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“If a workman wishes to do a good job, he must first sharpen
his tools.”

– Confucious, Analects 15:10

1 Introduction

This exercise is a supplement to Exercise 1 “Using the R Environment for
Statistical Computing”. It introduces a different graphics system for R,
the “grammar of graphics” approach of Wilkinson [3], as implemented
in the ggplot2 R package of Wickham [2]. The cited textbooks give full
details on the grammar [3] and its R implementation [2]; the ggplot2
website [1] is also a useful reference. Here we just repeat and extend
the graphics from Exercise 1, to show how ggplot2 provides an intuitive
grammar to produce excellent statistical graphics.

Note: The code in these exercises was tested with knitr package Ver-
sion: 1.8 [4] on R version 3.1.1 (2014-07-10), sp package Version: 1.0-19
and ggplot2 package Version: 1.0.0, running on Mac OS X 10.10.3. So,
the text and graphical output you see here was automatically generated
and incorporated into LATEX by running the code through R and its pack-
ages. Then the LATEX document was compiled into the PDF version you are
now reading. Your output may be slightly different on different versions
and on different platforms.

Task 1 : Load the meuse example dataset of the sp package. •
> require(sp)
> data(meuse)

Task 2 : Load the ggplot2 package. •
> require(ggplot2)

We begin with the qplot function of ggplot2; this can also be written
quickplot, which explains its function. This is analogous to the base
graphics plot function, but is much more powerful, since it uses a con-
sistent grammar to allow many kinds of plots. We will explain its fea-
tures as we go along. In a later section we show the more sophisticated
and powerful functions.

The grammar considers the following aspects of a graphic:

data : the dataset containing the variables to visualize;

mapping : how the data are mapped to aesthetics, i.e., what the viewer can
perceive;

geom : shorthand for “geometries”, the geometric objects that are dis-
played to the viewer, e.g., points, lines, or polygons;
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scale : how values in data space are mapped to aesthetic space, i.e., how
the value of a variable is represented. This could be by its colour,
by its size, by its shape, etc.;

coord : shorthand for “coördinate system”, how data coordinates (1D, 2D
etc.) are mapped to the 2D plane of the graphic; this system is
shown to the reader by axes and gridlines; examples are Carte-
sian, polar, and map projections; this also controls plot aspects,
i.e., scale ratios;

stat : shorthand for “statistical transformations”, which summarize the
data, rather than show all of it; examples are binning for histograms
or a smooth curve for a bivariate relation;

facet : shorthand for “faceting”, i.e., how to divide the data into groups
(subsets); this is also called “conditioning”; this is presented in §2.4

The idea here is that the different logical features of a graphic are sepa-
rated:

1. What is the data to present?

2. How can the viewer see these?

3. What objects are shown?

4. How are these shown?

5. How are the dimensions of the data shown on the necessarily 2-D
graphic?

6. Are the data transformed or summarized before presentation?

7. Are the data presented in subsets, on multiple plots?

This allows a very powerful and flexible approach.

2 Exploratory graphics

2.1 Univariate exploratory graphics

Task 3 : Visualise the frequency distribution of lead content in the soil
samples with a frequency (count) histogram. •
We know that a histogram shows the distribution; however with the de-
fault behaviour of qplot function we don’t have to explictly ask for a
histogram, all we need to do is specify that a single variables (here, lead)
is to be plotted. The function uses reasonable defaults: the best repre-
sentation for one variable is a histogram.
> qplot(lead, data=meuse)

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.
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Notice how the bin width defaulted to 1/30th of the data range:
> diff(range(meuse$lead))/30

[1] 20.56667

Behind the scenes qplot is making a lot of assumptions like this. This
simplest call to qplot function only specified the data grammar to find
the variable (here the lead field of the meuse dataframe), and qplot
did the rest. Here, since the supplied data is a single continuous vari-
able with no grouping factor, the default geom is "histogram", the de-
fault statistical transformation is histogram binning, and the default
coordinate system is then 2D: data values on the x-axis and count on
the y-axis. For the histogram, a bin width must be calculated, because
we didn’t supply one. Further, a histogram has default labelling of the
x-axis (value of the variable and its name) and y-axis (count in the bin).
These defaults can all be found with ?qplot.

The defaults are reasonable, and allow for quick creation of useful graph-
ics. Details of the appearance can by changed modifying some defaults,
for example the axis labels and the bin width of a histogram.

Task 4 : Display the histogram with binwidths of 10, 20, 30, 40, 50 and
60 mg kg-1 lead. Add an x-axis label and a graph title. •
The bin width is specified with the binwidth argument to qplot; this
is in fact an argument to the underlying histogram geometry function
geom_histogram. We also make the geometry explicit, by using argu-
ment geom. The xlab, ylab, main and sub annotations have the same
meaning as for base graphics plot.

A sequence of plots can be produced with the for command, stepping
through the desired bin widths.
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> for (w in seq(10,60, by=10)) {
+ print(qplot(lead, data=meuse, geom="histogram", binwidth=w,
+ main="Lead concentration by weight, ppm",
+ sub=paste(w, "ppm bins"), xlab="lead (ppm)"))
+ }
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Note: The print function must be given explicitly inside a control struc-
ture such as a for-loop; only at the outer level does a function that pro-
duces a graphic, such as qplot, also display that graphic.

In this case all the histograms give similar information; however the nar-
rower bins (< 40 mg kg-1) show a fine feature near 80 mg kg-1 that is
obscured with wider bins. With the widest (60 mg kg-1) bin the long right
tail looks continuous, not interrupted as we see with the others.

Task 5 : Repeat the histogram, but also show the flood-frequency class.
•

This is not yet “faceting”, because we only produce one graph; however,
by specifying that the bars should be filled according to a categorical

variable (here, ffreq), we can get an impression of how the univariate
distribution depends on the categorical variable. The fill argument is
shorthand for a mapping of a categorical variable (here, ffreq) to an
aesthetic (here, the colours of the histogram bars). The qplot function
automatically adds a plot legend showing the mapping.
> print(qplot(lead, data=meuse, geom= "histogram", binwidth=40,
+ fill=ffreq, main="Lead concentration by weight, ppm",
+ xlab="lead (ppm)"))
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There are other aesthetics to represent a univariate distribution.

Task 6 : Visualise the frequency distribution of lead content in the soil
samples with a density plot, both for all observations together and with
a mapping from flood frequency to colour. •
This is now a different geometry than the default, so we make explicit
reference to the desired geometry, here geom_density, which as an ar-
gument to qplot is just written density. In the second example, the
colour argument (which can also be written color, naming a categorical
variable as the “colour”, is shorthand for a mapping from a categorical
variable to an aesthetic. Since there is no way to show categories in a
single density, the densities must be shown per-category.
> qplot(lead, data=meuse, geom="density")
> qplot(lead, data=meuse, geom="density", colour=ffreq)
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Notice how the vertical (density) scale is adjusted so that the area under
the curve is 1.
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The analogy of a histogram binwidth for density plots is the degree of
smoothness; this is specified with the adjust argument; the higher the
value the smoother the plot.

Note: The adjust argument is actually an argument to the stat_density
density estimate function; this is in the “statistics” group.

> for (w in c(0.25, 0.5, 1, 2))
+ print(qplot(lead, data=meuse, geom="density",
+ colour=ffreq, adjust=w))
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Task 7 : Visualise the quantiles of distribution of the lead concentration
with a box plot; repeat for the base-10 log of the lead concentration. •
The boxplot is a different geometry, geom_boxplot. So we again specify
one continuous variable, but with this geometry.
> qplot(x="meuse", y=lead, data=meuse, geom="boxplot")
> qplot(x="meuse", y=log10(lead), data=meuse, geom="boxplot")
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This strange syntax, i.e., the need to specify "meuse” as the first argu-
ment, is because the boxplot of a continuous variable (here, the y vari-
able) is considered to be conditioned on a classifying variable (the x
variable); in the univariate case there isn’t one, so we specify a dummy,
here a character string. The more natural use of the boxplot is indeed to
examine the distribution, conditioned on a classifying variable; we show
an example now.

Task 8 : Visualise the quantiles of distribution of the lead concentration
with a box plot, conditioned by flood frequency class. •
With geom_boxplot geometry the x-axis is a categorical variable: there
will be one boxplot for each category. The other axis is the continuous
variable to be shown in the boxplot.
> qplot(x=ffreq, y=lead, data=meuse, geom="boxplot")

●

●

●
●

●

200

400

600

1 2 3
ffreq

le
ad

Another way to visualize a distribution is with the geom_jitter geom-
etry. This shows all the values, not just the five-number summary and
any outliers as in the boxplot. To do this, it uses the second dimension
to show all the points at that particular value of the continuous variable.
> qplot(x=ffreq, y=lead, data=meuse, geom="jitter", colour=ffreq)
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Note how we also used colour to also colour the jittered points; that
could have been used on the boxplot also.

2.2 Multiple geometries in one plot

The qplot function can plot multiple compatible geometries on a single
plot, by specifying a list of geometries as the geom argument. The list is
built as usual, using the c function. By “compatible” we mean that the
two geometries represent the same data but with different mappings.

Task 9 : Plot the univariate distribution of Pb concentration as a his-
togram, with a “rug” plot on the x-axis to show actual values. Also show
the flood frequency classes. •
Both the histogram and rug plot have the same x-axis (the Pb concentra-
tion); the histogram then maps this to bars of variable heights covering
some range of Pb, whereas the rug plot places a small vertical bar at each
actual Pb concentration.
> print(qplot(lead, data=meuse, geom=c("histogram", "rug"), binwidth=40,
+ main="Lead concentration by weight, ppm",
+ sides="b", xlab="lead (ppm)"))
> print(qplot(lead, data=meuse, geom=c("histogram", "rug"), binwidth=40,
+ main="Lead concentration by weight, ppm",
+ fill=ffreq, colour=ffreq,
+ sides="b", xlab="lead (ppm)"))
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A compatible geometry for a boxplot are the points giving the actual
values, this time on the y-axis.

Task 10 : Make a boxplot of Pb concentration, conditioned on the flood
frequency class, with the actual values shown as tick marks. •
We take this chance to introduce the first aesthetic: the shape of a sym-
bol. This is similar to the pch argument in base graphics. The shape
argument is shorthand for the shape argument to the aes “aesthetics”
function (see below). There are 25 symbols; we pick the third, a cross,
which will look like a tick mark on the vertical boxplot axis. We have to
use the I “as is” function so that the argument 3 is interpreted as the
number 3 and not as a variable.
> qplot(x=ffreq, y=lead, data=meuse, geom=c("boxplot","point"),
+ shape=I(3))
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2.3 Adding to a plot

A major feature of ggplot2 is that plots are built up in layers. In the
simple use of qplot we did not use this; here we show examples of how
additional elements can be added to a plot.

Task 11 : Enhance the histogram with a title, axis labels, coloured
histogram bars, and a rug plot. •
This is the first example of creating a plot, adding to it, and then display-
ing:

1. One call to qplot is used to specify a histogram; its aesthetic ele-
ments are specified as optional arguments. This call includes ex-
plicit reference to the desired geometry, even though it would be
automatically selected.
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The <- assignment operator is used to save the results of the qplot
function as graphics objects; the result of an assignment expres-
sion (right-hand side <-) is not displayed.

2. The object is modified by adding the histogram bars with the geom_bar
function. Although the default would have produced bars in the
histogram, calling it explicitly allows for modification of the bar
specifications. Here we specify a colour and bin width.

Note the use of the + operator to add to a plot. This operator
is overloaded, and when both arguments can be interpreted by
ggplot2.

3. The rug plot is added to the histogram. This shows a major feature
of the graphics grammar: the use of low-level graphics functions
to build up plots layer-by-layer.

4. The plotting object is now displayed with an explicit call to the
print function.

5. The last_plot function recalls the previous plot, to which we add
some further graphic elements, in this case with a low-level func-
tion geom_rug to specify that the same data from the previous plot
should now be displayed with an additional geometry, i.e., a rug.
This is the same 1D data, we’re just seeing it two ways on the same
plot.

Since this expression is not assigned to an object, its results, i.e., a
plot, are immediately displayed.

> tmp <- qplot(lead, data=meuse, geom= "histogram", binwidth=40,
+ main="Lead concentration by weight, ppm",
+ xlab="lead (ppm)")
> class(tmp)

[1] "gg" "ggplot"

> tmp <- tmp + geom_bar(fill="lightblue", binwidth=40)
> print(tmp)
> last_plot() + geom_rug()
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2.4 Bivariate exploratory graphics: faceting by classifying factors

In the previous sections we showed a continuous variable grouped by a
classifying factor on one plot. Another approach is to use what ggplot2
terms faceting, to split the variable according to the factor and show
separate plots for each subset.

The default faceting in qplot is to arrange the facets on a grid, using
an R formula row_variable_name ~ col_variable_name. If there is
only one faceting variable, the “missing” one is specified as the dummy
variable name “.”.

Task 12 : Display histograms and density plots for the lead concentra-
tion, faceted by flood frequency class, as rows. •
To show these as rows we specify the column in the formula with the
dummy variable “.”.
> qplot(lead, data=meuse, facets=ffreq ~ .,
+ geom="histogram", binwidth=30, colour=ffreq)
> qplot(lead, data=meuse, facets=ffreq ~ .,
+ geom="density", adjust=1, colour=ffreq)
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Notice that qplot uses the same axis scales for all subgroups; this allows
easy comparison. Here we clearly see that the most frequently-flooded
soils have all the high values, but that all three classes have skewed
distributions. Here the use of colour is optional, since each group is
already a separate facet.

We can show a matrix of histograms, classified two ways:

Task 13 : Display histograms and density plots for the lead concen-
tration, faceted by flood frequency class, as rows, and by soil type, as
columns. Colour both for easy interpretation. •
> qplot(lead, data=meuse, facets=ffreq ~ soil, geom="histogram",
+ colour=ffreq, fill=soil, binwidth=30)
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Here we use the colour argument to show the flood frequency, and the
fill argument to show the soil type. These are both mappings of values
to aesthetics.

2.5 Bivariate exploratory graphics: scatterplots

The principal tool is the scatterplot.

Task 14 : Display a scatterplots of Zn concentation (y-axis) vs. Pb con-
centration (x-axis), both untransformed and log-transformed. •
If qplot is presented with two variables, by default it produces a scatter-
plot. The variables can be the result of expressions, for example log10.
> qplot(x=lead, y=zinc, data=meuse)
> qplot(x=log10(lead), y=log10(zinc), data=meuse)
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The expressions can be any valid arithmetic expression involving the
variables in the named data frame.

Task 15 : Plot the ratios of the two metals standardized by the copper
content, •
> qplot(x=lead/copper, y=zinc/copper, data=meuse)
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As with the univariate plots, the points can be coloured by some classify-
ing factor; they can also have a different symbol for a (possibly different)
factor.

Task 16 : Plot the Pb concentration against the distance to the nearest
river, with the points coloured by the flood frequency class and their
shape representing the soil type. •
> qplot(x=dist.m, y=lead, data=meuse, colour=ffreq, shape=soil)
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There are several ways to visualize a 2D relation; the scatterplot is the
most common. qplot can be called with different geometries; we’ve
already seen the default geom_points geometry, which produces a scat-
terplot. Another frequently-used geometry is geom_smooth; this fits an
empirical smoother and displays the smoother and its standard error.
There are various smoothing methods which can be specified with the
method argument; the default "loess" smooth local regression is the
default.

Task 17 : Add an empirical smoother to the plot of Pb concentration
against the distance to the nearest river. •
Several geometries can be provided together to the geom argument to
qplot, joined into a list with the c “catenate” function. We do this first
for all points, and then by flood frequency class.
> qplot(x=dist.m, y=log10(lead), data=meuse, geom=c("point", "smooth"))

geom_smooth: method="auto" and size of largest group is <1000, so using loess.

Use ’method = x’ to change the smoothing method.

> qplot(x=dist.m, y=log10(lead), data=meuse, colour=ffreq, geom=c("point", "smooth"))

geom_smooth: method="auto" and size of largest group is <1000, so using loess.

Use ’method = x’ to change the smoothing method.
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If you suspect a linear or polynomial relation over the whole range, you
can fit a linear model with the "lm" “linear model” method:
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> qplot(x=dist.m, y=log10(lead), data=meuse,
+ geom=c("point", "smooth"), method="lm")
> qplot(x=dist.m, y=log10(lead), data=meuse, colour=ffreq,
+ geom=c("point", "smooth"), method="lm")
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3 Beyond the quick plot

To enjoy the full power of the grammer of graphics, we introduce the
concept of building up a graphic by layers. The idea here is that a figure
can be built up in layers – this is a natural way to think about graphics.
For example, we can think of first drawing the axes of a scatterplot, then
the points, then colouring the points according to some category, then
adding some summary such as density contours, and so forth. These are
all layers, each of which have a grammar that describes them and their
options.

In outline, the full specification of one layer of a graphic is:
> ggplot(data, mapping) +
+ layer(
+ stat = "",
+ geom = "",
+ position = "",
+ geom_parms = list(),
+ stat_params = list(),
+ )

where ggplot initializes the plot and supplies the data source and the
layer function lists the specification of one layer. In practice, there are
various convenient abbreviations.

As an example, the scatterplot of Pb vs. distance from river, points
coloured by flood frequency and with a size proportional to their or-
ganic matter content, and with a best-fit linear regression line, can be
displayed by (1) initializing the plotting system with a call to ggplot
without any arguments, (2) adding layers, each separated with the + op-
erator’:
> ggplot() +
+ geom_point(
+ aes(x=dist.m, y=log10(lead), colour=ffreq, size=om),
+ data=meuse
+ ) +
+ geom_smooth(
+ aes(x=dist.m, y=log10(lead)),
+ data=meuse,
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+ method="lm"
+ )

Warning: Removed 2 rows containing missing values (geom_point).
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The call to the ggplot function, without any arguments, just creates
a skeleton for layers to be added; it is referred to as the “base” layer.
The geom_point function builds a point layer as specified; similarly for
geom_smooth The + operator adds a layer to an existing plot. There is
no limit to the number of layers, but they must be compatible. In the
example the point scatterplot (two axes) is compatible with a smooth
line also in 2D. Each of the geometry functions has its own required and
optional arguments. All of them require the data argument – we can’t
plot anything without knowing the data!

Here we see that both require an aes “aesthetic” argument. Recall, this
specifies an mapping from values of the variables to visual properties,
also known as “aesthetics”, within the specified geometry.

In the first layer of this example, we know that some data in the meuse
dataset should be represented as points on a scatterplot – this from the
definition of the geom_point geometry.

1. The x and y arguments specify which variables, or transformations
of these, should be mapped to the x- and y-axes; these are required
to place the points.

2. The colour argument is optional; for the point geometry it speci-
fies the colours of the points. This is another visual variable (“aes-
thetic”) – the first two are the geometric position of the point. Here
we name another variable in the dataframe, a categorical variable.
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This has three values, so we have three colours; the mapping is
from three classes to three colours.

3. The size argument is also optional; for the point geometry it spec-
ifies the size of the points. This is another visual variable Here
we name another variable in the dataframe, this time a continuous
variable (organic matter), and the mapping then scales the point
size accordingly. By default the legend shows four levels.

Note that although the points are coloured by flooding frequency, the
linear model is for all the points together.

3.1 Colours and palettes

It is also possible to specify a continuous variable as the colour argu-
ment, in which case the values are shown in a colour ramp. For example,
we may suspect that the Pb content is also influenced by organic matter;
we can include it in the plot as a colour ramp, while still showing the
Pb–distance to river relation.
> ggplot() +
+ geom_point(
+ aes(x=dist.m, y=log10(lead), colour=om),
+ data=meuse
+ )
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Obviously, there is a default colour ramp – here shades of blue. This
is actually a scale, in ggplot2 terminology. It maps numbers (here, or-
ganic matter content) to a scale in colour space, in the same way there is
a mapping from numbers to a position on an axis of a scatterplot. It is
a function from a domain (data values, which can be classes or contin-
uous) to a range (the colour for that value). This is a quite tricky – the
user’s visual perception must match the change in colour. One package
that has dealt with this is RColorBrewer, which palettes (colour choices)
can be accessed with the scale_colour_brewer function for categor-
ical variables and scale_colour_distiller for continuous variables.
This package provides ready-made sequential, diverging, and qualitative
palettes.
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Note: The project RColorBrewerwebsite1 allows you to experiment with
palettes and then download them in a format suitable for use in R. You
can then build your own palettes with scale_colour_gradient and sim-
ilar functions in the RColorBrewer package.

Task 18 : Load the RColorBrewer package and display all the ready-
made palettes. •
We can see the ready-made palettes available in the RColorBrewer pack-
age as follows:
> require(RColorBrewer)
> display.brewer.all()

BrBG
PiYG
PRGn
PuOr
RdBu
RdGy

RdYlBu
RdYlGn
Spectral

Accent
Dark2
Paired
Pastel1
Pastel2
Set1
Set2
Set3

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

To see only the palettes appropriate for sequences, i.e., continuous vari-

1 http://colorbrewer2.org/
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ables, we specify the type argument:
> display.brewer.all(type="seq")

Blues
BuGn
BuPu
GnBu

Greens
Greys

Oranges
OrRd
PuBu

PuBuGn
PuRd

Purples
RdPu
Reds
YlGn

YlGnBu
YlOrBr
YlOrRd

Task 19 : Select an appropriate palette and use it to colour the scatter-
plot points by their relative SOM contents. •
We select one of the sequential palettes, and use the palette argument
of the scale_colour_distiller function to select a palette. We also
need to specify a colour space in which to calculate the gradient, i.e.,
colour ramp, with the space “colour space” argument. The function sug-
gests the Lab colour space; this is a tristimulus (three-axis) perceptual
space with lightness and two orthogonal colours a (green to red) and b

(blue to yellow). The interpolation takes place in this space.
> ggplot() +
+ geom_point(
+ aes(x=dist.m, y=log10(lead), colour=om),
+ data=meuse
+ ) +
+ scale_colour_distiller(name="SOM",
+ space="Lab", palette="YlOrBr")
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3.2 Symbol size and type

Scales also apply to sizes of symbols. Again, this is a mapping, from
value to some aesthetic element, here size.

Task 20 : Display the scatterplot with symbol size proportional to SOM.
•

The scale_size_continuous function is the default for the scale_size
function applied to a continuous variable; for discrete variables the func-
tion is scale_size_discrete. The size argument to the aes “aesthetic
mapping” function specifies the variable that maps to the size; this is
analogous to the colour function used in the previous example.
> p <- ggplot() +
+ geom_point(
+ aes(x=dist.m, y=log10(lead), size=om),
+ data=meuse
+ ) +
+ scale_size(name="SOM, cg kg-1")
> class(p)

[1] "gg" "ggplot"

> print(p)

Warning: Removed 2 rows containing missing values (geom_point).
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Note that in this example we save the plot as a workspace object of
class ggplot and then explicitly print it. This is to re-use the plot with
additional elements, without having to specify it in full.

Task 21 : Display the previous plot, but also with colours representing
the SOM concentration. •
We first name the saved object, but then add an additional aesthetic
mapping (colour) and specify its scale. Note there is no need for a title
for the color legend, since we have one already for the size legend.
> p +
+ aes(colour=om) +
+ scale_colour_distiller(name="", space="Lab", palette="PuBuGn")

Warning: Removed 2 rows containing missing values (geom_point).
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The aesthetics of continuous scales have many options, see ?continuous_scale.
For example, the number and position of legend breaks can be directly
specified with the breaks argument.

Task 22 : Repeat the previous graph but show a legend with SOM in
classes of 2 cg kg-1. •
> ggplot() +
+ geom_point(
+ aes(x=dist.m, y=log10(lead), size=om),
+ data=meuse
+ ) +
+ scale_size(name="SOM, cg kg-1", breaks=seq(2,14,2))

Warning: Removed 2 rows containing missing values (geom_point).
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We saw how to colour the points according to a categorical variable (flood
frequency) using qplot. We can do the same with ggplot, but in a more
systematic way, i.e., by building up layers.
> g <- ggplot(meuse, aes(x=dist.m, y=log10(lead)))
> g +
+ geom_point(
+ aes(colour=ffreq, symbol=3)
+ ) +
+ geom_smooth(aes(colour=ffreq), se=TRUE, method="lm") +
+ ggtitle("Meuse lead vs. distance from river") +
+ xlab("Distance from river") +
+ ylab("Log(10) Pb")
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Note the use of the ggtitle function to add a graph title.

3.3 Controlling the axes

In the above scatterplots the aspect ratio of the axes was computed
based on the data range, to produce a square plot. To preserve the
original aspect ratio, we add a coord_fixedayer. We can visualize the
difference in a scatterplot of lead vs. copper, which have quite different
absolute values:
> ggplot() +
+ geom_point(
+ aes(x=zinc, y=copper),
+ data=meuse
+ )
> ggplot() +
+ geom_point(
+ aes(x=zinc, y=copper),
+ data=meuse
+ ) +
+ coord_fixed()
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The aspect ratio is by default 1, but can be adjusted with the ratio
argument, expressed as y/x:
> ggplot() +
+ geom_point(
+ aes(x=zinc, y=copper),
+ data=meuse
+ ) +
+ coord_fixed(ratio=8)
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3.4 Faceting

Recall the faceting with qplot:
> qplot(lead, data=meuse, facets=ffreq ~ .,
+ geom="histogram", binwidth=30, colour=ffreq)

We can also facet with ggplot, using the facet_grid function to specify
the form of the faceting:
> g <- ggplot(meuse, mapping=aes(x=lead))
> g +
+ facet_grid(ffreq ~ .) +
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+ geom_histogram() + geom_rug()+
+ aes(colour=ffreq)

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.

stat_bin: binwidth defaulted to range/30. Use ’binwidth = x’ to adjust this.
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Here the mapping argument specifies how dimensions of the graphic
(here, the x dimension) are mapped from fields in the data (here, the
lead field). This one-dimensional mapping can be displayed many ways;
the geom_histogram function specifies a histogram and the geom_rug
function specifies a “rug” plot under the histogram.

Here are empirical relations between lead and distance to river, but dis-
played separately for each combination of flood-frequency classes and
soil type.
> g <- ggplot(meuse, mapping=aes(y=log(lead), x=dist.m))
> g +
+ facet_grid(ffreq ~ soil) +
+ geom_point() + geom_smooth(se=TRUE, method="lm")

Warning in qt((1 - level)/2, df): NaNs produced

> aes(colour=ffreq)

List of 1
$ colour: symbol ffreq
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Note how both the horizontal and vertical scales are the same, allowing
direct comparison of the scatterplots and lines.

4 Displaying polygons

5 Using open-source maps

The ggmap package provides an interface between ggplot2 and public
maps sources. It uses these maps as the base layers, to which other
georeferenced information may be added.
> require(ggmap)

The base layer is obtained by the get_map method, from one of the pub-
lic map sources; this can be further specialized to name the map source,
e.g., get_googlemap. The services use geocoding, which may be called
directly as geocode. The location query can be specified with any string
that can be understood by Google Maps in interactive mode.

Note: Note: this will not work in the People’s Republic of China or other
countries that are blocking Google.

> geocode('71 Beijing East Road, Nanjing, China')

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=71+Beijing+East+Road,+Nanjing,+China&sensor=false

Google Maps API Terms of Service : http://developers.google.com/maps/terms

lon lat
1 118.8092 32.05725
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> geocode('Cornell University')

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=Cornell+University&sensor=false

Google Maps API Terms of Service : http://developers.google.com/maps/terms

lon lat
1 -76.4735 42.45345

> (place <- geocode('meers, netherlands', output='more'))

Information from URL : http://maps.googleapis.com/maps/api/geocode/json?address=meers,+netherlands&sensor=false

Google Maps API Terms of Service : http://developers.google.com/maps/terms

lon lat type loctype address
1 5.740819 50.96181 locality approximate 6181 meers, netherlands

north south east west postal_code country
1 50.96316 50.96046 5.742168 5.73947 <NA> netherlands
administrative_area_level_2 administrative_area_level_1 locality

1 stein limburg meers
street streetNo point_of_interest query

1 <NA> NA <NA> meers, netherlands

> geocodeQueryCheck()

2472 geocoding queries remaining.

> meuse.map <- ggmap(get_map(
+ loc=c(lon=place$lon, lat=place$lat+0.01),
+ zoom=14, maptype="hybrid", source="google"))

Map from URL : http://maps.googleapis.com/maps/api/staticmap?center=50.971807,5.740819&zoom=14&size=%20640x640&scale=%202&maptype=hybrid&sensor=false

Google Maps API Terms of Service : http://developers.google.com/maps/terms

> print(meuse.map)
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5.72 5.73 5.74 5.75 5.76
lon
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t

We recognize this as the Meuse study area.

To overlay our points, they must be transformed to the same coördinate
reference system (CRS) as Google Maps.
> meuse.sp <- meuse
> coordinates(meuse.sp) <- ~ x + y
> proj4string(meuse.sp) <- CRS("+init=epsg:28992") ## see ?meuse

> require(rgdal)
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> meuse.wgs84 <- spTransform(meuse.sp, CRS("+init=epsg:4326"))
> meuse.wgs84.df <- as(meuse.wgs84, "data.frame")
> meuse.map +
+ geom_point(
+ aes(x=x, y=y, colour=elev),
+ data=meuse.wgs84.df) +
+ scale_colour_distiller(name="elev",
+ space="Lab",
+ palette="Spectral")

Warning: Removed 7 rows containing missing values (geom_point).
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