predict log(Zn) on the prediction grid by OK. •

> k.lZn <- krige(lZn ~ 1, jura.cal, jura.grid, model = vmf)

[using ordinary kriging]

> summary(k.lZn)

Object of class SpatialPixelsDataFrame

Coordinates:

min max

Xloc 0.3 5.1

Yloc 0.1 5.9

Is projected: NA

proj4string : [NA]

Number of points: 5957

Grid attributes:

cellcentre.offset cellsize cells.dim

Xloc 0.3 0.05 97

Yloc 0.1 0.05 117

Data attributes:

var1.pred var1.var

Min. :3.38 Min. :0.0303

1st Qu.:4.16 1st Qu.:0.0747

Median :4.32 Median :0.0895

Mean :4.28 Mean :0.0899

3rd Qu.:4.42 3rd Qu.:0.0999

Max. :5.04 Max. :0.1829

Task 10 : Display the map of the predictions: •

> print(spplot(k.lZn, zcol="var1.pred", pretty=T, contour=T,

+ col.regions=bpy.colors(64),

+ main="Predicted values, Zn (log mg kg-1)",

+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T)))
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Task 11 : Display the map of the prediction variances: •

> print(spplot(k.lZn, zcol="var1.var", pretty=T, contour=T,

+ col.regions=topo.colors(64),

+ main="Kriging variance, Pb ((log-mg kg-1)^2)",

+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T)))
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Kriging variance, Pb ((log−mg kg−1)^2)
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These are in log-units; i.e. log(mg kg-1) for the target variable and (log(mg kg-1))2

for the kriging prediction variances.

3 Back-transformation

We now have kriged estimates of log(Zn). However, for many purposes we
want the estimate of Zn itself.

Note: For example, regulatory thresholds are expressed in concentrations
of the metal. Any theshold value can be log-transformed itself and then
used to classify the result of lognormal kriging into above/below the thresh-
old. However this does not result in a continuous map of the untransformed
variable.

Thus we often must back-transfom the kriged estimate. Näıvely we might
just reverse the transformation:

Zn = elog Zn (6)

But this is not correct. The estimate log(Zn) is a weighted sum of sample! →
values of log(Zn); and of course the sum of logarithms is in fact a product.
So the whole weighting scheme was different than if we had used the original
values.

The correct back-transformation was derived by Journel [3]; the formulas
are also presented by Webster and Oliver [4, §8.10] and Goovaerts [2], but
with no derivation.

In the case of Simple Kriging (where the mean is known), it is possible to
back-transform both the estimates and their variances; but for OK, where
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the true spatial mean is not known, only the predicted value can be derived.

To derive the predicted values of target variable Z from its log-transform
Y = log(Z) at prediction location x0:

ẐOK(x0) = exp
[
ŶOK(x0)+ σ2

OK(x0)/2−ψOK

]
(7)

where ψOK is the LaGrange multiplier in the solution of the OK system.

However, gstat does not use minimization with LaGrange multipliers to
solve the kriging system, so this formula can not be applied. Instead, gstat
uses a regression approach to kriging:

1. gstat first solves for the spatial mean (or, for UK, the regional trend)
using Generalized Least Squares (GLS), which requires knowledge of
the covariance structure revealed by variogram modelling to account
for spatial correlation of the observations;

2. gstat then applies Simple Kriging (SK) on the residuals from this
mean (or trend);

3. The final prediction at a point is the sum of the spatial mean (or trend)
and the predicted residual at that point.

See Exercise 4, §6 for details of the computation, which are revealed by use
of the optional debug.level argument to the krige method.

Both the computation of the spatial mean (or trend) and SK give a standard
error of prediction; these can be added for a final standard error.

For Simple Kriging (SK), the back-transformation does not include the La-
Grange multiplier:

ẐSK(x0) = exp
[
ŶSK(x0)+ σ2

SK(x0)/2
]

(8)

In the case of SK the kriging prediction variance can also be back-transformed:

varSK(x0) = µ2
Z exp(σ2

SK)
[
1− exp{−σ2

SK(x0)/2}
]

(9)

where µZ is the expected value of Z(x0). In SK we must know this; here we
don’t know it; instead we are estimating as the spatial mean. This in turn is
back-transformed from the BLUE prediction of the log-transformed spatial
mean µY as:

µZ = exp
[
µY + σ2(µY )/2

]
(10)

where µY is the BLUE prediction of the spatial mean, and σ2(µY ) is its
prediction variance; this is the same formula for back-transformation of a
log-transformed variable used above for the SK predictions.

The BLUE prediction is returned if the optional BLUE argument to the
krige method is set to TRUE, so that only the best linear unbiased esti-
mator (BLUE) of the parameter is returned; by default this argument is
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FALSE, so that the best linear unbiased predictor (BLUP) of the point is
returned. Normally the BLUP is what we want, i.e. the predicted value at
the point. The BLUE gives us the spatial mean, i.e. the expected value
withough taking any nearby points into special account.

Note: In the case of Universal Kriging (UK), the BLUE at any point would
be the trend-surface coefficients.

Task 12 : Compute the BLUE for the transformed target variable. •

Unfortunately, the krige method does not allow us to request only the
BLUE; this is a more sophisticated option of the gstat package. So, the
gstat method (of the gstat package!) must be used.

First we have to create a new gstat object with the gstat method; we
indicate it’s a new object by specifying a NULL first argument:

Warning! The use of gstat is not so clear, pay close attention.! →
> (g <- gstat(NULL, id = "lZn", form = lZn ~ 1, data = jura.cal,

+ model = vmf))

data:

lZn : formula = lZn`~`1 ; data dim = 259 x 10

variograms:

model psill range

lZn[1] Nug 0.021300 0.00000

lZn[2] Sph 0.070067 0.39013

lZn[3] Sph 0.104176 1.96131

Notice this object has all the information so far about this variable: the
data, the locations, and the variogram model.

Now we can use the predict.gstat method. It is sufficient to predict at
one point, since all have the same BLUE for OK (no trend). So we’ll predict
for the first point in the grid. We extract this with the usual [ operator, but
must keep the whole grid topology by specifying the optional drop=FALSE
argument. Then we convert to a single spatial point with the SpatialPoints
method; this can then be used as new data for prediction.

> jura.one <- SpatialPoints(jura.grid[1, drop = FALSE])

> k.lZn.blue <- predict.gstat(g, newdata = jura.one, BLUE = T)

[generalized least squares trend estimation]

> k.lZn.blue$lZn.pred

[1] 4.273

> k.lZn.blue$lZn.var

[1] 0.011848

Q5 : What is the expected value and its standard error? Jump to A5 •
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Task 13 : Back-transform the expected value to original units. •

> (Zn.blue <- exp(k.lZn.blue$lZn.pred + k.lZn.blue$lZn.var/2))

[1] 72.166

Q6 : How does this compare with the non-spatial mean? Jump to A6 •

> mean(jura.cal$Zn)

[1] 75.078

Task 14 : Compute the SK prediction and its variance for the residuals. •

We first compute the residuals at the calibration points and add them to
that data frame:

> jura.cal$lZn.res <- jura.cal$lZn - k.lZn.blue$lZn.pred

> summary(jura.cal$lZn.res)

Min. 1st Qu. Median Mean 3rd Qu. Max.

-1.0500 -0.2660 0.0251 -0.0272 0.2260 1.1200

Q7 : Why is the mean residual not zero? Jump to A7 •

To predict, we need a variogram for the residiuals.

Q8 : Is it necessary to re-compute and re-model the variogram? Jump to
A8 •

Finally, we use SK to predict, with the known (spatial) mean of zero; SK
will be used if the optional beta argument to the krige method is specified:

> k.lZn.res.sk <- krige(lZn.res ~ 1, jura.cal, newdata = jura.grid,

+ model = vmf, beta = 0)

[using simple kriging]

> summary(k.lZn.res.sk)

Object of class SpatialPixelsDataFrame

Coordinates:

min max

Xloc 0.3 5.1

Yloc 0.1 5.9

Is projected: NA

proj4string : [NA]

Number of points: 5957

Grid attributes:

cellcentre.offset cellsize cells.dim
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Xloc 0.3 0.05 97

Yloc 0.1 0.05 117

Data attributes:

var1.pred var1.var

Min. :-0.88894 Min. :0.0303

1st Qu.:-0.10841 1st Qu.:0.0747

Median : 0.04199 Median :0.0894

Mean : 0.00772 Mean :0.0897

3rd Qu.: 0.14363 3rd Qu.:0.0999

Max. : 0.76988 Max. :0.1778

This kriging object contains the prediction as field var1.pred and its vari-
ance as field var1.var. Note that the variance is close to, but not identical
to, that for the original values:

> summary(round(k.lZn.res.sk$var1.var - k.lZn$var1.var,

+ 3))

Min. 1st Qu. Median Mean 3rd Qu. Max.

-0.005000 0.000000 0.000000 -0.000135 0.000000 0.000000

This discrepency is likely caused by the difference between the spatial and
non-spatial means.

We now have all the information to compute the back-transformation.

Task 15 : Back-transform the residuals and their prediction variances to
original units. •

To back-transform the residuals, we use Equation 8:

> k.lZn.res.sk$res.pred <- exp(k.lZn.res.sk$var1.pred +

+ k.lZn.res.sk$var1.var/2)

> summary(k.lZn.res.sk$res.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.418 0.937 1.090 1.080 1.210 2.230

To back-transform the variance, we use Equation 10, which includes the
back-transformed expected value.

> (mu.Z <- exp(k.lZn.blue$lZn.var/2))

[1] 1.0059

> k.lZn.res.sk$res.var <- mu.Z^2 * exp(k.lZn.res.sk$var1.var) *

+ (1 - exp(-k.lZn.res.sk$var1.var)/2)

> summary(k.lZn.res.sk$res.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.537 0.584 0.601 0.601 0.612 0.703

Finally, we can multiply the back-transformed spatial mean by the back-
transformed residuals to get the BLUP in original units. Note that the
variance is the same for the residuals or for the original values.
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> print(Zn.blue)

[1] 72.166

> k.lZn$Zn.pred <- Zn.blue * k.lZn.res.sk$res.pred

> summary(k.lZn$Zn.pred)

Min. 1st Qu. Median Mean 3rd Qu. Max.

30.2 67.6 78.9 78.1 87.4 161.0

> k.lZn$Zn.var <- k.lZn.res.sk$res.var

> summary(k.lZn$Zn.var)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.537 0.584 0.601 0.601 0.612 0.703

Task 16 : Display the map of the predictions. •

> print(spplot(k.lZn, zcol="Zn.pred", pretty=T, contour=T,

+ col.regions=bpy.colors(64),

+ main="Predicted values, Zn (mg kg-1)",

+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T)))

Predicted values, Zn (mg kg−1)
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Task 17 : Display the map of the prediction variances: •

> print(spplot(k.lZn, zcol="Zn.var", pretty=T, contour=T,

+ col.regions=topo.colors(64),

+ main="Kriging variance, Pb ((mg kg-1)^2)",
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+ xlab="UTM E", ylab="UTM N",

+ scales=list(draw=T)))

Kriging variance, Pb ((mg kg−1)^2)
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4 Clean up

Task 18 : Remove the temporary variables created in this exercise. •

> rm(skew, g, i, v, vm, vmf, k.lZn, k.lZn.blue, k.lZn.res,

+ k.lZn.res.sk, Zn.blue, mu.Z)

5 Answers

A1 : Fields 3 through 9: Cd, Cu, Pb,Co, Cr, Ni, Zn. Return to Q1 •

A2 : Cd, Cu, Pb, and Zn. Return to Q2 •

A3 : As before, Cd, Cu, Pb, and Zn. Return to Q3 •

A4 : Yes, they are all much closer to non-skewed (symmetric). Log(Zn) has the
lowest absolute skewness and looks most symmetric in the histogram plot. Return
to Q4 •
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A5 : 4.273 ± 0.1088 Return to Q5 •

A6 : The non-spatial mean is 75.08; the spatial mean is somewhat smaller. Return
to Q6 •

A7 : Because the mean we subtracted from the original values is the spatial mean
(back-transformed), not the non-spatial mean. Return to Q7 •

A8 : No, because we subtracted the same value (the spatial mean) from each; this
will not change the semi-variance of point pairs, so the residual variogram will be
the same. Return to Q8 •
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