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BRIEIEE

“Wait until all the facts are known before judging”
(Literally: “Wait until the coffin lid is nailed down before
passing judgement on a person’s life”) — Chinese proverb

1 Introduction

The essential idea of geostatistical risk mapping is to assign a probability to
the occurence of some condition. In this exercise we treat just one aspect:
the probability of not exceeding a defined threshold value.

After completing this exercise you should be able to:

1. Convert numeric variables to indicator variables;

2. Compute and model indicator variograms;

3. Predict the probability of exceeding a threshold by indicator kriging;
4. (Optionally) Predict the probability of exceeding a threshold by ordi-

nary kriging and the computation of confidence intervals and proba-
bilities;
5. Validate predictions of exceeding a threshold.

In this exercise we continue with the Jura soil sample dataset introduced
in Exercise 2 and manipulated in Exercise 4. A comprehensive risk anal-
ysis using this dataset is reported by Goovaerts et al. [2]; the textbook of
Goovaerts [1] also covers this in detail.

We take two approaches to this: (1) non-parametric (§2) and (2) parametric
(83). The first uses the concept of indicators: yes/no, true/false variables
that indicate (hence the name) whether there is or is not a “risk”; the second
first uses parametric methods (e.g., ordinary kriging of continuous variables)
and then assesses the risk using probability distributions.

Task 1 : Load the saved datasets from Exercise 4 §5. This should include:
1. Calibration points jura.cal
2. Validation points jura.val
3. Prediction grid jura.grid

as spatial objects. .

> load("JuraEx4.RData")
> 1s()

> str(jura.cal)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots

..0@ data :'data.frame': 259 obs. of 9 variables:
..$ Rock: Factor w/ 5 levels "Argovian","Kimmeridgian",..: 323 2555 1 1
..$ Land: Factor w/ 4 levels "Forest","Pasture",..: 3223333333 ...



..$Cd : num [1:259] 1.74 1.33 1.61 2.15 1.56 ...
..$ Cu : num [1:259] 25.72 24.76 8.88 22.7 34.32 ...
..$ Pb : num [1:259] 77.4 77.9 30.8 56.4 66.4 ...
..$ Co : num [1:259] 9.32 10 10.6 11.92 16.32 ...
..$ Cr : num [1:259] 38.3 40.2 47 43.5 38.5 ...
.8 N1 : num [1:259] 21.3 29.7 21.4 29.7 26.2 ...

.. ..$Zn : num [1:259] 92.6 73.6 64.8 90 88.4 ...

..0@ coords.nrs : int [1:2] 1 2

..Q@ coords : num [1:259, 1:2] 2.39 2.54 2.81 4.31 4.38 ...
..— attr(*, "dimnames")=List of 2

..$ : NULL
.. .. ..%$ : chr [1:2] "X" "y
..Q@ bbox : num [1:2, 1:2] 0.626 0.58 4.92 5.69

..— attr(x*, "dimnames")=List of 2
..$ : chr [1:2] "xX" "y"
..$ : chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q projargs: chr NA

2 Non-parametric risk mapping

The first approach is non-parametric. It works with indicator variables and
directly maps the probability of the indicator being true.

2.1 Indicator variables

We continue with cobalt concentration.

An indicator for a continuous variable is 1 if the value is below a defined
threshold, 0 otherwise. This is a convention: a “True” value means the
continuous variable is low; in general this corresponds to “no risk”, since
higher values generally are riskier.

Task 2 : Compute an indicator variable for threshold 12 mg kg-! Co.
Display a postplot of the indicator. .

We make use of a logical operator, here <. The expression (jura.cal$Co <
12) is a vector of TRUE and FALSE variables, equal in length to the source
vector jura.cal$Co.

> 112 <- (jura.cal$Co < 12)
> summary (i12)

Mode FALSE TRUE NA's
logical 65 194 0

> sum(il2)/length(il2)

[1] 0.74903

Q1 : How many of the observations are below the threshold? What pro-



portion is this? Jump to Al

With the indicator variable in hand, we can examine its spatial distribution.
However, it must be part of a spatial structure.

Task 3 : Build a spatial points dataframe with
1. codrdinates
2. Co concentration

3. an indicator of whether the Co is below the 12 mg kg-! threshold or
not.

First, we extract just the Co from the calibration dataset and build a data
frame with this and the indicator in two formats: (1) logical and (2) numeric
(using the as.numeric casting method).

Note: The reason for having the indicator also in numeric form is that some
methods do not recognize logical variables.

> jura.cal.ind <- data.frame(Co = jura.cal$Co, il2 = il2,
+ i12n = as.numeric(il2))
> str(jura.cal.ind)

'data.frame': 259 obs. of 3 variables:

$ Co : num 9.32 10 10.6 11.92 16.32 ...

$ i12 : logi TRUE TRUE TRUE TRUE FALSE TRUE ...
$il2n: num 1111010110 ...

> rm(il12)

Note: We removed vector i12 from the workspace; it is no longer needed
because it has been added to the data frame jura.cal.ind; in addition, it is
not good practice to have the same name for a workspace object and a field
in a dataframe also in the workspace; there can be confusion when trying to
find the right object.

Then we add coordinates with the coordinates method; these are extracted
from the calibration dataset, which parallels the data frame we just built,
with the same coordinates method:

> coordinates(jura.cal.ind) <- coordinates(jura.cal)
> str(jura.cal.ind)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..0 data :'data.frame': 259 obs. of 3 variables:
..$ Co : num [1:259] 9.32 10 10.6 11.92 16.32 ...
..$ i12 : logi [1:259] TRUE TRUE TRUE TRUE FALSE TRUE ...
..$ i12n: num [1:259] 1111010110 ...
..0@ coords.nrs : num(0)
..Q@ coords : num [1:259, 1:2] 2.39 2.54 2.81 4.31 4.38 ...



..— attr(x, "dimnames")=List of 2

.3
.3

..Q@ bbox

NULL

chr [1:2]

Ilel IlYll

: num [1:2, 1:2] 0.626 0.58 4.92 5.69

..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "X" "y"
.. ..$ : chr [1:2] "min" "max"
..@ proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..0 projargs: chr NA

Why does the data type of object jura.cal.ind change from data.frame
Jump to A2 e

Q2:

to SpatialPointsDataFrame?

Task 4 : Plot the locations of the observations, coloured by the indicator
value: red for FALSE and green for TRUE. o

Note: Note that spplot can not directly plot an indicator (logical variable);
the numeric equivalent must be used.

> print(spplot(jura.cal.ind, zcol = "il2n", col.regions = c("red",
+ "green"), main = "Indicator: Co < 12 ppm"))

Indicator: Co < 12 ppm
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Q3 : Does this indicator show any spatial structure? If so, what?  Jump

to A3 e



2.2 Indicator variograms

To examine the local spatial dependence, we compute the variogram.

Task 5 : Compute the indicator variogram cloud and plot it. o

As usual we use the variogram method, but with the cloud=T optional
argument:

> vi <- variogram(il2 ~ 1, loc = jura.cal.ind, cloud = T)
> print(plot(vi, main = "Indicator variogram cloud, Co < 12 ppm"))

Indicator variogram cloud, Co < 12 ppm

Q4 : What are the semivariances of the point-pairs? Explain why. Jump
to A4 e

Clearly, an indicator variogram cloud is impossible to interpret; we only show
it here to emphasize that only two values of semivariance can be obtained.

These two extremes can be averaged with the empirical variogram.

Task 6 : Compute the empirical indicator variogram and plot it. .
We use the variogram method:

> vi <- variogram(il2 ~ 1, loc = jura.cal.ind)
> print(plot(vi, pl = T, main = "Indicator variogram, Co < 12 ppm"))



Indicator variogram, Co < 12 ppm
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Q5 :  What is the approximate range, sill and nugget of this variogram?
What model form might fit it well? Jump to A5 e

Task 7 : Model the variogram. .

As before, we construct a model with the vgm method and immediately fit
it with the fit.variogram method:

> (vimf <- fit.variogram(vi, vgm(0.15, "Exp", 0.8, 0.07)))

model psill range
1 Nug 0.081583 0.00000
2 Exp 0.140108 0.60656

> print(plot(vi, pl = T, main = "Modelled indicator variogram, Co < 12 ppm",
+ model = vimf))



Modelled indicator variogram, Co < 12 ppm
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Q6 : What are the fitted model parameters? What is the effective range?
Does the fit appear to be consistent with the empirical variogram?  Jump
to AG e

> vimf [2, "range"] * 3

[1] 1.8197

Q7 : What is the nugget as a proportion of the total sill? Why is this so
high? Jump to A7 e

> vimf[1, "psill"]/sum(vimf[, "psill"])

[1] 0.368

2.3 Indicator kriging

With the modelled variogram we can now predict the probability of a TRUE
indicator at any location.

Task 8 : Predict the probability of the indicator over the prediction grid e

> ki <- krige(il2 ~ 1, loc = jura.cal.ind, newdata = jura.grid,
+ model = vimf)

[using ordinary kriging]
> summary (ki)

Object of class SpatialPixelsDataFrame
Coordinates:
min max



Xloc 0.3 5.1
Yloc 0.1 5.9
Is projected: NA
proj4string : [NA]
Number of points: 5957
Grid attributes:
cellcentre.offset cellsize cells.dim

Xloc 0.3 0.05 97
Yloc 0.1 0.05 117
Data attributes:
varl.pred varl.var

Min. :0.144  Min. :0.0986

1st Qu.:0.570 1st Qu.:0.1268

Median :0.772 Median :0.1344

Mean :0.729 Mean :0.1364

3rd Qu.:0.910 3rd Qu.:0.1402

Max. :1.011 Max. :0.2157

Q8 : What is the range of values predicted? What is the theoretical range?
Jump to A8 e

We see that some values are predicted with p > 1, which of course is not
meaningful.

Task 9 : Limit the predicted probabilities to the range [0..1]. .

For this we use the pmin (“parallel minimum”) method; and just to be sure
about the lower limit, the pmax (“parallel maximum”) method:

> ki$varl.pred <- pmin(1l, ki$varl.pred)
> ki$varl.pred <- pmax(0, ki$varl.pred)
> summary (ki@data)

varl.pred varl.var
Min. :0.144  Min. :0.0986
1st Qu.:0.570 1st Qu.:0.1268
Median :0.772 Median :0.1344
Mean :0.729  Mean :0.1364
3rd Qu.:0.910  3rd Qu.:0.1402
Max. :1.000 Max. :0.2157
Task 10 : Plot the probability of the indicator. .

We use the spplot method with a different colour scheme to emphasize
that this is a different kind of kriging output than what we’ve been viewing
previously. We also specify the sequence of colours, to see the full [0,1]
range.

This figure will be used in the following section, so we save it as a lattice
graphics object.

! This is one of the theoretical criticisms of indicator kriging



> plot.ik12 <- spplot(ki, zcol="varl.pred",

+ at=seq(0,1, by=0.04),

+ col.regions=heat.colors(64),

+ main="Probability Co < 12 ppm",
+ sub="Indicator Kriging",

+ contour=T)

> print(plot.ik12)

Probability Co < 12 ppm

Indicator Kriging

Q9 : Describe the spatial pattern of the predicted probabilities. Jump to
A9 e

Q10 : What is the predicted value away from the sample points, e.g. in the
NW corner? Why this value? Jump to A10

We may get more insight by over-printing the indicators, by making use of
the sp.layout optional argument to add layout elements; these must first
be built as lists. Here we plot the TRUE indicators in green, the FALSE in
blue, using the ifelse method to choose which.

> layout.ind.pts <- list("sp.points", jura.cal.ind,

+ col=ifelse(jura.cal.ind$il2, "green", "blue"), pch=20)
> print(spplot(ki, zcol="varl.pred",

+ at=seq(0,1, by=0.04),

+ col.regions=heat.colors(64),

+ main="Probability Co < 12 ppm",

+ sub="0bservations: <12 ppm green, >= 12 ppm blue",

+ sp.layout=list(layout.ind.pts)



2.4 Evaluation

+))
> rm(layout.ind.pts)

Probability Co < 12 ppm

—T 1.0

Ly KA
t N
- ol 3
- 3 i .
re .
p . 0.4

-

0.2

0.0
Observations: <12 ppm green, >= 12 ppm blue

Q11:

and indicator values of the calibration points are shown?

Do you have any new insights into the patterns, now that the positions
Jump to All e

Task 11 : Remove temporary objects from the workspace. .

We keep the fitted model vimf and the lattice graphics object plot.ik12
for the next section.

> rm(vi, ki)

We’ve held out 100 other observations, so we can compare the predicted
probability that the indicator is TRUE with the actual indicator, i.e. the Co
value at the evaluation (“validation”) points classified by the 12 mg kg1
threshold.

Task 12 : Predict the probability that the indicator is TRUE at the 100
evaluation points. .

We repeat the indicator kriging, but now at the evaluation points instead of
the prediction grid:

10



> ki.val <- krige(il2 ~ 1, loc = jura.cal.ind, newdata = jura.val,
+ model = vimf)

[using ordinary kriging]
> summary (ki.val)

Object of class SpatialPointsDataFrame
Coordinates:
min max
X 0.491 4.745
Y 0.524 5.285
Is projected: NA
proj4string : [NA]
Number of points: 100
Data attributes:

varl.pred varl.var
Min. :0.212  Min. :0.101
1st Qu.:0.573 1st Qu.:0.129
Median :0.754 Median :0.137
Mean :0.732  Mean :0.136
3rd Qu.:0.920 3rd Qu.:0.141
Max. :1.004 Max. :0.171
Task 13 : Compute the indicator at the evaluation points. .

The indicator is obtained by thresholding the Co values, as we did above for
the calibration set:

> i12.val <- (jura.val$Co < 12)
> summary(il2.val)

Mode  FALSE TRUE NA's
logical 31 69 0

Q12 : What proportion of the evaluation points are below the threshold?
How does this compare with the calibration points? Why the difference?
Jump to A12 e

> sum(il2.val)/length(il2.val)
[1] 0.69
> sum(jura.cal.ind$il2)/length(jura.cal.ind$il2)

[1] 0.74903

Task 14 : Compare the actual indicators with the predicted probabilities.

To do this, we make a data frame with the two fields, and then sort it
by probability. We hope that the TRUE indicators are associated with high

11



probabilities of being TRUE. Note that both vectors, one from the evaluation
set and one from the kriging prediction, have the same order of points,
because the kriging prediction is on the same evaluation set.

We use the data.frame method to make the frame. We include the row
names (observation number) from the kriging results and the coordinates
for reference, in case we need to identify a specific observation:

> compare <- data.frame(id = as.numeric(row.names(ki.val@data)),
+ i12 = i12.val, pred = ki.val$varl.pred)

> coordinates(compare) <- coordinates(ki.val)

> str(compare)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..0@ data :'data.frame': 100 obs. of 3 variables:
..$id : num [1:100] 1 234567 89 10 ...
..$ 112 : logi [1:100] TRUE TRUE FALSE TRUE TRUE TRUE ...
..$ pred: num [1:100] 0.982 0.995 0.82 0.658 0.886 ...
..0@ coords.nrs : num(0)

..Q coords : num [1:100, 1:2] 2.67 3.59 4.01 2.94 1.41 ...
..— attr(*, "dimnames")=List of 2
..$ : NULL
.. ..$ : chr [1:2] "X" "y"
..Q@ bbox : num [1:2, 1:2] 0.491 0.524 4.745 5.285

..— attr(*, "dimnames")=List of 2
..$ : chr [1:2] "x" "y
e <o ..$ : chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

To sort the frame we use the order method on the target field pred to find
the sequence of rows that would sort this from lowest to highest. We then
use that as a row subscript to re-order all the rows.

> order (compare$pred)

[1] 93 73 43 52 47 89 27 10 97 18 9 34 37 99 49
[17] 64 46 16 58 30 76 7 32 36 66 50 87 62 86 51
[33] 41 94 35 13 90 61 4 40 88 45 28 21 17 54 82
[49] 8 96 29 12 72 65 69 55 84 95 3 98 81 20 53
[65] 83 19 38 15 14 5 6 80 79 78 56 75 69 85 42
[81] 39 25 57 31 100 26 74 1 77 48 68 92 2 33 44
[971 70 67 24 22

> compare.sorted <- compare[order (compare$pred), ]
> str(compare.sorted)

Formal class 'SpatialPointsDataFrame' [package "sp"] with 5 slots
..0 data :'data.frame': 100 obs. of 3 variables:
..$ id : num [1:100] 93 73 43 52 47 89 27 10 97 18 ...

..$ 112 : logi [1:100] FALSE FALSE FALSE TRUE FALSE TRUE ...
..$ pred: num [1:100] 0.212 0.311 0.333 0.348 0.348 ...
..Q@ coords.nrs : num(0)

..@ coords : num [1:100, 1:2] 3.29 3.75 2.1 3.68 3.36 ...
..— attr(*, "dimnames")=List of 2
..$ : NULL

12

23
60
63
71
11
91



.o .. ..$ ¢ chr [1:2] "X" "y"
..@ bbox : num [1:2, 1:2] 0.491 0.524 4.745 5.285
..— attr(x*, "dimnames")=List of 2
..$ : chr [1:2] "xX" "y"
.. ..$ : chr [1:2] "min" "max"
..Q proj4string:Formal class 'CRS' [package "sp"] with 1 slots
..Q@ projargs: chr NA

Q13 :  Which of the original 100 evaluation observations has the least
predicted probability of being below the threshold? The greatest? Do these
have the expected indicator values? Jump to Al13 e

We know the last row is number 100, but it is more elegant to get the length
of a column vector from the first matrix dimension stored with the object,
using the dim method:

> compare.sorted[1, ]

coordinates id 112 pred
93 (3.287, 3.061) 93 FALSE 0.21158

> compare.sorted[dim(compare.sorted) [1], ]

coordinates id 112 pred
22 (3.31, 4.594) 22 TRUE 1.0037

Task 15 : Display the predicted probabilities and actual indicator value,
sorted by predicted probabilities. o

The order method preserves the row numbers of the original (non-sorted)
frame; in this case we also want to see the row number as sorted. Since
we saved the original row number in the id field, we can over-write the
row names, with the row.names method. Note that for spatial objects the
concept of row names applies to the included data frame in the @data slot
of the object.

> head(row.names (compare.sorted@data))
[1] |l93|l ||73|l l|43|| l|52l| Il47ll ||89|l

> row.names (compare.sorted@data) <- 1:dim(compare.sorted) [1]
> head(row.names (compare.sorted@data))

[1] Il1l| Il2l| Il3l| Il4l| Il5l| Il6l|

Now we can compare the predicted probability and actual indicator side-by-
side:

> compare.sorted@datal, c("i12", "pred")]
i12 pred

1 FALSE 0.19030
2 TRUE 0.29967

13



3 FALSE 0.43042
4  FALSE 0.44198
5 TRUE 0.47900
6 FALSE 0.48861
95 TRUE 0.95909
96 TRUE 0.97643
97  TRUE 0.99437
98 TRUE 0.99927
99  TRUE 0.99995
100 TRUE 0.99995

Q14 : If the indicator kriging were completely successful, what form would
this table have? Does it? Jump to Al4 e

We can see this more easily in a graph:

Task 16 : Plot the T/F values against the predicted probability. .

FEach observation is plotted along the x-axis according to its probability; on
the y-axis it is either at the top in green if the actual indicator is TRUE,
otherwise at the bottom in red.

> plot(compare$il2 ~ compare$pred, pch = "|", cex = 1.5,

+ xlab = "Predicted probability of TRUE indicator",

+ xlim = ¢(0, 1), yaxt = "n", ylab = "", col = ifelse(compare$il2,

+ "green", "red"), main = "Evaluation: Indicator kriging, Co < 12",
+ sub = "Green/Red: indicator TRUE/FALSE")

> abline(v = sum(il2.val)/length(il2.val), 1ty = 2, col = "darkblue")

14



Evaluation: Indicator kriging, Co < 12

T T T T
0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability of TRUE indicator
Green/Red: indicator TRUE/FALSE

Q15 : If the indicator kriging were completely successful, what would this
graph look like? Does it? What does this evaluation say about the indicator
kriging’s validity in this case? Jump to Al5 e

Task 17 : Remove temporary objects from the workspace. .
We will use the variogram model in the next section, so don’t delete it.

> rm(jura.cal.ind, il12.val, compare, compare.sorted)

2.5 Cross-validation

This optional section uses cross-validation to assess the quality of an Indi-
cator Kriging prediction.

Note: “Cross-validation” is an accepted term; we would prefer to use
b

the term “cross-evaluation” as explained in Exercise 6, but since “cross-

validation” is so widely used, we also use it.

The cross-validation method we used in OK (Exercise 6 §3) can also be
applied for indicator kriging. It works the same as for parametric kriging:
hold one point out, predict its probability of a TRUE indicator from the
other points, and then compare this probability with the actual value of the
indicator.

Task 18 : Compute the Leave-one-out cross-validation (LOOCYV) of the IK

15



prediction of Co concentration less than 12 mg kg-1. .

> jura.cal.ind <- data.frame(il2 = (jura.cal$Co < 12))
> coordinates(jura.cal.ind) <- coordinates(jura.cal)
> k.cv <- krige.cv(il2 ~ 1, loc = jura.cal.ind, model = vimf)

> summary (k.cv@data)

varl.pred varl.var observed residual
Min. :0.149  Min. :0.101  Mode :logical Min. :-0.95892
1st Qu.:0.576 1st Qu.:0.103 FALSE:65 1st Qu.:-0.07993
Median :0.839 Median :0.109 TRUE :194 Median : 0.03514
Mean :0.747 Mean :0.122 NA's :0 Mean 0.00197
3rd Qu.:0.965 3rd Qu.:0.145 3rd Qu.: 0.17354
Max. :1.011 Max. :0.177 Max. : 0.84175
zscore fold
Min. :-2.96367 Min. : 1.0
1st Qu.:-0.24737 1st Qu.: 65.5
Median : 0.10297 Median :130.0
Mean : 0.00288 Mean :130.0
3rd Qu.: 0.51159 3rd Qu.:194.5
Max 2.46171 Max. :259.0

Q16 : Which field has the predicted probability of a TRUE indicator? Which
has the actual indicator? Jump to Al6 e

Again we see impossible predicted probabilities.

Task 19 : Limit the predicted probabilities to the range [0...1]. .
> k.cv$varl.pred <- pmin(1l, k.cv$varl.pred)

We can make an interesting visualization of the cross-validation.

Task 20 : Make a post-plot of the predicted probabilities, with the symbol
size proportional to the probability, with the points coloured red for a FALSE
indicator and green for a TRUE indicator. .

We add a small number to the symbol size so that probabilities close to
zero can be more easily seen. There is no need to normalize the symbol size
because the maximum is by definition 1.

> plot(coordinates(k.cv), asp = 1, col = ifelse(k.cv$observed,

+ "green", "red"), cex = 0.2 + 2 * k.cv$varl.pred,

+ xlab = "E (km)", ylab = "N (km)", main = "Probability of TRUE indicator",
+ sub = "Actual indicator: red/green = FALSE/TRUE")

> grid()

16



N (km)

Probability of TRUE indicator

0%

E (km)

Actual indicator: red/green = FALSE/TRUE

Q17 :

it?

If the model were successful, what would this plot look like? Does

Jump to A17 e

We can visualize the success with the T/F vs. probability plot, as in the
independent evaluation.

Task 21 :

Compare the actual indicators with the predicted probabilities,

by plotting the T /F values against the predicted probability. .

We have both of these already in the k.cv object.

>
+
+
+
+
>
+

plot(k.cv$observed

~ k.cv$varl.pred, pch = "|",

cex

=1.5,

xlab = "Predicted probability of TRUE indicator",

x1lim = c(O, 1), ant = "Il", ylab = ||n,

col = ifelse(k.cv$observed,

"green", "red"), main = "Cross-validation: IK, p(Co < 12)",

sub = "Green/Red: indicator TRUE/FALSE")
abline(v = sum(k.cv$observed)/length(k.cv$observed),

1ty = 2, col = "darkblue")
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2.6 Answers

Cross-validation: IK, p(Co < 12)

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability of TRUE indicator
Green/Red: indicator TRUE/FALSE

Q18 :  Assess this model from its cross-validation, as we did for its indepen-
dent evaluation. Do the two evaluation methods agree? Jump to A18

Task 22 : Remove temporary objects from the workspace. .

> rm(k.cv, jura.cal.ind)

A1 : 194 (of 259); this is 74.9%. Return to Q1 e

A2 : A data frame with coordinates assigned by the coordinates method is
automatically promoted to a spatial object. A bounding box is also computed.
Return to Q2 e

A3 : Yes, the relatively few FALSE values are somewhat clustered; they are not
spread equally over the map. However, there are some locations with TRUE and
FALSE very close to each other. Return to Q3 e

A4 : Either 0 or 0.5. If the two points have the same indicator (both 0 or both 1),
their difference is 0, so their semivariance is 0. If the two points have different same

18



indicators (0 and 1, or 1 and 0) their difference is 1, so is their squared difference,
and half of this is 0.5. Return to Q4 e

A5 :  The total sill appears to be about 0.22, the range about 1.1 km, and the
nugget 0.07, although the behaviour at very short separation is difficult to model,
especially the sharp jump between the second and third bin. An exponential model
can “split the difference” between these. The structural sill of the exponential model
is then 0.22 - 0.07 = 0.15. Return to Q5

A6 : The exponential model has a structural sill of 0.14; combined with the
nugget of 0.082; this is a total sill of 0.222. The range parameter is 0.6066 km,
which means that the effective range is about 1.82 km (recall: the effective range
of the the exponential model is 3 times the range parameter; here the variogram
reaches 95% of the sill value.

The fit “splits the difference” fairly well, especially between the second and third
bins. Return to Q6 e

A7 : 36.8% of the total variance is represented by the nugget; this is variability
that is unexplained even at the shortest range. This reflects the several places
noted above, where TRUE and FALSE values are very close to each other in geographic
space. Return to Q7 e

A8 : The actual range is [0.120...1.011]; the theoretical range is [0...1], i.e.
a probability; in this case the actual range does not reach p = 0 anywhere, but
exceeds p = 1 in some locations. This probability is of course meaningless, but is
a possible result of a non-convex predictor like OK. We can just interpret these as
p =1, or, if we wish, limit them (see next task). Return to Q8

A9 : Clear “hot spots” of low indicator probability (i.e. high Co concentration)
and smooth transitions to larger patches of high indicator probability. Almost the
same probability (no patches) in the NW corner. Return to Q9

A10 : Away from the data points the prediction is uniform, 0.749. This is the

proportion of TRUE indicators in the calibration data set. Return to Q10
A11 : There is a smooth transition of probabilities between nearby single or
clusters of TRUE and FALSE indicators. Return to Q11

A12: Only 69% are below the threshold; in the calibration set that was almost
75%. So the evaluation set has a smaller proportion of TRUE indicators at this
threshold, i.e. a higher proportion of high-Co points. There does not seem to be a
particular reason; it’s by chance for small samples. Return to Q12 e

A13: Least: observation 93 (p = 0.2116); greatest: 22 (p = 1.004); these have
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3

* Parametric

the expected FALSE and TRUE indicators, respectively. Return to Q13 e

A14 : The 39 FALSE values would be the first 39 entries of the table, next to their
prediction probabilities; these would all be less than the prediction probabilities
for the 61 TRUE values. This is certainly not the case. The second sorted record is
already (incorrectly) TRUE; and FALSE values occur up to sorted record 87 (p = 0.98,
so the kriging is “almost certain” that this point is TRUE when in fact it is FALSE).

Return to Q14 e

A15 : All the green points at the top would be on the right side (high predicted
probabilites that these TRUE points are true, and all the red points on the left.
There would be a clear probability (vertical line) to separate them, preferably at
the overall probability of the indicator in the evaluation set, here 0.69.

This is clearly not seen. There is a lot of overlap; in particular some FALSE indicators
are predicted to be TRUE with probabilities up to 0.9. The region p > 0.9 is well-
modelled (only one false negative), but elsewhere not so well. Return to Q15

A16 : Predicted probability in field varl.pred; actual indicator in observed.
Return to Q16 e

A17 : The red circles would be small and the green ones large. This appears to
be the overall pattern but there are some clear exceptions. Return to Q17 e

A18 : This graph looks quite similar to the 100-point independent evaluation,
but with more (259) points. The region with p > .9 (i.e. almost surely below
the threshold) is, again, well-modelled, but elsewhere there is considerable overlap.

Return to Q18 e

risk mapping

Here we look at another way to map the probability of exceeding (or not)
a defined threshold. This is simply an extension of the parametric kriging
approach, i.e. Ordinary Kriging or any of its extensions such as Universal
Kriging, and relies on all the assumptions of that approach.

In Exercise 4 §4.3 we discussed the result from probability theory that the
two-sided interval which has probability (1 — &) of containing the true value
Z is:

(z - taj2,n-1 " $3) <z <(z+ toj2,n-1 " Sz)

where Z is the estimated value, tx/2,n-1 is Student’s £ with 1 — 1 degrees of
freedom at confidence level /2 and s; is the sample standard deviation; n
is the sample size.
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Note: The total probability of Type I error «, say 0.05, is halved, say to
0.025 for each side of the interval, because this is a two-sided interval. The
t-distribution must be used because we are estimating both the mean and
variance from the same sample; for reasonably-large sample sizes the normal
distribution itself can be used.

However, there is an important assumption behind this formula: the theory
of stationary random fields, which states that the actual value at a point
is the result of a second-order stationary random process with normally-
distributed error at the point. This assumption can never be tested, because
we only have one realization of the process. However it should also lead to a
normally-distributed sample, if the sample is unbiased (e.g. the result of some
random sampling design). In practice we visualize this with a histogram of
the target variable.

If we can not reasonably make this assumption, the Indicator approach (§2)
is still valid, since it makes no assumptions about the distribution of the
realizations at a point; this is an advantage in general of non-parametric
approaches.

In the case of OK, the kriging prediction gives us both the predicted value
Z and its prediction variance 0'22, which is the square of the standard error
of prediction. So we have all the information to compute the confidence
interval at all prediction points.

We can use this two ways:

1. Fix the probability of Type I error & and compute the upper and
lower confidence limits, i.e. the highest (or lowest) probable values to
be found at that location;

2. Fix the threshold (as in the indicator approach) and compute the prob-
ability of exceeding (or not) that threshold; this is directly comprable
to the probability map produced by IK at that threshold.

Recall that use the parametric approach (e.g. OK) the target variable should
be reasonably well-distributed, in order to estimate the variogram reliably.

Task 23 : Display a histogram of the Co concentration in the Jura calibra-
tion dataset. .

> hist(jura.cal$Co, col = "lightblue", border = "darkblue",
+ main = "Co concentration, Jura soils", sub = "mg kg-1")
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Q19 : Is this distribution symmetric or skewed? Are there any extreme
values? Jump to A19 e

Task 24 : Model the variogram for Co concentration and predict its value
and prediction variance over the grid by Ordinary Kriging. .

This repeats Exercise 4 §4.1 and §4.4.

v <- variogram(Co ~ 1, loc = jura.cal, cutoff = 1.6)

vmf <- fit.variogram(v, vgm(12.5, "Pen", 1.2, 1.5))

k.grid <- krige(Co ~ 1, loc = jura.cal, newdata = jura.grid,
model = vmf)

+ V Vv VvV

[using ordinary kriging]
> summary (k.grid)

Object of class SpatialPixelsDataFrame
Coordinates:
min max
Xloc 0.3 5.1
Yloc 0.1 5.9
Is projected: NA
proj4string : [NA]
Number of points: 5957
Grid attributes:
cellcentre.offset cellsize cells.dim

Xloc 0.3 0.05 97
Yloc 0.1 0.05 117
Data attributes:

varl.pred varl.var
Min. 1 2.92 Min. :1.87

1st Qu.: 7.91 1st Qu.: 3.80
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Median :10.16  Median : 4.39

Mean : 9.54 Mean : 4.67
3rd Qu.:11.36 3rd Qu.: 4.81
Max. :15.90 Max. :14.04

Now we use the OK prediction in two different ways of assessing the uncer-
tainty in a prediction.

3.1 Confidence level maps

The first method is to fix the probability of Type I error ¢ and compute
the upper and lower confidence limits, i.e. the highest (or lowest) probable
values to be found at that location. We can then display these upper and
lower bounds as maps which can be interpreted by the decision maker as
conservation and liberal pictures of what might be found in reality.

Task 25 : Compute the upper and lower confidence limits at all points in
the prediction grid, with & = 0.05, i.e. & = 0.025 in each tail. .

At each point we have a predicted value and its variance. All we need in
addition is the appropriate t-value. This depends both on « and the degrees
of freedom, which is one less than the sample size, and is obtained with the
qt (“quantiles of the t-distribution”) method:

> (t.val <- qt(0.975, length(jura.cal$Co) - 1))
[1] 1.9692

Note this is almost the z-value (which we could get with the qz (“quantiles
of the Normal distribution”) method, because the sample is large.

We can then add fields to the kriging object, with the confidence limits:

> k.grid$lcl <- k.grid$varl.pred - (t.val * sqrt(k.grid$varl.var))
> k.grid$ucl <- k.grid$varl.pred + (t.val * sqrt(k.grid$varl.var))
> summary (k.grid@data)

varl.pred varl.var 1cl ucl
Min. 1 2.92 Min. :1.87 Min. :-1.23 Min. : 6.32
1st Qu.: 7.91 1st Qu.: 3.80 1st Qu.: 3.60 1st Qu.:12.01
Median :10.16 Median : 4.39 Median : 5.76 Median :14.40
Mean : 9.54 Mean : 4.67 Mean : 5.34 Mean :13.74
3rd Qu.:11.36 3rd Qu.: 4.81 3rd Qu.: 7.23 3rd Qu.:15.69
Max. :15.90 Max. :14.04 Max. :13.06 Max. :18.78
Q20 : Are all the upper and lower confidence limits realistic? Jump to

A20

We correct the non-physical values using the pmax (“parallel maximum?”)
method (note that the max (“maximum”) method uses the maximum of the
entire vector, not element-wise):
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> k.grid$lcl <- pmax(k.grid$lcl, 0)
> summary (k.grid@data)

varl.pred varl.var 1cl ucl
Min. 1 2.92 Min. :1.87 Min. : 0.00 Min. 1 6.32
1st Qu.: 7.91 1st Qu.: 3.80 1st Qu.: 3.60 1st Qu.:12.01
Median :10.16 Median : 4.39 Median : 5.76 Median :14.40
Mean : 9.54 Mean : 4.67 Mean : 5.35 Mean :13.74
3rd Qu.:11.36 3rd Qu.: 4.81 3rd Qu.: 7.23 3rd Qu.:15.69
Max. :15.90 Max. :14.04 Max. :13.06 Max. :18.78
Task 26 : Plot the lower limit, predicted value, and upper limit side-by-side

with the same colour scale.

First we determine a common limits and cuts using the min and max methods;
note that we know the minimum must be in field 1cl and the maximum
in field ucl; we round the maximum up to the nearest integer with the
ceiling method and the minimum down to the nearest integer with the
floor method:

> (at.pred <- seq(floor(min(k.grid$lcl)), ceiling(max(k.grid$ucl)),

+ by

(11 o

Note:

= 1))

1 2 3 4 5 6 7 8 910 11 12 13 14 15 16 17 18 19

We already knew that the minimum was zero from the previous task,
but we show the calculation anyway for the more general case.

Now we build the three figures and plot them together:

#

#

#

#

VVVV 4+ 4+ 4+ +VYV++++VV++++VYV

plot.1 <- spplot(k.grid, zcol="1lcl", at = at.pred,

contour=T, col.regions=bpy.colors(64),
main="Lower 95% confidence limit",
xlab="UTM E", ylab="UTM N",
scales=1list (draw=T))

plot.2 <- spplot(k.grid, zcol="varl.pred", at

= at.pred,

contour=T, col.regions=bpy.colors(64),
main="Predicted values, Co (ppm)",
xlab="UTM E", ylab="UTM N",
scales=1list(draw=T))

plot.3 <- spplot(k.grid, zcol="ucl", at = at.pred,

contour=T, col.regions=bpy.colors(64),
main="Upper 95} confidence limit",
xlab="UTM E", ylab="UTM N",
scales=1list (draw=T))

print(plot.1, split=c(1, 1, 2, 2), more=T)
print(plot.2, split=c(1, 2, 2, 2), more=T)
print(plot.3, split=c(2, 1, 2, 2), more=F)
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Q21 : What is the interpretation of the lower confidence level, predicted,
and upper confidence level maps? Jump to A21 e

The upper and lower confidence interval maps can be categorized at any
threshold value (lower and upper bound, respectively) into a binary map
that shows areas that most probably exceed or not the threshold.

Task 27 : Display a binary map of the areas that might exceed the threshold
of 12 mg kg-1 Co (the same threshold used in the IK example above). o

These are areas where we are “confident”, with only a 2.5% chance of be-
ing wrong, that the value is not below this threshold. We can get this by
reclassifying the upper confidence level map at this value.

> k.grid$ucll2 <- (k.grid$ucl >= 12)
> summary (k.grid$ucli2)

Mode  FALSE TRUE NA's
logical 1484 4473 0
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Q22 : What proportion of the total grid is almost surely below this thresh-
old? Jump to A22

> 1 - (sum(k.grid$ucli2)/length(k.grid$ucli2))
[1] 0.24912

Now we display the map of the areas possibly above the threshold:

> plot(coordinates(k.grid), pch = 20, cex = 0.5, asp = 1,

+ col = ifelse(k.grid$ucll2, "red", "green"), xlab = "E",
+ ylab = "N", main = "Areas possibly > 12 ppm Co",

+ sub = "possibly contaminated areas shown in red")

> grid(Q)

Areas possibly > 12 ppm Co

possibly contaminated areas shown in red

3.2 Probability-of-exceedence maps

The second method is to fix the threshold and compute the probability of
exceeding (or not) it. This uses the t-distribution in the inverse way as the
previous subsection. At each prediction point we have the prediction and
its variance. From this we can compute how many standard deviations from
the predicted value is the target threshold, which we call Z;.

This is the difference between the threshold and the prediction, normalized

by t the kriging standard error of the prediction:

_Zy— 2o
O3,

w

Then the pt (“probability of a lower t”) method gives the associated proba-
bility that this value could be obtained by chance.
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For example, for a threshold of 12 mg kg-1 Co, at the first prediction point:

> target <- 12
> k.grid$varl.var[1]

[1] 9.7383

> target - k.grid$varl.pred[1]

[1] 3.1631

> sqrt(k.grid$vari.var[1])

[1] 3.1206

> (w <- (target - k.grid$varl.pred[1])/sqrt(k.grid$varl.var[1]))

[1] 1.0136

Q23 : How far is the threshold above the predicted value at this point?
What is the standard deviation? How many standard deviations is the
threshold above the predicted value? Jump to A23 e

Knowing the degrees of freedom, this can be converted into a one-tail prob-
ability (since we are only interested in exceedence), using the pt method:

> pt(w, length(jura.cal$Co))

[1] 0.84415

Q24 : What is the probability that this point does not exceed the threshold?
Jump to A24 e

Task 28 : For the entire prediction grid, determine and display the proba-

bility that the Co concentration is not above 12 mg kg-1. .
> k.grid$pl2 <- pt((target - k.grid$varl.pred)/sqrt(k.grid$varl.var),
+ length(jura.cal$Co))
> plot.pl2 <- spplot(k.grid, zcol="pl2", col.regions=heat.colors(64),
+ at=seq(0,1, by=0.04), contour=T,
+ main="Probability < 12 ppm Co", sub="Parametric")

> print(plot.pi2)
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Probability < 12 ppm Co
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Q25 : How does this map compare with the indicator kriging map at the
same threshold from §2.37 Describe any differences. Should they show the
same probabilities of exceedence? Jump to A25 e

We can answer this more easily by comparing the maps side-by-side, with
the lattice object saved from the previous section:

> print(plot.pl2, split = c(1, 1, 2, 1), more = T)
> print(plot.ik12, split = c(2, 1, 2, 1), more = F)

Probability < 12 ppm Co Probability Co < 12 ppm
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3.3 Evaluation of parametric risk mapping

We repeat the evaluation of §2.4 for both methods: confidence intervals and
probability of exceedence.

Task 29 : Predict the probability that the indicator is TRUE at the 100
evaluation points. .

We repeat the OK, but now at the evaluation points instead of the prediction
grid:

> k.val <- krige(Co ~ 1, loc = jura.cal, newdata = jura.val,
+ model = vmf)

[using ordinary kriging]
> summary (k.val)

Object of class SpatialPointsDataFrame
Coordinates:
min max
X 0.491 4.745
Y 0.524 5.285
Is projected: NA
proj4string : [NA]
Number of points: 100
Data attributes:
varl.pred varl.var
Min. : 3.58 Min. :1.98
1st Qu.: 7.70 1st Qu.:4.35
Median :10.08 Median :4.84

Mean : 9.46 Mean :4.72
3rd Qu.:11.27 3rd Qu.:4.93
Max. :14.01 Max. :7.92

Task 30 : Compute the upper confidence level at &« = 0.05 at these eval-
uation points, and threshold this at the 12 mg kg-1 Co level to predict how
many points are definitely (at this confidence level) above the threshold. e

> (t.val <- qt(0.975, length(jura.cal$Co) - 1))
[1] 1.9692

> k.val$ucl <- k.val$varl.pred + (t.val * sqrt(k.val$varl.var))
> k.val$ucli2 <- (k.val$ucl >= 12)
> str(k.val@data)

'data.frame': 100 obs. of 4 variables:

$ varl.pred: num 5.05 8.95 11.18 11.09 8.49 ...

$ varl.var : num 3.53 4.26 6.56 4.89 6.51 ...

$ ucl :num 8.75 13.01 16.22 15.45 13.51 ...

$ ucli2 : logi FALSE TRUE TRUE TRUE TRUE FALSE ...
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Q26 : What proportion of the evaluation points are predicted to be defi-
nitely above the threshold? What proportion are in fact above it?  Jump
to A26 e

> sum(k.val$ucl12)/length(k.val$ucli2)

[1] 0.73

> sum((jura.val$Co >= 12))/length(jura.val$Co)
[1] 0.31

Note that the first proportion depends in part on the confidence level.

Q27 . If the confidence level is lowered, for example to & = 0.5 (25% in
each tail), does the number of points predicted to be above the threshold
increase or decrease? Why? Jump to A27 e

> (t.val <- qt(0.75, length(jura.cal$Co) - 1))
[1] 0.67544

> k.val$ucl75 <- k.val$varl.pred + (t.val * sqrt(k.val$varl.var))
> k.val$ucl75.12 <- (k.val$ucl75 >= 12)
> sum(k.val$ucl75.12) /length(k.val$ucl75.12)

[1] 0.43

Q28 : At what confidence level, then, should the parametric method be
validated? What is the result? Jump to A28 e

> sum(k.val$varl.pred >= 12)/length(k.val$varl.pred)
(1] 0.11

> sum((jura.val$Co >= 12))/length(jura.val$Co)

1] 0.31

We now validate the parameteric probability method.

Task 31 : Compute the probabilities of non-exceedence for the 100 evalua-
tion points. .

Note that we follow the convention, also used in Indicator Kriging, that a
TRUE value is below the threshold.

We follow the procedure of §3.2.

> k.val$pl2 <- pt((12 - k.val$varl.pred)/sqrt(k.val$varl.var),
+ length(jura.cal$Co))
> summary (k.val@data)
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varl.pred varl.var ucl ucli2

Min. : 3.58 Min. :1.98  Min. : 6.34 Mode :logical
1st Qu.: 7.70 1st Qu.:4.35 1st Qu.:11.94 FALSE:27
Median :10.08 Median :4.84 Median :14.57 TRUE :73
Mean : 9.46 Mean :4.72 Mean :13.72 NA's :0
3rd Qu.:11.27 3rd Qu.:4.93 3rd Qu.:15.54

Max. :14.01 Max. :7.92 Max. :17.86

ucl75 ucl75.12 pl2

Min. : 4.53 Mode :logical Min. :0.135

1st Qu.: 9.19 FALSE:57 1st Qu.:0.628

Median :11.70 TRUE :43 Median :0.788

Mean :10.92 NA's :0 Mean :0.770

3rd Qu.:12.75 3rd Qu.:0.977

Max. :15.32 Max. :1.000

Task 32 : Compare the actual indicators with the predicted probabilities.

We build a data frame with these two:

> compare <- data.frame(il2 = (jura.val$Co < 12), pl2 = k.val$pi2)
> summary (compare)

12 p12
Mode :logical  Min. :0.135
FALSE:31 1st Qu.:0.628
TRUE :69 Median :0.788
NA's :0 Mean :0.770
3rd Qu.:0.977
Max. :1.000
Task 33 : Plot the T/F values against the predicted probability. .
> plot(compare$il2 ~ compare$pl2, pch = "|", cex = 1.5,
+ xlab = "Predicted probability of TRUE indicator",
+ xlim = ¢(0, 1), yaxt = "n", ylab = "", col = ifelse(compare$il2,
+ "green", "red"), main = "Evaluation: 0K, p(Co < 12)",
+ sub = "Green/Red: indicator TRUE/FALSE")
> abline(v = sum(compare$il2)/length(compare$il2), 1ty = 2,
+ col = "darkblue")
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Evaluation: OK, p(Co < 12)

0.0 0.2 0.4 0.6 0.8 1.0

Predicted probability of TRUE indicator
Green/Red: indicator TRUE/FALSE

Q29 : If the parametric risk approach to indicators were completely suc-
cessful, what would this graph look like? Does it? What does this evaluation
say about the parametric risk mapping validity in this case? Jump to A29

Task 34 : Clean up from this section. .

> rm(v, vmf, w, t.val, plot.pl2, plot.ik12, k.grid, k.val,

+ target, compare)
3.4 Answers
A19 : Symmetric, no extreme values. Return to Q19 e
A20 : No, the lower confidence limit has some values < 0. Return to Q20 e
A21:

1. The lower confidence level map shows the lowest value that might be at
each location, with only a 2.5% chance that the true value is lower;

2. The predicted map shows the most likely value that is expected to be found
at each location;
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3. The upper confidence level map shows the highest value that might be at
each location, with only a 2.5% chance that the true value is higher.

Return to Q21 e

A22 : Only 24.9%. This seems quite low; but recall (1) it is a very conservative
estimate; (2) because of the high kriging prediction variance in the extrapolation
area (outside the area with the sample) the corners of the map have very wide
confidence intervals, so must be considered “at risk” in this conservative approach.

Return to Q22 e

A23 : The target is higher than the predicted value by 3.16 mg kg1 Co. The
standard deviation at this point is 3.12 mg kg-1 Co. So the difference is equivalent
to 1.01 standard deviations. Return to Q23 e

A24 : p = 0.84; thus there is a 16% chance that it is exceeded. Return to Q24 e

A25 : They should be the same map, arrived at by completely different methods.
That is, the probability of exceeding a defined threshold should be the same. But the
variograms are different; furthermore prediction points in the OK map are weighted
averages of Co values, whereas in the IK map they are weighted averages of 0’s and
1’s. So it is not surprising there are some differences.

There are clear differences: the parametric (OK/confidence interval/probability)
map shows tighter “hot spots” and narrower transition zones. It has no areas of p =
1, which were obtained in the non-parametric (IK) map by limiting predicted p > 1,
and it has the probabilities in the “hot spots” closer to p = 0, i.e. more certainty
that the threshold is exceeded. The parametric method uses more information and
this seems to be reflected in the results. Return to Q25 e

A26 : The prediction is, with only 2.5% chance that we have missed a higher
value, that 73 evaluation points could be above the threshold; the actual number
is 31. This shows clearly that the confidence interval gives a conservative estimate,
in the sense that if there is almost any chance of being above the threshold, it so
predicts. Return to Q26 e

A27 : It decreases, in fact to 43; but the probability that we have missed a given
point that is in fact above the threshold is now 25%, rather than 2.5%. This is a
less conservative estimate. Return to Q27

A28 : At the expected value (i.e. no confidence interval); this is the expected
value. In fact the method predicts only 11 above the threshold, when in fact 31 are.
Return to Q28 e

A29 : This is the same graph, with the same meaning, as in the validation of
IK. To repeat, all the green points at the top would be on the right side (high
predicted probabilites that these TRUE points are true, and all the red points on the
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4 Conclusion

4.1 Answers

5 Self-test

left. There would be a clear probability (vertical line) to separate them, preferably
at the overall probability of the indicator in the validation set, here 0.69.

This is clearly not seen. There is some separation; red points tend to be to the left
(lower probability) of the green, but again there is a lot of overlap. The vertical
line at the actual probability in the validation set doesn’t separate the two groups.

Return to Q29 e

Q30 : What is your overall conclusion about the success of risk mapping in
this case (this metal, this threshold, this area)? Give some possible expla-
nations for this. Jump to A30

A30 : At this theshold (12 mg kg-1) of this metal (Co), even with a fairly dense
set of observations (259), it is not possible to clearly map areas that are probably
above vs. probably not above the threshold. This is clearly seen in the high nugget
variance in the indicator variogram, as well as the validation results.

There are two interpretations of this, either of which may be true:

1. The cutoff is in the middle of the distribution and does not represent a thresh-
old in nature;

2. The process is very local, and perhaps non-spatial; that is, there is little or
no spatial correlation in the process that produces the high Co values.

Return to Q30

This section is a small self-test of how well you mastered this exercise. You
should be able to complete the tasks and answer the questions with the
knowledge you have gained from the exercise. Please submit your answers
(including graphical output) to the instructor for grading and sample an-
swers.

This self-test repeats the key steps in indicator kriging, but using a different
threshold. We saw in the exercise that the 12 mg kg-1 Co threshold was
somewhat difficult to model, because there were some locations with almost
adjacent TRUE and FALSE indicators. The histogram for cobalt was fairly
symmetric and with no obvious long tail of high values. This is not the case
for most of the other metals.

If necessary, load the required packages sp, gstat and lattice.
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Task 1: Make a histogram of the lead (Pb) concentrations in the calibration
data set. .

Q1 : Describe the form of this histogram. 0

Task 2 : Suppose the 100 mg kg-! Pb threshold is a regulatory limit (i.e.
soils with more Pb are considered polluted); make an indicator variable for
this threshold. .

Q2 : How many of the calibration sample points are below the threshold?
What proportion is this? o

Task 3 : Make spatial object with the calibration points, their Pb con-
centrations, and the indicator. Compute and plot the empirical variogram.
Model it and fit the model. .

Q3 : What is your fitted variogram model? Does this indicator have a clear
spatial structure? .

Q4 : What is the effective range? .

Q5 :  Why is the total sill so much lower than for the example in the
exercise? .

Task 4 : Make a map of the probability of a TRUE indicator over the
prediction grid, with the sample indicators over-printed. o

Q6 : Describe the spatial pattern of the predicted probability. o
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Index of R Concepts
< operator, 2

as.numeric, 3

ceiling, 23
coordinates (package:sp), 3, 18

data.frame, 12
dim, 13

fit.variogram (package:gstat), 6
floor, 23

gstat package, 33
ifelse, 9
lattice package, 33

max, 23
min, 23

order, 12, 13
pmax, 8, 23
pmin, 8

pt, 25, 26

qt, 22
qz, 22

row.names, 13

sp package, 33
spplot (package:sp), 4, 8

variogram (package:gstat), 4,5
vgm (package:gstat), 0
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